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Abstract. At a given position and time in a turbulent reactive flow involving
many chemical species, the thermochemical composition corresponds to a point
in the multi-dimensional composition space. The union of all such points, for all
positions and times, is defined to be the accessed region of the composition space.
The geometry of the accessed region is investigated from several perspectives. Many
existing models of turbulent nonpremixed combustion (e.g., equilibrium chemistry,
the steady flamelet model, and the conditional moment closure) implicitly assume
that the accessed region is a low-dimensional manifold (of dimension one or two). It is
shown from the conservation equations that the simultaneous actions of mixing and
reaction can lead to an accessed region of significantly higher dimension than occurs
when mixing and reaction act separately or sequentially. For a laminar flame, the
accessed region is a curved manifold of the same dimensionality as the flow; whereas
for a turbulent reactive flow it is a plane manifold, generally of higher dimension.
Several processes are identified which can lead to the edge of the manifold being
non-convex.

Keywords: Reactive flows

1. Introduction

In a gas phase reactive flow, the thermochemistry can be described
by nφ composition fields φ(x, t) = {φα(x, t), α = 1, 2, . . . , nφ}. For
low Mach number flows, these compositions can be taken to be the
specific moles of the ns species and the enthalpy, so that their number
is nφ = ns + 1. We consider the nφ-dimensional composition space C,
with coordinates ψ = {ψ1, ψ2, . . . , ψnφ}, so that the composition at
(x, t) corresponds to the point ψ = φ(x, t). The fundamental ques-
tion addressed in this paper is: in a turbulent reactive flow, what is
the geometry of the accessed region of the composition space? The
accessed region, A, is defined as all compositions that occur (i.e., the
union of the points ψ = φ(x, t) for all x and t). Different modelling
approaches to turbulent reactive flows (implicitly or explicity) offer
different answers to this question. We give two extreme examples for
non-premixed turbulent combustion: the assumed PDF method with
equilibrium chemistry (e.g., [7]); and the transported composition PDF
method with detailed chemistry (e.g., [5]).
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For two-stream problems (e.g., a fuel jet into an oxidant stream), the
mixture fraction ξ(x, t) is sufficient to determine the elemental compo-
sition of the mixture and the enthalpy (provided that radiative heat
loss and differential diffusion are negligible). This in turn is sufficient
to determine the chemical equilibrium composition, which we denote
by Φeq(ξ̂), where ξ̂ (0 ≤ ξ̂ ≤ 1) is an independent mixture fraction
variable. By assumption, in the equilibrium-chemistry approach the
composition is given by

φ(x, t) = Φeq(ξ[x, t]). (1)

Thus the accessed region A of the composition space is (by assump-

tion) the curve (or one-dimensional manifold) Φeq(ξ̂), regardless of the
dimensionality nφ of the composition space C.
In contrast, in the transported PDF approach (see e.g., [13]), no

assumptions are made about the accessed region, A. It can, in princi-
ple, therefore be coincident with the realizable region. This is defined
as the (nφ − 1)-dimensional region of the composition space corre-
sponding to non-negative mass fractions which sum to unity, and with
the enthalpy corresponding to positive absolute temperatures. In prac-
tice, boundary conditions and reaction mechanisms can impose further
restrictions (discussed below) which reduce A; but in principle any
realizable composition is a valid initial or boundary condition and is
therefore accessible. Thus, in the absence of information on initial and
boundary conditions, all that can be said about the accessed region is
that it is contained within the realizable region.
In recent years, PDF calculations have been performed of turbulent

flames using detailed mechanisms with of order 20 species [19, 15, 10];
whereas previously, simpler (e.g., four-step) mechanisms had been used,
which involve fewer species (e.g., [2]). Mechanisms with of order 500
or even thousands of species have also been proposed (e.g., [16]), and
these may be used in future turbulent flame calculations. The increasing
number of species considered accentuates the question addressed here:
is the accessed region low dimensional (e.g., one or two-dimensional as
implied by the equilibrium-chemistry, steady-flamelet, and conditional
moment closure models)? Or is its dimensionality of order the number
of species as allowed in PDF approaches?
This question is also of paramount importance in the Multiple Map-

ping Conditioning (MMC) approach recently introduced by Klimenko
and Pope [9]. In MMC it is assumed that all compositions are con-
fined to an m-dimensional manifold, where the dimensionality m is
prescribed.
In the next section we develop the idea that the accessed region A

is an m-dimensional manifold (for positive integer m), and put existing
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models in this framework. In Section 3 we examine idealized situations
in which the manifold is clearly identifiable. These cases are: mixing
alone; reaction alone; sequential mixing and reaction; and then the gen-
eral case of simultaneous reaction and mixing. In Section 4 we examine
the physical and chemical process that can increase the dimensionality
of A. These are connected with curvature of the manifold and mixing
fluctuations. Then in Section 5 we examine the shape of the edge of
the manifold and the processes that affect it.

2. Manifolds in Composition Space

By definition, an m-dimensional manifold M (for 1 ≤ m < nφ )
in the nφ-dimensional space C is a smooth geometric object, which
locally can be mapped one-to-one to m-dimensional Euclidean space
(see, e.g., [17]). At least locally (and sometimes globally) the mani-
fold can be parametrized by m parameters, which we denote by η =
{η1, η2, . . . , ηm}. Then there is a function Φ(η)—which is a mapping
from the m-dimensional parameter space to the nφ-dimensional com-
position space—which describes the compositions on the manifold.
We have already seen that the equilibrium-chemistry assumption

corresponds to a one-dimensional manifoldMeq (m = 1) parametrized

by mixture fraction (η1 = ξ̂), i.e., Φeq(ξ̂). Similarly, the steady flamelet
model [12] (SFM) corresponds to a two-dimensional manifold. Accord-
ing to this model, the composition is uniquely determined by the mix-
ture fraction ξ̂ and the scalar dissipation, denoted by χ̂. The composi-
tion on the SFM manifoldMSFM is given by

ΦSFM(ξ̂, χ̂),

and is defined as the composition observed (or calculated) in a specified
one-dimensional laminar flame at the given value of mixture fraction,
ξ̂, and with the value χ̂ of the scalar dissipation at the stoichiometric
location. In this case m = 2 and (η1, η2) = (ξ̂, χ̂).
In the simplest application of the conditional moment closure [8]

(CMC) to non-premixed turbulent combustion, it is assumed that there
are no composition fluctuations about their conditional means (condi-
tional on mixture fraction). Hence, by assumption, at (x, t) the com-
position is

ΦCMC(ξ̂,x, t) = 〈φ(x, t)|ξ(x, t) = ξ̂〉. (2)

Thus, at given (x, t) this CMC implies a one-dimensional manifold

MCMC(x, t) which is parametrized by ξ̂. Notice that in this case the
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manifold is local in (x, t) space—i.e., it is different at different (x, t)—
whereas Meq and MSFM are global, independent of (x, t). (This dis-
tinction between local and global manifolds should not be confused
with local and global parametrizations of a manifold.)
To apply these models to turbulent flows it is necessary to know the

probability density function (PDF) of the mixture fraction or the joint
PDF of mixture fraction and scalar dissipation. More generally, as in
MMC, we can consider fields of m parameters, denoted by

θ(x, t) = {θ1(x, t), θ2(x, t), . . . , θm(x, t)}, (3)

and their one-point joint PDF P (η;x, t). Then, if the compositions are
confined to the local manifoldM(x, t) with parametrization Φ(η,x, t),
the joint PDF of φ(x, t), f(ψ;x, t), is given by

f(ψ;x, t) =

∫

δ(Φ[η,x, t]−ψ)P (η;x, t) dη, (4)

where δ( ) is the nφ-dimensional Dirac delta function and integration
is over the whole of the parameter space. This is a fundamental equation
in the MMC approach [9]: it shows how the manifold Φ(η,x, t) maps
the distribution in parameter space η to the distribution in composition
space ψ.

3. Implications of Conservation Equations

The statements made above that compositions are confined to low-
dimensional manifolds are simply assumptions or assertions in different
models. In this section we examine the (simplified) conservation equa-
tions to deduce an upper-bound on the geometry of the accessed region
A in idealized circumstances, and then in general.

3.1. Inert Mixing

We consider first the case of inert mixing involving a large number of
chemical species. For the general composition variable φα(x, t) (species
specific moles or enthalpy) we consider the conservation equation

Dφα
Dt

≡

(

∂

∂t
+U · ∇

)

φα = Γ∇
2φα, (5)

where U(x, t) is the turbulent velocity field. For simplicity we take the
density to be constant and uniform: the results obtained below could
most likely be generalized to the variable-density case without much
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Figure 1. The composition space C showing the region B corresponding to initial
and boundary conditions and the bounding convex region B+ ≡ hull(B).

difficulty. Much more serious is the assumption embodied in Eq.(5) that
the diffusion coefficient Γ is constant, uniform, and the same for each
species and enthalpy. Again, the “constant and uniform” assumption
could most likely be removed, but the results obtained below depend
crucially on the diffusion coefficients being equal. In this regard we
make the following observations:

1/ As is well known, the effects of differential diffusion and non-unity
Lewis number can be substantial in laminar flames (see, e.g., [18]).

2/ There is some evidence that these effects are substantially weaker
in turbulent non-premixed combustion (e.g., [3]).

3/ It is valuable to establish results for the “equal diffusivity” case as
a reference against which results with differential diffusion can be
compared.

For completeness, we state the known properties of the region of
A of composition space accessed by compositions evolving according
to Eq.(5). The region A is determined by the initial and boundary
conditions. Let B denote the region in composition space corresponding
to all initial and boundary conditions. That is, B is the union of all
compositions that occur initially (at t = 0) and on the boundary of the
domain considered. Then the accessed region A (which is connected) is
bounded by the smallest convex region in C that contains B: this region,
which we denote by B+, is the convex hull of B, which is also denoted
by hull(B). This is illustrated in Fig. 3.1. (The sketches shown in the
figures are, of necessity, in 2D or 3D, but it should be appreciated that
they are intended to depict objects in the high-dimensional composition
space.)
This result follows simply from three observations. First, if the initial

field φ(x, 0) contain two adjacent uniform blobs of fluid of composition
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φa and φb, then, after an infinitesimal time, diffusion between the blobs
leads to all compositions along the line segment in C joining φa and
φb. Thus, given B, initial conditions can be found for which the whole
of B+ is accessed.
Second, it is well known that all global extrema of fields evolving by

the convection-diffusion equation Eq.(5) occur on the boundary or in
the initial condition (see, e.g., [14]). That is, the actions of convection
and diffusion cannot lead to compositions outside B+.
Third, we assume that the flow domain is connected in physical

space. That is, given any two points xA and xB in the flow domain,
there is a path connecting them that is everywhere within the fluid. For
t > 0, the composition fields are continuous, and hence in composition
space there is a path connecting φ(xA) to φ(xB). It follows, therefore,
that A is a connected region.
For this case then, the accessed region A is bounded by B+ which is

determined by B. We consider now the accessed regions A correspond-
ing to different initial and boundary conditions B.
In general B is contained in an a-dimensional affine space in C (with

a < nφ), which we denote as B
∗ or aff(B). An affine space is a sub-

space which is shifted from the origin by a vector (which is not in the
subspace). For example, a 2-dimensional affine space corresponds to a
plane that does not intersect the origin. We may also regard B∗ as an
a-dimensional plane manifold. It follows that the convex hullB+ is also
contained in B∗ (i.e., aff(hull(B)) = aff(B)), and so the accessed region
A is an a-dimensional plane manifold. Suppose now that B is contained
in an m-dimensional curved manifold in the a-dimensional affine space
(for m < a). For example, as sketched in Fig. 3.1, B could be contained
in a curve (m = 1) in a plane (a = 2). It should be appreciated that
for this case B+ lies in the a-dimensional affine space, but it is not an
m-dimensional manifold.

3.2. Inert Mixing of Homogeneous Streams

In many applications, mixing occurs between a number of inflowing
streams, each of which has a fixed uniform composition. Or, we can
consider the initial-value problem of the mixing between blobs of fluid
of initially uniform composition [4, 6]. In both of these cases, there is
a finite number nb of distinct initial and boundary conditions, and we
denote the i-th of these by φb,i. As illustrated in Fig. 3.2, in composition
space C, the region of initial and boundary conditions B is just the set
of nb points {ψ = φ

b,i, i = 1, 2, . . . , nb}.
In composition space, let m denote the dimensionality of the affine

space containing the nb boundary and initial compositions, i.e., m ≡
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Figure 2. The composition space C showing the one-dimensional manifold of ini-
tial and boundary conditions B, and the two-dimensional bounding convex region
B+ ≡ hull(B).

Figure 3. The composition space C showing initial and boundary conditions (points)
corresponding to nb = 5 distinct compositions, B = {φb,i, i = 1, 2, . . . , nb}, and the
bounding convex region B+ ≡ hull(B).

dim(aff(B)). In view of the fact that the species mass fraction sum to
unity, we have

m ≤ min(nb, nφ)− 1. (6)

Without loss of generality, we order the boundary states so that the first
m+1 compositions are linearly independent. Evidently, the initial and
boundary conditions are contained in the m-dimensional affine space
B∗ = aff(B) which contains {φb,i, i = 1, 2, . . . ,m + 1}; and the convex
hull B+ ≡ hull(B) is the convex polytope in this m-dimensional affine
space whose vertices are a subset of {φb,i, i = 1, 2, . . . , nb}.
To summarize: for inert mixing between streams or blobs of uniform

composition, the accessed region A is a convex polytope B+ in an m-
dimensional affine space (or plane manifold). The dimensionality m is
one less than the number of linearly independent initial and boundary
compositions.
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A planem-dimensional manifold (or affine space) is simply parametrized
(globally), and it is constructive to do so in terms ofm generalized mix-
ture fractions, denoted by θp(x, t). In fact, it is convenient to consider
m + 1 of these mixture fractions (i.e., p = 1, 2, . . . ,m + 1), but since
they sum to unity, only the first m are independent. In the i-th of the
m + 1 independent streams/blobs, the boundary/initial condition for
θp is specified as

θb,ip = δpi, for i ≤ m+ 1. (7)

Thus we have, trivially (for i ≤ m+ 1)

φb,iα =
m+1
∑

p=1

φb,pα θb,ip . (8)

For any linearly dependent streams (i > m + 1), by virtue of their
linear dependence, there are unique values of θb,ip for which Eq.(8) holds.
In other words, Eq.(8) applies to all streams (i = 1, 2, . . . , nb); and
it uniquely determines the appropriate boundary conditions θb,ip for
i > m+ 1.
We now specify that θp(x, t) evolves by Eq.(5), i.e.,

Dθp
Dt

= Γ∇2θp, (9)

from the initial and boundary conditions given by Eq.(8). If we define

the fields φ̂α(x, t), α = 1, 2, . . . , nφ, by

φ̂α(x, t) ≡
m+1
∑

p=1

φb,pα θp(x, t), (10)

then it is readily observed that φ̂(x, t) satisfies exactly the same initial
and boundary conditions and evolution equation as φ(x, t), and hence
the fields are identical. We also observe that them+1 mixture fractions
sum to unity. Thus, Eq.(10) can be rewritten for φ(x, t) as

φ(x, t) = φb,m+1 +
m
∑

p=1

(φb,p − φb,m+1)θp(x, t). (11)

In summary: for the case of the inert mixing of nb homogeneous
streams or blobs involving nφ compositions, the accessed region A
is a convex polytope B+ lying in an m-dimensional plane manifold,
where m is one less than the number of linearly independent streams
or blobs. This manifold can be parametrized bym independent mixture
fractions: the mapping ΦMIX(η) between the m-dimensional parameter
space and the nφ-dimensional compositions is linear, i.e.,
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ΦMIX(η) = φb,m+1 +Hη, (12)

where the nφ ×m matrix H is given by

Hαp = φ
b,p
α − φb,m+1

α , (13)

cf. Eq.(11). Thus, the nφ composition fields φ(x, t) can be determined
from the m mixture fraction fields θ(x, t) by

φ(x, t) = ΦMIX(θ[x, t]) = φb,m+1 +Hθ(x, t). (14)

For the simplest case of the inert mixing between a fuel stream (of
composition φfu) and an oxidant stream (of composition φox), we have
nb = 2, m = 1, and Eq. (14) becomes

φ(x, t) = ΦMIX(ξ[x, t]) = φox + (φfu − φox)ξ(x, t), (15)

where ξ(x, t) ≡ θ1(x, t) is the usual mixture fraction, which is unity in
the fuel stream and zero in the oxidant stream.

3.3. Homogeneous Reaction

Next we consider the case of homogeneous, adiabatic, isobaric reaction
from a given initial condition. For this case, the composition φ(t) de-
pends only on time, and it evolves by the ordinary differential equation

dφα
dt
= Sα(φ[t]), (16)

where S denotes the rate of change due to chemical reaction, which is
a known function of the composition.
The composition space C can be decomposed into two sub-spaces:

the conserved subspace CC and the reactive subspace CR. During chem-
ical reactions both enthalpy and elements are conserved. Thus, the
conserved subspace is (at least) (ne + 1)-dimensional, where ne is the
number of elements. The species are represented as specific moles (mass
fraction divided by molecular weight) so that the two subspaces are or-
thogonal. We denote by nC and nR their dimensionality, obviously with
nC + nR = nφ. Every vector in composition space can be decomposed
into a component in the conserved subspace and a component in the
reactive subspace [11], e.g.,

φ = φC + φR, (17)

and
S = SC + SR, (18)
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Figure 4. Trajectory in composition space corresponding to homogeneous reac-
tion: φ0 and φeq denote the initial condition and the corresponding equilibrium
composition.

where (by definition of CR ) S
C is zero. Thus Eq.(16) can be decomposed

as

dφC

dt
= 0,

dφR

dt
= S(φ). (19)

From a given initial condition, φ(0) = φ0, the solution to Eq.(16)
(or, equivalently, Eq.(19)) is a trajectory in composition space, from the
initial point ψ = φ0 to the point corresponding to chemical equilibrium
ψ = φeq, see Fig. 3.3. The conserved component does not change,
i.e., φC(t) = φ0C ≡ φC(0), and consequently composition differences
φ(t2) − φ(t1) are vectors in the reactive subspace. The equilibrium
composition φeq is uniquely determined by φ0C .
We define the reaction mapping R(φ0, t) to be the solution after

time t of Eq.(16) from the initial condition φ(0) = φ0. Thus the reac-
tion trajectory isR(φ0, t) for fixed φ0 and all t ≥ 0; and the equilibrium
composition corresponding to φ0 is φeq = R(φ0,∞).
The reaction trajectory is a curve (i.e., a one-dimensional manifold)

that can be parametrized by time, by arclength, by entropy, or by any
other quantity which varies monotonically along it. Thus, for this prob-
lem, the accessed region A is a one-dimensional manifold, regardless of
the number of species.
An important issue is the dimensionality (denoted by n′R) of the

affine space containing the reaction trajectory. If the trajectory is a
line segment (and hence has no curvature) then n′R = 1. In general we
have 1 ≤ n′R ≤ nR.
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3.4. Sequential Mixing and Reaction

We now consider the hypothetical case in which mixing alone occurs
(via Eq.(5)) for some time, and then reaction alone occurs (via Eq.(16))
for some time.
As discussed in Section 3.1, if the boundary and initial conditions

are contained in the region B of composition space, then the accessed
region after mixing, Am, is the convex hull of B, which is denoted by
B+ ≡ hull(B). Let nB denote the dimensionality of the affine space
B∗ ≡ aff(B) containing B (and hence also B+). Let φmix(x) denote
the composition field after mixing has occurred. Then, for all x, in
composition space φmix(x) is in the accessed region Am which lies in
the nB-dimensional affine space B

∗.
Starting from the composition field φmix(x), and with time reset to

t = 0, now consider reaction occurring (without diffusion). The result
is the same whether we consider the fluid to be at rest and reacting by

dφ

dt
= S(φ), (20)

or whether we consider it be convected and reacting by

Dφ

Dt
= S(φ). (21)

For definiteness and simplicity we consider the former. Thus, for each x
in the flow domain, the composition evolves by Eq.(20) from the initial
condition φmix(x).
The composition at time t is given by the reaction mapping as

φ(x, t) = R(φmix(x), t). (22)

Our focus here is on the region Amr accessed by compositions φ(x, t)
for all x in the domain and all t ≥ 0. This is just the reaction-mapped
region generated by Am = B

+ which we denote by (B+)R or R(B
+),

and define by

R(B+) ≡ {R(ψ, t) : ψ ∈ B+, t ≥ 0}. (23)

Figure 3.4 shows a sketch of Amr = R(B
+) for a particular case. (As

discussed below, several qualitatively different behaviors are possible.)
The sketch shows reaction trajectories emanating from B+ and termi-
nating at the equilibrium region, denoted by B+

eq. As may be observed,

the accessed region is bounded by (a) part of the boundary of B+ (b)
reaction trajectories from the boundary of B+, and (c) the equilibrium
region B+

eq. Whereas B
+ is convex, it may be observed that (B+)R may
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Figure 5. Sketch of the reaction-mapped region (B+)R = R(B+) generated by B+

showing the equilibrium region B+
eq. (For this case dim(B+

eq) = nC = 1;nR = 2 and
nB = 2.)

be non-convex due either to the reaction trajectories being curved or
non-parallel, or to the equilibrium region being non-convex.
The geometry of Amr = (B+)R depends on the relationship be-

tween two subspaces, now defined: the initial tangent space B0; and
the accessed reactive subspace C ′R.
The initial tangent space, which is determined by the initial and

boundary conditions, is the space spanned by φmix(x) − φmix(0): it is
simply the affine space B∗ containing B and B+ translated to the origin,
and hence is nB-dimensional. All composition differences φ

mix(xA) −
φmix(xB) are in B0.
The accessed reactive subspace C ′R is defined to be the subspace

spanned by the reaction vectors S(φ(x, t)) for all x, t. Clearly this is
a subspace of the reactive subspace CR, and hence its dimensionality,
n′R, is less than or equal to nR. Other significances of C

′
R are that it

is the tangent bundle of the trajectories R(φmix(x), t), and that the
composition increments

φ(x, t)− φ(x, 0) = R(φmix(x), t)− φmix(x) (24)

are elements of C ′R.
The initial compositions φ(x, 0) = φmix(x) are in the affine space

B∗; and the composition increments φ(x, t) − φ(x, 0) are in the ac-
cessed reactive subspace C ′R. Thus for the affine space A

∗
mr ≡ aff(Amr)

containing the compositions φ(x, t) we have

dim(A∗
mr) = dim(B

0 ∪ C′R), (25)

and hence
max(nB, n

′
R) ≤ dim(A

∗
mr) ≤ nB + n

′
R. (26)

Two extreme cases can be considered. First, it could be that all
reaction vectors S(φ(x, t)) are in the tangent space B0. In this case
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a) b)

Figure 6. Sketches of Amr = (B+)R for cases in which the accessed reactive space
is a subspace of the tangent space: (a) n′

R = 1 in which case trajectories are parallel
line segments, and (b) n′

R = 2.

Figure 7. Sketch of the accessed region Amr = (B+)R for a case in which C′R and
B0 are disjoint.

reaction does not increase the dimensionality of the accessed region.
Instead we have

A∗
mr = A

∗
m = B

∗. (27)

This case is illustrated in Fig. 3.4, in which both B+ and (B+)R are
two-dimensional. In the second extreme case, B0 and C′R are disjoint
so that no reaction vector S is in the tangent space B0. In this case,
illustrated in Fig. 3.4, compared to Am, the dimensionality of Amr is
increased by one; but the dimensionality of the affine space is increased
by n′R.

3.5. Simultaneous Mixing and Reaction

The case of most interest is, of course, when mixing and reaction occur
simultaneously according to the equation
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14 Stephen B. Pope

Dφ

Dt
= Γ∇2φ+ S(φ). (28)

We consider in this section the accessed region A of the composition
φ(x, t) given by Eq.(28) with initial and boundary conditions in region
B of the composition space C.
It is clear from the discussion in the preceding subsections that an

upper bound on A is as follows [13]:
The accessed region A is (or is contained within) the smallest convex

region in C which contains B, and on the boundary of which the reaction
vector S are inward pointing (or tangent to the boundary).
As we have seen, mixing can “fill in” a non-convex region, but it

cannot extend a convex region. Reaction trajectories pass from inside
a convex region to its exterior if, and only if, the reaction vector S
is outward pointing on the boundary. (Note that B is contained in
the realizable region, on the boundary of which reaction vectors are
inward-pointing or tangent to the boundary. Hence, A is contained in
the realizable region.)
The accessed region A identified above is convex, so that hull(A) =

A, and it is a reaction-mapped region so that it contains no outward
pointing vectors S and R(A) = A. It then follows that A contains B
and satisfies the relation

hull(R(A)) = R(hull(A)), (29)

and indeed A can be defined as the smallest region that has these
properties. Note that Eq.(29) does not hold for a general region. In
particular, the accessed region Amr for sequential mixing then reaction

Amr = R(hull(B)) = (B
+)R, (30)

may not be convex; and the accessed region Arm for sequential reaction
then mixing

Arm = hull(R(B)) = (BR)
+, (31)

may have outward pointing vectors S. The accessed region A satisfying
Eq.(29) can be obtained by iterating hull(R( )) on B.

4. Composition Evolution on Manifolds

As in the preceeding subsection, we consider the accessed region A of
the composition φ(x, t) evolving by the reaction-convection-diffusion
equation Eq.(28) with initial and boundary conditions in region B of
the composition space.
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It is important to appreciate that the result for A obtained in
Section 3.5 is an upper bound. Consider for example a steady, two-
dimensional laminar flame involving 100 species, and with arbitrarily
complicated boundary conditions. The bound on A given in Section 3.5
is an affine space of dimension most likely more than 90. But in fact,
A is a two-dimensional manifold: for the compositions that occur can
be parametrized by the two spatial coordinates, i.e., φ(x1, x2).
A limitation of the analysis in Section 3.5 is that it does not allow

for the possibility of the combined effects of diffusion and reaction to
restrict compositions to a non-convex region.

4.1. Tangent and Normal Space Decomposition

To explore these effects, we perform here a different kind of analysis.
We suppose that at time t0 the compositions are confined to an m-
dimensional global manifoldM. The compositions onM are given by
Φ(η) which is a mapping from the m-dimensional parameter space
to the nφ-dimensional composition space. There are parameter fields
θ(x, t) = {θ1(x, t), θ2(x, t), . . . , θm(x, t)} such that the composition at
time t0 is

φ(x, t0) = Φ(θ(x, t0)). (32)

We then use the composition evolution equation, Eq.(28), to determine
if φ(x, t) remains on the manifold, or to identify the processes that
cause it to leave the manifold.
Within the framework of this analysis many different questions can

be addressed, because neither the manifoldM nor its parametrization
Φ(η) have been specified.
We consider an arbitrary fixed location x0 at time t0, and define

θ0 ≡ θ(x0, t0). (33)

The compositions in an infinitesimal neighborhood of x0 are given by
Φ(η) in an infinitesimal neighborhood of η = θ0.
The set of m tangent vectors

Tp ≡

(

∂Φ

∂ηp

)

η=θ0

, (34)

span the tangent space at θ0, which is denoted by T ; and the nor-
mal space N is the orthogonal complement of T . Every vector V in
composition space can be decomposed as

V = V‖ +V⊥, (35)
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16 Stephen B. Pope

where V‖ is in T , and V⊥ is in N . We are particularly interested in
the rate of change of composition:

(

∂φ

∂t

)

x0,t0

=

(

∂φ

∂t

)‖

x0,t0

+

(

∂φ

∂t

)⊥

x0,t0

= φ̇
‖
+ φ̇

⊥
, (36)

where the second line introduces an abbreviated notation. In compo-

sition space, φ̇
‖
represents motion along the manifold, whereas φ̇

⊥

represents motion perpendicular to the manifold (in a normal direc-

tion). Hence, if φ̇
⊥
is zero (for all x0 and t0) the composition remains on

the manifoldM, which is therefore identified as being (or containing)
the accessed region A.

4.2. Motion in the Tangent and Normal Directions

Expressions for φ̇
‖
and φ̇

⊥
are obtained from Eq.(28), which is rewrit-

ten as
∂φ

∂t
= −Ui

∂φ

∂xi
+ Γ∇2φ+ S. (37)

For the composition gradient (at x0, t0), the chain rule yields

∂φ

∂xi
=

∂

∂xi
Φ(θ[x, t])

=
∂Φ

∂ηp

∂θp
∂xi

= Tp
∂θp
∂xi

, (38)

where summation over repeated indexes is implied; and, here and be-
low, it is understood that all quantities are evaluated at (x, t,η) =
(x0, t0,θ0). The final expression in Eq.(38) is clearly a vector in the
tangent space T , so that we have

(

∂φ

∂xi

)‖

= Tp
∂θp
∂xi

, (39)

(

∂φ

∂xi

)⊥

= 0. (40)

Thus, as is well known, convection does not cause the composition to
leave the manifold, howeverM is defined. (This result is obvious from
the Lagrangian perspective.)
For the Laplacian we obtain (from Eq.(38))

∇2φ =
∂

∂xi

[

∂Φ

∂ηp

∂θp
∂xi

]
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Accessed Compositions in Turbulent Reactive Flows 17

=
∂Φ

∂ηp
∇2θp +

∂2Φ

∂ηp∂ηq

∂θp
∂xi

∂θq
∂xi

. (41)

Thus, with the definitions

Kpq ≡

(

∂2Φ

∂ηp∂ηq

)

η=θ0

, (42)

and

χpq ≡ Γ
∂θp
∂xi

∂θq
∂xi

, (43)

the diffusion term in Eq.(37) can be written

Γ∇2φ = TpΓ∇
2θp +Kpqχpq. (44)

Clearly the first term on the right-hand side of Eq.(44) is a vector in the

tangent space; whereas in general Kpq = K
‖
pq+K⊥

pq has components in
both the tangent and normal spaces. If the manifold is curved at φ0,
then K⊥

pq is non-zero for some p and q; whereas, if the manifold is not

curved, then K⊥
pq is zero for all p and q.

The above results, together with the decomposition S = S‖+S⊥, can
be substituted into Eq.(36), to obtain an expression for (∂φ/∂t)x0,t0 .
When decomposed into components in T and N , the results are:

φ̇
‖
=

(

∂φ

∂t

)‖

= Tp(−U · ∇θp + Γ∇
2θp) +K

‖
pqχpq + S

‖, (45)

and

φ̇
⊥
=

(

∂φ

∂t

)⊥

= K⊥
pqχpq + S

⊥. (46)

This last equation is the key result of this development, and its im-
plications are explored in the different circumstances in the following
subsections.
(It may be observed that the form of Eq.(46) is quite similar to the

fundamental equations in the steady flamelet model, in CMC, and in
the quasi-equilibrium distributed reaction (QEDR) model [1].)

4.3. Motion in the Normal Direction

We consider here the circumstances in which φ̇
⊥
is zero, so that com-

positions are confined to the manifold M. The conditions are simply
that the right-hand side of Eq.(46) vanishes, i.e.,

φ̇
⊥
= S⊥ +K⊥

pqχpq = 0, (47)
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18 Stephen B. Pope

or in a fuller notation

(

∂φ

∂t

)⊥

x0,t0

= S(Φ(θ0))
⊥ +

(

∂2Φ(η)

∂ηp∂ηq

)⊥

η=θ0

Γ

(

∂θp
∂xi

∂θq
∂xi

)

x0,t0

= 0.

(48)
IfM is an affine space, then K⊥

pq is zero. IfM is a reaction-mapped

region, then S⊥ is zero. Thus, consistent with our previous observations,

ifM is a convex reaction-mapped region, then φ̇
⊥
is zero, and compo-

sitions remain inM. However, if K⊥
pq is zero and S

⊥ is non-zero, then
Eq.(47) cannot be balanced, and reaction causes compositions to leave
the manifold in a normal direction, causing the dimensionality of the
accessed region to increase. In the case that S⊥ is zero but K⊥

pq is non-

zero, the possibility that K⊥
pqχpq is zero cannot immediately be ruled

out. But, for reasons deduced below, in a turbulent flow K⊥
pqχpq is non-

zero, and so Eq.(47) is not balanced, and mixing causes compositions
to leave the manifold.
For any manifold M, the structure of Eq.(47) and Eq.(48) is that

S⊥ and K⊥
pq are known functions of the manifold at θ0 (with no direct

dependence on x and t) whereas χpq depends on local spatial gradients
of the parameters θ(x, t). If S⊥ is non-zero, the only way that the
equation can balance, is if χpq is a unique function of θ0. Thinking
of the case of turbulent flow (in which θ(x, t) are random fields), this
condition is satisfied only if χpq has no (conditional) fluctuations about
its conditional mean, which must be spatially and temporally uniform,
i.e.,

χpq(x0, t) = 〈χpq|θ0〉, (49)

with
〈χpq|θ0〉 ≡ 〈χpq(x, t)|θ(x, t) = θ0〉, (50)

being independent of x and t. If these conditions are satisfied, then
all terms in Eq.(47) depend solely on θ0. Thus Eq.(49) is a necessary

condition for φ̇
⊥
to be zero, when S⊥ is non-zero.

To illustrate this result, consider first a steady, three-dimensional
laminar flame. In this case there is a three-dimensional manifold, which
can be parametrized by x = {x1, x2, x3}:

θ = x, φ(x) = Φ(θ). (51)

With θ = x, from the definition of χpq (Eq. 43) we obtain simply

χpq = Γδpq, (52)

which is a (trivial) function of θ. Thus, Eq.(48) is satisfied, and in fact
it reduces to
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Accessed Compositions in Turbulent Reactive Flows 19

(S+ Γ∇2φ)⊥ = 0. (53)

For the turbulent case, it seems that Eq.(49) cannot be satisfied: for
it requires that the parameters θ characterize their own dissipation. To
illustrate this point, consider nonpremixed turbulent combustion, and
let the single parameter η1 = ξ̂ correspond to mixture fraction, the field
of which is θ1(x, t) = ξ(x, t). For this case, Eq.(48) becomes

φ̇
⊥
= S(Φ(ξ0))

⊥ +

(

∂2Φ(ξ̂)

∂ξ̂2

)⊥

ξ̂=ξ0

1
2χ(x0, t0), (54)

where ξ0 is defined by ξ0 ≡ ξ(x0, t0), and χ is the scalar dissipation

χ ≡ 2Γ∇ξ · ∇ξ. (55)

According to Eq.(54), φ̇
⊥
can be zero only if there are no scalar dissi-

pation fluctuations about the condition mean, which must be uniform,
i.e.,

χ(x0, t0) = 〈χ|ξ0〉, (56)

where
〈χ|ξ̂〉 ≡ 〈χ(x, t)|ξ(x, t) = ξ̂〉, (57)

is independent of x, t. Needless to say, neither Eq.(56) nor Eq.(57) is
satisfied for a turbulent flow. (It may be noted, however, that these
equations are satisfied for a 1D steady, laminar flow in which ξ(x)
varies monotonically with the spatial coordinate, x.)
It is evident, then, that for turbulent nonpremixed combustion, the

accessed region cannot be parametrized by mixture fraction alone, since
χ is not determined by ξ. It is natural to consider a two-dimensional
manifold parametrized by mixture fraction and scalar dissipation, (η1, η2) =

(ξ̂, χ̂), with parameter fields ξ(x, t) and χ(x, t). For this case, Eq.(48)
becomes

φ̇
⊥
= S(Φ(ξ0, χ0))

⊥ +

(

∂2Φ

∂ξ̂2

)⊥

1
2χ0

+

(

∂2Φ

∂ξ̂∂χ̂

)⊥

2Γ∇ξ · ∇χ+

(

∂2Φ

∂χ̂2

)⊥

Γ∇χ · ∇χ, (58)

where χ0 ≡ χ(x0, t0) and all quantities are evaluated at (x, t, ξ̂, χ̂) =
(x0, t0, ξ0, χ0). It may be seen that introducing χ̂ as a parameter is
successful in making the first mixing term in Eq.(58) depend solely on
the parameters ξ0 and χ0. But in so doing, the additional mixing terms
involving ∇ξ · ∇χ and ∇χ · ∇χ are introduced, which (in general) are
not known in terms of these parameters.
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Figure 8. Sketch of a curved intrinsic low-dimensional manifold (ILDM)M showing
reaction trajectories. Compositions are confined to the region M close to M .

A conclusion from the above considerations is that, for turbulent
reactive flows, compositions cannot be confined to manifolds with cur-
vature, because reaction S⊥ and mixingK⊥

pqχpq cannot exactly balance
in the presence of (conditional) fluctuations in χpq.
This conclusion notwithstanding, it is highly likely that in some

circumstances compositions lie very close to strongly attracting intrin-
sic low-dimensional manifolds (ILDM) [11]. As sketched in Fig. 4.3, in
the absence of mixing, reaction rapidly transports compositions to the
ILDM, on which S⊥ is (approximately) zero. Because of the manifold’s
curvature, mixing tends to draw compositions off the manifold; but (for
a strongly attracting manifold) S⊥ increases rapidly as compositions
depart from the manifold and hence a balance between reaction and
mixing can be established in a narrow region around M. This region
is denoted by M in Fig. 4.3. If all of the principal curvatures of the
manifold are of the same sign, thenM is on one side ofM, as depicted
in Fig. 4.3. Otherwise M is on both sides of M. (This behavior is
an example of “strong inward reaction” which is discussed in the next
section.)

5. Motion in the Edge Direction

The m-dimensional manifoldM that we are considering is, more pre-
cisely, a “manifold with edge” [17]. That is, as sketched in Fig. 5, the
manifoldM has a boundary or edge, which we denote by ∂M.
In the simplest case (sketched in Fig. 5), ∂M is an (m−1)-dimensional

submanifold. But in general, ∂M need not be differentiable everywhere
(which is a requirement of a manifold). For example, ifM is a triangle
in a two-dimensional affine space, then ∂M is composed of three sides.
Each side is a submanifold (with edge): but the union of the three sides
does not form a manifold, because it is not differentiable at the vertices
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Figure 9. Sketch of a convex, reaction-mapped region M with edge ∂M, showing
the edge vector E at point P .

where the sides intersect. We restrict our attention to “regular” points
on ∂M at which (by definition) ∂M is differentiable.
Consider a regular point P on the edge ∂M of the m-dimensional

manifoldM. The tangent space T ofM at P ism-dimensional, and the
normal space N is (nφ−m)-dimensional. For the submanifold ∂M, its
tangent space at P , denoted by ∂T is an (m−1)-dimensional subspace
of T which we refer to as the edge-tangent subspace of M at P . The
orthogonal complement of ∂T in T is the one-dimensional edge-normal
subspace, ∂T ⊥. The edge vector E at P is uniquely defined on the unit
vector in ∂T ⊥ which is directed away fromM. With this construction,
the nφ-dimensional composition space is spanned by the edge vector E,
the edge-tangent subspace ∂T and the normal subspace N , which are
mutually orthogonal.

For a point in the interior of M, motion in the tangent space φ̇
‖

causes the composition to remain in M. But for the point P on the
edge ∂M, motion in the edge-normal direction of the tangent space can
cause the composition to leaveM, thus increasing the accessed region
A (without increasing its dimension).
An equation describing the motion of compositions in the edge-

normal direction is obtained by taking the dot product of Eq.(45) and
the edge vector E. The result can be written

φ̇E ≡ E ·

(

Dφ

Dt

)

= EpΓ∇
2θp +K

E
pqχpq + S

E , (59)

where Ep ≡ E · Tp is the p-th component of E in the tangent-space
basis, KE

pq is the edge-curvature matrix

KE
pq ≡ E ·Kpq, (60)

and
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SE ≡ E · S, (61)

is the component of the reaction vector in the E direction.
For a given manifoldM with edge ∂M, the edge normal E at a point

P on ∂M is an intrinsic property, i.e., independent of the parametriza-
tion. Hence we can choose a local parametrization at P to simplify the
interpretation of Eq.(59). Thus we choose the parametrization Φ(η)
such that

i) ∂M is defined by η1 = 0

ii) η1 ≥ 0 inM

iii) the m tangent vectors ∂Φ/∂ηp are orthonormal

iv) the parameters η2, η3, . . . , ηm are such that the lower right (m −
1) × (m − 1) block of the symmetric matrix KE

pq is diagonal, i.e.,

KE
pq = 0 for p, q ≥ 2, p 6= q.

It follows from (i) and (iii) that ∂Φ/∂ηp for p = 2, 3, . . . ,m provide
an orthonormal basis for the edge-tangent space ∂T , and that ∂Φ/∂η1

spans the edge-normal space. Further, from (i) and (ii) it follows that
the edge vector is

E = −
∂Φ

∂η1
. (62)

(Note that, in view of (iii), |∂Φ/∂ηp| = 1.) It then follows from its
definition that Ep is

Ep ≡ E ·Tp = −δp1. (63)

We now return to examine Eq.(59) using this parametrization. The
left-hand side φ̇E represents the rate of change of composition (following
the fluid) in the E direction. Thus a positive value corresponds to the
composition leaving M. The final term SE is the contribution to this
rate of change due to reaction. The first term on the right-hand side is

EpΓ∇
2θp = −Γ∇

2θ1, (64)

where all quantities are evaluated at x0, t0,θ0 and Eq.(63) has been
used. Now at (x0, t0), there is a local minimum in the parameter field
θ1(x, t) (since θ1(x0, t0) = 0 and θ1(x, t) ≥ 0). Thus we have

(∇θ1)x0,t0 = 0, (∇
2θ1)x0,t0 ≥ 0. (65)

Hence we obtain
EpΓ∇

2θp ≤ 0 : (66)

the term cannot cause the composition to leaveM.
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The final term to consider is KE
pqχpq. We first observe that χp1 =

χ1p = 0, because ∇θ1 is zero at P (Eq.(65)). Second, the parametriza-
tion is chosen such that the lower right (m− 1)× (m− 1) block of KE

pq

is diagonal. Thus we have

KE
pqχpq =

m
∑

p=2

KE
(p)(p)χ(p)(p), (67)

where bracketed suffixes are excluded from the summation convention.
And we observe that χ(p)(p) is non-negative:

χ(p)(p) = Γ|∇θ(p)|
2 ≥ 0. (68)

For p ≥ 2 we have

KE
(p)(p) = E ·K(p)(p) = E ·

∂2Φ

∂η2
(p)

=
∂2ΦE

∂η2
(p)

, (69)

where
ΦE(η) ≡ E · [Φ(η)−Φ(θ0)] (70)

represents the displacement of the manifold (relative to Φ(θ0)) in the
edge-normal direction. The tangent vectors ∂Φ(η)/∂ηp (p ≥ 2) corre-
spond to the directions of principal curvature of ∂M, andKE

(p)(p) are the

(m−1) principal curvatures. Convex and concave curvature correspond
to negative and positive values of KE

(p)(p), respectively. Thus the term

KE
pqχpq =

m
∑

p=2

KE
(p)(p)Γ|∇θ(p)|

2, (71)

is non-positive if ∂M is convex (so that KE
(p)(p) ≤ 0), and hence cannot

cause the composition to leaveM (if ∂M is convex).
For the case depicted in Fig. 5, in which M is a convex, reaction-

mapped region, compositions cannot leave M, because each term on
the right-hand side of Eq.(59) is non-positive, leading to φ̇E ≤ 0. Con-
versely, if reaction vectors are outward pointing on ∂M (i.e., SE > 0),
or if ∂M is concave in one or more directions, then φ̇E may be positive,
indicating that the composition leaves M due to reaction or mixing,
respectively. However, this is not inevitable, as is now discussed.
Consider the case of inert mixing between three streams A,B and C.

As depicted in Fig. 5 (a), the boundary region B consists of three points
φA, φB and φC , and so B+ is a triangle in a two-dimensional affine
space. Suppose that the flow consists of A and B being introduced
at the beginning of a long pipe, with C being injected into the flow
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a) b)

Figure 10. Sketch of (a) the convex hull B+ of three compositions φA,φB , and φC ,
and (b) the accessed region in the case of flow shielding.

some distance downstream. Then the accessed region A is a non-convex
region, such as that depicted in Fig. 5 (b). The lines φA − φC and
φB − φC are not in A because, at the location where stream C is
injected, the fluid from streams A and B have mixed with each other
to some extent. Because of the geometry of the flow there is no mixing
between pure C fluid and pureA orB fluid. We refer to such phenomena
which yield a non-convex accessed region as flow shielding.
In this situation, part of the edge ∂M of the accessed region A is

concave (KE
(p)(p) > 0), but nevertheless |∇θ(p)| is such that the sum of

KE
(p)(p)|∇θ(p)|

2 and hence φ̇E is non-positive (see Eq.(59) and Eq.(71)).

For m = 2 (i.e., m − 1 = 1) this requires |∇θ2| = 0; while for m > 2,
a positive contribution to the sum from a concave direction can be
counteracted by a larger negative contribution from a convex direction.
A second phenomenon leading to a non-convex accessed region is

strong inward reaction, as depicted in Fig. 5. At the point P on ∂M,
mixing can cause the composition to move out of M, but in the case
considered, the effect of mixing is overpowered by strong inward reac-
tion, i.e., SE is large and negative.
A third case is that of weak outward reaction depicted in Fig. 5,

in which M is not a reaction-mapped region. At the points P and
Q on ∂M, the reaction trajectories are outward pointing, (SE > 0)
but (for the case considered) |SE | is relatively small, and reaction is
overpowered by strong inward mixing. In the context of combustion,
this situation may arise close to equilibrium (illustrated by P in Fig. 5)
or in cold, barely-reactive mixtures (illustrated by Q in Fig. 5).
It may be noted that the phenomena of strong inward reaction and

weak outward reaction require an upper and lower bound, respectively,
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Figure 11. Sketch of a manifold M with edge ∂M showing strong inward reaction
(at point P on ∂M).

Figure 12. Sketch of a manifold M with edge ∂M showing weak outward reaction
at points P and Q.

on the rate of change of composition due to mixing. In a turbulent
flow, such bounds may be satisfied with high probability, if not with
certainty.

6. Summary and Conclusions

We have examined the region A of the nφ-dimensional composition
space C which is accessed in a reactive flow governed by Eq.(28). This
equation includes the strong assumption of equal molecular diffusivities,
which is necessary in order to obtain most of the results.
In the absence of information on initial and boundary conditions, all

that can be said about A is that it is contained in the realizable region
of C, which is in an (nφ − 1)-dimensional affine space.
If the initial and boundary conditions are contained in anm-dimensional

manifold B in an a-dimensional affine space (a ≥ m), then:
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1. In the absence of reaction (S = 0), the accessed region is the convex
hull B+ = hull(B), which is in the same a-dimensional affine space
as B.

2. In the absence of mixing (Γ = 0), the accessed region is the re-
action mapping of B, BR ≡ R(B) which is contained in an (m +
1)-dimensional manifold.

3. With simultaneous reaction and mixing, the accessed region can be
of much greater dimensionality than with either mixing or reaction
alone. Specifically,A is the smallest convex, reaction-mapped region
containing B. It is contained in an affine space of dimension

dim(B0 ∪ C′R),

where B0 is the tangent space of B+ and C′R is the accessed reactive
subspace.

If the initial and boundary conditions are confined to nb distinct
compositions, then B+ ≡ hull(B) is a convex polytope in an (n′b −
1)-dimensional affine space, where n′b ≤ nb is the number of linearly
independent compositions in B.
In general, the accessed region can be considered to be contained

in an m-dimensional manifoldM with edge ∂M. Away from the edge,
the rate of change of composition can be decomposed into a component

in the tangent space, φ̇
‖
, and a component in the normal space, φ̇

⊥
.

A non-zero value of φ̇
⊥
corresponds to motion normal to the manifold,

and thus to increasing the dimensionality of the accessed region. By

examining the equation for φ̇
⊥
(see Eq.(46) and Eq.(48)), we have

shown that for a curved manifoldM, a necessary condition for φ̇
⊥
to

be zero is that there be no conditional fluctuations in the mixing. This
condition is satisfied for laminar flows, in which the accessed region can
indeed be a curved manifold. But in the turbulent case, this condition
is not satisfied, and so the accessed region is a plane manifold (or
affine space). Nevertheless, in regions on strongly attracting ILDMs,
compositions may be very close to a curved manifold.
At the edge ∂M of the manifold M, the m-dimensional tangent

space can be decomposed into the edge normal vector E and the (m−1)-

dimensional edge-tangent space. If φ̇E ≡ E · φ̇ is positive, then the
accessed region is extended beyond M, but without an increase in
dimension. The equation for φ̇E Eq.(59) is derived and discussed, and
three situations are identified in which the edge of the accessed region
may be non-convex or may have outward-pointing reaction vectors.
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These are: flow shielding, strong inward reaction, and weak outward
reaction.
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