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ABSTRACT

In PDF methods (Pope 1985) there is close connection between the nor-
malization (or consistency) condition, the mean mass conservation equation,
and the Poisson equation for the mean pressure. In the context of a parti-
cle method to solve the PDF transport equations, an algorithm is described
which: performs a position correction so that the consistency condition is
satisfied; performs a velocity correction so that the mean mass conservation
is satisfied; and determines a mean pressure correction. For statistically sta-
tionary flows, a steady state is achieved in which these corrections tend to
zero (in the mean). This algorithm is incorporated in the code PDF2DV
(Pope 1994).

INTRODUCTION

The algorithm is based on the mean mass conservation equation in thé form
V- (pU) =0. (1)

Consequently it is applicable to constant-density flows, or statistically-stationar:
variable-density flows. It is applicable to three-dimensional flows, but it is
described here for plane two-dimensional flows. Figure 1 is a sketch of the
rectangular grid considered. The sketch also shows the definition of the wedge
functions fli% (z) and gj;% (y). As an example, fijr% is defined by

fii(@) = 0, for z<u;
2
= 1—(m—a:i)/Ax,-+%, for z; <z < x4
= 0, for > ;4. (2)

The bi-linear basis function b;;(x) is defined by

by(0) = |123@) + 15, @)] o1 4 @) + 07,y )] 3)

j—1

The flow is represented by a large ensemble of particles. The general par-
ticle has mass m*, specific volume v*, position X*, and velocity U*. Braces
{ } denote the sum over all particles; while { }, +1,7+1 denotes the sum over

all particles in the cell centered at (i + 3,7 + ).



POSITION CORRECTION ALGORITHM

The consistency condition is that the volume associated with a sub-ensemble
of particles (i.e., the sum of m*v*) equals the geometric volume occupied by
the particles. A weak form of this condition is obtained by summing over all
particles, weighted by the basis function b;;(x)

{m™"b;(X")} = Vi, (4)

where V; is the geometric volume

Vi = / bij (%) dx. (5)

Notice that Eq. (4) can be written for each grid node.

In the particle method, before the steady state is reached (and because
of statistical fluctuations) Eq. (4) is not satisfied. We seek then a position
correction 6X* for each particle so that the corrected position does satisfy
Eq. (4), i.e.,

{m*v™b;(X* + 6X")} = V. (6)
For small |6X*|, with high probability X* and X* + §X* lie within the same
cell. Hence the linear approximation to Eq. (6) is accurate for small |§X*|:

{m*v* [b,'j(X*) + 6X* . Vb,_,]} = V;J (7)
Observe that in the cell (i + 3,7 + 1), we have

ob;; gj_+%

oz _AxH% ' ()

The position correction is specified to be the gradient of a potential ¢,
which is represented at grid nodes. Simple differencing and interpolation in
the cell (i + 1,7 + 1) then gives

§X* = j—_:%(¢i+1,j - ¢i,j)/A$i+%
+g;-_:%(¢i+1,j+1 - ¢i,j+1)/A$i+%. (9)



From Eq. (8) and Eq. (9) we obtain the contribution from §X* in cell
(i+3,7+3) to Eq. (7) to be

{m*v*éX*%}' =
0 J i1t 42
—2 2
— (Azi+%) {{m*v* (g]":_;_) } (Pi+1,5 — Pi)
i+3.0+3
+ {mfv*gj:% ;“:%}H%’H% (it1,41 — ¢i,j+1)] . (10)

Adding the contributions from the other three cells and from 6Y™* yields a
nine-point finite-difference equation for ¢; ;. This equation is solved (cur-
rently using a band-solver) to yield ¢; ;.

The simple differencing used in Eq. (9) yields a discontinuous field of V¢.
Once ¢; ; has been determined, a continuous, piece-wise linear approximation
to V¢ is obtained using staggered grids. This continuous field is used to
evaluate 6X*.

Because the linearization (Eq. 7) is approximate, and because different
finite-difference approximations to V¢ are used, with the corrected particle
positions X* + 6X*, the consistency condition is not exactly satisfied. How-
ever, generally 2 or 3 iterations suffice to satisfy the condition to within a
few percent. More iterations are required if there are few particles per cell.

There are as many consistency conditions as there are unknowns ¢; ;—
one at each grid node. Consequently, additional boundary conditions are
not needed. However, at an outlet boundary, the consistency condition is
not imposed and instead ¢; ; is set to zero. This allows particles to cross the
outflow boundary in order to satisfy the global consistency condition, i.e., the
total particle volume equals the geometric volume of the solution domain.

VELOCITY CORRECTION

The weak form of the mean mass conservation equation is

/ bi;(x)V - (pU) dx = 0. | (11)



Away from boundaries, integration by parts yields
/(pU) - Vbi;(x) dx = 0. (12)

A velocity correction §U* is sought such that the corrected velocity satisfies
the particle version of Eq. (12), i.e.,

{m*v*[U* + 5U*] . Vbij} =0. (13)

The velocity correction is specified to be

o0U = —LV(b = —0V¢, (14)
{p)

where ¢ is a potential (different from that used in the position correction).
Then simple differencing and interplotion for V¢, when substituted into
Eq. (13) again yields a nine-point finite-difference equation for the poten-
tial ¢; ;, which is solved using a band-solver.

If the velocity correction §U* is computed from V¢ in the obvious way,
a 2Az instability results. To avoid this, the ¢ field is first filtered to remove
this mode. Primarily because of this filtering, the residuals in the mass
conservation equation are not reduced to zero: but the filtered residuals can
be. Even with this filtering, a sub-grid instability occurs in the particle
velocities. To control this, fourth-order dissipation is added to the particle
velocities.

When the velocity increment is determined via Eq. (14) for a time step
At, it is equivalent to the effect of a mean pressure correction

§(p) = ¢/At. | (15)
Note that Eq. (14) can then be written

1
§U = —@V(S(p)At. (16)

Needless to say, the pressure correction field obtained from Eq. (15) is ex-
tremely noisy. A good deal of filtering and damping is applied to yield a
stable mean pressure field.
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In a sense, the mean pressure is irrelevant and does not need to be de-
termined. For, any error in the mean pressure field is compensated by the
pressure correction. That is, the potential ¢ is such that the total pressure
effect, i.e.,

-1
0U = <p>v((p> + 6(1’)) Ata (17)

is the same, whatever the value of (p). But numerically, the errors are less if
(p) determined accurately. Splitting errors are avoided, and variance reduc-
tion techniques can be applied to generate mean momentum conservation.
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Fig.1: Sketch of grid and the linear wedge functions.
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