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Abstract

A major goal of combustion research is to develop accurate, tractable, predictive models for the phenom-
ena occurring in combustion devices, which predominantly involve turbulent flows. With the focus on gas-
phase, non-premixed flames, recent progress is reviewed, and the significant remaining challenges facing
models of turbulent combustion are examined. The principal challenges are posed by the small scales, the
many chemical species involved in hydrocarbon combustion, and the coupled processes of reaction and
molecular diffusion in a turbulent flow field. These challenges, and how different modeling approaches face
them, are examined from the viewpoint of low-dimensional manifolds in the high-dimensional space of
chemical species. Most current approaches to modeling turbulent combustion can be categorized as flam-
elet-like or PDF-like. The former assume or imply that the compositions occurring in turbulent combustion
lie on very-low-dimensional manifolds, and that the coupling between turbulent mixing and reaction can be
parameterized by at most one or two variables. PDF-like models do not restrict compositions in this way,
and they have proved successful in describing more challenging combustion regimes in which there is signif-
icant local extinction, or in which the turbulence significantly disrupts flamelet structures. Advances in diag-
nostics, the design of experiments, computational resources, and direct numerical simulations are all
contributing to the continuing development of more accurate and general models of turbulent combustion.
� 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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1. Introduction

Turbulent combustion, the topic of this paper,
has been the focus of previous Hottel lectures [1,2]
and of many other plenary lectures [3–10] at the
International Combustion Symposia. The topic
is both important and persistent. The importance
is obvious, given the continuing dominance of the
combustion of hydrocarbon fuels to meet
the world’s energy demands, and the fact that
the flows involved are inevitably turbulent,
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because of their large flow rates. The persistence
of research on turbulent combustion over many
decades reflects the formidable challenges of the
subject, which yield slowly to our increasing
understanding and technological capabilities in
terms of computer power and instrumentation.

1.1. Turbulent combustion models: goals and lines
of attack

As in most branches of the physical sciences,
the ultimate goal of research on turbulent com-
bustion is an accurate and tractable theory or
model, which encapsulates the attained knowledge
ute. Published by Elsevier Inc. All rights reserved.
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and understanding of the phenomenon. For
example, in the context of ground transportation,
a US Department of Energy workshop [11] “iden-
tified a single overarching grand challenge: the
development of a validated, predictive, multi-scale
combustion modeling capability to optimize the
design and operation of evolving fuels in
advanced engines for transportation applica-
tions”. While the use and value of turbulent com-
bustion models continue to increase across
combustion industries, current capabilities fall
well short of what is needed in reliable design
tools, and well short of what has been achieved
in other disciplines, such as solid mechanics and
fluid dynamics.

One line of attack is to develop models applica-
ble to the geometry of practical combustion
devices, including sub-models for the many com-
plexities involved—sprays, radiation, acoustics,
etc.—in addition to a turbulent combustion model
for the gas-phase combustion. For the overall
model to be computationally tractable, each sub-
model needs to be relatively simple. A marvelous
exemplar of this line of attack is the simulation
by Boileau et al. [12] of the ignition sequence of
the 18 liquid-fueled burners in a gas-turbine annu-
lar combustor. As our knowledge and computer
power increase, the sub-models can be improved
in their scope and accuracy. While this line of
attack is extremely valuable, it has to confront
two difficulties. First, the quality and quantity of
experimental data for model validation in such
applications are quite limited. Second, when there
are discrepancies between simulations and experi-
mental data, it can be difficult to determine which
sub-model (or combination of sub-models) is to
blame.

A different, complementary line of attack is, to
the extent possible, to separate and isolate the dif-
ferent phenomena involved, and to study them in
laboratory experiments in relatively simple geom-
etries. With this approach, much more compre-
hensive and accurate measurements are possible;
the phenomena are more amenable to direct
numerical simulation (DNS); and the information
from experiments and DNS can be used directly
to test sub-models, identify deficiencies, and sug-
gest directions for improvements. This is a surer
way to develop fundamentally sound and vali-
dated models. However, this line of attack has
its own set of issues: it takes a longer time to make
an impact on the design of combustion devices; a
set of tractable sub-models may be intractable
when they are combined; and, the experiments
and DNS performed may not be at conditions
representative of practical applications. The latter
point is a particular concern: while laboratory
experiments are generally designed to yield the rel-
evant combustion regime (e.g., as characterized by
the Damköhler number), usually the Reynolds
number is lower than in applications (typically
by an order of magnitude); and laboratory exper-
iments are predominantly at atmospheric pres-
sure, and typically use simple gaseous fuels.

In this paper, we take the latter line of attack
and, putting aside the complexities of sprays, radi-
ation, acoustics, instabilities, etc., we focus on the
essence of the turbulent combustion problem,
namely the coupled processes of reaction and
molecular diffusion in a turbulent flow field. Fur-
thermore, we focus on non-premixed turbulent
combustion. We take the viewpoint that the
underlying physics and chemistry is known in
terms of the conservation equations for mass,
momentum, energy and chemical species [13].
While our knowledge of the material properties
involved in these equations (chemical reaction
rates and thermodynamic and transport proper-
ties) contains uncertainties, these will decrease
with time: and besides, what other starting point
is there for a fundamentally-based theory?

We take it, therefore, that the governing equa-
tions satisfy our requirement of “accuracy”, but
they do not satisfy the requirement of “tractabil-
ity”. This is for two obvious reasons. First, the
accurate solution of the governing equations
requires the resolution of all length scales and
time scales of the problem [3], which, for practical
combustion devices, will remain computationally
prohibitive for many decades to come [14,15]. Sec-
ond, chemical mechanisms for many hydrocarbon
fuels may involve thousands of species [16]. In
order to overcome the challenges of small scales
and many species, it seems inevitable that any
tractable computational approach must include
two ingredients: a statistical description of the
small scales; and a reduced description of the
chemistry in terms of far fewer species (or other
variables).

1.2. Progress towards the ultimate goal

Two fundamental questions we can ask are: at
some point in the future, when the challenges of
modeling turbulent combustion have been com-
pletely overcome, what will be the nature of the
victorious, ultimate turbulent combustion model?
And, how will progress continue to be made
towards this goal?

We can get some clues to the answer to the first
question by examining a much simpler, now-
solved problem, namely the numerical solution
of ordinary differential equations (ODEs). There
are now completely satisfactory solution method-
ologies (and software packages) both for initial-
value problems and for boundary-value problems
(e.g., [17]). In these methods there are just two
types of user input: the first is the problem state-
ment (domain, governing equations, material
properties, initial or boundary conditions); the
second is an error tolerance. The methodology
then determines a numerical solution which is
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accurate to within the specified error tolerance.
An essential ingredient of such methodologies is
adaptivity, both of the mesh and of the order of
finite-difference (or similar) approximation used.
And, in order to implement an adaptive strategy,
it is necessary to be able to estimate the error
incurred using a particular scheme on a particular
mesh. For complex problems, adaptivity allows
the use of a detailed description of the phenomena
in the (usually small) regions where it is necessary,
while avoiding the concomitant high cost in the
regions where the detailed description is not
necessary.

Similarly to the example of the ODEs, in the
ultimate turbulent combustion model there will
be several types of adaptivity, and there have
already been initial steps in this direction includ-
ing: adaptive mesh refinement (AMR) [18]; adap-
tive chemistry [19–24]; and adaptive turbulence
modeling (e.g., hybrid RANS/LES [25,26]). In
some of these aspects of the problem (e.g., AMR
and adaptive chemistry) there are established
ways to estimate error: in the modeling of turbu-
lence and turbulence-chemistry interactions, esti-
mating errors is much more challenging.

At present, many turbulent combustion models
are designed for (and restricted to) particular spe-
cial cases, such as premixed combustion or non-
premixed combustion with two uniform streams
(i.e., fuel and oxidant). In contrast, the ultimate
combustion model will be generally applicable,
even though through adaptivity it may make use
of specialized models. Such generality is highly
desirable, since practical combustion problems
seldom conform to the idealizations used in the
specialized models, and they may involve two or
more distinct combustion modes or regimes. Fur-
thermore, the ultimate, adaptive turbulent com-
bustion model requires of the user much less
knowledge and skill than is currently required to
select and apply specialized models.

In addressing the second question—how will
progress continue to be made towards the goal of
achieving a completely satisfactory model of tur-
bulent combustion?—it is important to recognize
that there is a broad range of turbulent combustion
problems, ranging in their complexity and chal-
lenges. As discussed elsewhere [27], it is therefore
valuable to have a range of modeling approaches,
from simple models for less challenging problems,
to more complex and costly models for more chal-
lenging problems. With sustained research effort,
we see progress of two kinds. First the frontier of
our modeling capabilities advances, in the sense
that more complex models are developed to treat
some of the previously-unmet challenges. Second,
behind this advancing frontier, the models are
refined, their accuracy is improved, their range of
applicability and accuracy are delineated, error
estimators are developed, and improved software
becomes more widely available.
1.3. Scope, themes and outline of the paper

To provide the necessary background for the
subsequent discussions, in Section 2 we present
the conservation equation for chemical species
and review some of its basic properties. In Sec-
tion 3 we consider the principal challenges facing
models of turbulent combustion. As mentioned,
meeting the challenges of small scales inevitably
requires a statistical approach, so that the coupled
processes of reaction and molecular diffusion have
to be modeled. The present paper focuses on this
challenge in the context of non-premixed turbu-
lent combustion.

Based on how they address the challenge posed
by the coupling between chemical reactions and
molecular diffusion, most current approaches fall
into one of two distinct categories, which we refer
to as flamelet-like and PDF-like. These two types
of models are discussed in Sections 4 and 5,
respectively, and their characteristics are con-
trasted in Table 2 in Section 7. Section 5 includes
a brief account of the successes achieved by PDF
methods in the past decade in accurately repre-
senting the challenging phenomena of local
extinction and ignition. A crucial distinction
between the two types of models is that flamelet-
like models assume (or imply) that, in the high-
dimensional space of species, the compositions
that occur in turbulent combustion are confined
to very-low-dimensional manifolds.

A theme of the paper is the examination of the
processes of reaction and molecular diffusion from
the perspective of manifolds in the species space.
In Section 6 we classify and examine the various
manifolds used in turbulent combustion and dis-
cuss the implications of these considerations for
models of turbulent combustion. The species
conservation equation expressed relative to a
low-dimensional manifold reveals the important
balance (or imbalance) between reaction and
molecular diffusion, with the latter appearing as
the product of a scalar dissipation and the curva-
ture of the manifold. Many, if not all, approaches
to non-premixed turbulent combustion lead to
governing equations with the same structure.

In Section 7, conclusions are drawn and some
opinions are given on the future development of
turbulent combustion models. While flamelet-like
models have a significant and useful role to play,
they depend on the very strong assumption that
the compositions occurring in turbulent combus-
tion lie on a very-low-dimensional manifold
(e.g., 2D or 3D). It is abundantly clear that this
assumption is not tenable in some of the more
challenging regimes of turbulent combustion.
PDF-like approaches avoid the assumption of a
very-low-dimensional manifold, and can be
expected to continue to advance the frontiers of
our capabilities to more challenging combustion
regimes.
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While most of the paper is in the form of expo-
sition, review and discussion, an original contribu-
tion is the analysis in Appendix A which provides
a link between PDF-like and flamelet-like models.
2. Species conservation

2.1. Simplified conservation equations

We introduce here a simplified equation for spe-
cies conservation. This is sufficient for us to study
the essence of the turbulent combustion problem
and the theories described in later sections.

We consider the low-Mach-number flow of a
reactive ideal gas mixture (e.g., a gas-fueled,
non-sooting, turbulent flame). The fields of fluid
density and velocity are denoted by q(x,t) and
U(x,t), and the mass fractions of the ns chemical
species are denoted by Yðx; tÞ ¼ fY 1; Y 2; . . . ; Y nsg.

The species conservation equation considered
is

DY i

Dt
¼ 1

q
r � ðqDrY iÞ þ Si; ð1Þ

where the material derivative D/Dt � o/ot + U
� $ gives the rate of change following the fluid;
D is the molecular diffusivity; and Si is the net cre-
ation rate of species i due to chemical reactions.
We refer to S ¼ fS1; S2; . . . ; Snsg as the chemical
source term. The only simplification contained in
this equation is the use of Fick’s law with equal
diffusivities for all species. It is well appreciated
that differential diffusion can be very important
in several combustion phenomena [13,28] but the
use of a single diffusivity retains the essence of
the problem studied, while affording significant
simplifications of the subsequent equations.

At each point in the flow, the thermochemical
state of the fluid is fully characterized by the
species mass fractions Y, the pressure p, and the
enthalpy h. We consider flows such as open labo-
ratory flames in which pressure variations are neg-
ligible (compared to the absolute pressure). We
also take the enthalpy to be a known linear func-
tion of Y, as is the case in idealized premixed and
non-premixed flames (with unity Lewis number
and negligible heat loss). Thus, the spatial and
temporal variation of the thermochemical state
is fully described by Y(x,t). Hence, from the
known thermodynamic properties, we have equa-
tions of state for density and temperature of the
form

qðx; tÞ ¼ q̂ðYðx; tÞÞ; and

T ðx; tÞ ¼ bT ðYðx; tÞÞ; ð2Þ

the known transport properties provide the
diffusivity

Dðx; tÞ ¼ bDðYðx; tÞÞ; ð3Þ
and the known chemical kinetics determine the
chemical source term

Sðx; tÞ ¼ bSðYðx; tÞÞ: ð4Þ
(The notation distinguishes between quantities ex-
pressed as functions of position and time, e.g.,
S(x,t), and the same quantity expressed as a func-
tion of mass fraction, i.e., bSðYÞ). The chemical
source term can be decomposed into production
(S+) and consumption (S�) ratesbSi ¼ Sþi � S�i ¼ Sþi � Y i=sðiÞ; ð5Þ

where the time scales si are defined by the latter
equation, and bracketed subscripts are excluded
from the summation convention.

It is emphasized that the assumptions—unity
Lewis numbers, constant pressure, enthalpy linear
in Y—are made here just to simplify the exposi-
tion. In most modeling approaches, some or all
of these assumptions are avoided.

For non-premixed combustion involving two
uniform streams—a fuel stream of composition
Yfu and an oxidant stream of composition Yox—
we introduce the mixture fraction Z(x,t), which
is defined to be unity in the fuel stream, zero in
the oxidant stream, and to evolve by

DZ
Dt
¼ 1

q
r � ðqDrZÞ: ð6Þ

It follows from the assumptions made that the en-
thalpy, the mass fractions of the elements, and the
mass fractions of inert species are all known linear
functions of mixture fraction.

2.2. Basic observations

We now make some basic observations about
the species conservation equation, and recall some
well known results.

1. Given the complexity of turbulent combustion,
it is reassuring to observe from Eq. (1) that,
following the fluid, there are only two pro-
cesses that directly affect the chemical composi-
tion, namely, reaction and molecular diffusion.

2. A turbulent velocity field does not directly
affect the composition of a fluid particle, in
the sense that U(x,t) does not appear in Eq.
(1). It does, however, have a strong indirect
effect, primarily through the action of turbu-
lent straining to intensify gradients and hence
to increase molecular diffusive fluxes. This
may be seen through the equation for species
gradients

DY i;j

Dt
¼ r � ðDrY i;jÞ � U k;jY i;k þ J ikY k;j; ð7Þ

where we define Yi,j � oYi/oxj and Ui,j � oUi/
oxj, and J(Y) is the Jacobian of the chemical
source term
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J ijðYÞ �
@bS iðYÞ
@Y j

: ð8Þ

(Eq. (7) follows from Eq. (1) for the simplest
case of constant-property flow.) The penulti-
mate term in Eq. (7) shows that compressive
straining in the direction of $Y intensifies spe-
cies gradients.

3. For inert species and for mixture fraction, as is
evident from Eq. (7), straining by the velocity
field is the only mechanism for the intensifica-
tion of species gradients. For reactive species,
on the other hand, chemical reactions can also
have a significant effect on species gradients
(via the final term in Eq. (7)).

4. The species conservation equation admits a
solution corresponding to a steady, one-dimen-
sional, plane, premixed, laminar flame propa-
gating at the laminar flame speed sL relative to
the unburnt mixture. For a given fuel, pressure
and unburnt temperature, let so

L denote the lam-
inar flame speed of the stoichiometric mixture,
and let Du denote the diffusivity of the unburnt
mixture. From these two quantities we obtain
the length scale dL � Du=so

L (a measure of the
flame thickness), and the time scale sc � dL=so

L
which we use henceforth as the characteristic
time scale of the overall chemical reaction.

5. In contrast to the premixed case, for non-pre-
mixed combustion there are no inherent length
and time scales provided by the thermochemi-
cal and transport properties alone. These scales
arise from the interaction of the flow with the
combustion.

6. Perhaps the simplest instance of non-premixed
combustion is the steady, laminar, counter-flow
flame that occurs between opposed jets of fuel
and oxidant [28,29]. Along the centerline (taken
to be the x1 axis), to a good approximation, the
composition field is one-dimensional (i.e.,
Y(x1)), and the mixture fraction Z(x1) varies
monotonically with x1, from zero in the oxidant
jet to unity in the fuel jet. Consequently, species
mass fractions can be viewed as single-
valued functions of mixture fraction, i.e.,
Y(x1) = Ycf(Z(x1)). By substituting this relation
into Eq. (1), we deduce that this functional
dependence is determined as the solution to
the ordinary differential equation:

0 ¼ 1

2
v

d2Ycf

dz2
þ bSðYcfðzÞÞ; ð9Þ

where z is an independent mixture-fraction
variable, and v is the all-important scalar
dissipation

v � 2DjrZj2; ð10Þ
which has dimensions of inverse time.

This is the first of several equations we shall
encounter showing the balance (or imbalance)
between reaction and molecular diffusion, the
latter appearing as the product of a scalar dis-
sipation and the curvature of a manifold (here
d2Ycf/dz2). (Here and below, somewhat loosely,
we refer to the second derivative of the mani-
fold as “curvature”, since it is indeed the curva-
ture of the manifold which is the significant
quantity.)
3. The challenges of modeling turbulent combustion

We outline here the principal challenges that
have to be faced in the modeling of turbulent com-
bustion; that is, the obstacles that have to be over-
come in order to construct an accurate, tractable
model based on the species conservation equation,
Eq. (1). Depending on how they address these
challenges, most current models can be classified
as either flamelet-like or PDF-like. The character-
istics of these two classes of models are described
in Section 3.2.

3.1. The principal challenges

3.1.1. Many species
For hydrocarbon combustion there may be 50–

7000 species involved, depending on the fuel [16].
However, for many fuels, chemical mechanisms
are available which contain 150–250 species [30].
Clearly, it is highly beneficial, usually essential, to
reduce the number of species that have to be consid-
ered. Some of the available dimension reduction
techniques are discussed in Section 6. Important
conclusions from research in the last two decades
(e.g., [31,32]) are that, for simple hydrocarbon
fuels, accurate descriptions over a range of condi-
tions are possible with of order 20–40 species, but
certainly not with of order five species.

3.1.2. Small scales
In order to solve numerically the species con-

servation equation (Eq. (1)), it is necessary to
resolve all length and time scales. The length
scales vary from the size of the device or appara-
tus down to the smallest scales, which may be the
Kolmogorov length scale of turbulence, or, in
some combustion regimes, the yet smaller scales
occurring in reaction zones (e.g., dL). The relevant
time scales are from the residence time down to
the smaller of the Kolmogorov timescale, sg, and
the smallest chemical time scale, which may be
of order 10�10 s, or even smaller (depending on
the fuel and conditions).

Because of this very large range of scales, it is
well-appreciated that DNS of combustion devices
will remain infeasible for many decades to come
[33]. It is inevitable that a tractable modeling
approach treats the small-scale processes statisti-
cally, rather than resolving them. Hence, the
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tractable approaches that have been developed are
in the context of either RANS or LES. In RANS
(Reynolds-averaged Navier–Stokes) all scales are
treated statistically; whereas in LES (large-eddy
simulation) the large scales are resolved, and only
the small scales are treated statistically [14].

3.1.3. Non-linear chemical kinetics and large tur-
bulent fluctuations

The combination of these two separate charac-
teristics of turbulent combustion dooms simple
moment models.

In turbulent flows, fluctuations are typically of
order 25%, corresponding to temperature fluctua-
tions of several hundred Kelvin in a typical flame
(see, e.g., [34]). Arrhenius chemical reaction rates
are highly non-linear functions of temperature.
As a consequence of these two facts, there is no
hope of an accurate statistical closure based on
an expansion about mean properties [15].

Instead, most models (in both RANS and
LES) provide some description of the statistical
distribution of the fluid composition, most com-
pletely through the joint probability density func-
tion (PDF) of the species mass fractions and
enthalpy. In assumed PDF methods, some of
which are described in Section 4, the shape of
the PDF is prescribed so that the assumed PDF
is determined by a few moments (usually means
and variances). In transported PDF methods (see
[35–37] and Section 5), a modeled conservation
equation is solved to determine the joint PDF.
(Henceforth we refer to transported PDF methods
simply as PDF methods.)

3.1.4. Large property variations
In atmospheric-pressure flames, the density

typically decreases by a factor of 7 between
unburnt and burnt fluid; and the kinematic viscos-
ity and diffusivity, D, typically increases by a fac-
tor of 20 (see e.g., [38]), while the product qD
typically increases by a factor of 3. The effects of
heat release (leading to volume expansion and
decreased density) are particularly strong in pre-
mixed combustion and can lead to hydrodynamic
instabilities and additional mechanisms for turbu-
lence generation, as well as to buoyancy effects.

The strong increase with temperature of the
viscosity and diffusivity leads to a significant dim-
inution of the local Reynolds number. The mix-
ture fraction field in a jet flame of jet Reynolds
number 15,000 appears very different from that
in an inert jet at the same Reynolds number [39].

3.1.5. Coupling between reaction and molecular
diffusion

Since molecular mixing occurs dominantly at
the smallest scales, its effects have to be modeled
in both RANS and LES. For modeling
approaches involving variances and covariances,
the primary quantities to be modeled are the mean
of the scalar dissipation, v, (of mixture fraction,
Eq. (10)) or the mean of the species dissipation
tensor

vij � DrY i � rY j: ð11Þ

In PDF methods [35], the quantity to be modeled
is the conditional diffusion defined by

GiðbY;x; tÞ� 1

q
r�ðqDrY iÞjYðx; tÞ¼ bY� �

; ð12Þ

where bY are independent, sample-space variables
corresponding to Y (angled brackets denote
means, and hajbi denotes the mean of a condi-
tional on b).

We distinguish between inert mixing (i.e., the
molecular mixing of conserved quantities such as
mixture fraction and inert species) and reactive
mixing (i.e., the molecular mixing of reactive
species).

In the case of inert mixing, as mentioned in
Section 2.2, the process leading to the smallest
scales in the conserved scalar field is the straining
of the fluid by the turbulence, which tends to stee-
pen gradients [40]. At high Reynolds number, the
process of scale reduction through the turbulent
cascade is the rate-limiting process, so that the
mean scalar dissipation scales with the inverse of
the turbulent integral time scale, independent of
the value of the molecular diffusivity. While cur-
rent models are not perfect, at least in the RANS
context, the modeling of inert mixing is broadly
satisfactory, and does not constitute a major
obstacle.

In the case of reactive mixing, there is an
additional process, namely reaction, which can
steepen scalar gradients. As is clear from Eq.
(7), the relative effectiveness of turbulent strain-
ing and reaction in steepening gradients depends
on the relative magnitudes of the respective
timescales, namely the Kolmogorov time scale
sg and the chemical time scale sc. Their ratio is
defined to be the Karlovitz number, Ka � sc/
sg. For Ka� 1, reaction does not significantly
affect gradients, and mixing occurs by the same
turbulent cascade process as in inert mixing.
On the other hand, Ka� 1 corresponds to
flamelet combustion, in which the dominant bal-
ance in Eqs. (1) and (7) is between reaction and
diffusion, so that the resulting flamelet structure
can be exploited in modeling, as is described in
Section 4.

The most significant modeling challenge arises
when the Karlovitz number is of order unity, so
that both turbulent straining and reaction affect
molecular mixing. For then neither the cascade
nor the flamelet paradigm is sufficient to deter-
mine the small-scale structure, and the rate of
mixing is affected by interactions between
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reaction, diffusion and turbulent straining on the
unresolved, small scales.

It should be recognized that a particular
instance of turbulent combustion may span a
range of Karlovitz numbers. There may be signif-
icant spatial variations of the Kolmogorov scales,
and different species can have very different char-
acteristic reaction time scales, and these vary sig-
nificantly with temperature. For example, there
may be a flamelet-like reaction zone (with
Ka < 1), with pre-flame mixing and post-flame
pollutant reactions occurring at high Karlovitz
number. Consequently, there is great value in hav-
ing a general model, applicable over the full range
of Karlovitz numbers.

These issues are discussed further in
Section 5.4.

While the focus here is on non-premixed com-
bustion, it should be mentioned that, for premixed
combustion, the coupling of reaction and diffu-
sion can lead to thermo-diffusive instabilities
[41], which pose another serious modeling chal-
lenge, even for Ka� 1.

3.2. A classification of models

Over the past decades, there has been a pleth-
ora of approaches proposed for modeling non-
premixed turbulent combustion, many of which
are described in [15,42]. These models generally
share the same approaches to deal with the chal-
lenges of small scales and many species, namely
the use of RANS or LES, and the use of some
form of reduced description of hydrocarbon
chemistry. But there are diverse approaches taken
to describe the coupling between reaction and
molecular diffusion. Most, but not all, of these
approaches fall into one of two categories, which
we refer to as flamelet-like and PDF-like.

The steady flamelet model (discussed in Sec-
tion 4.2) is the archetype of flamelet-like models.
Their essential characteristics are:

1. Strong assumptions are made about the cou-
pling of reaction and molecular diffusion,
implying that the species mass fractions are
confined to a very-low-dimensional manifold
(e.g., 2D or 3D) in the species space.

2. The properties of the very-low-dimensional
manifold are determined by laminar-flame (or
similar) calculations prior to the turbulent
combustion calculation; and the complexities
of the combustion chemistry have to be faced
only in these relatively simple calculations.

3. The properties of these manifolds needed in the
turbulent combustion calculation are tabulated
(which is feasible only for very-low-dimen-
sional manifolds).

4. In the turbulent combustion calculation, it is
solely (or primarily) inert mixing that has to
be modeled.
Flamelet-like models and associated methods
include: the steady flamelet model (SFM) [43,44];
the flamelet/progress variable model (FPV) [45–
47]; flame-generated manifolds (FGM) [48]; flame
prolongation of ILDM (FPI) [49]; and reaction-
diffusion manifolds (REDIM) [50,51]. In the past
decade, there has been a resurgence in the use of
flamelet-like models, especially in LES. Unsteady
flamelet models (UFM) [52,53,44] have all of the
flamelet-like characteristics, except that they do
not necessarily imply a very-low-dimensional
manifold.

PDF methods (discussed in Section 5) are of
course the archetype of PDF-like approaches.
Their characteristics are:

1. No assumption is made restricting the species
to a low-dimensional manifold (beyond
assumptions made in reducing the description
of the chemistry).

2. In computational implementations, the com-
position of the fluid is represented by the spe-
cies mass fractions Y* of a large number of
particles (or other computational elements).

3. Chemical reactions are treated exactly,
without modeling assumptions, through
dY�=dt ¼ bSðY�Þ.

4. It is necessary to model the reactive mixing of
the species mass fractions.

Compared to flamelet-like models, PDF-like
models have the advantages of not restricting
compositions to a very-low-dimensional mani-
fold, and of treating reaction exactly. On the
other hand, they have to confront the model-
ing of reactive mixing, and the computational
challenge of treating the complexities of
combustion chemistry within the turbulent
combustion calculation (as opposed to in pre-
processing).

In addition to PDF methods, PDF-like models
include: multiple mapping conditioning (MMC)
[54,55]; the linear-eddy model (LEM) [56,57];
and the one-dimensional turbulence (ODT) model
[58,59].

The two classes of models—flamelet-like and
PDF-like—are considered in more detail in the
next two sections. Their characteristics are con-
trasted in Table 2 in Section 7.

Not all models fall neatly into either one of
these categories. The prime examples (beyond
UFM) are the conditional moment closure
(CMC) [60–62], and the eddy dissipation concept
model (EDC) [63].
4. Flamelet-like models

Perhaps the simplest turbulent flame is the
non-premixed flame formed when a hydrogen jet
issues into ambient air. Taken from the classic



8 S.B. Pope / Proceedings of the Combustion Institute 34 (2013) 1–31
1948 paper by Hawthorne et al. [64], Fig. 1 shows
the measured height of such a flame as a function
of the jet velocity. The very clear result, that the
flame height is essentially independent of the jet
velocity, is very revealing and at first sight
puzzling.

The most relevant non-dimensional parameters
are the Damköhler number Da � sf/sc = d/(UJsc)
and the Reynolds number Re � UJd/m, where UJ

is the jet velocity, d is the jet nozzle diameter, m
is the kinematic viscosity of the fuel, sf � d/UJ is
the flow time scale, and sc is the chemical time
scale defined in Section 2. As the jet velocity
increases, the flow time scale and the Damköhler
number decrease and the Reynolds number
increases. That the flame height does not vary
with Da implies that the chemical reactions are
not rate limiting; and that the flame height does
not vary with Re implies that molecular diffusion
(D � m) is also not rate limiting. We recall that
reaction and mixing are the only two processes
that directly affect chemical species, and yet nei-
ther is rate limiting. It has long been understood
that the resolution to this superficial puzzle is that
the rate-limiting process is turbulent mixing: the
stretching and folding of the fluid by the turbulent
velocity field continuously decreases the length
scale of the species fields until molecular diffu-
sion—however small—becomes effective. The
time scale of turbulent mixing sm scales as d/UJ,
and so the ratio sm/sf does not change as the jet
velocity increases, hence explaining the constant
height of the flame.

This picture amounts to the mixing-controlled
paradigm, the first of five paradigms of non-pre-
mixed turbulent combustion identified by Bilger
et al. [5]. It leads to the equilibrium model of turbu-
lent combustion, developed in the 1970s, mainly
by Bilger and co-workers [65,66]. We briefly
describe this model, to illustrate how it overcomes
the challenges of small scales and many species,
and how it involves a simple low-dimensional
manifold in the species space.

4.1. Chemical equilibrium

For hydrogen jet flames, typically the Dam-
köhler number is large, and, locally, the chemical
composition is close to chemical equilibrium. The
Fig. 1. Flame length of a non-premixed hydrogen flame
in air as a function of the nozzle velocity. From [64] with
permission of the Combustion Institute.
equilibrium composition is determined by the
pressure, enthalpy, and element mass fractions,
all of which are known in terms of the mixture
fraction, and so we denote this equilibrium com-
position by Yeq(z). Thus, the assumption that
the fluid in the flame is locally in chemical equilib-
rium is expressed as:

Yðx; tÞ ¼ YeqðZðx; tÞÞ: ð13Þ
A basic objective of turbulent combustion models
is to determine the spatial fields of mean quanti-
ties, e.g., the mean density and temperature,
hq(x,t)i and hT(x,t)i. For species, it is usual to
consider density-weighted means (or Favre aver-

ages), eY � hqYi=hqi. Given the equilibrium
assumption (Eq. (13)), all of these means can be
determined from the PDF of mixture fraction
~f Zðz; x; tÞ. In full, ~f Zðz; x; tÞ is the one-point,
one-time, density-weighted probability density
function of Z(x,t), i.e., the probability density of
the event {Z(x,t) = z}. Specifically, we have

eYðx; tÞ ¼ Z 1

0

YeqðzÞ~f Zðz; x; tÞ dz: ð14Þ

Consistent with the notion that inert mixing is
controlled by the larger turbulent motions, it is
found that, at high Reynolds number, the PDF
~f Z shows little dependence on Reynolds number
[67–69]. In the standard assumed PDF approach,

the PDF ~f Z is assumed to be a beta-function dis-

tribution, determined by the mean eZ and variancegZ 002 for which turbulence model equations are

solved. Thus the means eY are functions of eZ
and

gZ 002 , determined by Eq. (14) and the assumed
beta PDF, i.e.,

eYðx; tÞ ¼ bYðeZðx; tÞ;gZ 002ðx; tÞÞ: ð15Þ
In practice, in a pre-simulation stage, this functionbY is evaluated and tabulated for use on the turbu-
lent combustion computation.

Although it is not a flamelet model, this basic
equilibrium model possesses the characteristics
of flamelet-like models, namely:

1. The smallest scales do not need to be repre-
sented, because the diffusive processes (for the
non-reactive mixture fraction) are controlled
by the larger-scale turbulent motions.

2. The many species do not need to be repre-
sented in the turbulent combustion model cal-
culation, only the mean and variance of the
single mixture fraction.

3. By assumption (Eq. (13)), in the ns-dimensional
species space, all compositions lie on the one-
dimensional manifold Y = Yeq(z).

An interesting and revealing result (due to Bil-
ger [66]) is obtained by substituting Eq. (13) into
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Eq. (1). After manipulation, but without further
assumption, one obtains

0 ¼ 1

2
v

d2Yeq

dz2
þ S; ð16Þ

where v is the scalar dissipation (Eq. (10)). Consis-
tent with the high-Damköhler-number, mixing-
controlled paradigm, this equation shows that
the creation rate S of the species is determined,
not by the chemical kinetics, but by the mixing
rate (characterized by v) and by the curvature of
the manifold.

Eq. (16) appears almost identical to Eq. (9),
and indeed both represent a reaction-diffusion
balance of the same form. Note, however, that
in Eq. (16), Yeq is known, and the equation deter-
mines S. Conversely, in Eq. (9), bS is a known
function, and the equation determines Ycf.

Our three-dimensional world limits our ability
to show manifolds in high-dimensional species
spaces: we can visualize them only when they are
projected onto two or three-dimensional subspac-
es. For a particular non-premixed H2/N2-air
flame, Fig. 2 shows the equilibrium manifold
Y = Yeq(z) projected onto the N2–H2O–OH mass
fraction space. As may be seen, around stoichiom-
etric, there is significant curvature.

The applicability of the chemical-equilibrium
model is restricted to very high Damköhler num-
ber. While it provides a good model for typical
hydrogen flames, for the Damköhler numbers
encountered in practice, it is found not to be a
good model for hydrocarbon flames.

4.2. Steady flamelet model

The steady flamelet model (SFM) [43] is well
known, and considered here only briefly. For ful-
ler discussions see, e.g., [15,44,70].
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Fig. 2. The equilibrium manifold for a non-premixed
H2/N2-air flame projected onto the N2–H2O–OH mass
fraction space (bold line); and projected onto the spaces
of N2–H2O, N2–OH, and H2O–OH (lines, shifted for
clarity). The fuel is H2:N2, 1:1 by volume, the pressure is
1 bar, and the stream temperatures are 300K. The peak
of YOH on the manifold occurs close to stoichiometric.
The simplest idea leading to the steady flamelet
model is that combustion occurs in flamelets
(which are thin compared to turbulent scales),
whose properties are the same as those of steady,
laminar, one-dimensional, counterflow flames.
For given compositions of the fuel and oxidant
streams, there is a one-parameter family of such
counterflow flames, depending on the imposed
strain rate. The properties of these flames can be
determined from the solution of Eq. (9) together
with the mass and momentum equations. For a
given imposed strain rate, the resulting scalar dis-
sipation that occurs at the stoichiometric mixture
fraction is denoted by vst, and this is a preferable
quantity to use to parameterize the flamelet. Thus,
the family of flamelet solutions can be written as
Ysfm(z,vst).

In a turbulent flame, in order to determine the
mean composition eYðx; tÞ from the flamelet
model, it is necessary to know the joint PDF of
Z and vst. Typically, these two quantities are
assumed to be independent; as before, a beta-
function distribution is assumed for Z; and a
delta-function or log-normal is assumed for vst.

With respect to the principal issues addressed
in the present paper, the steady flamelet model is
similar to the equilibrium model:

1. By assumption, in the ns-dimensional species
space, all compositions lie on the two-dimen-
sional manifold Y = Ysfm(z,vst).

2. The many species do not need to be repre-
sented in the turbulent combustion model cal-
culation, only the mixture fraction (and its
dissipation rate).
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Fig. 3. Steady flamelet manifold projected onto the N2–
CO2–CO mass fraction space, color-coded by tempera-
ture. The oxidant is air; the fuel is methane/air 1:3 by
volume (the fuel used in the Barlow and Frank [34]
flames); the pressure is 1 bar; and the temperature of both
streams is 300K. The green curve corresponds to extinc-
tion conditions; the black curve to stoichiometric mix-
ture. The part of the manifold on the near side of the
extinction curve (with larger values of CO2) corresponds
to stable flames (from M. Ihme, private communication).
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3. The smallest scales do not need to be repre-
sented, because the diffusive processes (for the
non-reactive mixture fraction) are controlled
by the larger-scale turbulent motions.

Fig. 3 shows a steady flamelet manifold
Y = Ysfm(z,vst) projected onto the N2–CO2–CO
mass fraction space. The green curve corresponds
to the extinction conditions, and in fact only the
part of the manifold on the near side of this curve
(with larger values of CO2) is used in the steady
flamelet model. Significant curvature of the mani-
fold is evident.

The steady flamelet model is restricted to large
Damköhler number such that local extinction of
the flamelets does not occur. Several extensions
have been proposed, including taking some
account of unsteady effects (see, e.g., [70,71]),
flame curvature [1], radiative heat transfer [72]
and to three feed streams [73].

Compared to the steady flamelet model, there
are two significant differences in the flamelet/pro-
gress variable model (FPV) [45–47]. First, the
whole of the flamelet manifold is used, including
the part corresponding to unstable flames. Sec-
ond, a reaction progress variable C(x,t) is used
as the second variable (in place of vst).

4.3. Strengths and weaknesses of flamelet-like
models

Essential characteristics of the flamelet-like
turbulent combustion models described above are:

1. By assumption, the compositions that are
deemed to occur are confined to a low-dimen-
sional manifold in the species space (generally
2D, sometimes 3D).

2. The thermochemical properties on the mani-
fold are pre-computed and tabulated based
on a detailed description of the chemistry.

3. A particular functional form is assumed for the
joint PDF of the properties used to parameter-
ize the manifold.

4. Only inert mixing has to be modeled.

From a computational viewpoint, these meth-
ods are very attractive because the complexities
of the chemistry have to be faced only in the rela-
tively simple task of constructing the manifold.
The turbulence modeling task is also relatively
simple, since it is the mixing only of the conserved
mixture fraction which needs to be represented;
and this process is controlled by the larger scales
(even though it is effected by the small scales).
However, the assumptions made are very strong:
that the compositions lie on a low-dimensional
manifold, and that the coupling between reaction
and mixing in the turbulent flow can be simply
parameterized, e.g., by the scalar dissipation. As
a consequence, the class of flows for which these
assumptions apply is quite limited.
5. PDF-like models

5.1. PDF methods

The characteristics, strengths and weaknesses
of PDF methods are quite different from those
of flamelet-like models discussed above. Full
description of PDF methods can be found in sev-
eral books and review articles, e.g., [14,35–
37,74,75]. Briefly, a modeled conservation
equation is solved for the joint PDF of fluid prop-
erties, including the species mass fractions and
enthalpy. For example, in order to study local
extinction and reignition in the Barlow and Frank
piloted jet flames [34], Cao and Pope [76] solved
for the joint PDF of velocity, turbulent frequency,
enthalpy and mass fractions of the 53 species in
the GRI3.0 methane mechanism [77].

In contrast to those of flamelet-like models,
some characteristics of PDF methods are:

1. The compositions that occur in PDF calcula-
tions are not constrained to lie on a low-dimen-
sional manifold (except as may be implied by a
reduced-dimension description of the chemis-
try used).

2. A detailed description of the chemistry (e.g., of
order 20–50 species) is used within the turbu-
lent combustion computation (as opposed to
being confined to a pre-processing stage).

3. The joint PDF is calculated, based on the mod-
eled conservation equation in which reactive
mixing is treated by a mixing model.

Simpler turbulent combustion models often
depend on non-general concepts, such as mixture
fraction and reaction progress variable, and their
complexity and cost increases steeply when other
effects such as heat loss are included. In contrast,
an attractive benefit of PDF methods is that they
can readily be applied to more general problems,
with multiple streams, partial premixing, stratifi-
cation, heat loss, etc. Since they provide a
complete statistical representation of the thermo-
chemical state, PDF methods also provide an
ideal basis for describing other phenomena such
as turbulence/radiation interactions [78].

From the computational viewpoint, PDF
methods are obviously more demanding, espe-
cially because of the inclusion of detailed chemis-
try. However, several different computational
approaches have been developed to make PDF
calculations tractable in both RANS and LES
[35,79–83]. Prevalent among these is the Lagrang-
ian particle/mesh method [35], in which the distri-
bution of fluid properties is represented by a large
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number of particles, each with its own position
X*(t), species mass fractions Y*(t), and other
properties depending on the variant used. The
properties of these computational particles evolve
in time such that their PDF evolves according to
the modeled PDF transport equation. In the com-
putational time step Dt, the particle species mass
fractions Y*(t) evolve due to reaction and molecu-
lar diffusion, which are treated in separate frac-
tional steps. In the reaction fractional step Y*(t)
evolves by dY�=dt ¼ bSðY�Þ—without any model-
ing assumptions or approximations—and this
ability to treat reaction directly and exactly is
one of the major virtues of PDF methods. In the
mixing fractional step, molecular diffusion is mod-
eled by a mixing model. An issue here is that sim-
ple mixing models do not account directly for the
effects that reaction can have (in some combustion
regimes), to steepen gradients, and hence to influ-
ence mixing. However, as discussed in Section 5.4,
more advanced models can to some extent
account for these effects.

In the RANS context, the PDF considered is
unambiguously defined as the one-point, one-
time, density-weighted, joint PDF of the fluid
properties considered. In the LES context there
are different possibilities: the interpretation of
the PDF as the PDF of fluid properties condi-
tional on the resolved LES fields [74,84] has con-
ceptual advantages over the earlier filtered
density function (FDF) [8,75].

In the next two subsections we review two of
the successes enjoyed by PDF methods in the past
decade in treating some more challenging aspects
of non-premixed turbulent combustion.

5.2. Piloted jet flames

For the development of turbulent combustion
models, it is essential to have good-quality,
detailed experimental data in well-characterized
flames designed to explore challenging regimes
and phenomena. The paragon of such experi-
ments is the Barlow and Frank study [34] of
piloted non-premixed jet flames. The Sydney bur-
ner used, developed by Starner and Bilger [85] and
investigated by Masri and Bilger [86], is designed
to separate extinction from stabilization, so that
local extinction can be studied in stable flames.

Out of the series of flames studied by Barlow
and Frank [34], most attention has been focused
on flames D, E and F in which the fuel-jet bulk
velocities are approximately 50 m/s, 75 m/s and
100 m/s, respectively, and the annular pilot jet’s
velocity is maintained in a fixed proportion. As
the jet velocity is increased, the Reynolds number
increases, and, more significantly, the Damköhler
number decreases. With decreasing Damköhler
number, increasing local extinction is observed,
with flame F being quite close to global extinction.
The left part of Fig. 4 illustrates the experimen-
tal evidence for local extinction. This is a scatter
plot of the mass fraction of CO versus mixture
fraction obtained in flame F at the axial location
where there is most local extinction. Each point
in the scatter plot corresponds to a Raman mea-
surement from a single laser shot. The upper curve
corresponds to the flamelet profile obtained from
the calculation of a mildly-strained laminar flame.
Far downstream (not shown), where reignition
has occurred, the scatter lies close to this flamelet
line, with small conditional fluctuations. But it is
evident from Fig. 4 that, at the location shown,
the scatter is predominantly below the laminar-
flame line (except at small mixture fraction);
and, for a given value of mixture fraction, there
is considerable scatter in YCO.

Shortly after the publication of the Barlow and
Frank data, there were several PDF studies of
these flames [87–89]. The right part of Fig. 4
shows the corresponding scatter plot from the
PDF calculation of Xu and Pope [87]. In this case,
each point corresponds to the composition of a
particle in the particle/mesh method used to solve
the PDF equation. As may be seen, the pattern of
the scatter is very similar to that of the experimen-
tal data, and there is good agreement for the con-
ditional mean of YCO, which is shown by the
lower curves. These PDF calculations are based
on the joint PDF of velocity, species mass frac-
tions, enthalpy, and turbulent frequency [14,87].
Important sub-models are the EMST mixing
model [90] (which is discussed below in Sec-
tion 5.4) and a 16-species augmented reduced
mechanism (ARM) [31] for methane combustion.

Subsequent investigations [76,91] examined the
sensitivity of the PDF calculations to uncertain-
ties in the boundary conditions (mainly the pilot
temperature) and to the sub-models. These con-
firm that (for H–C–O species) the 16-species aug-
mented reduced mechanism yields comparable
accuracy to the 53-species GRI3.0 mechanism
[77]; and that the EMST model is superior to sim-
pler models.

The amount of local extinction in these flames
can be quantified by burning indices. For CO, for
example, the burning index BI(CO) is defined as
the conditional mean of YCO within a specified mix-
ture-fraction band around the peak of the laminar
flame profile, divided by the peak value of YCO in
the laminar-flame profile. Fig. 4 shows (by vertical
dashed lines) the mixture fraction band used, the
conditional means (lower symbols), and the peak
laminar-flame values (upper symbols). Burning
index values of 0 and 1 correspond to complete
extinction (YCO = 0) and to complete burning (as
in a laminar flame), respectively.

The burning indices for both CO2 and CO are
shown in Fig. 5 as functions of the axial distance.
As may be seen, the PDF calculations accurately



Fig. 4. Scatter plots of the mass fraction of CO versus mixture fraction in flame F at an axial location of 15 jet diameters:
left, experimental data [34]; right, PDF calculations [87]. Upper curves, from laminar flame calculations with an imposed
strain rate of a = 100 s�1. Lower curves, mean of YCO conditional on mixture fraction. Vertical dashed lines, specified
range of mixture fraction around the peak of the laminar flame profile (upper symbol) used to define the burning index.
Lower symbols: conditional mean within the specified mixture fraction range.
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describe the level of local extinction in all three
flames, as well as the subsequent reignition, lead-
ing to the burning indices approaching unity
downstream. In the past decade, while there have
been many modeling studies of flame D (which
exhibits little local extinction), there have been
far fewer of flames E and F; and no other
approach has demonstrated the ability to repre-
sent local extinction and reignition over the full
range of conditions and locations that is depicted
in Fig. 5.

5.3. Lifted flames in vitiated co-flows

We mention briefly one other flame that dem-
onstrates PDF methods’ capabilities of treating
the interactions between turbulence and finite-rate
chemistry. This is the lifted H2/N2 jet flame in a
vitiated co-flow studied experimentally by Cabra
et al. [92]. Several PDF studies of this flame have
been performed [92–97], and it has been studied
Fig. 5. Burning indices of CO2 (left) and CO (right) versus ax
Symbols, experimental data [34]. Lines, from PDF calculation
GRI2.11 mechanism (dashed lines).
using LES [98,99], and other approaches
[71,100,101]. There have also been DNS studies
of similar flames [102].

Early PDF studies revealed that the lift-off
height H of the flame is very sensitive to the tem-
perature Tc of the vitiated co-flow, and this
spurred further experimental investigations [103].
Fig. 6 compares the measured lift-off height
[103] with that calculated by the same PDF
method [94] as used for the Barlow and Frank
flames (as described above). In this case a 10-spe-
cies detailed mechanism is used for the hydrogen
combustion. As may be seen from Fig. 6, the
PDF calculations are in excellent agreement with
the experimental data, with any discrepancies
being well within experimental uncertainties.

This and subsequent studies [95–97,102] reveal
that the fundamental stabilization mechanism in
this flame is the (essentially inert) mixing between
the cold fuel and the hot oxidant, followed by
auto-ignition. In contrast to lifted flames in cold
ial distance for flames D, E and F (from top to bottom).
s [76] using the GRI3.0 mechanism (solid lines) and the
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co-flows, the stabilization of the flame does not
depend upon flame propagation against the flow.

It is interesting to observe that in the PDF
method described here and applied to the Barlow
and Frank and Cabra flames, the molecular diffu-
sivity D is not specified: that is, D is not an input
parameter that needs to be specified, or indeed
that can be specified. Instead, consistent with the
high-Reynolds-number, cascade paradigm, the
rate of molecular mixing is modeled as being
determined by the large-scale turbulent motions.
It is perhaps surprising that this high-Reynolds-
number assumption is successful in these relatively
low-Reynolds-number flames, in which visualiza-
tions and DNS reveal diffusive structures whose
size is a significant fraction of the flow width.

5.4. Modeling of molecular mixing

In the composition PDF equation, molecular
diffusion appears as the conditional diffusion

GiðbY; x; tÞ � 1

q
r � ðqDrY iÞ j Yðx; tÞ ¼ bY� �

:

ð17Þ
Models for this quantity are called mixing models,
the simplest of which is the interaction by ex-
change with the mean (IEM) model [104], or,
equivalently, the linear mean square estimation
(LMSE) model [105], which is:

GiðbY; x; tÞ ¼ � 1

2
C/

e
k
ðbY i � eY iÞ; ð18Þ

where k is the turbulent kinetic energy, e is the
mean dissipation rate, eY is the Favre mean of
the species mass fractions (all evaluated at (x,t)),
and C/ is a constant, generally taken to be
C/ = 2. Consistent with the picture of the energy
cascade at high Reynolds number, the rate of mix-
ing is proportional to the inverse of the time scale
(k/e) of the energy-containing turbulent motions,
and is independent of the molecular diffusivity,
D. Another simple and popular model with simi-
lar performance is the modified Curl (MC) model
[106–108].

PDF methods have long been criticized for not
accounting for the effects of chemical reactions on
molecular mixing. If simple models such as IEM
and MC are used, then this criticism is fully justified.
However, as now explained, more sophisticated
models do account for these effects, and current
research is leading to further improvements.

The first observation to make is that, if there is
a very strong coupling between reaction and diffu-
sion so that turbulent combustion occurs in a
flamelet regime, then the flamelet assumption
leads to a closure for the conditional diffusion.
Using this observation, over 25 years ago, PDF
methods were successfully applied to premixed
combustion in the flamelet regime [109,110].

Similarly, for non-premixed combustion, the
simplest flamelet model assumption

Yðx; tÞ ¼ YsfmðZðx; tÞ; vstÞ; ð19Þ

for a fixed, specified value of scalar dissipation,
vst, leads to a closure for the conditional diffusion.
The resulting modeled equation for the PDF of Y
is equivalent to solving for the PDF of mixture
fraction and then obtaining the PDF of the species
from Eq. (19).

The deficiencies of the simple mixing models
for reacting flows have been recognized for several
decades [111], and this has led to improved mod-
els, most notably the Euclidean minimum spanning
tree (EMST) model [90] and multiple mapping con-
ditioning (MMC) [54,55].

The EMST model has an unconventional form
and is difficult to analyze. However, an analysis is
performed in Appendix A of the EMST model
(with some simplifying assumptions) applied to
non-premixed turbulent combustion. This analy-
sis shows that, according to the model, the species
evolve by an equation (Eq. (A.12)) which is very
similar to the unsteady flamelet equation. This
clearly demonstrates that, in the EMST model,
molecular mixing is affected by reaction in a real-
istic way.

The IEM model yields the same mixing rate for
all species, whereas DNS of both non-premixed
[112] and premixed combustion [113,114] clearly
shows significantly different mixing rates for dif-
ferent reactive species. In recent work, Richardson
and Chen [114] show that the EMST model also
yields different mixing rates for different species.
For the low-Reynolds-number case considered,
they extend the model to include differential diffu-
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sion, and this model shows reasonable quantita-
tive agreement for the mixing rates of the different
species, which vary by an order of magnitude.

Even though the EMST model has proven
more successful than other mixing models, it has
some fundamental shortcomings, which have been
recognized since its introduction [90]. These
include the violation of linearity and indepen-
dence principles, and its uncertain convergence
as the number of particles used to represent the
PDF tends to infinity.

The closure provided by MMC is also difficult
to analyze, but it can be expected to make reaction
affect mixing at least as realistically as EMST.
Also relevant here is the model of Lindstedt and
Váos [115], in which the mixing rate depends on
reaction.

5.5. Large-eddy simulations using PDF methods

The idea of using PDF methods as the turbu-
lent combustion model used in conjunction with
LES goes back over 20 year [8,116,117]. Lagrang-
ian particle/mesh methods to implement LES/
PDF were pioneered by Givi and co-workers
[81,118–124], with several subsequent implemen-
tations by other groups [82,125–127]. There have
also been implementations [128] based on the sto-
chastic fields approach [80,129]. Here we just
make a few observations about LES/PDF as it
pertains to the themes of this paper. For reviews
of recent work, the reader is referred to [36,37].

The first observation is to stress the fact that in
LES, as in RANS, there are large-amplitude fluctu-
ations on the small scales, which are not resolved.
Consequently, the statistical modeling of reaction
and molecular diffusion on the unresolved small
scales is essential and crucial. To illustrate this
point, Fig. 7 shows a scatter plot of temperature
versus radial position color-coded by YOH obtained
from an LES/PDF calculation of the Barlow and
Frank [34] flame E. The points shown are from a
single row of cells in the radial direction at a single
time. As may be seen, at a given location (e.g., r/
D = 1), the temperature may vary by over
1000 K, and YOH varies over its full range.

In Lagrangian particle implementations, the
particle position X*(t) and mass fractions Y*(t)
evolve by three processes—advection, reaction,
and molecular diffusion. In LES/PDF, as in
RANS/PDF, reaction is implemented exactly
through the ODE dY�=dt ¼ bSðY�Þ. In LES/PDF,
advection of particles is by the resolved velocity
and a model for the residual turbulent velocity;
whereas in RANS/PDF advection is by the mean
velocity and a model for the fluctuating velocity.
Perhaps the largest differences are in the treatment
of molecular diffusion, and these are now outlined.

First, while the fluctuations in LES/PDF are
large (as illustrated in Fig. 7), they are not as large
as in RANS/PDF. In LES/PDF, localness in
physical space is accompanied by some degree of
localness in species space. Consequently, the mod-
eling of molecular mixing may in this sense be less
difficult than in RANS/PDF. For example, in
recent LES/PDF calculations [130] using the sim-
ple IEM mixing model, it is found that the mod-
eled conditional diffusion exhibits complex, non-
linear behavior, similar to that observed in DNS
of the same flame (whereas the IEM model in
RANS/PDF yields linear behavior).

Second, in RANS/PDF, the direct effects of
molecular diffusion on the mean mass fractions
are negligible, and molecular mixing is modeled
as occurring at a rate determined by the turbu-
lence, independent of the molecular diffusivity,
D. In a typical LES of a laboratory flame (or of
a DNS), the direct effects of molecular diffusion
on the resolved mass fractions are very significant,
and dominant at high temperatures [38]. It is non-
trivial to incorporate the direct effects of molecu-
lar diffusion in Lagrangian particle methods, but
such implementations have been developed,
including the capability to treat differential diffu-
sion [131,132].

Third, it appears that it is more challenging in
LES than in RANS to model accurately the
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mixing rate [133]. This may be because the range
of scales—resolved-to-dissipative—is smaller;
and (relatedly) it may also be because of the stron-
ger, direct effects of the molecular diffusivity.

In industrial applications, typically the Rey-
nolds numbers are significantly larger than in lab-
oratory flames (e.g., by an order of magnitude),
and consequently there is a larger range of scales,
and the direct effects of molecular diffusivity at the
resolved scales are smaller. Consequently, there is
a serious concern that LES models developed and
tested against laboratory and DNS data may not
be reliable when applied to industrial problems.
With the LES resolution typically used, for labo-
ratory flames and DNS, a good fraction of the
molecular mixing is resolved, and the unresolved
processes to be modeled are dominantly at the dis-
sipative scales; whereas in LES applied to indus-
trial problems, typically only a small fraction of
the molecular mixing is resolved, and the unre-
solved processes are dominantly in the inertial
range of scales.

An issue with LES/PDF is its computational
cost. This has been quantified in a series of simu-
lations [134,135] of the Barlow and Frank piloted
jet flame D. Taking LES using a simple flamelet
model as one unit of cost, the cost of LES/PDF
using a simple flamelet model (based solely on
mixture faction) is 3.2 units. This increase in cost
is due to the work required to perform advection
and mixing on the 40 computational particles per
cell. For LES/PDF with the methane chemistry
represented by a 16-species mechanism, the cost
is 8.6 units; and when a 38-species mechanism is
used the cost is 17.3 units. In the latter case,
65% of the total time is taken in the reaction frac-
tional step. In comparison, the cost of a RANS/
PDF calculation of this flame using a 16-species
mechanism is one fifth of the cost of LES using
a simple flamelet model, and a factor of 45 less
than an LES/PDF calculations using the same
16-species mechanism. Further quantification of
the computational costs and issues, including par-
allelization, are provided in [134,135].

Based on these relative costs, we make the fol-
lowing observations.

1. In simple combustion regimes, where flamelet-
like models provide an adequate description of
the turbulence-chemistry interactions, there is
a clear cost penalty in using LES/PDF. The
benefit of LES/PDF is therefore in the more
challenging regimes, where flamelet-like mod-
els are inaccurate.

2. For the case of LES/PDF with 38 species, the
thermochemical information content is a factor
of 760 greater than in the LES/flamelet simula-
tion (i.e., 38 species mass fractions for 40 par-
ticles per cell, compared to the mean and
variance of mixture fraction for each cell).
The fact that the computational cost is greater
by only a factor of 17.3 demonstrates the pro-
gress that has been made in the development of
efficient algorithms.

3. The relative cost of LES/PDF is likely to
decrease as further algorithmic advances are
made, including the use of adaptation. For
flame D, it is obviously wasteful to describe
the uniform, inert, co-flowing air stream by a
PDF method using 38-species chemistry!

4. The cost increase in advancing from flamelet-
like models to PDF methods is small compared
to the cost of advancing from RANS to LES.

5.6. Other PDF-like models

Since its original development 10 years ago
[54], multiple mapping conditioning (MMC) has
evolved, with different variants, implementations
and viewpoints [55]. One viewpoint is that the sto-
chastic variant of MMC amounts to a PDF
method, with a Lagrangian particle implementa-
tion, involving additional “reference variables”,
which are used in the modeling of mixing.
Whereas EMST makes the mixing local in the spe-
cies space, MMC makes mixing local in the space
of the reference variables. Such implementations
of MMC have all the characteristics of PDF-like
models. Recent work on stochastic MMC includes
[136–141] and is reviewed in [55].

In the linear-eddy model (LEM) [56,57] and in
the one-dimensional turbulence (ODT) model
[58,59], fluid properties are represented (with full
resolution) along some lines within the flow, and
hence there is some representation of the small-
scale processes. LEM and ODT have several sim-
ilarities to PDF methods (implemented as a
Lagrangian particle method, and using the EMST
mixing model). Specifically:

	 Both are Monte Carlo methods in which the
composition of the fluid is represented at dis-
crete points—fixed mesh points in LEM and
ODT, Lagrangian particles in PDF.
	 Reaction is treated directly according to

dY=dt ¼ bSðYÞ.
	 Molecular mixing occurs by an exchange of

species between neighboring points—adjacent
mesh points in LEM and ODT, nearest neigh-
bors in species-space in the EMST model.
	 Both are applicable in both the RANS and

LES contexts.

The principal differences are that in PDF meth-
ods convection is treated directly and naturally by
the motion of the particles; and in LEM and ODT
molecular diffusion is treated directly and natu-
rally via the unsteady diffusion equation (with
the effects of turbulence on mixing being repre-
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sented by triplet maps). Because of these similari-
ties, many of the considerations pertaining to
PDF methods apply equally to LEM and ODT.

Recent work on LEM and ODT includes [142–
147], and reviews are provided by [57,59].
6. Manifolds in species space

As illustrated above, several different low-
dimensional manifolds arise in models of turbulent
combustion. In this section we address fundamen-
tal questions about modeling turbulent combus-
tion from the perspective of these manifolds.
Before these questions are posed and discussed,
we start by introducing some terminology and a
classification of the manifolds used.

6.1. Representation of manifolds

In general, an m-dimensional manifold in the
ns-dimensional species space (with ns > m P 1)
can be described by a function YM(h), which is a
mapping from the m parameters h = {h1,h2,
. . . ,hm} to the species space. To simplify the discus-
sion, and to give physical meaning to the parame-
ters, we take the parameters to be a selected set
of m species. Thus, we partition the species into a
set of nr = m represented species and the remaining
nu = ns � nr unrepresented species. With the species
being ordered so that the represented species are
before the unrepresented species, the mass frac-
tions can be written

Y ¼
Yr

Yu

� �
; ð20Þ

where Yr and Yu are nr and nu vectors in the rep-
resented and unrepresented subspaces, respec-
tively. Now, with Yr being used as the
parameters, the manifold can be expressed as the
compositions Y satisfying

Y ¼ YM ðYrÞ ¼ Yr

YmðYrÞ

� �
; ð21Þ
Fig. 8. Sketch showing a 1D manifold defined by Yu = Y
decomposition of Y and S into components in the represent
Yu = Ym(Yr) + y; and the decomposition of S in terms of Sk a
where the function Ym(Yr) is a mapping from the
represented subspace to the unrepresented sub-
space. A manifold represented by the last part of
Eq. (21) is said to be a graph of a function. (Note
the distinction between YM and Ym, which are ns

and nu vectors, respectively.)
Given a manifold defined by Ym(Yr) and a

composition Y (not necessarily on the manifold),
as illustrated in Fig. 8, we can decompose Y as

Y ¼
Yr

Yu

� �
¼

Yr

YmðYrÞ þ y

� �
; ð22Þ

where

y � Yu � YmðYrÞ ð23Þ
is the departure from the manifold (in the unrep-
resented subspace). The conservation equations
for Yr and y are derived and discussed in Sec-
tion 6.3 and in Appendix B.

We introduce the following notation: upper-
case Roman letters are used to denote compo-
nents of represented quantities (e.g., Y r

I for 1
6 I 6 nr), and lower-case Greek letters denote
components of unrepresented quantities (e.g., Y u

a
for 1 6 a 6 nu). When needed for clarity, we usebYr; bYu and ŷ as sample-space variables corre-
sponding to Yr, Yu and y.

Fig. 8 illustrates a simple 1D manifold. In gen-
eral there are nr tangent vectors TI � @YM=@Y r

I
which together span the local nr-dimensional tan-
gent subspace T . The orthogonal complement of
T is the nu-dimensional normal subspace N .

The chemical source term S can be decom-
posed as

S ¼
Sr

Su

� �
¼ Sk þ

0

S\

� �
; ð24Þ

where Sr and Su are in the represented and unrep-
resented subspaces, respectively; Sk is in the tan-
gent space and S\ is in the unrepresented
subspace (see Fig. 8).
m(Yr) and (a) the tangent and normal vectors; the
ed and unrepresented subspaces (b) the decomposition
nd S\.



Table 1
Classification of the various low-dimensional manifolds
used in turbulent combustion models and their associ-
ated methods. Definitions and references are provided in
the text.

Type of
manifold

Examples and associated methods

Skeletal DRG, DRG-EP
Thermodynamic Equilibrium, CEM, RCCE, GALI
Reaction QSSA, ILDM, TGLDM, ICE-PIC,

CSP, LoI
Diffusion Inert mixing
Reaction-
diffusion

SFM, FPV, FGM, FPI, REDIM

Conditional CMC, MMC
Empirical PCA, MARS, Isomap
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We define

Ka;IJ �
@2Y m

a

@Y r
I@Y r

J

; ð25Þ

and loosely refer to it as the “curvature”. There is
a very important distinction between a plane and a
curved manifold. For a plane manifold we can
write

Ym ¼ Ym0 þ AYr; ð26Þ
where Ym0 is a constant vector, and A is a con-
stant nu 
 nr matrix. For such a plane manifold,
the tangent and normal subspaces are the same
everywhere (and known in terms of A), and the
curvature is zero everywhere. In contrast, for a
curved manifold, in general the tangent and nor-
mal subspaces vary on the manifold, and the cur-
vature K is non-zero.

For the simplest possible case of a 1D manifold
in 2-space, Fig. 9 illustrates some properties of
“good” and “bad” manifolds. For all realizable
values of Yr, a good manifold exists, is single-val-
ued, and is realizable. These are the minimum
requirements of a manifold in order for it to be
used in a turbulent combustion computation with-
out arbitrariness or ad hoc corrections. The level
of continuity required depends on the particular
implementation, but obviously smoothness is
desirable.

6.2. Classification of manifolds

We now classify the different types of mani-
folds used in turbulent combustion. Table 1 pro-
vides a summary of this classification, with
explanations and details provided in the following
subsections.

6.2.1. Skeletal manifolds
Given a detailed mechanism containing hun-

dreds or thousands of species, the usual first step
towards a more tractable description is to con-
struct a skeletal mechanism by simply omitting
some species and reactions, those which are
Fig. 9. Sketch of (a) a “good” manifold and (b) a “bad” mani
folded; (B) does not exist; (C) is multi-valued; (D) is discontin
deemed to have a negligible effect on the combus-
tion problem being studied. Viewed in the current
framework, the retained and omitted species are
identified as the represented and unrepresented
species, respectively, and the complete neglect of
the unrepresented species defines the skeletal man-
ifold by

YM ¼
Yr

0

� �
; ð27Þ

or, equivalently,

YmðYrÞ ¼ 0: ð28Þ
The skeletal manifold thus defined is a good,
plane manifold.

Methods to rank species for retention include,
for example, the directed relation graph (DRG)
method [148], the DRG method with error propa-
gation (DRG-EP) [149,150], and earlier proposals
[151–155].

6.2.2. Thermodynamic manifolds
We define a thermodynamic manifold to be a

manifold that is determined by the thermody-
namic properties of the system, which are known
functions of Y. As a simple example, the equilib-
rium manifold shown in Fig. 2 is a 1D thermody-
fold. At the indicated locations, the bad manifold: (A) is
uous; (E) is not realizable; (F) is not smooth.
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namic manifold, and we can take N2 to be the sin-
gle represented species. In this example, by defini-
tion, for each value of Y N2

, the corresponding
point on the equilibrium manifold is the composi-
tion of maximum entropy consistent with the con-
straints imposed by the elements mass fractions
and enthalpy, which are known functions of Y N2

.
More generally, we consider the constrained

equilibrium manifold (CEM) in which additional
constraints are imposed corresponding to repre-
sented species, or linear combinations of species.
This is the manifold used in the rate-controlled
constrained equilibrium method (RCCE)
[156,157], which is seeing renewed use in turbulent
combustion calculations [135,158–161]. The CEM
is a good curved manifold.

A greedy algorithm with local improvement
(GALI) [159,162] has been developed to select
appropriate represented species for RCCE. The
study of [159] confirms the hope and expectation
that as the dimension of the manifold increases
so also does the accuracy with which it can repre-
sent turbulent combustion. For the particular case
of methane combustion studied, the error
decreases from over 100% for nr = 2 and 3, to less
than 1% for nr = 11.

6.2.3. Reaction manifolds
For a homogeneous system, the species conser-

vation equation (Eq. (1)) reduces to the autono-
mous set of ordinary differential equations

dYðtÞ
dt
¼ bSðYðtÞÞ; ð29Þ

describing the change of composition due to reac-
tion in isobaric, adiabatic autoignition. By defini-
tion, reaction manifolds are based on this
equation, or on the properties of the chemical
source term bSðYÞ. As now described, examples in-
clude: trajectory-generated low-dimensional man-
ifolds (TGLDM) [163]; quasi-steady-state (QSS)
manifolds [164]; intrinsic low-dimensional mani-
folds (ILDM) [165]; and those implied by compu-
tational singular perturbation (CSP) [166].

From an initial condition Y0, the solution to Eq.
(29) is a trajectory in the species space from Y0 to
the equilibrium composition. This trajectory is a
one-dimensional manifold, which can be parame-
terized by time, entropy, or the mass fraction of a
major species (provided that it varies monotoni-
cally along the trajectory). Instead of a single initial
condition, Y0, we can consider as initial conditions
all points on an (m � 1)-dimensional manifold.
The trajectories emanating from these initial
conditions form an m-dimensional trajectory-gen-
erated low-dimensional manifold (TGLDM)
[163]. The ICE-PIC method ([167,168]) employs
an m-dimensional TGLDM generated by an
(m � 1)-dimensional CEM on the boundary of
the realizable region of the represented species.
TGLDMs are good, curved manifolds, which
inherit the smoothness properties of the manifolds
from which they are generated. They are said to
be invariant (with respect to Eq. (29)), meaning
that solutions to Eq. (29) from initial conditions
on the manifold remain on the manifold. Equiva-
lently, the chemical source term is a vector in the
tangent space of the manifold, so that S\ is zero.

The quasi-steady-state approximation (QSSA),
frequently used in reduced mechanisms (e.g.,
[169–171]), also implies a reaction manifold. The
represented and unrepresented species are identi-
fied with the non-QSS species and the QSS spe-
cies, respectively. Then, the QSS approximation
is that the components of the chemical source
term corresponding to the unrepresented species
are zero. This can be written

FT bSðYÞ ¼ 0; ð30Þ
where the ns 
 nu matrix is

F ¼
0

I

� �
; ð31Þ

where I is the nu 
 nu identity. Or, with i corre-
sponding to a QSS species, the QSSA and Eq.
(5) yield

0 ¼ bSi ¼ Sþi � Y i=sðiÞ; ð32Þ

leading to

Y i ¼ Sþi sðiÞ: ð33Þ

If the production rate Sþi and the consumption
time scale si are determined by the represented
species, then Eq. (33) explicitly determines a un-
ique, realizable value for the mass fraction Yi of
the unrepresented species. More generally, both
Sþi and si may also depend on the unrepresented
species, so that Eq. (33) becomes a coupled set
of nu non-linear algebraic equations for the mass
fractions of the unrepresented species in terms of
the mass fractions of the represented species.
Solutions to such equations may not exist, may
not be unique, or may not be realizable, and these
difficulties do sometimes arise in practice. Conse-
quently a QSS manifold may not be “good”. A
linearized version of QSSA has been developed
[172] which ensures good manifolds.

Methods to identify appropriate QSS species
include CSP [166,173,174] and level of importance
(LoI) [24,175].

The nr-dimensional intrinsic low-dimensional
manifolds (ILDM) is also defined by Eq. (31),
but with a different definition of the matrix F. Spe-
cifically, the columns of F span the invariant sub-
space corresponding to the nu eigenvalues of the
Jacobian J (Eq. (8)) with smallest real parts. In
this way, instead of the nu QSS species being spec-
ified, the nu “fastest” linear combination of reac-
tions is determined locally (without the need for
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any specification). Because the invariant subspace
can change discontinuously (where eigenvalues
cross), an ILDM may not be “good”, and indeed
examples of bad behavior have been encountered
[167].

6.2.4. Diffusion manifolds
We consider the inert mixing (according to Eq.

(1)) of S homogeneous streams with linearly inde-
pendent compositions Y(s), for 1 6 s 6 S P 2. As
is well known [176], the compositions that occur
in inert mixing (with equal diffusivities) are con-
fined to the convex hull of the S points Y(s) in
the species space. This is a plane nr-dimensional
manifold, for nr = S � 1, which can be parameter-
ized by nr mixture fractions or linearly indepen-
dent species.

6.2.5. Reaction-diffusion manifolds
Here we define a reaction-diffusion manifold to

be a manifold obtained as the solution of ordinary
or partial differential equations which contain a
diffusion term in addition to the chemical source
term. The most familiar example of a reaction-dif-
fusion manifold is the steady flamelet manifold
obtained as the solution to Eq. (9), an example
of which is shown in Fig. 3. Similarly, the
approaches of flamelet-generated manifolds
(FGM) [48] and flame prolongation of ILDM
(FPI) [49] obtain manifolds as solutions of the
conservation equations for particular laminar
flames.

The differential equations governing laminar
flames can be considered in physical space (e.g.,
Eq. (1)) or in a space of parameters such as mixture
fraction and reaction progress variable (e.g., Eq.
(9)). In their REDIM method, Bykov and Maas
[50,51] generalize the latter approach and consider
a reaction-diffusion equation analogous to Eq. (9)
but in terms of m general parameters, leading to an
m-dimensional manifold. In place of the scalar dis-
sipation, in REDIM an m-vector coefficient is
specified, which determines the magnitude of the
diffusion term in the parameter space. (While
REDIM stands for “reaction-diffusion manifold”,
here we use the latter term more generally.) The
earlier “phase space ILDM” method (PS-ILDM)
[177] is based on similar ideas.

In general, reaction-diffusion manifolds are
“good”, because the diffusion terms and the asso-
ciated boundary conditions guarantee the exis-
tence of smooth manifolds. Compared to
reaction manifolds, reaction-diffusion manifolds
may be considered to provide a better approxima-
tion for the compositions that occur in turbulent
flames because the effects of both reaction and
molecular diffusion are accounted for. However,
it should be appreciated that a particular coupling
between reaction and diffusion is assumed, and
this is parameterized by a small number of param-
eters; zero for an unstrained premixed laminar
flame, one in the steady flamelet model, and a con-
stant m-vector in REDIM. As discussed further
below, it is questionable whether such simple cou-
plings adequately describe the complexities of tur-
bulent combustion.

6.2.6. Conditional manifolds
The manifolds described above are applicable

to both laminar and turbulent flows, and they
are global, in the sense that the same manifold is
used everywhere (i.e., for all x and t). In contrast,
the conditional manifolds considered here apply
only to turbulent flows, and they are local in the
sense that, in general, they depend on x and t.
These conditional manifolds arise in conditional
moments closures (CMC) [60,61] and in multiple
mapping conditioning (MMC) [54,55].

The conditional manifold Yu = Ycm is defined
simply as the expectation of Yu conditional on
Yr. To make this definition precise, we introduce
sample-space variables bYr corresponding to the
represented composition Yr(x,t). Then, the condi-
tional manifold is defined as the conditional
expectation

YcmðbYr; x; tÞ � hYuðx; tÞ j Yrðx; tÞ ¼ bYri: ð34Þ
In CMC it is observed that Ycm typically depends
primarily on bYr, with a much weaker dependence
on position, x. This dependence on x is likely to
become yet weaker as the number of represented
variables increases.

Also in contrast to the previous manifolds dis-
cussed, rather than being determined separately in
a pre-processing stage, in CMC and MMC the
conditional manifold is determined as part of the
turbulent combustion model calculation. For the
simplest, idealized case of statistically homoge-
neous and stationary turbulent combustion, the
most basic CMC equation determining the condi-
tional manifold is [54,61]

0 ¼ hvIJ jbYri @
2Ycm

@bY r
I@bY r

J

þ S\ðbYrÞ; ð35Þ

where hvIJ jbYri is the conditional scalar dissipation
of the represented species, and S\ is the compo-
nent of S in the unrepresented subspace and not
in the tangent space (see Eq. (24) and Fig. 8).
See Appendix B for a fuller explanation. Interest-
ingly, Eq. (35) is precisely the form of reaction-dif-
fusion equation solved in REDIM, and the CMC
analysis identifies the conditional scalar dissipa-
tion as the appropriate diffusivity matrix.

6.2.7. Empirical manifolds
The manifolds described above are all theoret-

ical constructs, based on the governing conserva-
tion equations and thermochemistry. Their
application to turbulent combustion involves
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sweeping assumptions. In contrast, empirical man-
ifolds are constructed based on samples of the
compositions observed in turbulent combustion,
either in experiments or in DNS.

We focus here on empirical manifolds based on
DNS data, which, compared to experimental
data, has several advantages: the mass fractions
Y of all species are known; the numerical errors
in good-quality DNS are much smaller than the
measurement errors in experiments; and the chem-
ical source term S is available, in addition to the
mass fractions Y. On the other hand, DNS is lim-
ited to relatively low Reynolds numbers and sim-
ple chemical mechanisms.

The realistic hope and expectation is not that
compositions occurring in turbulent combustion
lie exactly on a low-dimensional manifold, but
rather that they lie close to one. Given an empir-
ical manifold (expressed as YM(Yr) or as Ym(Yr),
Eq. (21)), an observed composition Y can be
decomposed as

Y ¼
Yr

Yu

� �
¼ YM ðYrÞ þ

0

y

� �
¼

Yr

YmðYrÞ þ y

� �
;

ð36Þ
where

y � Yu � YmðYrÞ; ð37Þ
is the departure of Y from the manifold. Thus, an
empirical manifold can be constructed from an
ensemble of N observations of Y by minimizing
some measure of the departures y of the observa-
tions from the manifold.

By far the simplest empirical manifold is the
plane manifold obtained from the principal com-
ponent analysis (PCA) of the data [178]. Simply
by performing the singular value decomposition
of the N 
 ns matrix of observed mass fractions,
one can determine both the “best-fit” nr-dimen-
sional plane manifold, and a suitable set of nr rep-
resented species for its parameterization. The
result can be compactly expressed by Eq. (26).

Sutherland and co-workers [178–181] have
examined PCA manifolds based on data from
experiments, DNS and from ODT simulations.
Yang and Pope [182] performed similar examina-
tions based on the DNS data from CO/H2 and
ethylene non-premixed jet flames [112,183]. The
main question to address is: for a given data set
of N samples of Y, how closely does the PCA
manifold of dimension nr approximate the data?
This question can be addressed by examining the
r.m.s. distance of the data from the manifold. Spe-
cifically, for species i we define �i to be the r.m.s. of
the departure Y i � Y M

i normalized by the standard
deviation of Yi. Fig. 10 shows this normalized
measure of the departure for two representative
species, CO2 and H, obtained from the DNS of
Hawkes et al. [112]. The data are taken from sev-
eral times in the highest-Reynolds-number simula-
tion, in which there is substantial local extinction
and reignition. As may be seen from Fig. 10, eight
dimensions are needed (i.e., nr P 8) in order to
reduce these departures from the manifold to
below 5%.

It is possible that the DNS data lie closer to a
manifold parameterized by variables other than
mass fractions. In particular, a prediction of the
steady flamelet model is that, for the subset of sam-
ples close to stoichiometric, the species mass frac-
tions are given by Y = Ysfm(Zst,v), i.e., Y depends
solely on v. For the same data considered above,
but conditioned on Z being close to stoichiometric,
Fig. 11 shows scatter plots of the mass fraction of
CO2 versus v (left plot) and versus the first principal
component, g1 (right plot). (The first principal com-
ponent is the distance from the mean in species
space in the direction of the first singular vector
in the PCA analysis, i.e., in the direction of greatest
variation.) Evidently, as should be expected, and as
previously observed [178,181], the steady flamelet
model is not applicable to this case, and there is
essentially no correlation between Y CO2

and v.
The one-dimensional PCA provides a much better
representation of the data, with the normalized
r.m.s. departure �CO2

being 33%.
Representing and determining “best-fit”

curved manifolds is much more challenging than
PCA. The most promising approach is multivari-
ate adaptive spline regression (MARS) [181,184].
In fact, in the present context, MARS can be used
for two different purposes. First, MARS can be
used to approximate non-linear functions such
as the chemical source term S on a plane mani-
fold; second, it can be used to approximate a
curved manifold by representing Ym(Yr). In this
latter case, the curved empirical manifold
obtained from MARS is an estimate of the condi-
tional manifold.

Fig. 12 compares the departures from the PCA
and MARS manifolds for the DNS data of the
CO/H2 flame [112] and of the ethylene flame
[183]. In this case, the normalized measure of
error � is the average over all species of the
r.m.s. departure of the species mass fraction from
the manifold, normalized by the greater of the
standard deviation of that species mass fraction
and 10�3. (This normalization prevents small
errors in trace species from making a dispropor-
tionate contribution.) As expected, for a given
number of represented species nr, the departures
are smaller for MARS than for PCA. Also as
may be expected, to achieve a departure less than
a given level, more represented species are
required for the ethylene flame (which involves
22 species) than for the CO/H2 flame (which
involves 11 species). For MARS, to achieve less
than 5% departure, seven represented species are
required for ethylene, and just two for CO/H2.

Another approach that has been used to iden-
tify curved manifolds is isomap [185,186]. This
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Fig. 10. Normalized r.m.s. departures of Y CO2
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and YH (squares) from the PCA manifold of dimension
nr determined from DNS data of a CO/H2 flame [112].
The dashed line shows the 5% level (from [182]).
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PCA manifold (circles) and from the MARS manifold
(squares) of dimension nr for the DNS data from the
CO–H2 flame [112] (open symbols) and from the
ethylene flame [183] (solid symbols). The dashed line
shows the 5% level (from [182]).
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technique assumes that all data points are exactly
on the manifold. In turbulent combustion, the
expectation is that compositions lie close to (but
not exactly on) a low-dimensional manifold.
Hence, regressions techniques such as MARS
appear more appropriate than interpolation tech-
niques such as isomap.

The principal conclusions from studies of
empirical manifolds are:

1. Plane empirical manifolds are simple to repre-
sent, exploit and determine using principal
component analysis (PCA).

2. For a plane manifold to represent the species
mass fractions accurately, quite high dimen-
sions can be required. Based on the measure
� of the departure shown in Fig. 12, to achieve
5% accuracy, 5 and 9 dimensions are needed
for the CO/H2 and ethylene flames,
respectively.
100 102 1040.04
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Fig. 11. For DNS data of [112], conditioned on mixture fract
plots of the mass fraction of CO2 vs. scalar dissipation (left); an
line on the left plot is the extinction value of the scalar dissipa
(from [182]).
3. In several instances [178,182], it is found that a
low-dimensional PCA manifold provides a bet-
ter approximation than the steady flamelet
manifold.

4. Curved empirical manifolds are much more
difficult to represent and estimate. MARS is
the most promising approach, and this yields
an estimate of the conditional manifold. For
the DNS data considered here, 5% accuracy
is achieved with 2-and 7-dimensional curved
manifolds for the CO/H2 and ethylene flames,
respectively.

It should be appreciated that the DNS data
examined here are from relatively simple cases—
non-premixed flames between two uniform
streams, with no heat loss, and with simple 11-
and 22-species chemistry for the CO/H2 and ethyl-
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ion Z being close to its stoichiometric value Zst, scatter
d vs. the first principal component, g1 (right). The dashed
tion. The line on the right plot is the 1D PCA manifold
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ene flames, respectively. The fact that the DNS
data are not well approximated by very-low-
dimensional empirical manifolds casts serious
doubt on the applicability of flamelet-like models
to these flames, and yet more so to the more com-
plex flames encountered in applications (with
more complex chemistry, more and inhomoge-
neous streams, heat loss, etc.).

6.3. Conservation equations on manifolds

In the previous section on empirical manifolds,
we consider what might be called a priori testing
of the low-dimensional manifold hypothesis. That
is, based on DNS data obtained using chemistry
with ns species, we can examine the hypothesis
that the mass fractions that occur in the flow con-
sidered lie on (or close to) an nr-dimensional man-
ifold YM(Yr) (for some small value of nr). One
motivation for the present section is to consider
a posteriori testing of the hypothesis. That is, a
reduced DNS can be performed in which conser-
vation equations are solved for Yr(x,t) instead of
for Y(x,t). Then the accuracy of the low-dimen-
sional manifold hypothesis can be tested by com-
paring statistics obtained from the reduced DNS
with those from the full DNS (based on all ns spe-
cies). A turbulent combustion model using the
low-dimensional manifold hypothesis cannot be
expected to provide better accuracy than the
reduced DNS. Computer power has now reached
the point at which this a posteriori testing is feasi-
ble for DNS of turbulent combustion.

The conservation equation for Yr(x,t) follows
trivially from Eq. (1):

DYr

Dt
¼ 1

q
r � ðqDrYrÞ þ Sr; ð38Þ

where the chemical source term is decomposed as

S ¼ bSðYÞ ¼ Sr

Su

� �
¼

bSrðYÞbSuðYÞ

" #
: ð39Þ

Note that Eq. (38) is not closed, in the sense that
Sr is not known in terms of Yr, but instead is a
function also of Yu. (The diffusivity also depends
on Yu, but this is a less serious problem, which
is not considered further.)

The simplest assumption that leads to a closed
set of equations is that the compositions Y that
occur lie exactly on the manifold, i.e.,
Y = YM(Yr), or, equivalently, y = 0. With this
assumption we have

Sr ¼ bSr;mðYrÞ � bSrðYM ðYrÞÞ: ð40Þ
With very few exceptions, this assumption is gen-
erally made when any type of reduced chemistry is
used (e.g., with QSSA reduced mechanisms used
in laminar or turbulent flame computations).
However, as now explained, for turbulent com-
bustion, the assumption that Y is exactly on the
manifold is untenable [176]; and the complete ne-
glect of the non-zero perturbations y in Eq. (40) is,
in Lam’s words [187] “unjustified in general”.

The conservation equation for y is again
deduced directly from Eq. (1). This is done in
Appendix B, where the notation is fully explained.
Briefly, the result is

Dya

Dt
� 1

q
r � ðqDryaÞ � vJK Ka;JK þ S\a ; ð41Þ

where: a (1 6 a 6 nu) is an index for the unrepre-
sented species; J (1 6 J 6 nr) and K are indices
for the represented species; Ka,JK is the manifold
curvature (see Eqs. (25) and (B.7)); vJK is the sca-
lar dissipation matrix of the represented species
(Eq. (B.6)); S\ is the component of S in the unrep-
resented subspace (see Eq. (B.5) and Fig. 8); and
the summation convention applies. Note the sim-
ilarity between Eq. (41) and Eq. (9): the two terms
on the right-hand sides are scalar dissipation times
manifold curvature, and reaction. Note also that
the CMC Equation (Eq. (35)) follows directly as
the mean of Eq. (41) conditional on y = 0.

A basic question which can be answered by Eq.
(41) is the following [176]: in a turbulent reacting
flow, if at time t0 the compositions lie on the man-
ifold (i.e., y(x,t0) = 0), do they remain on the man-
ifold as the flow evolves? At time t0, y is zero, so
the left-hand side of Eq. (41) reduces to oya/ot.
Hence, the composition remains on the manifold
only if this is zero, which requires that the right-
hand side is zero. Now Ka,JK and S\ are non-ran-
dom functions of Yr (independent of the flow),
whereas vJK is random and depends on the flow.
Hence, for the right-hand side to be zero, it cannot
be that the two terms balance (as is the case in a
steady laminar flow): it must instead be that each
term is zero. Given that vJK is random, the first
term is zero only if the manifold is plane so that
Ka,JK is zero. The reaction term S\ is zero only
if the manifold is invariant, so that S is a tangent
vector. For low-dimensional manifolds encoun-
tered in combustion, plane manifolds are not
invariant, and invariant manifolds are not plane!
This being the case, we conclude that (in turbulent
combustion) compositions cannot lie exactly on a
low-dimensional manifold: at best they may be
close to a manifold.

Given that y is non-zero, the next question that
can be asked is whether its complete neglect lead-
ing to Eq. (40) is a consistent approximation. The
simple answer is “no” [187–189]. As discussed in
Appendix B, a consistent analysis leads to the
equation (for the I component of Sr)

Sr
I ¼ bSr;m

I þ Sn
I þ AIJKvJK ; ð42Þ

where bSr;m is Sr evaluated on the manifold (Eq.
(40)), and AIJK is due to the curvature of the man-
ifold (and is defined by Eq. (B.15)). In principle



S.B. Pope / Proceedings of the Combustion Institute 34 (2013) 1–31 23
the curvature term can be incorporated in the con-
servation equation for Yr, but in practice this
would be very difficult, as it requires the evalua-
tion (on the manifold) of the third-order tensor
AIJK, which is of size n3

r . While manifold curvature
is extremely important for very-low-dimensional
manifolds, its importance inevitably decreases
with manifold dimension. Hence, the neglect of
the curvature term in Eq. (42) for QSSA and
RCCE manifolds with nr P 10, say, is likely not
a significant source of error.

We refer to Sn (the second term on the right-
hand side of Eq. (42)) as the non-invariance correc-
tion. This term (or a similar term) can and should be
incorporated in the conservation equation for Yr,
but it is usually neglected. Why this term arises
and how it should be treated is well appreciated
in some approaches [165,187–190] but not in oth-
ers. In the hope of broadening its appreciation, this
important issue is outlined and discussed in
Section B.3.

6.4. The generation and tabulation of manifolds

In the generation of manifolds and the tabula-
tion of their properties, there are two important
distinctions to be made. The first is the distinction
between locally-generated and globally-generated
manifolds. In a locally-generated method, given
a value of Yr the corresponding manifold point
YM(Yr) can be determined by a local calculation.
Prime examples are QSSA, RCCE and ILDM.
In contrast, globally-generated manifolds have
to be constructed as a whole, usually as the solu-
tion of partial differential equations. Examples are
SFM, FPV, FGM, FPI, REDIM and TGLDM.
Because the whole of a globally-generated mani-
fold has to be represented on a mesh, computa-
tional considerations limit the dimensionality to
2 or 3, seldom more.

The second distinction is between structured
pre-tabulation and in situ adaptive tabulation
(ISAT). The properties of globally-generated
manifolds needed in a turbulent combustion cal-
culation are generally pre-tabulated in a struc-
tured table. Because this is done prior to the
turbulent combustion calculation, the whole space
which could possibly be accessed must be tabu-
lated. Again, computational considerations
severely limit the dimensionality.

Using the method of in situ adaptive tabulation
(ISAT) [83,191], a table of properties is built up
during the turbulent combustion calculation, based
on the compositions encountered. In this way, only
the very small part of the species space which is
accessed is tabulated; and, because of this, tabula-
tions can be performed in much higher dimensions,
e.g., 50D [76]. ISAT can be used in conjunction
with not-too-large detailed and skeletal mecha-
nisms (e.g., nr 6 50), and with locally-generated
manifolds, notably QSSA and RCCE [135,159].
In general, pre-tabulation is used with glob-
ally-generated manifolds, and ISAT is used with
locally-generated manifolds. However, pre-tabu-
lation can also be used with very-low-dimen-
sional, locally-generated manifolds.

To illustrate how ISAT works, we consider the
task of tabulating the chemical source term
S ¼ bSðYÞ based on the large number N of compo-
sitions Y(i), (1 6 i 6 N) encountered sequentially
in a turbulent combustion calculation. (In a typi-
cal LES/PDF calculation, N may be 1010 or lar-
ger.) The table built by ISAT consists of NT

table entries (e.g., NT = 10,000), where the kth
entry consists of: the location (in species space)
of the point tabulated, Y[k]; the chemical source
term, S½k� ¼ bSðY½k�Þ; the Jacobian, J[k] = J(Y[k]);
and a hyper-ellipsoid E[k] centered at Y[k]. (Hence-
forth we refer to E[k] as an ellipsoid.) For given Y,
the linear approximation to S about Y[k] is

�S½k�ðYÞ � S½k� þ J½k�ðY� Y½k�Þ; ð43Þ
and the error in this approximation is

�½k�ðYÞ � j�S½k�ðYÞ � bSðYÞj: ð44Þ
The ellipsoid E[k] is such that the error �[k](Y) is
estimated to be less that the specified error toler-
ance �tol for every point Y in E[k].

The ISAT table is built up as the turbulent
combustion computation proceeds in such a way
that, with very high probability, every composi-
tion Y(i) encountered is within some ellipsoid
E[k], so that bSðYðiÞÞ can be approximated by
�S½k�ðYðiÞÞ with an error that is controlled by �tol.
The ellipsoids are stored in various data struc-
tures, including binary trees, to facilitate searching
for an ellipsoid E[k] which covers a given query
point Y(i). It may be observed that the union of
the ellipsoids covers the empirical manifold.

In practice, ISAT is generally used, not to tab-
ulate S, but to tabulate the reaction mapping,
which is defined as the solution to dY/dt = S at
the end of the computational time step Dt, as a
function of the initial condition. The current state
of the art in using ISAT in LES/PDF computa-
tions is described in [134,135], including its combi-
nation with RCCE and its implementation on
large parallel systems.
7. Discussion and conclusions

The ultimate goal in turbulent combustion
modeling is to develop accurate, tractable and
general predictive modeling capabilities. We have
examined the challenges to be faced and some of
the progress made in the past decade, focusing
on non-premixed, gas-phase combustion.

The principal challenges are outlined in Sec-
tion 3. The challenges of small scales and many
species inevitably lead to statistical modeling of
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the small-scale processes, and to a reduced
description of the chemistry. Then the principal
challenge is to account accurately and tractably
for the coupled processes of reaction and molecu-
lar diffusion.

In the past decade, significant progress has
been made on many fronts, especially in DNS,
LES, PDF and in the development and reduction
of chemical kinetics mechanisms for hydrocarbon
fuels.

Computer power has reached the point where
it is now possible to perform DNS under some
(but not all) conditions of practical interest [3].
Such DNS are extremely valuable in the develop-
ment and testing of turbulent combustion models.
Nevertheless, for many decades to come, DNS
will not be directly applicable in engineering appli-
cations of turbulent combustion because of the
large range of scales involved—from those of the
combustion chamber down to the smallest turbu-
lent and reaction-zone scales. Because of this, a
statistical approach is needed; either a completely
statistical approach (as in RANS and PDF meth-
ods), or a statistical approach just for the small
scales (as in LES and LES/PDF).

While RANS-based approaches remain preva-
lent in industry, LES is now prevalent in the
research community and it will inevitably see
increased use in industry. Since the processes of
molecular mixing and reaction occur predomi-
nantly below the resolved scales, in LES, as in
RANS, it is essential to account for the unre-
solved fluctuations and turbulence-chemistry
interactions.

In the past decade, it has been convincingly
demonstrated that PDF methods are capable of
representing accurately the strong turbulence-
chemistry interactions which occur in several lab-
Table 2
Characteristics of flamelet-like and PDF-like models of turbul

Characteristic Flamelet-like models

Examples and associated methods Equilibrium, SFM, FPV,
REDIM

Manifold assumption Species lie on a very-low-
manifold (e.g., 2D or 3D

Manifold properties From laminar flame (or s
calculations in pre-proces

Representation of composition in
turbulent combustion calculation

Moments of Z (and in so

Treatment of complex chemistry Confined to pre-processin

Tabulation Structured tabulation in p
processing (usually)

Turbulent mixing to be modeled Solely (or primarily) inert
Treatment of coupling between
reaction and molecular diffusion

Parameterized by few var
(e.g., v)

Determination of PDF From a few moments and
shape
oratory jet flames [36,37]. This includes the signif-
icant local extinction and reignition in piloted jet
flames [34,76], and the ignition and stabilization
of lifted jet flames in vitiated co-flows [92,94].

Current chemical mechanisms for hydrocarbon
fuels typically involve hundreds if not thousand of
species—many more than can tractably be han-
dled in a turbulent combustion model. Various
reduction techniques based on the thermochemis-
try have been developed (see Sections 6.2.2 and
6.2.3) which for simple hydrocarbons can reduce
the number of species (or other variables) needed
to of order 20.

The current approaches to modeling non-pre-
mixed turbulent combustion have been reviewed,
especially from the viewpoint of the implied man-
ifolds in the species space. There is a clear dichot-
omy between flamelet-like approaches and PDF-
like approaches, as described in Section 3.2. The
principal characteristics of these two approaches
are contrasted in Table 2.

Flamelet-like models are in general relatively
simple to implement and inexpensive to use. How-
ever, they depend on the strong assumptions that
the compositions occurring in turbulent combus-
tion lie close to a very low-dimensional manifold,
and that the coupling between turbulent mixing
and reaction can be simply parameterized by at
most one or two variables. While the limits of
applicability and accuracy of such models are
not easily delineated, it is certainly the case that
they do not apply to the more challenging regimes
of both non-premixed and premixed turbulent
combustion, in which there is significant local
extinction, or in which the turbulence significantly
disrupts the reaction-diffusion balance of flamelet
structures. This is clearly demonstrated in a priori
testing (e.g., [178] and Fig. 11).
ent combustion.

PDF-like models

FGM, FPI, PDF, MMC, LEM, ODT

dimensional
)

No assumption made (beyond that
implied by the reduced chemistry
employed)

imilar)
sing

Not applicable

me cases C) Joint PDF of species; represented by an
ensemble of values of Y

g Exact, within turbulent combustion
calculation

re- in situ adaptive tabulation, or none

mixing Reactive mixing
iables Modeled implicitly by a mixing model

(e.g., EMST, MMC); or ignored (e.g.,
IEM)

an assumed From a modeled transport equation for
the PDF
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It is interesting to observe that all flamelet-like
approaches lead to similar model equations,
which reflect the assumed dominant balance
between reaction and molecular diffusion, the lat-
ter represented as the product of scalar dissipation
and manifold curvature: Eq. (9) in counter-flow
flames and SFM; Eq. (16) in the equilibrium
model; a generalization of Eq. (9) in REDIM;
and also Eq. (35) in CMC (even though CMC is
not a flamelet-like model). In turbulent combus-
tion, for any very-low-dimensional manifold,
there is an inevitable imbalance between reaction
and molecular diffusion leading to departures
from the manifold, as described by Eq. (41).

In the future we can expect to see further
refinements to flamelet-like models, and their use
in many applications. They may also form a useful
component of an adaptive modeling strategy. The
fact remains, however, that they are not applica-
ble in the more challenging combustion regimes
in which compositions do not lie close to very-
low-dimensional manifolds, and in which the cou-
pling between reaction and molecular diffusion
cannot be simply parameterized.

PDF-like models (PDF, MMC, LEM, ODT)
avoid the assumption of a very low-dimensional
manifold, and hence have broader applicability.
PDF and LES/PDF calculations have been
reported with 53 and 38 species, respectively
[76,134]. In these methods it is necessary to model
the effects of molecular diffusion on reactive spe-
cies. As discussed in Section 5.4, it is certainly
the case that the simplest mixing models (e.g.,
IEM and MC) take no account of the effects of
reaction on mixing. However, more sophisticated
approaches (e.g., EMST and MMC) do account
for these effects and there are good prospects for
further improvements in such approaches.

PDF methods also provide a single framework
which is applicable to all modes of combustion—
non-premixed, premixed, partially-premixed—
and, more generally, to systems with multiple
inhomogeneous feed streams and with heat loss.
For the next decade, a challenge for PDF models
is to demonstrate the same success in premixed
turbulent combustion as has been demonstrated
in the past decade for non-premixed combustion,
and to extend this success to spray flames and
sooting flames.

A final comment is that, with the advent of
accurate DNS in regimes of interest, turbulent
combustion modeling can become less speculative!
The assumptions made can be examined in detail
using DNS data in both a priori and a posteriori
testing. In particular, as illustrated in Section 6.2.7,
it is possible to determine the dimensionality of
plane and curved manifolds which adequately
approximate the compositions occurring in differ-
ent regimes of turbulent combustion; and mixing
models can be subjected to both a priori and a pos-
teriori testing.
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Appendix A. Analysis of the EMST mixing model

For non-premixed combustion, it is shown that
the EMST mixing model [90] (with simplifying
assumptions) leads to an equation (Eq. (A.12))
for the species mass fractions which is similar to
the unsteady flamelet model.

We consider a large number N of equal-mass
computational particles, the ith of which has at
time t mass fractions Yi(t) and mixture fraction
Zi(t). The analysis shows that the species mass
fractions are given by

YiðtÞ ¼ YEðZiðtÞ; tÞ; ðA:1Þ
where YE(z,t) evolves by Eq. (A.12). We take ini-
tial conditions such that the PDF of Z, f(z), is self-
similar (as explained below), and the species mass
fractions are set by an appropriate specification of
YE(z,0), e.g., corresponding to the steady flamelet
model. This result is primarily of theoretical inter-
est, as it provides a connection between PDF and
flamelet modeling, and it shows that the molecular
mixing of reactive species implied by the EMST
model is appropriately affected by the chemical
reactions.

It is convenient here to use an unconventional
normalization of Z, such that its mean is zero. The
particles are ordered in increasing mixture
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fraction (i.e., Zi P Zi�1), so that the cumulative
distribution function (CDF) of Z, F(z), is such
that

F ðZiÞ ¼ F i � i=N ; ðA:2Þ
and an approximation to the PDF, f(z), is pro-
vided by

1 ¼ N ½F ðZiþ1Þ � F ðZiÞ�
� N ½Ziþ1 � Zi�f ðZiþ1=2Þ; ðA:3Þ

for Zi+1/2 � [Zi + Zi+1]/2.
We do not consider the “intermittency” feature

of the EMST model, so that all particles mix at all
times. For the case considered, the EMST consists
simply of edges between adjacent particles in the
ordering. Consequently, according to the model
[90], the particle mass fractions evolve by

dYi

dt
¼ cN 2½wi�1=2ðYi�1 � YiÞ þ wiþ1=2ðYiþ1 � YiÞ�

þ bSðYiÞ; ðA:4Þ

where

wiþ1=2 � 2 minðF i; 1� F iÞ; ðA:5Þ

and c (determined below) controls the rate of
mixing.

We assume that the PDF of Z, f(z), decays in a
self-similar manner. Consequently, we have

dZi

dt
¼ �xZi; ðA:6Þ

where x is the decay rate, which is related to the
scalar dissipation by

x ¼ 1

2
hvi=hZ2i: ðA:7Þ

Thus, Eq. (A.4) written for Zi and Eq. (A.6) yield

�N 2½wi�1=2ðZi�1 � ZiÞ þ wiþ1=2ðZiþ1 � ZiÞ�

¼ x
c

Zi; ðA:8Þ

or, in an obvious matrix notation,

AZ ¼ x
c

Z; ðA:9Þ

where A is the N 
 N sparse matrix defined by the
left-hand side of Eq. (A.8). Evidently, Z is an eigen-
vector of A and x/c is the corresponding eigen-
value, denoted by k. It is found numerically that
as N increases, the relevant eigenvalue of A con-
verges to k = 5.7832, and that the standardized
PDF, fo(z), of Z obtained from Eq. (A.3) converges
to that shown in Fig. A.13. Thus c is determined as
c = x/ k. The self-similar PDF is somewhat unu-
sual and unphysical in that Z is bounded, and the
PDF is discontinuous at the bounds.

Having determined the behavior of the mixture
fraction, we return our attention to the species
mass fractions, which evolve by Eq. (A.4). We
observe that, using Eq. (A.3), terms in this equa-
tion can be re-expressed as, for example,

Nwiþ1=2ðYiþ1 � YiÞ ¼ wiþ1=2

fiþ1=2

Yiþ1 � Yi

Ziþ1 � Zi
: ðA:10Þ

In the limit as N tends to infinity, the divided dif-
ference becomes a derivative, and the right-hand
side is written

wðzÞ
f ðzÞ

@YE

@z
: ðA:11Þ

Thus, in the limit as N tends to infinity, Eq. (A.4)
becomes an evolution equation for YE(z,t):

@YE

@t
¼ c

f
@

@z
w
f
@YE

@z

� �
þ bSðYEÞ

¼ 1

2
hvi 1

fok
@

@z
w
fo

@YE

@z

� �
þ bSðYEÞ; ðA:12Þ

where the second line follows from Eq. (A.7) and
the relations c = x/k and fo = fhZ2i1/2.
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As may be seen, Eq. (A.12) is similar to the
unsteady flamelet equation. The non-dimensional,
order-one coefficients 1/(fo k) and w/fo are shown
in Fig. A.14. Note that the mean hvi, rather than
instantaneous scalar dissipation v, appears in Eq.
(A.12): but there is no difficulty in extending the
model by introducing a random process for c(t),
leading to a model for v(t) similar to the stochastic
flamelet approach [192].
Appendix B. Conservation equations on manifolds

In Section B.1 we derive from Eq. (1) the con-
servation equation for the departure from the
manifold, y. Then, in Section B.2, an improved
approximation for Sr is obtained. This includes
the non-invariance correction Sn, which is consid-
ered further in Section B.3. Similar analyses have
previously been performed [176,188,189]: a differ-
ence here is that the manifold considered is
parameterized by the represented species.

B.1. Conservation equation for the departure y

For the manifold specified by Ym(Yr), the
departure y of the composition Y from the mani-
fold is defined as

y � Yu � YmðYrÞ: ðB:1Þ
Taking the material derivative of Eq. (B.1) we
obtain

Dya

Dt
¼ DY u

a

Dt
� T u

a;I

DY r
I

Dt
; ðB:2Þ

where

T u
a;I �

@Y m
a

@Y r
I

; ðB:3Þ

represents the components of the tangent vectors
in the unrepresented subspace. We use lower-
case Greek letters for indices of unrepresented
quantities (e.g., 1 6 a 6 nu), and upper-case Ro-
man letters for represented quantities (e.g.,
1 6 I 6 nr).

Expressions for DY u
a=Dt and DY r

I=Dt are
obtained simply from Eq. (1). Substituting these
into Eq. (B.2), after manipulation we obtain

Dya

Dt
¼ 1

q
r � ðqDryaÞ þ S\a þ vJK Ka;JK ; ðB:4Þ

where:

S\a � Su
a � T u

aI S
r
I ; ðB:5Þ

is the component of S in the unrepresented sub-
space not in the tangent space (see Fig. 8);

vJK � DrY r
J � rY r

K ; ðB:6Þ
is the scalar-dissipation matrix of the represented
species; and
Ka;JK �
@2Y m

a

@Y r
J@Y r

K

; ðB:7Þ

is the manifold curvature.

B.2. Improved approximation for the represented
chemical source term Sr

We now perform an analysis (similar to that of
[176,188,189]) for the case in which y is sufficiently
small that it can be neglected everywhere except in
the chemical source term S, and that the depen-
dence of S on y can be linearized. Subject to these
conditions, Eq. (B.4) becomes

0 ¼ S\m
a þ J\u

ab yb þ vJK Ka;JK ; ðB:8Þ

where S\m denotes S\ evaluated on the manifold,
and

J\u
ab �

@S\a
@Y u

b

; ðB:9Þ

is also evaluated on the manifold. We assume that
the manifold is attracting, so that all of the eigen-
values of the nu 
 nu matrix J\u have strictly neg-
ative real part, and therefore J\u possesses an
inverse, whose components are denoted by
J\u�1

ab . Then, y is uniquely determined by Eq.
(B.8) as

yc ¼ �J\u�1
ca ðS\m

a þ vJK Ka;JKÞ: ðB:10Þ

This solution yields the value of y (and hence of
Y) such that, in the unrepresented subspace, the
chemical source term exactly balances the dissipa-
tion-curvature.

In place of Eq. (40), the improved, linear
approximation for Sr is

Sr
I ¼ bSr;m

I þ Jru
Icyc; ðB:11Þ

where Jru is defined by

Jru
Ic �

@Sr
I

@Y u
c

: ðB:12Þ

Using Eq. (B.10) for yc, we obtain

Sr
I ¼ bSr;m

I þ Sn
I þ AIJKvJK ; ðB:13Þ

where Sn, which is due to the non-invariance of
the manifold, is

Sn
I � �Jru

IcJ
\u�1
ca S\m

a ; ðB:14Þ

and we define

AIJK � �Jru
IcJ
\u�1
ca Ka;JK : ðB:15Þ

Note that Jru and J\u represent different parts of
the Jacobian (Eq. (8)) and have dimensions of in-
verse time. There is no apparent reason why the
non-dimensional product JruJ\u�1 should in gen-
eral be small, and hence that the final terms in Eq.
(B.13) should be negligibly small. Indeed, exam-



Fig. B.15. Sketch showing a 1D manifold, the chemical
source term S and its projections (Spu, Spn and Spf) onto
the tangent space using different projectors (Pu, Pn and
Pf in the unrepresented, normal and fast subspaces).
This illustrates that different projectors lead to different
rates of change of the represented species (Sru, Srn and
Srf).
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ples are readily constructed [189] in which these fi-
nal terms have a significant effect.

B.3. The non-invariance correction

We now examine in more detail the additional
term Sn which arises due to the non-invariance of
the manifold. We refer to this as the non-invari-
ance correction.

For the simplest case of a homogeneous mix-
ture, Eq. (1) becomes

d
dt

Yr

Yu

� �
¼

Sr

Su

� �
¼

bSrðYÞbSuðYÞ

" #
: ðB:16Þ

With the assumption that the composition Y is on
the manifold, it appears to follow trivially that Yr

evolves by

dYr

dt
¼ bSr;m � bSrðYM ðYrÞÞ: ðB:17Þ

However, even for a plane manifold, there is a log-
ical flaw in the argument, namely that it is based
on inconsistent premises. Specifically, the assump-
tion Y(t) = YM(Yr(t)) implies that the rate of
change of Y is in the tangent space, since the chain
rule yields

dY i

dt
¼ T iJ

dY r
J

dt
; ðB:18Þ

where T iJ � @Y M
i =@Y r

J is the i-component of the
Jth tangent vector. However, in general, Eq.
(B.16) is inconsistent with Eq. (B.18). It is consis-
tent only if the manifold is invariant or, equiva-
lently, if S\ is zero.

There are two ways to remove the inconsis-
tency. The first way is that used above in Sec-
tion B.2, which has been termed the close-parallel
assumption [188]. According to this assumption,
there is an invariant manifold close to and parallel
to the specified manifold Y = YM(Yr). The
chemical source term is evaluated on this invariant
manifold, and it is entirely in the tangent space
(i.e., S\ = 0) because, by the “parallel” assump-
tion, the two manifolds share the same tangent
space.

The second way is to replace S (evaluated on
the manifold) by a projection of S onto the tan-
gent space. We denote this projection by

Sp ¼ PS; ðB:19Þ
where P is an ns 
 ns projection matrix. But what
projection to use? Some possibilities, illustrated in
Fig. B.15, are:

1. Project in the unrepresented subspace, which
yields Sr ¼ bSr;m, i.e., Sn = 0.

2. Project in the normal subspace.
3. Project in the “fast” subspace.
4. Use a projector based on thermodynamics

[190].
It should be recognized that projections (1) and
(2) contain arbitrariness and lack rational sup-
port. The same manifold can be parameterized
by different represented species, and when this is
done projection (1) yields different results. The
definition of the normal subspace depends on
the scaling of the variables. Different results are
obtained if the species are represented in specific
moles instead of mass fractions. For a PCA man-
ifold, the normal subspace depends on how the
scaling in the PCA is performed.

In contrast to projections (1) and (2), based on
an analysis of Eq. (B.16), both the CSP and
ILDM methods identify the appropriate projector
in the “fast” subspace [165,166]. The result is very
similar to the projection implied by the close par-
allel analysis which leads to Sn given by Eq.
(B.14). The importance of using the correct pro-
jector is illustrated in [187,189].
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