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Introduction

In the ISAT method for the efficient implementation of combustion chemistry
(Pope 1996), the retrieval work and the table storage scale as D?, where D
is the number of degrees of freedom in the thermochemistry. For the GRI
2.11 mechanism for methane, D is of order 50. There is great advantage in
being able to reduce the dimensionality used in the table to D, ~ %D, say,
thus increasing the asymptotic speed and decreasing the storage by a factor
of 16 (in this example).

This note describes how the required reduction can be achieved. It uses
the notation of the ISAT paper (Pope 1996); and for simplicity takes the
scaling matrix to be B = I, and assumes that ¢ = 0 is in the accessed
region. The reduction is constructed from a table generated using the D
degrees of freedom in the thermochemistry.

Retained and Neglected Subspaces

The “retained subspace” R is a D,-dimensional subspace of the D-dimensional
composition space. The success and accuracy of the method described here
depends entirely on the appropriate choice of R.

The “neglected subspace” N is the D,, = D — D, orthogonal complement
of R.

Let {e!,e?,...,ePr} be an orthonormal basis for R, and let these vectors
be the columns of a matrix E. Similarly let {f!,f?,...,fP»} be an orthonor-
mal basis for A, and let these vectors form the columns of a matrix F. (Note
that €' is orthogonal to f7.)

In the e-basis, the retained components of ¢ are

¢ =ET9, (1)
while in the original basis they are
¢" =E¢ =P, 2

where P” = EET is the perpendicular projection onto R. Similarly, in an
obvious notation, the neglected components are '

¢ =FT¢, - 3)



and 3
¢" =F¢" =P"¢, @)
with P* = FFT.

As implied by the terminology, the reduction is achieved by approximat-
ing the D-vector ¢ by its projection onto the retained subspace ¢". This can
be represented by the D,-vector fi)r. Similarly, the D x D mapping gradient
matrix A is replaced by the D, x D, matrix A", defined below.

Directions of Maximum Variation (DMYV)

Starting with D, = 0, the retained subspace can be progressively built up
by incrementing D, and suitably defining the additional basis vector ePr. A
possible choice of ePr is the direction of mazimum variation (DMV). Out
of all the tabulation points ¢°, all the mappings R(¢°), and the origin, let
¢ and ¢® be the pair of points that are furthest apart in the neglected
subspace. That is |[FT(¢® — ¢®)| is maximized by this choice of a and b.
We define the mazimum variation by

¢ = [FT(¢ - ¢®), ®)
and the DMV by
u=[o@ - ¢®]/c. (6)

If ¢ is zero, then u is taken to be any vector in A. Note that, correctly, u is
a unit vector, orthogonal to R.

Neglected Mapping

For a given specification of R, let ¢ be the maximum variation in the ne-
glected subspace. From any point ¢, the mapping R(¢) can be decomposed
into a retained and neglected part:

R=R"+R" ©

Let H be the convex hull formed by all tabulation points ¢° and mappings
R(¢°). It is clear from these definitions, that for all points ¢ in 'H, we have

IR -R"|=|R" <. (8)



Thus the error in the approximation R =~ R" is bounded by (.

There are points inside the ellipsoids of accuracy (EOA) that are outside
H. Hence, Eq. (8) is not a tight upper bound on the error incurred: but we
assume that it is adequate.

Retained Mapping
For points ¢ inside the EOA at ¢°, the linearized mapping is

R‘=R(¢") + A 69, (9)

where §¢ = ¢p—¢°. In the e—f-basis, the retained and neglected components
are
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where the last matrix is a partitioning of the transformed mapping gradient
matrix [EF]TA[EF]. (Note that [EF] is a unitary matrix.)

The neglected component R%™ has already been considered. The retained
component is

(10)

RY =R"(¢°) + A"6¢ + Géo'. (11)

o,r

In the reduced method, R"(¢°) and Ar are tabulated, and 6¢" = ¢" — @
are known. But the final term

v=Gég", (12)

is neglected: it represents the contribution to the retained mapping from
the neglected components of the composition. Clearly, the accuracy of the
method depends on |vy| being small.



Let the SVD of G be UEV7, let {¥!,¥2,...,%P»} be the columns of V,

andlet 6; (1 =1,2,...,D,) be the singular values (i.e., the diagonal elements
of £). Then Eq (12) can be rewritten
UTy =3VT6¢". (13)

For a glven magnitude |6¢ |, the mammum value of |y| that can occur is
01|5¢ |, and this occurs when 6¢ is aligned with the first singular vector

V1. We define gmax to be the maximum of &; over all tabulation points, and
we define the direction of mazimum sensitivity (DMS) v to be V! at that
point. The neglected term 4 is bounded by

V] < Omaxl6 . (14)
In the original basis, the direction of maximum sensitivity is

v =Fv. (15)

Acceptable, Minimal and Optimal Decompo-
sitions

The reduced representation introduces two errors : one due to the neglect of
R%", and one due to the neglect of the influence of 6¢" on R%" (i.e., ). For
pomts ¢ in H, the sum of these errors is bounded by

€n = C + amaxCa (16)

(see Egs. 8 and 14). Given an error tolerance &, an acceptable decomposition
is one for which ¢, does not exceed &,;.

There is a minimum dimension D, of the retained subspace for which
acceptable decompostions exist. An acceptable decomposition with D, =
Dy min is & minimal decomposition. Of the minimal decompositions, one that
minimizes €, is an optimal decomposition.

Algorithm

It is not evident how to construct the optimal or even a minimal decomposi-
tion. But the following algorithm produces an acceptable decomposition. It



takes into consideration the fact that it is much more expensive to determine
the DMS v than the DMV u. (To determine v, the SVD must be performed
for G at every tabulation point.)

1.
2.
3.

Specify a parameter a, e.g. a = 10.
Evaluate the DMV, u, and the maximum variation, (.

If { > aé&gql, then increment D, taking u as the additional basis vector;
go to 2.

(¢ < a€io.) Evaluate the DMS, v, 0max and €p,.
If ep, < €ro—all done.

Increment D,: if omax > 1 use v, otherwise use u; go to 2.
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