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An exact expression is obtained for the probability density function (pdf) of any quantity 
measured in a general stationary process, in terms of conditional expectations of time derivatives 
of the signal. This expression indicates that the conditional expectations of both the time 
derivative squared and of the second time derivative influence the shape of the pdf, including its 
tails. A previous result of Ching [Phys. Rev. Lett. 70, 283 (1993)] for temperature 
measurements in turbulent flows corresponds to the particular case when the latter quantity is 
linear. 

There has been considerable recent interest in the 
shapes of probability density functions (pdf’s) in turbulent 
flows, with experimental results coming from Chicago,lm3 
Corne11,4’5 Yale,6 and elsewhere.’ These experiments have 
prompted several theoretical works attempting to describe 
and explain the observed shapes.*-l3 

In the present work an exact expression is obtained for 
the pdf of a stationary process in terms of its conditional 
time derivatives. This expression does not depend on any 
physics of the process and sheds further light on the shape 
of pdf’s especially their tails. By invoking a linearity as- 
sumption, we recover a previous result of Ching,‘3 which 
successfully describes the pdf’s of temperature and temper- 
ature difference5 (except for differences with very short 
time separation) observed in several experiments. 

In the experiments cited above, a physical variable 
(e.g., temperature T> is measured as a function of time t at 
a fixed spatial location in a statistically stationary flow. In 
such circumstances T(t) is a smooth stationary random 
process, with mean (i’+) and variance UT. We analyze the 
standardized process 

x(t>=[[T(t)--(T)]/‘TT. (1) 
With x being the sample-space variable, the one-time 

pdf of X( t), P(x), can be written as the expectation of the 
fine-grain pdf p(x;t): 

P(x) = (P(w)), (2) 

where 

p(x;t) +x(t) -x], (3) 

see, e.g., Ref. 14, Bq. (2.67). Differentiating Eq. (3) twice 
with respect to time we obtain 

..ap .2a2P ii=-$4-X =&I 

--&A!] +&[p22], 

where an overdot indicates the time derivative and the 
second step follows because X(t) is independent of x. 

Now for any stationary random process Q(t) (e.g., X 
or X2) we have 

(p(x;t)Q(t))=P(x)(Q(t) IX(t)=4 (5) 

[see, e.g., Ref. 14, Eq. (2.150)] where (Q(t) IX(t) =x) is 
the conditional expectation of Q, which is a function of x 
only, and henceforth is written (Q 1 x). Hence the mean of 
Eq. (4) is 

The solution to Eq. (6) is our principal result: the 
one-time pdf of X( t) is given by 

Cl 
p(x)=(~2,x)exP 

U 

x (Q\xt) 
o (k21xI) h’ 3 

1 
(7) 

where the constant Cl is determined by the normalization 
condition s “,P(x)dx= 1 (as is the constant C2 intro- 
duced below). This is a very general result that applies to 
any stationary random process subject to two technical 
requirements: that X(t) is twice continuously differentia- 
ble, and that P(x) decreases sufficiently rapidly as (x 1 
tends to infinity [so that, when Eq. (6) is integrated once, 
the constant of integration is zero]. 

With the nondimensional conditional expectations de- 
fined by 

q(x) f(J?jx)/(22) (8) 

and 

r(x) = (li;(x)/(22), (9) 

Eq. (7) can alternatively be written 

P(x) = -&exp( J:$&x’). (10) 

Ching’s result13 corresponds to the case when (Xl x) is 
a linear function of x. The stationarity and standardization 
of X constrain this linear relation to be 
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r(x) = -x, 

and hence Eq. (7) becomes 
(11) 

P(x)= gew( I,'=). (12) 

[It may be observed that for a Gaussian process r(x) is 
given by Eq. (ll), and q(x) is unity. Hence JZq. (10) 
yields the Gaussian distribution.] 

Several comments are required to relate the above 
equations [Eqs. (7)-( 12)] to previous work and to exper- 
imental observations. 

( 1) It is again emphasized that Eq. (7) does not de- 
pend on the physics of the process. It is an exact relation 
for any smooth stationary process with a pdf decaying suf- 
ficiently rapidly for large fluctuations. 

(2) The combination of Eqs. (7) and ( 11) provides an 
alternative derivation of Ching’s result, Eq. ( 12). The lin- 
earity assumption embodied in Eq. ( 11) is exactly equiv- 
alent to Ching’s “fluctuation-dissipation” assumption: 

(2n-l)(X2”-2~2)=(X2n)(~2). (13) 
Equation ( 11) probably is a simpler, more understandable 
statement of the assumption. 

(3) The Sinai-Yakhot formula* has the same mathe- 
matical form as Eq. (12) but with q(x) being the (nor- 
malized conditional expectation of the dissipation (i.e., the 
square of the spatial gradient of temperature). The condi- 
tional expectation of the dissipation will be close to that of 
the time derivative squared when some form of Taylor’s 
frozen flow hypothesis15 is valid. However, the physical 
assumption leading to the formula is quite different. Spe- 
cifically, the Sinai-Yakhot formula was derived for a ho- 
mogeneous, decaying field (with no forcing) evolving by 
the convection-diffusion equation, whereas the current de- 
velopment assumes only stationarity, and Eq. (12) follows 

I from an additional linearity assumption, Eq. ( 11) . 
(4) Jayesh and Warhaft5 report measurements of tem- 

perature pdf’s in grid-generated turbulence. They find that 
these pdf’s are well described by Eq. (12), with q(x) ob- 
tained from time derivatives [i.e., Eq. (9)]. These authors 
invoked Taylor’s hypothesis to interpret q(x) as the nor- 
malized conditional dissipation, and hence interpreted Eq. 
(12) as the Sinai-Yakhot formula. They are careful to 
point out, however, that the requirements for the applica- 
tion of this formula are not fulfilled in the flow studied. It 
is now apparent that the observed agreement between their 
measured pdf’s and Eq. ( 12) is more simply explained as 
being a consequence of Eqs. (7) and ( 11). However, as 
pointed out by one of us,13 the fact that Eq. ( 11) is a good 

, approximation for data in various different physical situa- 
tions suggests that there may be a universality in turbu- 
lence. 

(5) The (qualified) success of Ching’s formula5*13 in 
describing experimentally observed pdf’s suggests that Eq. 
( 11) can provide a good approximation for (X 1 x) even for 
strongly non-Gaussian processes. In contrast, the corre- 
sponding approximation for (X2 1 x) [i.e., (X2 /x) = (X2) or 
q(x) = l] is known to be inaccurate for non-Gaussian pro- 
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FIG. 1. The quantity T(X) m  (X1x)/(X2) is measured using the Chicago 
convection data with Rayleigh number equal to 5.8~10’~. X(t) is the 
standardized ((X) =O, (X2) = 1) (a) temperature fluctuation, (b) tem- 
perature time derivative, and (c) temperature difference with time sepa- 
ration equals 64 sampling intervals (turnover time of the flow is about 
4000 sampling intervals). The solid line is the linearity assumption Eq. 
(11) or equivalently the “fluctuation-dissipation” assumption E!q. (13). 

cesses (although, as may be expected, it holds reasonably 
well for turbulent temperature data when the pdf is Gauss- 
ian). Measurements of (f ] x) for different quantities and 
under different flow conditions can be used to assess the 
accuracy and range of validity of Eq. ( 11). 

While (X21x) h as b een measured in several experi- 
ments, (Xl x) has not. In Fig. 1 we show 
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FIG. 2. The conditional expectations of the second time derivative and 
the time derivative squared using (standardized) z-coordinate data from 
the Lorenz model [Eqs. ( 17)-( 19)] (a) r(x) vs x. The solid line is again 
Eq. (11) while the dotted line is a fifth-order polynomial fit. (b) q(x) vs 
x. The dotted line is a tenth-order polynomial fit which clearly does not fit 
the data well. 

T(x)E(X\X)/(X~) plotted against x using the Chicago 
convection data with Rayleigh number equal to 5.8 X 1014. 
The solid line is Eq. ( 11) which indeed describes the data 
quite well. Even for the temperature difference with the 
shortest time separation (which essentially is the temper- 
ature time derivative), Eq. ( 11) works well for large 1 x 1 
[see Fig. 1 (b)]. Both Figs. 1 (a) and 1 (b) suggest that r(n) 
may vary more strongly than linearly for large 1x1. How- 
ever, as is evident from the figures, there is inevitably sub- 
stantial statistical uncertainty in these tails. 

While it appears. that Eq. ( 11) provides a reasonable 
approximation to (Xix) for much of the turbulence data 
presented here, it is equally apparent that it is far from 
universal. It clearly provides a poor approximation for 
small 1 x 1 in Fig. 1 (b). A more striking example is pro- 
vided by the Lorenz model:16 

x’= -cxz+oy, (14) 

j= -Zz+FZ--y, (15) 

i=Zy-bz, (16) 

with a=lO, F=28, and b=8/3. In Fig. 2(a) we plot r(x) 
with X being the standardized 2 coordinate in the Lorenz 
model. The solid line is again Eq. ( 11) which does not 
agree with the data this time. Instead, the data are very 
well approximated by a fifth-order polynomial which is 
shown as the dotted line. Figure 2(b) shows 
q(x) = (X2 1 x)/(X’) for the Lorenz model, which cannot 
be well approximated by a polynomial.We have checked 
the correctness of Eq. (7) in the case when Eq. ( 11) does 
not hold. 
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