Reducing the Tabulation Dimension in the In Situ Adaptive Tabulation (ISAT) Method by S.B. Pope FDA 96-04 August 1996 Sibley School of Mechanical and Aerospace Engineering Cornell University Ithaca, New York 14853 #### Introduction In the ISAT method for the efficient implementation of combustion chemistry (Pope 1996), the retrieval work and the table storage scale as D^2 , where D is the number of degrees of freedom in the thermochemistry. For the GRI 2.11 mechanism for methane, D is of order 50. There is great advantage in being able to reduce the dimensionality used in the table to $D_r \approx \frac{1}{4}D$, say, thus increasing the asymptotic speed and decreasing the storage by a factor of 16 (in this example). This note describes how the required reduction can be achieved. It uses the notation of the ISAT paper (Pope 1996); and for simplicity takes the scaling matrix to be $\mathbf{B} = \mathbf{I}$, and assumes that $\phi = 0$ is in the accessed region. The reduction is constructed from a table generated using the D degrees of freedom in the thermochemistry. #### Retained and Neglected Subspaces The "retained subspace" \mathcal{R} is a D_{τ} -dimensional subspace of the D-dimensional composition space. The success and accuracy of the method described here depends entirely on the appropriate choice of \mathcal{R} . The "neglected subspace" \mathcal{N} is the $D_n = D - D_r$ orthogonal complement of \mathcal{R} . Let $\{e^1, e^2, \dots, e^{D_r}\}$ be an orthonormal basis for \mathcal{R} , and let these vectors be the columns of a matrix \mathbf{E} . Similarly let $\{\mathbf{f}^1, \mathbf{f}^2, \dots, \mathbf{f}^{D_n}\}$ be an orthonormal basis for \mathcal{N} , and let these vectors form the columns of a matrix \mathbf{F} . (Note that \mathbf{e}^i is orthogonal to \mathbf{f}^j .) In the e-basis, the retained components of ϕ are $$\tilde{\boldsymbol{\phi}}^{r} = \mathbf{E}^{T} \boldsymbol{\phi},\tag{1}$$ while in the original basis they are $$\phi^r = \mathbf{E}\tilde{\phi}^r = \mathbf{P}^r \phi, \tag{2}$$ where $\mathbf{P}^r \equiv \mathbf{E}\mathbf{E}^T$ is the perpendicular projection onto \mathcal{R} . Similarly, in an obvious notation, the neglected components are $$\tilde{\boldsymbol{\phi}}^n = \mathbf{F}^T \boldsymbol{\phi},\tag{3}$$ $$\phi^n = \mathbf{F}\tilde{\phi}^n = \mathbf{P}^n\phi,\tag{4}$$ with $\mathbf{P}^n = \mathbf{F}\mathbf{F}^T$. As implied by the terminology, the reduction is achieved by approximating the D-vector ϕ by its projection onto the retained subspace ϕ^r . This can be represented by the D_r -vector $\tilde{\phi}^r$. Similarly, the $D \times D$ mapping gradient matrix \mathbf{A} is replaced by the $D_r \times D_r$ matrix $\tilde{\mathbf{A}}^r$, defined below. ## Directions of Maximum Variation (DMV) Starting with $D_r = 0$, the retained subspace can be progressively built up by incrementing D_r and suitably defining the additional basis vector \mathbf{e}^{D_r} . A possible choice of \mathbf{e}^{D_r} is the direction of maximum variation (DMV). Out of all the tabulation points ϕ^0 , all the mappings $\mathbf{R}(\phi^0)$, and the origin, let $\phi^{(a)}$ and $\phi^{(b)}$ be the pair of points that are furthest apart in the neglected subspace. That is $|\mathbf{F}^T(\phi^{(a)} - \phi^{(b)})|$ is maximized by this choice of a and b. We define the maximum variation by $$\zeta \equiv |\mathbf{F}^T(\boldsymbol{\phi}^{(a)} - \boldsymbol{\phi}^{(b)})|,\tag{5}$$ and the DMV by $$\mathbf{u} \equiv [\phi^{(a)} - \phi^{(b)}]/\zeta. \tag{6}$$ If ζ is zero, then **u** is taken to be any vector in \mathcal{N} . Note that, correctly, **u** is a unit vector, orthogonal to \mathcal{R} . ## **Neglected Mapping** For a given specification of \mathcal{R} , let ζ be the maximum variation in the neglected subspace. From any point ϕ , the mapping $\mathbf{R}(\phi)$ can be decomposed into a retained and neglected part: $$\mathbf{R} = \mathbf{R}^r + \mathbf{R}^n. \tag{7}$$ Let \mathcal{H} be the convex hull formed by all tabulation points ϕ^0 and mappings $\mathbf{R}(\phi^0)$. It is clear from these definitions, that for all points ϕ in \mathcal{H} , we have $$|\mathbf{R} - \mathbf{R}^r| = |\mathbf{R}^n| \le \zeta. \tag{8}$$ Thus the error in the approximation $\mathbf{R} \approx \mathbf{R}^r$ is bounded by ζ . There are points inside the ellipsoids of accuracy (EOA) that are outside \mathcal{H} . Hence, Eq. (8) is not a tight upper bound on the error incurred: but we assume that it is adequate. ## Retained Mapping For points ϕ inside the EOA at ϕ^0 , the linearized mapping is $$\mathbf{R}^{\ell} = \mathbf{R}(\phi^0) + \mathbf{A}\,\delta\phi,\tag{9}$$ where $\delta \phi \equiv \phi - \phi^0$. In the e-f-basis, the retained and neglected components are $$\begin{bmatrix} \tilde{\mathbf{R}}^{\ell,r} \\ \tilde{\mathbf{R}}^{\ell,n} \end{bmatrix} = \begin{bmatrix} \mathbf{E}^{T} \\ \mathbf{F}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{R}(\phi^{0}) \\ \end{bmatrix} + \begin{bmatrix} \mathbf{E}^{T} \\ \mathbf{F}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \delta \phi \end{bmatrix}$$ $$= \begin{bmatrix} \tilde{\mathbf{R}}^{r}(\phi^{0}) \\ \tilde{\mathbf{R}}^{n}(\phi^{0}) \end{bmatrix} + \begin{bmatrix} \mathbf{E}^{T} \\ \mathbf{F}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{E}\mathbf{F} \end{bmatrix} \begin{bmatrix} \mathbf{E}^{T} \\ \mathbf{F}^{T} \end{bmatrix} \begin{bmatrix} \delta \phi \end{bmatrix}$$ $$= \begin{bmatrix} \tilde{\mathbf{R}}^{r}(\phi^{0}) \\ \tilde{\mathbf{R}}^{n}(\phi^{0}) \end{bmatrix} + \begin{bmatrix} \tilde{\mathbf{A}}^{r} & \mathbf{G} \\ \mathbf{H} & \mathbf{K} \end{bmatrix} \begin{bmatrix} \delta \tilde{\phi}^{r} \\ \delta \tilde{\phi}^{n} \end{bmatrix}, (10)$$ where the last matrix is a partitioning of the transformed mapping gradient matrix $[\mathbf{EF}]^T \mathbf{A} [\mathbf{EF}]$. (Note that $[\mathbf{EF}]$ is a unitary matrix.) The neglected component $\tilde{\mathbf{R}}^{\ell,n}$ has already been considered. The retained component is $$\tilde{\mathbf{R}}^{\ell,r} = \tilde{\mathbf{R}}^r(\boldsymbol{\phi}^0) + \tilde{\mathbf{A}}^r \delta \tilde{\boldsymbol{\phi}}^r + \mathbf{G} \delta \tilde{\boldsymbol{\phi}}^n. \tag{11}$$ In the reduced method, $\tilde{\mathbf{R}}^r(\phi^0)$ and $\tilde{\mathbf{A}}^r$ are tabulated, and $\delta \tilde{\phi}^r = \tilde{\phi}^r - \tilde{\phi}^{0,r}$ are known. But the final term $$\gamma \equiv \mathbf{G}\delta \tilde{\boldsymbol{\phi}}^{n},\tag{12}$$ is neglected: it represents the contribution to the retained mapping from the neglected components of the composition. Clearly, the accuracy of the method depends on $|\gamma|$ being small. Let the SVD of G be $\tilde{\mathbf{U}}\tilde{\mathbf{\Sigma}}\tilde{\mathbf{V}}^T$, let $\{\tilde{\mathbf{v}}^1, \tilde{\mathbf{v}}^2, \dots, \tilde{\mathbf{v}}^{D_n}\}$ be the columns of $\tilde{\mathbf{V}}$, and let $\tilde{\sigma}_i$ $(i = 1, 2, \dots, D_n)$ be the singular values (i.e., the diagonal elements of $\tilde{\mathbf{\Sigma}}$). Then Eq. (12) can be rewritten $$\tilde{\mathbf{U}}^T \boldsymbol{\gamma} = \tilde{\boldsymbol{\Sigma}} \tilde{\mathbf{V}}^T \delta \tilde{\boldsymbol{\phi}}^n. \tag{13}$$ For a given magnitude $|\delta\tilde{\phi}^n|$, the maximum value of $|\gamma|$ that can occur is $\tilde{\sigma}_1|\delta\tilde{\phi}^n|$, and this occurs when $\delta\tilde{\phi}^n$ is aligned with the first singular vector $\tilde{\mathbf{v}}^1$. We define σ_{\max} to be the maximum of $\tilde{\sigma}_1$ over all tabulation points, and we define the *direction of maximum sensitivity* (DMS) $\tilde{\mathbf{v}}$ to be $\tilde{\mathbf{v}}^1$ at that point. The neglected term γ is bounded by $$|\gamma| \le \sigma_{\max} |\delta \tilde{\boldsymbol{\phi}}^n|. \tag{14}$$ In the original basis, the direction of maximum sensitivity is $$\mathbf{v} \equiv \mathbf{F}\tilde{\mathbf{v}}.\tag{15}$$ # Acceptable, Minimal and Optimal Decompositions The reduced representation introduces two errors: one due to the neglect of $\tilde{\mathbf{R}}^{\ell,n}$, and one due to the neglect of the influence of $\delta \tilde{\boldsymbol{\phi}}^n$ on $\tilde{\mathbf{R}}^{\ell,r}$ (i.e., $\boldsymbol{\gamma}$). For points $\boldsymbol{\phi}$ in \mathcal{H} , the sum of these errors is bounded by $$\varepsilon_n = \zeta + \sigma_{\max}\zeta,\tag{16}$$ (see Eqs. 8 and 14). Given an error tolerance ε_{tol} , an acceptable decomposition is one for which ε_n does not exceed ε_{tol} . There is a minimum dimension $D_{r,\min}$ of the retained subspace for which acceptable decompositions exist. An acceptable decomposition with $D_r = D_{r,\min}$ is a minimal decomposition. Of the minimal decompositions, one that minimizes ε_n is an optimal decomposition. #### Algorithm It is not evident how to construct the optimal or even a minimal decomposition. But the following algorithm produces an acceptable decomposition. It takes into consideration the fact that it is much more expensive to determine the DMS v than the DMV u. (To determine v, the SVD must be performed for G at every tabulation point.) - 1. Specify a parameter α , e.g. $\alpha = 10$. - 2. Evaluate the DMV, u, and the maximum variation, ζ . - 3. If $\zeta \ge \alpha \varepsilon_{\text{tol}}$, then increment D_r taking **u** as the additional basis vector; go to 2. - 4. $(\zeta < \alpha \varepsilon_{\text{tol}})$ Evaluate the DMS, $\mathbf{v}, \sigma_{\text{max}}$ and ε_n . - 5. If $\varepsilon_n \leq \varepsilon_{\text{tol}}$ —all done. - 6. Increment D_r : if $\sigma_{\text{max}} > 1$ use \mathbf{v} , otherwise use \mathbf{u} ; go to 2. ### References S.B. Pope (1996) "Computationally Efficient Implementation of Combustion Chemistry using In Situ Adaptive Tabulation", Cornell Report FDA 96–02 (submitted to Combustion Theory and Modelling).