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Abstract. In the traditional approach to LES for inhomogeneous flows, the re-
solved fields are obtained by a filtering operation (with filter width A). The equa-
tions governing the resolved fields are then partial differential equations, which are
solved numerically (on a grid of spacing h). For an LES computation of a given
magnitude (i.e., given h), there are conflicting considerations in the choice of A: to
resolve a large range of turbulent motions, A should be small; to solve the equations
with numerical accuracy, A should be large. In the alternative approach advanced
here, this conflict is avoided. The resolved fields are defined by projection onto local
basis functions, so that the governing equations are ordinary differential equations
for the evolution of the basis-function coefficients. There is no issue of numerical
spatial discretization errors. A general methodology for modelling the effects of the
residual motions is developed. The model is based directly on the basis-function
coefficients, and its effect is to smooth the fields where their rates of change are not
well resolved by the basis functions. Demonstration calculations are performed for
Burgers’ equation.

1 Introduction

We reconsider here the fundamentals of large-eddy simulation (LES) for in-
homogeneous turbulent flows. The basic idea of LES is to represent explicitly
the large-scale turbulent motions, and to model the effects of the small-scale
motions (see, e.g., Leonard 1974, Reynolds 1990, Galperin and Orszag 1993,
Pope 2000). In the usual approach to LES (see Fig. 1) the steps are as follows:

1. A filtering operation is used to decompose the velocity U(x,t) into a
resolved field U(x,t)—which represents the large-scale motions—and a
residual field u’(x, t)—representing the small-scale motions. For the inho-
mogeneous flows considered, a box filter or a Gaussian filter is the usual
choice, or the filter may not be explicitly specified.

2. The conservation equations for U are derived from the Navier-Stokes
equations. These contain, as an unknown, the residual-stress tensor Tiis
which embodies the effect of the residual motions on the resolved velocity.

3. The equations for U are closed by modelling the residual stresses. Usually
the eddy-viscosity Smagorinsky model is used, possibly in conjunction
with the dynamic procedure (Germano et al. 1991), and in combination
with other models.
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4. In order to solve the partial differential equations (PDE’s) governing
U(x,t), a grid is generated to discretize the flow domain. The filter width
A is taken to be proportional to the local grid spacing h.

. The PDE’s for U(x,t) are solved numerically.

6. The accuracy of the overall procedure can be assessed by comparing

statistics of the calculated resolved fields to those obtained from the
Navier-Stokes equations (by experiment or by DNS).

ot

In the following two subsections we raise two issues with this standard
approach. The remainder of the paper addresses a resolution to the second
of these issues.

1.1 Quantification and Control of the Scale of the Resolved
Motions

An important issue is the size range of the turbulent motions resolved, which
is determined by the size of the filter width A relative to the turbulence
integral scale L (or to the viscous lengthscale in the viscous near-wall region).
How much of the turbulent motions are resolved can be quantified by the
fraction of the turbulence energy contained in the resolved scales. Pope (2000)
suggests a distinction between LES and VLES (very large-eddy simulation)
depending upon whether more or less than 80% of the turbulence energy
is resolved. (In the viscous near-wall region, unless wall-function boundary
conditions are used, LES then requires that the filter width be comparable to
the viscous lengthscale—though substantially larger than DNS grid spacings.)

The general experience is that LES (with at least 80% of the energy
resolved) produces good results in free shear flows, and also for simple wall-
bounded flows if the dynamic mode] is used (see, e.g., Vreman et al. 1997,
Piomelli 1993). In contrast, the results with VLES can be unpredictable and
poor (see, e.g., Rodi et al. 1997).

In order for LES to be a robust and reliable tool, it is necessary to re-
quire that the fraction of turbulence energy resolved be greater than some
minimum—say 80%. This requires: (a) a methodology to estimate (locally
within the LES) the fraction of energy resolved; and (b) a methodology to
adapt the filter width A (and hence the grid spacing h) to ensure that 80%
of the energy is resolved.

Note that in the standard approach the grid—and hence the filter width—
are specified a priori, and hence either prior knowledge of the flow is required,
or 80% resolution is not assured.

1.2 Numerical Resolution of Resolved Fields

The filtering operation (using the box or Gaussian filters) produces infinite-
dimensional resolved fields U(x, t). These fields have to be discretized in order
to solve their governing PDE’s computationally. This involves a discretization
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Fig. 1. Diagram of the standard filtering approach to LES: the numbers refer to
the steps described in the Introduction.
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error that depends on the grid size h relative to the filter width A. For
the inhomogeneous flows that arise in engineering applications, most suited
are unstructured-grid methods which are generally (at most) second-order
accurate, so that the discretization error scales as (h/A)? (when this ratio is
small). Good numerical resolution comes at a high cost: halving h decreases
the numerical error by a factor of 4, but it increases the memory requirements
by a factor of 8, and the number of operations by a factor of 16.

Note that the word “resolution” is used here in two different senses. The
range of turbulent scales resolved by the (exact) filtered fields U(x,t) is de-
termined by the ratio A/L (away from walls). The accuracy of the numerical
resolution of U(x,t) on a grid of spacing h is determined by the ratio h/A.

There is a trade-off between resolution of the turbulent motions and nu-
merical resolution. For an LES (or VLES) performed on a given grid of spac-
ing h, consider the two choices of filter width: A = 2h and A = h. The
former yields moderately good numerical resolution. The latter yields poor
numerical resolution, but the range of turbulent motions resolved is doubled.
In engineering applications the latter choice is usual, so that numerical errors
can be substantial.

This trade-off between resolution of the turbulent motions and numerical
resolution can be completely avoided by defining the resolved fields to be
finite-dimensional. This can be achieved through a basis-function represen-
tation of the form

N
ﬁ(x)t) = Z G (t)ba(x), (1)
a=1

where by, o = 1,2,..., N is a set of vector-valued basis functions, and 14(t)
are the corresponding basis-function coefficients. (Alternatively the basis
functions can be scalar-valued and the coefficients vector-valued.) Given a
velocity field U(x,t), the corresponding resolved field is defined as a pro-
jection of U onto the basis functions. Here, for simplicity, we consider the
orthogonal projection, so that the basis-function coefficients are determined
by the equivalent condition that the kinetic energy of the residual motions

/%(U—ﬁ)-(UJﬁ)dx (2)

be minimized (where integration is over the flow domain).

In this approach, evolution equations for the resolved fields take the form
of a set of ordinary differential equations (ODE’s) for the basis-function co-
efficients: there is no issue of the numerical spatial resolution of the resolved
fields.

The idea of using a finite basis-function representation of the resolved
fields is far from new. It is done in LES of homogeneous turbulence using
the sharp spectral filter, in which case the basis functions are Fourier modes.
And it is done in dynamical system models of inhomogeneous flows, in which
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case the basis functions are taken to be the POD eigenfunctions (see, e.g.,
Holmes et al. 1996). In both of these cases the basis functions are orthogonal
and global—that is, the basis functions are non-zero everywhere in the flow
domain (except on a set of measure zero). In contrast, here, for application of
LES to complex flows, we have in mind non-orthogonal local basis functions
(which are zero over most of the domain). Examples of such basis functions
are B-splines and finite-elements. Accordingly, the method advanced here can
be called large-eddy simulation using projection onto local basis functions,
or LES-PLB for short. The different approaches mentioned are summarized
in Table 1. As indicated in the table, the basis functions considered here are
non-orthogonal.

If an LES is performed with N grid nodes or N basis functions, then an
important consideration is the scaling with N of the number of operations
required to evaluate the non-linear convective terms in the momentum equa-
tions. In the direct implementation of basis-function or spectral methods,
of order N? operations are required, because the non-linear convective term
appears as double-sum over the N basis-function coefficients. This number
of operations can be reduced, however, if the basis functions have a special
structure. If a first transform exists, then a pseudo-spectral method can be
used, reducing the number of operations to of order N log N. Or if (as is
the case with LES-PLB) at every point in the domain the number of non-
zero basis functions is less than a fixed number (independent of N), then
there are only of order N non-zero contributions to the double sum. These
considerations are summarized in the last column of Table 1.

As mentioned above, the types of basis functions suitable for LES-PLB
include finite-elements and B-splines, and the formulation developed below
is closely connected to the Galerkin method. Both finite elements and B-
splines have been used previously in LES (see, e.g., Haworth & Jansen 2000,
Kravchenko et al. 1996). It should be appreciated, however, that the present
approach is fundamentally different. Here we define the resolved fields by
a basis-function representation, so that the governing equations are ODE’s.
In contrast, in previous work finite elements and B-splines, have been used
to obtain numerical solutions to the PDEs governing the filtered fields. The
semi-discrete equations arising from these approaches are also ODEs for basis
function coefficients; but it should be appreciated that an approximation is
involved in obtaining these ODEs from the PDEs. There is no such approxi-
mation in LES-PLB.

1.3 Outline of the Paper

In the remainder of the paper the LES-PLB methodology is developed and
demonstrated. In Section 2 the general formulation is given. It is shown that
if the turbulent motions are fully resolved (i.e., DNS rather than LES), then
the result is the Galerkin method to solve the governing equations. In Section
3 a model for the effects of the residual motions is proposed.
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Table 1. Comparison of approaches to large-eddy simulation.

Governing{Support of| Orthogonality | Number
equations| basis of
functions operations
for
convective
terms

LES with filtering] PDE’s — — N
in physical space

LES with sharp ODE’s global orthogonal | Nlog(N)
spectral filter

LES using POD | ODE’s global orthogonal N?
eigenfunctions
LES-PLB ODE’s local  |non-orthogonal N

While the ultimate intended application is to complex flows governed
by the Navier-Stokes equations, the method is demonstrated in the simpler
setting of Burgers’ equation (Burgers 1940). The scalar velocity u(z,t) evolves
by

Ou o 2u

Bl 3)
where v is the viscosity and f(z,) is the forcing. Previous studies of Burgers’
equation include: Saffman (1967), Gotoh and Kraichnan (1993) and Girimaji
and Zhou (1995). In Section 4 the LES-PLB method is applied to Burgers’
equation using linear-spline basis functions.

Even though the demonstration given here uses simple 1D basis functions

and Burgers’ equation, it is stressed that the methodology is general, and
intended for complex 3D flows governed by the Navier-Stokes equations.

2 Formulation of LES using Local Basis Functions

For simplicity we consider a one-dimensional formulation of Burgers’ equa-
tion, but all of the concepts and results have straightforward extensions to
the Navier-Stokes equations in 3D. The domain is of length £, and periodic
boundary conditions are applied, i.e., u(z,t) = u(z + kL, t), for all integer k.

We introduce a set of N basis functions, b;(z), i = 1,2,...,N. Later
we consider linear and parabolic spline basis functions, with uniform knot
spacing h = £/N. But for the present, we make no particular specification
of b;(x).

Given a function u(z), the corresponding resolved field %(z) is defined as
the orthogonal projection of u(z) onto the basis functions:
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N
u(z) = P{u(2)} = ) bj(z)d, (4)

i=1
where P is the projection operator, and the basis-function coefficients 4; are
determined by the condition that they minimize

1 [
x=7 [ e - u@) da. 5
0
It is readily shown that the basis-function coefficients are given explicitly by
;= Pi{u(@)} = Mz Qe{u(2)}, (6)

where the operator Q,{ } is defined by

L
Qu{u(z)} = /0 be(2)u(z) dz, )

M chl is the j-k component of the inverse of the positive symmetric definite
matrix

c
Mjk E/) bj(:c)bk(:v)da:, (8)

and summation is implied over repeated suffixes.
From Egs. (4) and (7) it is straightforward to show that P{ } is indeed a
projection, i.e.,

Plu(e)} = P{P{u(z)}} = u(z), (9)
and equivalently
Plu'(z)} =0, (10)
for the residual
v'(z) = u(z) — (z). (11)
We consider the general evolution equation for u(z, t)
du
where, for Burgers’ equation (Eq. 3), the functional A(u) is defined by
_ Ou %
Au) = —ug- + Ve T f. (13)

Since the basis functions are independent of time, the corresponding evolution
equation for u(zx,t) is
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du _ 0 du
i &'P{u} = P{EZ} =P{A(w)}, (14)

or, for the basis-function coefficients,

T = Pi{Aw)} = Pi{A@+u)), (15)

where the operator P; is defined by Eq. (6). In LES, @ is known whereas u’ is
unknown, so that the right-hand side of Eq. (15) is unknown. The equation
can be rewritten

da; _
—d—t']- = PJ{A(U)} -+ Rj, (16)
where the term

R; = Pi{A(w)} - Pi{A@}, (17)

embodies the effects of the residual motions that have to be modelled. Thus,
the two terms on the right-hand side of Eq. (16) are, respectively, the known
contribution from the resolved field, and the contribution from the residual
field that has to be modelled. The modelling of R; is the subject of the next
section.

An interesting limit to consider is that in which the basis functions are
sufficient to resolve u(z) accurately, so that ' and R; are negligible. This
circumstance corresponds to DNS rather than LES, and Eq. (16) reduces to

dil; _
L = Pia@). (18)

This is simply a statement of the Galerkin method to solve Eq. (12). The
details are given in Appendix A for Burgers’ equation using linear splines.
It is again emphasized, however, that LES-PLB is distinctly different from
using a Galerkin method to solve the filtered equations.

3 Modelling the Effects of the Residual Motions

3.1 Guiding Principles

The residual motions u'(z, t) affect the resolved motions through the quantity
R; defined by Eq. (17). We propose a model for R; which is based on three
tenets:

1. The model is based directly on basis-function coefficients.

2. The magnitude of the modelled term is significant only in regions where
A(®) is not well resolved by the basis functions.

3. The effect of the modelled term is to increase the smoothness of the
resolved field @.
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In opposition to tenet (1) we could consider a standard eddy-viscosity model
of the form
du 6, Ou

where v,(z) is the residual viscosity, perhaps obtained from the Smagorin-
sky model. But this term is not exactly representable in terms of the basis
functions, and so it has to be implemented via a numerical method that in-
evitably incurs a spatial discretization error. This clearly runs counter to the
philosophy of the present approach in that numerical resolution becomes an
issue. In view of these considerations, we perform the modelling on R; in
terms of 4 (i.e., in terms of basis-function coefficients rather than fields) so
that there are no numerical resolution issues.

Tenets (2) and (3) are similar to those of the MILES approach (monotone
integrated large-eddy simulations) as articulated by Boris et al. (1992). In
simple methods for the numerical solution of PDE’s—e.g., centered finite-
difference schemes, pseudo-spectral methods, and the Galerkin method—
numerical instabilities arise if the fields are not adequately resolved. The
idea of tenet (2) is to make the residual model negligibly small except in re-
gions where, without the modelled term, the solution would become unstable.
And the idea of tenet (3) is to impose smoothness directly, thus countering
the instability. '

Evidently, the modelling approach advocated here is based more on nu-
merical considerations than on the physical consideration used to motivate
the dynamic Smagorinsky model, for example. Some justification for the nu-
merical approach is provided by the following observations:

a) for a given number of degrees of freedom (grid nodes or basis functions),
the MILES and LES-PLB approaches are able to resolve a greater range of
turbulent motions (greater say by a factor of two).

b) it is well appreciated based on a priori testing that, at a detailed
level, the dynamic Smagorinsky model provides a poor representation of the
residual stresses.

3.2 Simple Relaxation Model
The form of the model proposed is
R = ;) (45 - 4), (20)
so that the basis-function coefficients evolve by
diy
dt

(Bracketed suffixes are excluded from the summation convention.) Thus the
model causes 4; to relax towards the value @; at the rate £2(jy: it remains to

=Pi{A@} + 2 (a; — ;). (21)
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specify the two quantities ii; and 2(;). (The final model, Eq. 34 below, is a
slight modification to the form given here.)

3.3 Relaxation Towards Smooth Fields

The specification of @; is based on tenet (3). The lack of smoothness in the
resolved field is quantified by the pth-order tortuosity, defined by

L N 2
T(P) E/ (_(S”_u) dz
0 OzP
= o aMp, (22)

where the positive definite symmetric matrix M §f) is
MP = / b (z) bP (z) de, (23)

and b(p ) (z) denotes the pth derivative of the basis function. (For linear splines,

only T(l) is defined, because only the first derivatives of b;(x) are square-
integrable. For parabolic splines, both T and T3 are deﬁned )

For an appropriately chosen value of p, 4; is defined as the value of 4
that minimized T'(®), for fixed values of the other basis-function coefficients
(ie., Gk, k # j). It is readily shown from Eq. (22) that 4, is given explicitly
by

= (») ®)
== MR /M), (24)
i#j

and hence the model for R; (Eq. 20) is

R; = -0 MPa, (25)
with
M(P) /M((.S) (26)

Note that the diagonal elements of Mji are unity. For linear splines, the
non-zero off-diagonal elements of M J(,l ) are

S0
M) = ~3- (27)

Hence, for this case, the model is

Rj = 0 (38j-1 — 1 + 38j41)
Uj_1 — 205 + 4
h? ’

= $0(;)h? (28)
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which evidently is similar to an eddy viscosity model with v, = %—O(j)hz.
Alternatively, the same analysis for parabolic splines and p = 2 leads to
the model ‘

Uj_g — iy + 605 — 4,41 + Ujq
h? ’

Rj = —§h'Q (29)
corresponding to fourth-order dissipation. (Note that the term in square
brackets has the form of a finite-difference approximation to a fourth deriva-
tive, but u(z) is only once continuously differentiable.)

3.4 Relaxation Rate

The specification of f2(;) is based on tenet (2): it is significant only where
A(@) is not well resolved by the basis functions.
The quantity a;, defined by

a(;) = Pi{[A@) - P{A@)}]*}, (30)

is computable from the resolved field (i.e., from {@;}) and it measures the
extent to which A() is not resolved by the basis functions. Suppose that, in
the vicinity of the jth basis function, the velocity % is varying very smoothly.
Then the residual A(z) — P{A(@)} is small, and so also therefore is ag-
(The right-hand side of Eq. (30) can be evaluated either as a multiple sum
over basis function coefficients and integrals of basis function products, or
by numerical quadrature: the latter approach is simpler and is used in the
calculations presented below.)

From a(;) (which has dimensions of u/t) quantities with the same dimen-
sions as {2;) (i.e., dimensions of 1/t) can be formed as:

)
h )

where v(;) has dimensions of u. It is usual in LES to take the grid spacing
h as the relevant lengthscale, which suggests taking {2(;) to be proportional
to [agj)/ h]%. We argue, however, that the methodology should be applicable
to any field, not just to a velocity field. That is, the modelling should be
applicable if u were a temperature field, for example, in which case this spec-
ification is dimensionally incorrect. Therefore we take {2y to be proportional
to a(j)/v(j) and define the local scale of u (in this case velocity) by

v(y) = Ri{[E(z) — R;{u(=)}]*}, (31)

where R;{ } is the basis-function average
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L
Awmmmm

Ry{u(@)} = 24— : (32)
| @i
0
Then, §2(;) is specified as
Cra(j)
4 = ) (33)
D7 vy

where ¢, is a constant to be specified.

3.5 Generalized Relaxation Model

The simple relaxation model described above is modified to ensure the satis-
faction of two basic requirements:

1. If the resolved field is uniform (i.e., (z) = ¢ = constant) then the mod-
elled term R; is identically zero.

2. The effect of the modelled term is to transfer momentum (locally), not
to create or destroy momentum.

The momentum conservation principle is well known and readily demon-
strated both for the Navier-Stokes and Burgers’ equations.

In order to satisfy these requirements, the simple relaxation model (Eq. 20)
is generalized to

Rj = wj,-ﬁ,-, (34)
where wj; is a coefficient matrix to be specified. The simple model developed
above corresponds to the specification

wji = —.Q(j)M]gf). (35)

The details of the modification of wj;; given by Eq. (35) to satisfy the
above two requirements are given in Appendix B. In the case of 1D linear
splines the resulting model is

Rj = { $h*[20) + 2n)lld+1 — 45]/R
— $h?[Q4) + Q-nllE; = @j-1]/h}/h, (36)

which has the form of a finite-difference approximation to the conservative
eddy viscosity term

0 ou
%%%y 37)
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with spatially-varying residual viscosity 12h2.
It may be noted that in the (unlikely) case of §2(;) being the same for all
J, this model (Eq. 36) reverts to the simple model (Eq. 28).

4 Application to the Decay of a Single Mode

In this section and the next, the LES-PLB method described above is applied
to two rather different cases of Burgers’ equation. Here the Burgers’ equation
is solved without forcing from a sinusoidal initial condition. In the next section
the equation is solved with forcing, which leads to a random, statistically-
stationary solution—Burgers’ turbulence. The ODE’s for the basis function
coefficients are integrated in time using a second-order accurate predictor-
corrector scheme.

4.1 Description of the Flow

Burgers’ equation (Eq. 3) is solved without forcing (f = 0) on a periodic
domain of length £ = 2r, from the initial condition

u(z,0) = ug cos(2mz/L), (38)

where the velocity scale is up = 1. The single non-dimensional parameter in
the problem is the Reynolds number

Re = “0£ (39)

v

Figure 2 shows the evolution of the solution for Re = 800. As may be
seen, a “shock” evolves at z/L = ;. The thickness of the shock scales as
LRe™', and the peak negative velocity gradient as Rewug/L.

Figure 3 shows that the evolution of the maximum velocity umqz (t) in the
domain. It may be seen that u,,,, decreases slowly until the shock develops
(at t ~ 1.5), and thereafter it decreases more rapidly.

The results shown in Figs. 2 and 3 are obtained by solving the Burgers’
equation using the Galerkin method derived in Appendix A. In order to
resolve the shock accurately, at least 1,024 linear-spline basis functions are
required.

4.2 LES using Projection onto Local Basis Functions

Results are now described of applying the LES-PLB methodology. That is, the
coupled set of ODE’s (Eq. 16) is solved, in which the effects of the residual
motion R; are modelled by Eq. (36). Only 64 linear-spline basis-function
coeflicients are used, which clearly is insufficient to resolve the shock.

In Figs. 4 and 5 the LES-PLB solutions are shown for the values of the
parameter ¢, = 0, 0.1, 1.0 and 10, and they are compared to the DNS results.
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0 0.2 0.4 0.6 0.8 1

x/L .
Fig. 2. Solution to Burgers’ equation at fuo/L = 0,1,2,3,4 from the sinusoidal
initial condition and Re = 800. (The value of u(0,t) decreases with time.)
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t .,
Fig. 3. Evolution of the maximum value of u(z,t)/uo for the sinusoidal initial
condition and Re = 800.
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It may be seen from Fig. 4 that the LES-PLB calculations with ¢, = 1.0 agree
well with the DNS, whereas if no model is used (i.e., ¢ = 0) then um;qz has
a significant overshoot.

0.4
0

0.5 1 1.5

2

25

3 3.5 4

1
Fig. 4. Evolution of the maximum value of u(z,t)/uo according to DNS (line) and
LES-PLB with N =64 and ¢, =0, W; ¢, = 0.1, &; ¢, = 1.0, ®; ¢, = 10, p.

3

1 0.2

0.3

0.4

Fig. 5. Profile of u(z,t) through the sh)(()/%k at t = 2. Symbols same as Fig. 4.

Figure 5 shows the shock region in more detail at t = 2. Evidently, the
results with ¢, = 1.0 are as good as could be expected: the profile is repro-
duced as accurately as possible with the given number of basis functions.
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In contrast, the results with ¢, = 0 and ¢, = 0.1 exhibit oscillations and
overshoots; whereas with ¢, = 10 the shock is excessively smeared.

4.3 Comparison with the Smagorinsky Model

The filtered Burgers’ equation incorporating the Smagorinsky model is
ou ou 0 ou
— 4+ U = — —1, 40
5t "5z " oz ([V-er]ax) (40)
where the residual eddy viscosity is

Vv = \/QE?

ou

and ¢, is the Smagorinsky length-scale, which is specified. It is usual to relate
£ to the filter width A via the Smagorinsky constant, i.e.,

ly = C A, (42)

but this is unnecessary.

It is important to appreciate that Eqs. (40) and (41) define a PDE (with
{; as a parameter) independent of a grid. With £; = 0, Eq. (40) reverts to
Burgers’ equation, for which over 1,000 basis functions are required to obtain
an accurate solution (using the Galerkin method of Appendix A).

It is found that the specification ¢, = 0.06 (i.e., £;/L = 0.03/7) yields
solutions similar to those obtained by LES-PLB with 64 basis functions. In
Fig. 6, the LES-PLB solution (N = 64, ¢, = 1.0) is compared to the accurate
Smagorinsky model (¢, = 0.06), and indeed there is little difference. Also
shown in the figure is the (approximate) Smagorinsky solution obtained on a
grid of 64 nodes: the numerical error is evident., To examine this further, Fig. 7
shows the evolution of u,,, according to the Smagorinsky model calculated
on grids of size 64, 128 and 1,024. Even on the 128 grid the numerical errors
are evident.

The important point that these results illustrate is that numerical resolu-
tion is not an issue in LES-PLB. With conventional LES (using the Smagorin-
sky model) comparable results are obtained on a finer grid; but there are
significant numerical errors if the solution is computed using the same num-
ber of basis functions as in LES-PLB. (These errors depend, of course, on
the numerical method, and would be expected to be smaller if a higher-order
method were used.)

5 Application to Forced Burgers’ Turbulence

The LES-PLB methodology is applied here to Burgers’ equation with the ran-
dom forcing using by Gotoh (1999). This results in a statistically-stationary
solution.
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184 02 y 03 0.4
Fig. 6. Profiles of u(z,t) through the shoék at t = 2. Comparison of LES-PLB
(N =64, ¢, = 1.0, ® ) with the Smagorinsky model (accurate calculation, line;
using N =64, 0).

1.2 T T T T T T T

0 0:5 1I 115 é 2.I5 IIB 3j5 4

t
Fig. 7. Evolution of the maximum value of u(z,t)/uo according to numerical solu-
tion of Smagorinsky model: N = 64, M; N =128, ®: N = 1,024, line.
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The forcing function f(z,t) is white in time and has the wavenumber

spectrum A y . N 1
o= (r) & (5) e (- [5] ) @

This involves two parameters: the forcing wavenumber «¢, and the forcing
magnitude ¢ (which has dimensions of { = Ju/0z). The periodic domain
is of length £ = 2x, so that the lowest wavenumber is k9 = 1. The only
other parameter in the problem is the viscosity v. From the four dimensional
quantities (ko, k¢, s and v) there are two independent non-dimensional
groups. We take these to be

h:f
i S 44
and ¢
- Sf
Re= _kac = 100, (45)

to match Gotoh’s Run 3.

From the trivial initial condition (u(z,0) = 0) Burgers’ equation is solved
(with or without using LES-PLB) until a statistically-stationary state is
reached. The solution is then continued for some time in order to obtain
time-averaged statistics.

A sample of u(z,t) in the statistically-stationary state is shown in Fig. 8.
It may be seen that there are several “shocks”, where the value of v drops
abruptly. This is more evident in Fig. 9 which shows the corresponding values
of the gradient £ = Ou/0z.

0 0.2 0.4 0.6 0.8 1

L
Fig. 8. Forced Burgers’ turbulence: sampfg of u(z,t) in the statistically-stationary
state.
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Fig. 9. Sample of £ = Ju/dx corresponding to Fig. 8.

Figure 10 shows the compensated energy spectra x%E(x) obtained from
DNS and from LES-PLB with ¢, = 1.0 and N = 64, 256, 1,024 and 4,096. As
might be expected, the DNS spectrum exhibits a peak around k = Ky = 6.
There is then a range (20 < k < 200, say) over which the compensated
spectrum is approximately constant. This corresponds to the k=2 spectrum
that arises because of the shocks. The shocks, however, are in fact smooth;
so the spectrum tails off at wavenumbers larger than xoRe.

4

10° 10' 10° 10° 10
Fig. 10. Forced Burgers’ turbulence: compgnsated energy spectra for (from left to
right at large ): LES-PLB with ¢, = 1.0, N = 64, 256, 1,024 and 4,096; and DNS.

It may be seen from Fig. 10 that LES-PLB behaves in the desired manner.
The part of the spectrum that can be well resolved by the given number of ba-
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sis functions, IV, agrees well with the DNS; whereas the energy is attenuated
(by an order of magnitude) at the highest resolved wavenumber.

As may be seen in Fig. 11, the attenuation at the highest wavenumbers
depends on the specification of c.. Lower values result in less attenuation,
and in the DNS spectrum being reproduced to higher wavenumbers.

10*

Fig. 11. Forced Burgers’ turbulence: effec't(; of ¢,. From left to right at large &,
LES-PLB with N = 1,024, ¢, = 2.0, 1.0 and 0.5, and DNS.

Of particular interest in Burgers’ turbulence is the PDF of ¢ = du/dz for
negative values of £ (Gotoh 1999), for this reveals some details of the shocks.
Figure 12 shows a log-log plot of the PDF of the normalized gradient £/
for negative £. It may be seen that the current DNS results agree well with
those of Gotoh. In LES-PLB, since the jump across a shock is of order unity,
the steepest gradient that can be represented scales as 1/N. From Fig. 12
for the case N = 1,024, it may be seen that the PDF drops rapidly to zero
for |£|/€; being larger than 70. The steep gradients that cannot be resolved
are smoothed, leading to the increased PDF (compared to DNS) in the range
7 < |€]/€; < 70. While for |€]/&; < 7, the LES-PLB is in excellent agreement
with the DNS.

As in the test case described in the previous section, we find that (for a
particular choice of £5) accurate solutions for the Smagorinsky model pro-
duce results comparable to LES-PLB. Figure 13 compares the compensated
spectra obtained from LES-PLB (N = 1,024, ¢, = 1.0), with those obtained
from the Smagorinsky model (with fixed £;) with poor (N = 1,024) and ad-
equate (N = 2,048) numerical resolution. The point is that, using the same
number of basis functions as LES-PLB (i.e., N = 1,024), the Smagorinsky
model solution contains significant numerical errors. More basis functions are
needed to implement the Smagorinsky model accurately.
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~10

10

107 107 10° e 10' 10° 10
Fig. 12. Normalized PDF of £ = du/dz for nefga.tive €. Symbols, from Gotoh (1999);
lines (from left to right) LES-PLB with ¢, = 1.0 and N = 64, 256, 1,024, 4,096,
and DNS.

3

It may be noted that in most implementations of the dynamic Smagorin-
sky model (Germano et al. 1991), the Smagorinsky coefficient is taken to be
uniform in directions of statistical homogeneity. Hence for the present statis-
tically stationary and homogeneous case, the dynamic model would yield a
constant and uniform value of Cy, as used here.

0 160 260 360 460 560
K
Fig. 13. Compensated energy spectra in forced Burgers’ turbulence. From smallest

to largest values at high wavenumber: Smagorinsky, N = 2,048; LES-PLB, N =
1,024; Smagorinsky, N = 1,024.
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6 Conclusion

A new approach to LES has been developed based on the resolved fields
being obtained by projection onto local basis functions. The resulting LES
equations are ordinary differential equations for the evolution of the basis-
function coeflicients. Consequently, in contrast to the traditional filtering
approach, there are no issues of numerical spatial discretization and of the
consequent numerical errors.

A general model is developed for the effects of the residual motions. This
is based directly on the basis-function coefficients, and shares some of the
MILES philosophy. The effect of the model is significant only where the rate
of change of the field is not well resolved by the basis functions; and its effect
is to smooth the field. For linear-spline basis functions, the model resembles
an eddy viscosity formulation; whereas with parabolic-spline basis functions
it resembles fourth-order dissipation. Needless to say, the LES-PLB method-
ology would need to be applied to standard turbulent flow test cases (e.g.,
channel flow) before more general conclusions could be drawn about the ef-
ficacy of the modelling of the residual motions.

In the limiting case that the basis functions are sufficient to resolve the
instantaneous fields, the LES-PLB methodology reduces to a direct numerical
simulation (DNS) using the Galerkin method.

While the LES-PLB methodology is intended for inhomogeneous flows
governed by the Navier-Stokes equations, it is demonstrated here for the sim-
pler case of Burgers’ equation. The performance of the model is found to be
satisfactory in all respects. In contrast, traditional LES computations using
the same basis functions exhibit significant numerical error; or, equivalently,
significantly more basis functions are required to obtain numerically-accurate
solutions.

This initial study leaves many inportant questions still to be answered.
How does the method perform with other basis functions, such as cubic
splines, or finite-elements? How well does it perform for complex flows gov-
erned by the Navier-Stokes equations? And for such flows, what is the com-
putation cost, compared to conventional LES using unstructured grids?
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A Linear-Spline Galerkin Method

In this Appendix, the LES-PLB methodology is explicitly evaluated for Burg-
ers’ equation (without forcing), using a sufficient number of linear-spline basis
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functions that the residual field is negligible. This corresponds to DNS by a
Galerkin method.

In the interval 0 < z < £ there are N + 1 linear-spline basis functions
bj(z), = 0,1,...,N. The jth knot is located at z; = jh, where h is the
uniform knot spacing h = £/N. The jth basis function is

bj(z) =1 |z —=zj|/h, for |z—z;|<h,
=0, for |z—z;|/>h. (46)
The resolved velocity field is

N

ﬁ(za t) = Z ﬁ’j (t)bj (SE), (47)

=0

where, because of the imposed periodicity, we have 4o(t) = dy(t). For the
DNS being considered, @ evolves by Burgers’ equation (without forcing):

ow  _ouw 0%
a —-UB;+VW' (48)

The Galerkin method is obtained from Eq. (48) by substituting Eq. (47)
for @, multiplying by b, (z) and integrating. The result is

div;
& —Cijk ity + vDjpt;, (49)

M,
Ik qt

where Mjy is given by Eq. (8), Cjj is
C !
Ci = / bi(2)b; (2)bw (<) da, (50)
0
and Djk is
c
Dy = - / b, ()b (<) d. (51)
0

There is summation over repeated suffixes, and b'j is written for db;(z)/dz.
Equation (49) and the definition of the coefficients apply to any basis
function. For linear splines, the non-zero coefficients are:

Mgy = 3h,  M@ygen) = 5hs (52)

CoyirnG = =5 Cu)iu+) = Fio (53)

Cliy1) 1) = g (54)
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2 1
Do =3 Dowusn =g (55)

where bracketed suffixes are excluded from the summation convention.
Substituting these coefficients into Eq. (49) and dividing by h we obtain

d . . . 1. (Gg+1 — Gg—1)
& (§ar—1 + 30k + k1) = - 3 {Uk—%——
2 'lf(ﬁiﬂ —Uj_,)
3 2h
v ~ N
+ ﬁ(ukﬂ = 20k + Ug-1)- (56)

It may be observed that the right-hand side is identical to a three-point
centered finite-difference scheme for Burgers’ equation written as
ou 1.0 290 (1 2) o%u

(87)

5= 3%z 30z \2" ) TV

B Coefficient Matrix for the General Relaxation Model

In this Appendix, the implications of the two requirements imposed in Section
3.5 are evaluated, and hence constraints on the coefficient matrix wj; in the
general relaxation model (Eq. 34) are determined.

B.1 Evaluation of Requirements

For a field that is everywhere unity (u(z) = 1), the basis-function coefficients
are
B; = Mj;'B, (58)

where By, is defined by
c
By = / bi () de, (59)
0

see Eqs. (6)—(7). Hence for a field that everywhere has the constant value c,
the general model Eq. (34) is

Rj = w_,‘,‘BiC. (60)

The requirement that R; vanish for such a field leads to the constraint on
the coeflicient matrix
w,-,-Bi = 0. (61)
With the constant and uniform density taken to be unity, the momentum
of the resolved velocity field is
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L
/ u(z)dz = B;i;. (62)
0

Thus the rate of change of momentum due to the modelled term (Eq. 34) is
BjR; = Bjwjii;. (63)

The requirement that the modelled term conserve global momentum for all
velocity fields (i.e., all @;) therefore imposes the constraint

ijji = 0. (64)

In summary: the general relaxation model Eq. (34) satisfies the two re-
quirements imposed in Section 3.5 provided that the coefficient matrix wj;
satisfies Egs. (61) and (64).

B.2 General Coefficient Matrix

It is readily verified that Eq. (64) is satisfied by a coefficient matrix w;z of
the form
wik = Yjk — ;1 BiY;x)/ By, (65)

where Yj; is any N x N matrix, and bracketed suffixes are excluded from the
summation convention.

By substituting Eq. (65) into Eq. (61), we then determine that the con-
dition required to satisfy Eq. (61) is

R . B; .
wikBy = Y By — in(j)Bj =0, (66)
J

or, equivalently
Dz =Yz, (67)
k i
where
Zjk = B(j)YisBy)- (68)

And a sufficient condition for the satisfaction of Eq. (67) is that Z;; be
symmetric.

Having obtained these sufficient conditions, we now construct the general
model as follows. We define

wik = =0 ML, (69)

to be the coefficient matrix given by the simple model (see Eq. 35). Then,
the symmetric matrix Zj; is defined by

Zjk = [B()wir By + Bywi; Bj)l. (70)
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The corresponding definition of Y} then follows from Eq. (68)

Z; 1 B By
)/jk = aj*,\ = 5 [wjk + ——(k—)—,\ﬁ-)—wkj] ) (71)
Bj) B B(j) B

and finally wji is given by Eq. (65).

B.3 Uniform Basis Functions

The preceding equations simplify significantly for the case of splines (of any
order) with uniformly-spaced knots (in any number of dimensions). For then
the values of B; and B; are the same for all j, and Eq. (71) simplifies to

Yie = —3(24) + Q) M, (72)

(since M J(,’:) is symmetric).
It may also be noted that if further £2;) is the same for all j (which would
not happen in practice) then

wik =Yy =~ MP. (73)

B.4 Coefficient Matrix for Linear Splines

For the case of 1D linear-spline basis functions with uniform knot spacing
h, the above equations simplify yet further. Direct evaluation of wjk from
Egs. (72), (65) and (27) yields:

W) = —§12G-1) + 2020) + Qan), (74)

Wi = 102G + Q] (75)
Substituting these expressions into Eq. (34) yields the expression for the
model R; given in the text, Eq. (36).
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