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In probability density function (pdf) methods, statistics of inhomogeneous turbulent flow
fields are calculated by solving a modeled transport equation for a one-point joint probability
density function. The method based on the joint pdf of velocity and fluid compositions is
particularly successful since the most important processes—convection and reaction—do not
have to be modeled. However, this joint pdf contains no length-scale or time-scale information
that can be used in the modeling of other processes. This deficiency can be remedied by
considering the joint pdf of velocity, dissipation, and composition. In this paper, by reference
to the known properties of homogeneous turbulence, a modeled equation for the joint pdf of
velocity and dissipation is developed. This is achieved by constructing stochastic models for

the velocity and dissipation following a fluid particle.

i. INTRODUCTION

In engineering industry and elsewhere, there is an in-
creasing use of computational methods to calculate complex
turbulent flow fields and the mixing and chemical reaction
that may occur within them.!> Most of these computations
depend upon the k-€ turbulence model,>* while a few are
based on second-order closures.>® For some flows, these
turbulence models provide an adequate description of the
turbulent processes. But for many others, a more complete
and accurate description of the turbulence is necessary. Here
we present a new turbulence model designed to meet this
need.

For good reason, turbulence models—e.g., mixing-
length, k-€, Reynolds-stress—are named after the dependent
variables chosen to represent the turbulence. This choice—
rather than the details of the subsequent modeling—is the
principal determinant of the model’s success. Ideally, the
chosen representation should be sufficiently comprehensive
so that (i) the dominant physical processes are treated ex-
actly (without modeling), and (ii) there is sufficient infor-
mation available to construct realistic models of the remain-
ing processes. On the other hand, the chosen representation
should be sufficiently compact so that (iii) the solution of
the resulting model equations is computationally tractable.

To date, this last criterion has eliminated multipoint or
spectral closures from consideration: they have not proved
computationally tractable for inhomogeneous flows.

The most comprehensive one-point closure, and conse-
quently that which fares best according to criterion (i), is
based on the (one-point) joint probability density function
(pdf) of the velocities and compositions.'>'* Convection
and reaction are treated exactly (without modeling), as are
the mean pressure gradient and body forces. Only the effects
of the fluctuating pressure gradient and molecular diffusion
have to be modeled: neither of these processes affects the
mean velocities or compositions directly.

Because it treats convection exactly, the velocity-com-
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position pdf method accurately represents transport pro-
cesses in some flows for which other models fail. We cite two
examples. In the dispersion of heat from a line source in grid
turbulence,'*'® models that incorporate gradient diffusion
(at any level) are inaccurate and qualitatively incorrect near
the source!” (where the length scale of the thermal field is
very small compared to the integral scale of the turbulence).
But the pdf method accurately describes the dispersion, both
near the source and downstream.'® In statistically plane pre-
mixed turbulent flames, the mean pressure field affects the
fluctuating velocity field in such a way as to produce
counter-gradient transport.'® This is accurately represented
in pdf methods?*—since both the mean pressure gradient
and convection are treated without approximation—but
clearly a model that incorporates gradient-diffusion trans-
port is qualitatively incorrect for this flow.

Considering the large amount of information embodied
in the velocity-composition joint pdf, it is perhaps surprising
that this approach is computationally tractable. But Monte
Carlo methods have been developed,?"!""*> demonstrated,
and used for a variety of flows. These include: turbulent jet
diffusion flames;>*?* two-dimensional recirculating flows;?
and, the flow within spark-ignition engine cylinders.?**’

In a crucial respect, the velocity-composition joint pdf
approach fails according to criterion (ii): The joint pdf con-
tains no information about turbulent length scales or time
scales. Consequently, additional assumptions or model
equations are required. For several free shear flows, the as-
sumption has been made'>?'2* that the turbulent time scale
r=k /(€) is uniform across the flow. (Here, k is the turbu-
Ient kinetic energy and (€) is the mean dissipation rate.) For
other flows, the standard model equation®* for {€) has been
solved,”®*” or, similarly, a model equation® for
(w)y=1/7={e)/k.

The model developed here is based on the one-point
joint pdf of velocity and the instantaneous dissipation rate €.
This joint pdf contains length-scale and time-scale informa-
tion (e.g., k**/(€) and k /(€) ), and hence remedies the in-
completeness of the velocity-composition joint pdf ap-
proach. But more than this: The inclusion of € within the pdf
approach opens the way to more realistic modeling. Large
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fluctuations in the dissipation rate (i.e., internal intermit-
tency) are accounted for; and, in inhomogeneous flows,
fuller account can be taken of the different behavior of turbu-
lent fluid, depending on its origin and history.

Previously, a model based on the joint pdf of velocity
and a conditional mean dissipation has been developed and
applied® to the shear-free mixing layer between two regions
of turbulence with different scales and intensities.*° The suc-
cess of the model in this application illustrates one of the
attributes (mentioned above) of this type of model: namely,
the ability to account for effects of history on fluid-particle
behavior. The model developed here is significantly different
in that a more sophisticated model for the instantaneous dis-
sipation is proposed.

As in previous pdf studies, we take a Lagrangian
view in performing the modeling. Specifically, we construct
stochastic models [U*(¢) and e*(#)] for the velocity and
dissipation following a fluid particle. By definition, the posi-
tion of the fluid particle x*(#) moves with velocity U*(¢);
while (by assumption) U*(¢) and €*(¢) evolve according to
coupled diffusion processes.'*! Thus x*(z), U*(¢), and
€*(t) jointly form a Markov process that is continuous in
time. These stochastic models provide a closure for the one-
point Eulerian velocity-dissipation joint pdf equation, and
also for the multitime Lagrangian joint pdf equation.

In this paper the stochastic models for e*(¢) (Sec. II)
and U*(¢) (Sec. IIT) are developed by requiring that they
have the correct behavior in homogeneous turbulence. Then,
in a subsequent paper,* the model is extended and applied to
a variety of inhomogeneous flows. ( For simplicity we do not
consider compositions: The extension to the joint pdf of ve-
locity, dissipation, and compositions is straightforward.?)

The model equations contain a number of coefficients.
For definiteness, the values ascribed to these coefficients are
stated as they occur; but the justification for these specifica-
tions is postponed to Sec. V.

11-13

Il. STOCHASTIC MODEL FOR DISSIPATION
A. Definitions

We consider homogeneous turbulence in a Newtonian
fluid of constant density p and kinematic viscosity v. At posi-
tion x and time ¢, the Eulerian velocity is U(x,z), with mean
{(U(x,)) and fluctuation u(x,#):

U(x,t) = (U(x,2)) + u(x,?). (n

The mean velocity gradients d (U, ) /dx; may vary with time,
but are spatially uniform.
Rather than the true dissipation rate

(x0) 1 (8ui +8uj)(6ui +c9uj) 2)
erxt)=—v— +—}— +—),
r 2 \dx; 0x;/\dx; Ix
we consider the pseudodissipation defined by
du; du,
e(x,n))=v——-, (3
X; Ox;

The reason for this choice is that in two respects (described
below) direct numerical simulations (DNS) of isotropic
turbulence®® show that the statistical properties of € are
more favorable than those of €;.
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The true and pseudodissipation are related by
et e B (4)

Consequently, (€) and (e;) differ only by the factor
v(3%/0x; ox;) (u;u ; ), which is zero in homogeneous turbu-
lence, and in general varies inversely with Reynolds number.
But in spite of the negligible difference in the means, there
are significant differences in other statistics.**

Henceforth, we refer to the pseudodissipation € simply
as dissipation.

It is found that the model developed here is significantly
simplified if € is reexpressed as the relaxation rate » defined
by

w(x,t)=e(x,t)/k(1). (5

Note that  is a mixed variable, in the sense that e(x,?) is
random whereas k(¢) is not. This variable—or at least its
mean {w)—has been used in several previous turbulence
models, 28335

It is also convenient to define y(x,?) as the logarithm of
the normalized dissipation:

y(x,t)=Inle(x,t)/{e(t))] = In[w(x,1)/{w(1))]. (6)

The position, velocity, and dissipation of a fluid particle
are denoted by x* (¢), U* (¢), and €* (¢), and similarly for
any other property. These Lagrangian variables are related
to the Eulerian fields by, for example,

o* () =w(x"[t],1). (7

B. Statistical properties of dissipation

In the next subsection it is proposed to model y* (¢) as
an Uhlenbeck-Ornstein (UO) process® y*(¢). The two
principal characteristics of a UO process are that the one-
time pdf is Gaussian, and that the autocorrelation is expo-
nential. The purpose of this subsection is to show that—to a
reasonable approximation—y ™ (¢) does indeed share these
characteristics.

In the celebrated papers of Kolmogorov*® and Obuk-
hov,?” it is hypothesized that (at high Reynolds number) €,
is lognormally distributed. Since then the hypothesis has
been examined many times, usually with appeals to experi-
mental data on the distribution of (Ju,/dx,)? (see, e.g.,
Monin and Yaglom?®).

More direct evidence—although restricted to moderate
Reynolds numbers— comes from DNS of isotropic turbu-
lence. Yeung and Pope® performed simulations up to a Tay-
lor-scale Reynolds number R; of 93 and examined in detail
the statistics of € and €. The relevant statistics are summar-
ized in Table I. It may be seen that the skewness (u5), flat-
ness (u,), and superskewness (uq) of y =In(e/(€)) are
very close to the Gaussian values of 0, 3, and 15. On the other
hand, the same moments (u],u,ul) based on the true dissi-
pation are significantly different from Gaussian. We con-
clude: first, that € is very close to lognormal; and, second,
that other related quantities [e.g., €; and (Ju,/dx,)?] may
have significantly different statistics.

Figure 1 shows the autocorrelation of y * , Py (8), com-

pared to the exponential e ~ ¥, where T, is the integral
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TABLE 1. Statistics of € and €, from direct numerical simulations of iso-
tropic turbulence (Ref. 33).*

R, p #  wme ul  pe M o TJT,

38 —004 —024 304 322 159 200 071 096
63 0.01 —0.19 300 315 151 185 0.83 092
93 000 —021 300 314 155 181 091 091

“u,, and u7, are the mth central moments of the standardized pdf’s of In €
andIn €. 0% is the variance of In €. T, and T, are the Lagrangian integral
time scales of y and U,.

time scale of y *. At small times there is a qualitative differ-
ence between the curves. Since y* () is a differentiable pro-
cess, its autocorrelation has zero slope at the origin. On the
other hand, the UO process y*(¢) is not differentiable (al-
though it is continuous) and consequently its autocorrela-
tion has a negative slope. But, apart from these differences at
small times, the exponential provides a reasonable approxi-
mation to Py (5).

C. Stochastic model for ™

We model y* (1) =In(e*/(¢€)) by the Uhlenbeck—
Ornstein process y*(¢) with variance o” and integral time
scale T,. This is a stationary Markov process, with y*(¢)
being continuous in time, although not differentiable. The
stochastic differential equation for y*(¢) can be written

dy*sy*(t+dt) — y* (1)

2\ 1/2
— - ey (2" ) aw,  (®
TX TX
where W is a Wiener process.'"*' (The increment dW is a
Gaussian random variable with zero mean and variance dt.)
Since y* is Gaussian and normalized so that {exp(y*)) is
unity, it is readily shown (see Appendix A, for example)

that its mean is

Py ()

PR NS TS SN WA OO T NN W N U N N AT SRS N G S 1

FIG. 1. Autocorrelation function of y * =In(e* /{¢€)). Solid line, from
direct numerical simulations;** dashed line, exp( — s/ T).
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(x*) = —io”. (9)
And defining the constant C, by
T,'=C/ o), (10)

we can rewrite Eq. (8) as
dy* = — C (@) (x* + 10%)dt + (2C (w)0?)"* dW.
(1)
For the reasons given in Sec. V, o” and C, are ascribed the

values 1.0 and 1.6, respectively.
The corresponding equation for €* = (€)exp(y*) is ob-

~ tained by use of the Ito transformation:*'

e* d(e) dt
* dt *dv* * o2 . 12
(e) dt eex € TX (12)

In order to leave the first term in a general form, we define
the normalized decay rate of €, S, by

d (€)
dt

According to the standard model equation for {€), S, is
given by?

S, =C, —C, P/{e), (14)

where Pis the rate of production of turbulent kinetic energy,
and C,, and C,, are model constants, generally ascribed the
values 1.45 and 1.90, respectively. Thus from Egs. (11)—
(13) we obtain

de* = — e*(w)dt{S, + C,[In(e*/(e)) — 101}
+ €4 (2C, (w)o?) 2 dW. (15)

The corresponding equation for w* = e€*/k differs only
in the mean decay rate:

do* = — o*{w)dt{S, + C, [ln(a)*/(a))) — %0'2]}
+ w*(2C, (o) dW, (16)
where S, is defined by

= — 5. (w)(e). (13)

4@ _ _ g (o) amn
dt
In homogeneous turbulence we have
dk
o7 P— (¢}, (18)
and hence
S, =S.+P/(e)— 1. (19)

Or, in terms of the standard model [Eq. (14)]

S,=(Cqy —1)—(Cyq —1)P/{e). (20)

lll. STOCHASTIC MODEL FOR VELOCITY

We develop here a stochastic model U* (#) for the veloc-
ity following a fluid particle U™ (¢). The starting point is the
generalized Langevin model (GLM) developed by Haworth
and Pope,'>'* which is described in Sec. II1 A. As far as the
evolution of the one-point joint pdf of velocity is concerned,
this model is completely satisfactory for homogeneous tur-
bulence: The pdfis joint normal (consistent with experimen-
tal observations®®) and the evolution of the Reynolds stress-
es is accurately described. Furthermore, it has been
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demonstrated'? that the model performs well in application
to free shear flows.

According to the Langevin model, for small time inter-
vals s, the Lagrangian velocity increment

A U*()=U*(t +5) — U*(2), 21

is a Gaussian random variable with variance proportional to
s{€). In Sec. III B evidence is presented to show that it is
more accurate to model the (conditional) variance of A, U*
(for small s) as being proportional to se* (rather than
s{€))—thus taking account of internal intermittency. Ac-
cordingly, the generalized Langevin model for U*(¢) is re-
fined to account for internal intermittency, and yet to yield
the same pdf evolution (in homogeneous turbulence) as the
generalized Langevin model.

A. Generalized Langevin model

The generalized Langevin model'!'"? is

dU* = ﬁ_l_é'a_(p)_dt-k G, (U¥—(U;))dt
p 99X

+ (ColeN)? dW, (22)

where (p) is the mean pressure G;; is a second-order tensor
discussed below, C,is a constant ascribed the value C, = 2.1,
and W(z) is an isotropic Wiener process with the properties

(dW) =0, (dW, dW,) = dt §,,. (23)

(W is independent of the Wiener process W in the equation
for e*.)

In the GLM, the tensor G;;(x,?) is a function of the
local values of (@), d (U;)/dx; and the Reynolds stresses
(u,u; ). The specific form of G, is deduced by requiring that
the evolution of the Reynolds stresses in homogeneous tur-
bulence be in accord with experiments.'> We also consider
the simplified Langevin model (SLM), in which G;; takes
its simplest possible form. To this end we write

Gij = —(}+ %C0)<w>6ij + G?jr (24)
where G ¢, is zero for the SLM, and for the GLM it is defined
(in terms of G;;) by this equation. In isotropic turbulence
without mean velocity gradients, G{; is zero—even in the
GLM. In addition, G}, is constrained so that

G{{uu;) =0
[see Eq. (25) of Ref. 12].
For the case of homogeneous turbulence under consi-

deration, it is preferable to examine the stochastic differen-
tial equation for u*(¢):

u* (1) =U*(r) — (U(x*[1].0)), (26)
which is the excess of the Lagrangian velocity over the local
Eulerian mean. In homogeneous turbulence, the one-time
statistics of u*(¢) are identical to those of the Eulerian fluc-
tuation u(?).

Corresponding to the GLM [Eq. (22)], the stochastic
equation for u* is

(25)

du¥ = K, ju¥ dt + (Cole))'? dW,, 27
where
1440 Phys. Fluids A, Vol. 2, No. 8, August 1990

;)
K;,=G;; — Fw
]
13 (U,
= —|—+—=—C 8, +G¢, ————— (28
(2+4 0>(w) s+ Gy ox; (25)

It is well established*® that linear stochastic equations such
as Eq. (27) yield joint-normal processes. In particular, the
one-time joint pdf of u* is joint normal. Consequently, the
pdf is completely determined by the means—which are
zero—and by the covariance matrix

C.;(t)=(utu}), (29)

which is simply the Reynolds-stress tensor. From Eq. (27) it
is readily deduced that C;; evolves by

C,; =K,C; + K;C;; + Cp(€)6,,. (30)

In summary, for homogeneous turbulence, the general-
ized Langevin model results in a joint-normal one-time joint
pdf of velocity (u* or u), with zero means, and covariances
evolving according to Eq. (30).

For future use, we define f(v,§;t) to be the joint pdf of
u* and €*. That is, f(v,§;f) is the probability density of the
joint event [u}¥(t) =v,e*(¢) =¢ ]. Again, in homoge-
neous turbulence this is the same as the joint pdf of the Euler-
ian variables u and €. For notational convenience we write
the stochastic equation for €* as

de* = M(e*)dt + D(e*)dW, (31)

where the drift M(e*) and diffusion D(e*) coefficients can
be identified from Eq. (15). By standard techniques'' the
evolution equation for f{v,{;?) is obtained from the stochas-
tic equations [Egs. (27) and (31)]:

af a 1 a3
9 k.2 (. -C
at Y v, )+ 2 0<€>5v,- v,
2
_dMF) 1 3d°(Df) . (32)
o 2 9’

Although we consider the joint pdf of u* and €*, it
should be noted that (according to the GLM) these pro-
cesses are statistically independent. The coefficients (X,
and (€)) in the equation for u* [Eq. (27) ] are independent
of €*; while those (M and D) in the equation for €* [Eq.
(15)] are independent of u*.

B. Internal intermittency

One of the justifications for the Langevin model is that
the predicted Lagrangian structure functions are in accord
with the Kolmogorov (1941) hypotheses. The Lagrangian
velocity structure function is defined by

DB (s)=([A U (D], (33)
where the velocity increment is
AUF=U0@+9) U (1), (34)

(see Ref. 38, p. 359). For times s that are small compared to
the integral time scale (7, say) but large compared to the
Kolmogorov scale 7, , according to the Kolmogorov (1941)
hypotheses the structure function is

DV (5) = Cyle)s. (35)
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The Langevin equation [Eq. (22)] yields the same result for
all times s much smaller than 7.

If internal intermittency is taken into account through
the refined Kolomogrov (1962) hypotheses, Eq. (35) re-
mains the prediction for the Lagrangian structure function.
But a modification to the Langevin equation is called for.
According to the model, Eq. (22), for small time intervals s
(s €7), the velocity increment A, U ¥(¢) is a Gaussian ran-
dom variable with variance C,{¢)s. This Gaussianity (witha
constant variance) is clearly at odds with the notion of inter-
nal intermittency. In the spirit of Kolmogorov (1962) a bet-
ter model would appear to be that A,U¥(¢) is a random
variable with variance [conditional on the local dissipation
€*(1)] equal to Cye*(2)s. This, in turn, suggests that the
diffusion coefficient C,{€) in Eq. (22) be replaced by Cye*.

A generalization of the above suggestion has been inves-
tigated by Yeung and Pope? in their direct numerical simu-
lations of statistically stationary homogeneous isotropic tur-
bulence. It is found from the simulations that the flatness
factorof A, U [ () increases monotonically from the Gaus-
sian value of 3 as s decreases. For very small s the flatness
factor—essentially that of acceleration—is 11 and 18 in the
simulations with R; = 63 and R; = 90, respectively. This is
a clear indication of the non-Gaussian nature of A, U™ (¢).

With the diffusion coefficient replaced by Cye*, the Lan-
gevin model implies that

g=A U () /Net (1), (36)
is Gaussian (for small s). From the simulations it is found
that the flatness factor of ¢ is 5.0 and 5.6 at the two Reynolds
numbers. While these are in excess of the Gaussian value of
3, they represent a considerable reduction from 11 and 18.

It should be remembered that in Eq. (36), ¢* is the
pseudodissipation. If the true dissipation is used instead, the
flatness factors obtained are 8.5 and 10.0. This is the second
reason for using the pseudodissipation € rather than the true
dissipation e ,—the first being that € is more nearly lognor-
mal.

C. Refined Langevin model

The model proposed here is (for homogeneous turbu-
lence)

du? = K, u* dt + H, dt + (Coe*)"? dW,. (37)

Compared to the GLM [Eq. (27) ], an additional drift term
H dt is introduced, and the diffusion coefficient is changed
to Cye* to account for internal intermittency, as argued
above. For this reason we refer to Eq. (37) as the refined
Langevin model (RLM). For small time intervals s, the dif-
fusion term dominates, and yields:

(A, uFA u¥|e*) = Coe*sd,;. (38)

That is, the covariance of A, u* conditional on the local dissi-
pation e* is isotropic and proportional to €*. The isotropy of
A, u* (for smalls) is consistent with Kolmogorov’s hypothe-
sis of local isotropy—as is also the case for the GLM.

The additional general drift term H(u*,e*) in Eq. (37)
is to be chosen so that the one-time joint pdf of u* and €*,
S(v,§;0), evolves in the same way as it does according to the
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GLM [Eq. (32)]. This is the appropriate requirement, since
Eq. (32) yields the correct pdf evolution—u*(¢) is joint nor-
mal with the correct covariance matrix C;; (2).

The evolution equation for f(v,{;¢) obtained from the
refined model [Eq. (37)] is

& _ g S  HH D)
at Y a; av;
f
—C.¢e*
PRI
_ 9(Mf) _1_62(Df). (39)
ac 2 a?

The difference between the right-hand sides of Egs. (32) and
(39) is

E(V,;) = —

Jd(fH, 2
f ')+%Co(e*—<e>) IS (40)

v A, A,

and consequently the required choice of H; is that which
makes E vanish. By construction, the one-time joint pdf of
u*(¢) is joint normal and independent of €*(¢). Hence (asa
property of the joint-normal distribution) we have

af _
@, = St

1

(41)

where C ;! denotes the ij component of the inverse of the
Reynolds-stress tensor. Substituting this expression into Eq.
(40) we obtain

E(vg) = 5‘? ( _fH, — % Cole* — ()T 5 'u,f). (42)

Evidently, the required choice of H is
H, = —1Cy(e* —(e))C v, (43)
There is advantage in reexpressing Eq. (43) by intro-
ducing the normalized Reynolds-stress tensor
A;;=3C,,/Cy = uu;)/(3k). (44)
The trace A,; is 3; and if the Reynolds stresses are iso-

tropic, thend,; = 4 ;7 ' = §,,. With this definition, Eq. (43)
becomes

H, = —iCyw* — (o)A 5y, (45)
The refined Langevin model [Eq. (37)] is, then,
dut = [K;; — Cole* — (@))4 ;' |ur dt

+ (Coe*) 2 dW,. (46)

Or, in terms of the full velocity U*(#) it is
qur= - L2& Ly e (uyar
p  Ox
+ (Coe*)V2 dW,, (47)

where
Lj=G;—3Cla* — (o)) 4 171
=Gl — G +3C)(@)8;; — 1Co(w* — (0))4 7. (48)

These two equations [Eqs. (46) and (47) ] can be compared
to Egs. (27) and (22) for the GLM. For isotropic turbu-
lence without mean velocity gradients, the RLM adopts the
simple form:
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du* = — (L) + 3C*)u* dt + (Cye*) " dW. (49)

To summarize the properties of the refined Langevin
model: For small time intervals s, the velocity increment
A, u* is isotropic with (conditional) variance proportional
to €*s. The one-time joint pdf of u* and €* evolves identically
to that corresponding to the GLM. In particular (at time ¢),
u*(¢) is joint normal, and u*(¢) and €*(¢) are independent.
However, in contrast to the GLM, the multitime statistics of
u* are not joint normal, nor are they independent of e*.

Some variants of the refined Langevin model are dis-
cussed in Appendix B, where the question of realizability is
also addressed.

IV. JOINT pdf EQUATIONS

Having obtained stochastic models for €*(¢) [or, equiv-
alently, for w*(¢)] and for U*(¢), in this section we write
down the corresponding one-time joint pdf equations.

Let F(V,{;x,1) be the Eulerian one-point joint pdf of U
and e. The evolution equation for F can be derived by stan-
dard techniques“ from the stochastic equations for U*(¢)
[Eq. (47)] and €*(¢) {Eq. (15)]:

£+ (9F l d{p) OF I ad
at 8x p Ox; dvV, )
a*F
FlV, — (U C
X ( [ f ( ,)])+2 °§8V8V

+ (w>ai§(F§ {Se +C, [ln(%)
- % 02] ]) +C, (a))ozi}(;;i.

Similarly, let G(V,6;x,¢) be the Eulerian one-point joint
pdf of U and w. Its evolution equation is

(50)

8G+V13_G=i3(p) G _L, d
ot x, p Ix; IV, av,
1 3G
GV, — (U, — Cokt
X(GV; <,>])+2 0 v, av,

+(w)—(G9{S +c[ (<9>)
02]})+c< 1?9 O

Starting from the Navier—Stokes equations, it is possible
to derive exact evolution equations for Fand G that can be
compared to their modeled counterparts [Egs. (50) and
(51)]. For the joint pdf of velocities, this exercise has been
performed by Haworth and Pope.'> We do not perform the
analogous exercise here because the exact equation of € is
uninformative: The dominant terms in the equation pertain
to microscale processes, whereas the rate-controlling pro-
cesses occur in the energy-containing range.

(51)

V. SPECIFICATION OF COEFFICIENTS

In this section, the coefficients in the model equations
are specified. The emphasis of this work is on the form of the
model and its qualitative performance. Consequently, sim-
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ple specifications are made, sometimes by comparison to
standard Reynolds-stress or pdf models. It is expected that
modifications to these specifications in order to increase
quantitative accuracy will be suggested by application of the
model to a wide variety of inhomogeneous flows and also by
a comparison to more recent modeling proposals (e.g., Refs.
8and 9).

A. Dissipation equation

The stochastic model for €*(¢) [Eq. (15)] contains
three coefficients: 0%, C,, and S..

Values of o°—the variance of y = In(e/(€) )—obtained
from the direct numerical simulations of Yeung and Pope™®
are shown in Table I. It may be seen that (as expected) o
increases weakly with Reynolds number: The DNS data sug-
gest®

0*=0291nR, — 0.36,

over the range investigated, R, = 38-93. However, rather
than incorporating this dependence on R;, we choose in-
stead to specify the constant value o> = 1.0, corresponding
to R, =~ 110. The reason for this decision is that the Reyn-
olds-number dependence of other coefficients (e.g., C, and
C,) is not well established. To include Reynolds-number
dependences in some coefficients and not in others is likely to
lead to a spurious Reynolds-number dependence of the mod-
el as a whole. At present, the simpler strategy of making all
coefficients independent of R; is likely to be more useful
since, at high Reynolds numbers, very little Reynolds-num-
ber dependence is observed in one-point statistics (e.g.,
Reynolds stresses).
The constant C, is defined by [Eq. (10)]

=), =T,/7, (52)

where T, is the integral time scale of
vy (t)=Infe* (#)/{€)]. Some care is needed in extracting
the integral time scale 7, from DNS, since artificial forcing
is used to create statistically stationary turbulence. This, to-
gether with the periodic boundary conditions used, has a
distorting effect on the energy containing motions—an ef-
fect which is patently displayed in the Eulerian energy spec-
trum. It appears, however, that the Lagrangian energy spec-
trum is little affected. Consequently, it can be expected that
the ratio of 7, to the Lagrangian velocity integral time scale
T, obtained from DNS is a reasonable estimate of the same
quantity in natural turbulence. This time scale ratio 7', /T,
is shown in Table I: On the basis of this data, C, is chosen to
yield T, /T, =0.9.

In Appendix A, the stochastic equations are analyzed,
and an accurate (although approximate) expression for
T, /7 is obtained [Eq. (A45)]. This expression is used to
deduce the value of C,, that yields 7', /T, = 0.9 for different
values of C,, for 0 = 1 (see Fig. 2). Thus, with ¢* = 1, the
specification 7', /T, = 0.9 determines C, in terms of C,. In
the next subsection, the specification C, = 3.5 is made: the
corresponding value of C, is (from Fig. 2) C, = 1.6.

The normalized decay rate of {(¢), S. [Eq. (13)], or of
(w), S, [Eq.(17)1, is specified by Eq. (14) or Eq. (20), for
consistency with the standard model equation for ().

S.B.Popeand Y. L. Chen 1442

Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



LI U NN N N SO N L LN 0 LD B LD LI ML

20

15

LA S S I B N S B B N S LI NN N M B LI B S S

1.0

IS DS N T TSR (S U WO NN TN U O AN T T S (NS B S

TP N RV B PN RIS EPUN BA B SR SN AU O
20 3.0 4.0
C

o
-}

o

FIG. 2. The value of C, as a function of C, that yields T/T, = 0.9 for
o® =1 [from Eq. (A45)].

B. Specification of Cy

The choice of C, requires some discussion, since there is
superficially conflicting evidence.

First, we recall that C,, is a universal Kolmogorov con-
stant.!*%4! We define the function C,(s) by

Co(s)=D® (5)/((€)s), (53)

where D'V (s) is the second-order Lagrangian velocity
structure function [Eq. (33)]. According to the Kolmo-
gorov (1941 and 1962) hypotheses, at high Reynolds num-
l’)\er, and for time intervals s in the inertial range (7, €s<T),
C,(s) adopts a constant value C,. As mentioned in Sec. 111,
the stochastic models yield the same result for s< 7.

Since Lagrangian statistics are extremely difficult to
measure, there are no direct measurements of C,(s) at high
Reynolds number. In their simulations, Yeung and Pope™
find that C,(s) does not adopt a constant value over a range
of s. (This observation does not conflict with the Kolmo-
gorov hypotheses since the Reynolds numbers are insuffi-
cient for there to be a distinct inertial range.) The peak value
of Cy(s), denoted by C ¥, appears to increase as R ;?, having
the value 4.0 at the highest Reynolds number (R; = 93).
These observations suggest that C, is larger than 4.0 (al-
though there is no necessity for C ¥ to increase monotonical-
ly with R ;).

Anand and Pope'® deduced the significantly smaller
value of C, = 2.1. They used the simplified Langevin model
to make calculations of turbulent dispersion in grid turbu-
lence. For this model and flow, Cj, is the only undetermined
parameter and it is found that the value C; = 2.1 produces
agreement with experimental data. With the refined Lange-
vin model, however, turbulent dispersion is affected by o*
and C, in addition to C,. Consequently, for the RLM, the
effect of C,, on dispersion is now reassessed.

The experiments'*'¢ are performed in grid-generated
turbulence. At a distance x, downstream of the grid, a fine
heated wire is placed across the wind tunnel normal to the
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mean flow direction. At distances x’ downstream of the wire,
the profile of the mean excess temperature—which is Gaus-
sian—is measured, and its standard deviation is denoted by
o’. Figure 3 shows o’/I plotted against x'/x,, where / is the
value of k >2 /{€) at the wire. In addition to the experimental
data,'® the figure shows the result given by the stochastic
model with C, = 2.0, 3.5, and 5.0. In each case the value of
C, is chosen to yield T, /T, = 0.9 (see Fig. 2) and o” is
unity. It may be seen that the data suggest a value of C;,in the
range 2-5, and that the sensitivity is small: increasing C,
from 2 to 5 results in only 25% decrease in o’/1.

It is clear that there remains considerable uncertainty in
the value of C,. Based on the observations made above, we
tentatively specify the value C, = 3.5.

There is a direct correspondence between the simplified
Langevin model (both standard and refined) and Rotta’s
return-to-isotropy model.*?> According to the simplified
models (i.e., G{; = 0), the Reynolds-stress tensor evolves
(in homogeneous turbulence) according to [Eq. (30)]:
a(u,) a(u;)

— (upu; ) ———

d
dt i) = = (i) ax,, ox,,

_ % (€)8,, — (1 + % Co)(w>

X((u,uj) —%k&ij). (54)
This is exactly the same as Rotta’s model, with (1 + 3C,)
being the Rotta constant Cg. The choice C, = 3.5 corre-
sponds to C = 5.25 which is negligibly outside the range 4
5 suggested’ to be appropriate (with G §; = 0).

1

C. Adjustment of G7,

Haworth and Pope'*'® used the value C, = 2.1 in the
GLM, while with the refined model the higher value of
C, = 3.5 is appropriate (as shown in the preceding subsec-
tion). Consequently, the change in C, necessitates a com-

AL I A B L B LI RS
20 c, =20 .«
C 3.5 »
oL ]
o e 50 ]
1.0 -1
PO S W [N TR [N N N TR U N N T N ]
0 2.0 4.0 6.0 8.0

x'/x,

0

FIG. 3. Thermal wake width ¢’ against distance from the wire x’. Symbols,
data of Warhaft;'® lines RLM C, = 2.0, 3.5, 5.0.
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pensating change in G {; in order to yield the same (correct)
evolution of Reynolds stresses in homogeneous turbulence.
In this subsection the simple task of determining the re-
quired change in G {; is performed.

Let the superscript @ denote quantities used by Haworth
and Pope:'* in particular G {; and C§ = 2.1. Let the super-
script b denote the adjusted quantities, C?, and C§ = 3.5
and let the differences be

AC,=C{ —C: (5%5)
and

AG,;=G}, - G}, (56)

We require that the evolution of the Reynolds stresses

[Eq. (30)] be the same for both models. Thus, from Eq.
(30), we obtain

AGik ij + Aij Cki + AC0(€>6U - O. (57)

It is possible, and helpful, to require AG,; to be symmetric.
Then, Eq. (57) uniquely determines AG,; to be

AG; = —JACe)C ;' = — G4 ;" (58)

In summary, the evolution of the Reynolds stresses is
unaffected by a change in C,, providing that G;; is changed
correspondingly according to Eq. (58).

VI. SUMMARY AND CONCLUSIONS

A modeled transport equation [Eq. (50)] has been ob-
tained for the joint pdf of velocity and dissipation. This is
achieved by constructing stochastic models for the velocity
U™ (2) [Eq. (47)] and for the dissipation € (¢) [Eq. (15)]
following fluid particles.

The pseudodissipation (rather than the true dissipa-
tion) is considered because of its favorable statistical proper-
ties. The logarithm of dissipation y* () =In[e* (2)/{€)] is
modeled by a Uhlenbeck—Ornstein process. Consequently, €
is lognormally distributed, and x*(¢) has an exponential
autocorrelation function, in accord with observations from
direct numerical simulations.

The stochastic model for the Lagrangian velocity—the
refined Langevin model—is a modification of the general-
ized Langevin model developed by Haworth and Pope. !>
The RLM accounts for internal intermittency, and in homo-
geneous turbulence yields the same, correct evolution of the
joint pdf of velocity as the GLM. That is, the joint pdf of
velocity is joint normal, with the Reynolds stresses evolving
in accord with experimental observations.

The stochastic processes for U*(¢) and x*() are, or
course, models and do not contain all of the physics em-
bodied in the true time series U™ (¢) and y™* (¢). For small
times s <7, the autocorrelations of the (nondifferentiable)
model processes decay linearly with s, while the true (differ-
entiable) processes decay as s°. For not-too-small times, the
autocorrelation of y* () obtained from DNS (Fig. 1) ap-
pears approximately exponential—characterized by a single
time scale—but at high Reynolds number a more complicat-
ed structure might be expected. For the velocity U™ (¢),
DNS again suggest an exponential autocorrelation: but it is
possible that a more detailed examination for long time lags
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would reveal a power-law tail, indicative of long-term mem-
ory. [Molecular-dynamics studies*? indicate p,, (s) ~s — 2
for the autocorrelation of molecular velocities. |

In this paper attention is confined to homogeneous tur-
bulence. And for this case by construction the model yields
the correct evolution of the velocity-dissipation joint pdf.
(Hence, a direct comparison with experimental data is not
needed.)

The principal application of the modeled joint pdf equa-
tion is to inhomogeneous turbulent flows, both with and
without chemical reactions. Applications to inhomogeneous
flows are in progress.>> An initial finding is that additional
terms (that are zero for homogeneous turbulence) are re-
quired in the modeled joint pdf equation. Consequently, the
equation developed here [Eq. (50)] should not be regarded
as being directly applicable to inhomogeneous flows. Rath-
er, the modeled equation for inhomogeneous flows (current-
ly being developed) should reduce to Eq. (50) for the case of
homogeneous turbulence.

For reacting flows, the appropriate joint pdf is that of
velocity, dissipation, and composition.? The addition of
composition to the velocity-dissipation pdf equation is
straightforward. Furthermore, the inclusion of dissipation
within the pdf provides the opportunity for improved model-
ing of mixing.
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APPENDIX A: VELOCITY AND DISSIPATION
AUTOCORRELATIONS

The primary purpose of this appendix is to obtain an
expression for the Lagrangian velocity integral time scale.
Several other useful results are obtained in the process.

1. One-time moments of dissipation
The normatized modeled dissipation is defined by

vy =e*(1)/(e(1)). (AD)
According to the model, y(¢) is given by
v() =exp[x(n], (A2)

where y(¢) [denoted by y*(¢) in the text] is a Uhlenbeck-
Ornstein process with mean — 107, variance 07, and integral
time scale 7, .

The general one-time mixed moment is defined by

M =(r'x*), (A3)

for p>0, g>0. By explicit integration over the pdf of y we
obtain
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M, =o° exp(% ap(p — 1))—‘/5_—
T

S ) S
Hence (with g = 0), we obtain
(y7) = (™) =exp[407p(p — 1 ]. (A5)

With £ being a standardized Gaussian random variable,
it may be observed that Eq. (A4) is equivalent to

M,, = ()0 ([£ — a3 —p)]). (A6)
Hence, in particular,
M, =0*(p—Dexp[io’p(p— 1] (A7)

and
M, =’[1+0*(p—*|exp[jo’p(p— 1)]. (AB)

2. Autocorrelation of dissipation

The UO process y (#) is stationary, with autocorrelation
function

py (s) =exp( —s/T,). (A9)
The normalized dissipation y(#) is stationary with mean
M, =1 and variance (M,, — M3,) = exp(d®) — 1. The
autocovariance and autocorrelation of ¢ are denoted by
R, (s) and p, (5):

P, (8) =R, (s)/[exp(c?) — 1]. (A10)
The autocovariance is given by
R, (s)=(ly() =11yt +s) —1])
= (exp(X)) — |, (All)
where
X=x(@) +x(t+5s). (A12)

Now it is a property of the UO process*® that y(z) and
x (¢ + s) are jointly normal. Consequently, X is Gaussian; its
mean and variance are

X)=(®) +xt+9))= -7 (A13)
and
S2=var(X)

= (y(O)*+ 2Dyt +5) + y(t+5)?) — (X)?
=2[{¥*) — (0?1 + 2{x () — (V]
Xy +s5) — (0D

=201 +p,(9)]. (Al4)

Since X is Gaussian with known mean [Eq. (A13)] and
variance [Eq. (A14)], (exp(X)) and hence R, (s) can be
obtained by integrating over the pdf of X:

- 0oy,
S A O A
zﬂf_we"p( 232 4

=exp(}2° — o*) — l =exp(cp, [s]) — 1. (Al5)

R, (s) =

Hence, the autocorrelation of y is
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p, (s) = [exp(a’p, [s]) — 1] [exp(c®) — 1] !
= {exp[c?exp( — s/T,)] — 1}

X [exp(a?) — 1] 1.
The integral time scale of 7, T, is obtained by

o0 o —s/TX .
TYEJ(; p,,(s)ds=J; [exp(o?e ) l]ds.

(A16)

(e —1)
(A17)
Substituting
y= O'Ze_s/rx’ (Als)
we obtain
o
1’;:[ _(iy;_l__)_dy{eal_ 1}-!
Tx 0 y
= [EI(UZ) —111(7'2—7/](e‘72 - 1)—1
o 0’2" )( © 0,2,.)-1
- ; Al
(nz'. (nn!) 2, ! (A19)

where Ei is the exponential integral and 7 is Euler’s constant.
It may be seen from the last expression that T, is less than
T, . A plot of this ratio as a function of ¢? is shown in Fig. 4.
It may be seen that for o” less than 2, say, Eq. (A19) is
reasonably approximated by

T,/T,=1-30> (A20)

For ¢ = 1, the autocorrelation p,, (s) [Eq. (A16)] is
plotted in Fig. 5, and compared to the exponential

Py (s) =exp(—s/T,), (A21)

which, it may be seen, provides a good approximation.

3. Stochastic model for scaled velocity

For isotropic turbulence without mean velocity gradi-
ents, the refined stochastic model for velocity reduces to

1.0 SRR AR R R L N N A AR R AN S RE

0.6 |- N .

04 \ -

0.2 ST USTEUNCEE NIRRT IR CUR NN AN SRS FNRTE SN PR

0 1.0 20 3.0 4.0 5.0
o?

FIG. 4. Integral time scale ratio T, /T, against variance o°. The dashed line
is the approximation Eq. (A20).
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du* = — (J{w) + JCow*)u* dt + (Coe*)? dW.
(A22)
This process u*(¢) can be made stationary (even in de-

caying turbulence) by scaling all variables by k(#) and
{w(t)). Accordingly, we define t and W by

dt={(w(t))dt (A23)
and

dW={(0())"? dW, (A24)
and the scaled velocity by

(1) =u*(2)/k(t)V2. (A25)
With these definitions, Eq. (A22) transforms to

dia(?)=i(r +dt) —i(?)

= —ICyidl + (Coy)' 2 dW. (A26)

It is readily shown that this stochastic differential equa-
tion yields a stationary process @(t), with zero mean, and
covariance 36, ;.

A further transformation is performed to yield a UO
process in a stochastically scaled time. This time 7 is defined
by

r(f) = f (1) dt. (A27)
0
The corresponding velocity and Wiener process are
#(r[1]) =a(») (A28)
and
dW =72 (HdW. (A29)

Corresponding to Eq. (A26), the stochastic differential
equation for ii(r) is

da(r)=ua(r +dr) —i(r)

= —3Cjiidr+ CY?*dW. (A30)
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This corresponds to a UO process with mean zero, covari-
ance 36, ;, and autocorrelation (in scaled time r)

p(s) =exp( —s/T), (A31)
where the (normalized) integral time scale is
T=(3C, " (A32)

This transformed equation [Eq. (A26)] is used below
to obtain an expression for the velocity autocorrelation. But
it also has an interesting interpretation. The Langevin equa-
tion (with diffusion coefficient Cy(¢)) yields a UO process
(in regular time) for ii(¢), with autocorrelation given by
Egs. (A31) and (A32). Accounting for internal intermit-
tency (i.e., using Cye* for the diffusion coefficient) yields
exactly the same UO process, but in stochastically scaled
time, r—scaled, that is, by the local dissipation rate
[dr = (e*/(€))d!].

4. Velocity autocorrelation

With some approximations, an expression is obtained
for the autocorrelation p,, (s) of one component of ii(¢) giv-
en by Eq. (A26). Recalling that #,(¢) is stationary with
variance %, the autocorrelation can be obtained from

Pu (8) = 3{01,(0)it, (5)). (A33)

In terms of the locally scaled UO process a(r) [Eq.
(A30)], from Egs. (A28), (A31), and (A33) we have

Pp.(8) = Ha, ()i (r[s])) = (ﬁ(’[”))
= (exp( — ris1/D). (A34)
Thus p,, (5) can be determined if the pdf of #(s) is known.
Since (y) is unity, from Eq. (A27) we obtain

(r(s)) =f (y(0))dt =s, (A35)
(0]
and also
(r(s)* =f f (r(Dy(e"))dtde’
0 JO
=J f 1+ (Y Dy ))drdr’
0 JO
=f J 1+ (¥Dp, (t—t)dtdt’,  (A36)
0 JO

where ¥’ is the fluctuation ' = ¥ — (¥), and p,, is the auto-
correlation of . Thus the variance of r(s) is

(F(5)?) = (,/2>J J p,(t—t")drdt'
0 JO

= 2<7/2>J (s—Dp, (D)dt. (A37)
0

Although the autocorrelation p, is known [Eq.
(A16)], in order to perform the integral in Eq. (A37) ana-
lytically, we use instead the exponential approximation, Eq.
(A21). Then Eq. (A37) becomes

(r()*) =2y T2[exp( —s/T,) +s/T, — 1].

(A38)

The second, and final, approximation is that r(s) is log-

normally distributed—as it certainly is for small s. Let
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g(s)=In[r(s)/{r(s))1, (A39)
have variance 2 (s)? and mean — }Z(s)2 From the relation

() = (r2)/(r)? (A40)
and Eq. (A38) we obtain

2 =In[1+2(/)(T,/9%e” " +1/T, - D].
(A41)
From Eqgs. (A34), (35), and (39) we obtain
pu (5) = {exp( — se?/T)), (A42)
and with the assumed Gaussianity of ¢:
g+ 122)2 S Y .
p"(s)——f ( S
(A43)

With the transformation y=]2 + §/Z, the final expression
is

1 < 1
o=t el Ly
P ). 5

el L))

To summarize, with the assumptions that  has an expo-
nential autocorrelation function and that r(s) is lognormally
distributed, the autocorrelation of velocity is given by Eq.
(A44). This expression can be evaluated numerically, and
integrated (with respect tos) to give the Lagrangian velocity
integral time scale:

1 o0
T, =—00o ds.
u (w)fo p.(s)ds

(Indecaying turbulence both T, and (@) depend upon time,
but their product is constant. )

Since the expression for p, (s) [Eq. (A44)] is obtained
via two approximations, some confirmation of its accuracy is
called for. A Monte Carlo simulation was performed in
which many sample paths of y(t) and #i(7) were generated
numerically from their stochastic differential equations.
Thenp, (s) was determined using standard time-series anal-
ysis. Figure 6 shows p,, (s) determined from the simulations
compared to the approximate expression Eq. (A44). It may
be seen that the agreement is excellent. (The conditions of
the simulations are: C, =2.1,C, =2,0°=1.)

(A44)

(A45)

APPENDIX B: VARIANTS OF THE REFINED LANGEVIN
MODEL

The occurrence of the inverse of the Reynolds-stress
tensor 4 ;; ' in the refined Langevin model [Egs. (46) and
(47) ] is a possible concern. Rapid rotation or stable stratifi-
cation can cause turbulence to become two dimensional. As
the two-dimensional state is approached, the Reynolds-
stress tensor becomes singular, and hence some components
of 4 7' tend to infinity. Thus, for flows that approach this
two-dimensional limit, the occurrence of A g !is, at least, a
possible source of ill conditioning. It appears, however, that
the model does not violate realizability requirements, for the
pdf evolution is identical for RLM and GLM, and it is
known that GLM satisfies realizability.!'~!?
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FIG. 6. Velocity autocorrelation. Solid line, Eq. (A44); dashed line, the
approximation exp( — s/7T,); symbols, from Monte Carlo simulation
(Co=21,C,=2,0=1).

In the two subsections of this appendix two types of
variants of the RLM are investigated, with a view to provid-
ing well-conditioned alternatives for turbulence close to the
two-dimensional limit.

1. Approximate inverses

Three variants are described in which the inverse 4 n !
appearing in the RLM [Egs. (46)-(48)] is replaced by a
different tensor 4, ;. Then their performance is discussed.

a. Modified determinant (MD)

The inverse 4 ;; ' can be written

A5 =A4%/D, (B1)

where D is the determinant of 4, ;»and the tensor 4 by} is finite
even in the two-dimensional limit.

The determinant D is nondimensional and can take val-
ues between zero (for two-dimensional turbulence) and uni-
ty (for isotropic turbulence). In homogeneous shear flow its
value is approximately 3/4.

We define the modified determinant D *(D) by

D*(D)=D*/(D+7v)+v/(1+p), (B2)
with ¥ = 1/8. This provides an excellent approximation to
D—to within 1/2% for D>0.7—and yet is positive for
D=0[D*(0)=1/9].

The modified determinant (MD) model is defined by
Eqs. (46)-(48) but with 4 ;' replaced by

A,=A4%/D*=47;'D/D*. (B3)

b. Approximate inverse (Al)

For application in different circumstances, it is useful to
have a range of models—ranging from the most accurate
available to the less accurate, but simpler. The GLM and
simplified Langevin model (SLM) provide such a range.
One aspect of the simplicity of the SLM is that it can be
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implemented without the Reynolds stresses or mean velocity
gradients being known (i.e., without their being extracted
from the numerical solution of the joint pdf equation). How-
ever, this simplicity is partially removed in the refined Lan-
gevin model since it requires a knowledge of the Reynolds
stress tensor (i.e., of 47 ').

It is natural to examine, therefore, the simpler model
(AI) defined by approximating 4 ;; ! by the identity:

Z,»jsé‘ij. (B4)

¢. Neglect of inverse (NI)
Finally, for completeness, we define the NI model by
4;=0. (B5)

An examination of the performance of this model demon-
strates the importance of the term in 4;; in the RLM.

d. Performance of the models

For each model (RLM, MD, Al, NI) a Monte Carlo
simulation was performed to determine the evolution of the
joint pdf for the case of homogeneous shear flow. The condi-
tions of the simulations are: d (U,)/dx, =1, k(0) =1,
{€(0)) = 0.3 with %, (0) and In €(0) having independent
Gaussian distributions. The model constants used are
C,=35 C, =16 G}, =0, 6*=10, C,, =145, and
C, =109

Figure 7 shows the evolution of the flatness factor of
u, (1), F, (t). The flatness factors for RLM and MD are in-
distinguishable, and equal to the Gaussian value of 3, to
within the statistical error of the simulations. For Al, the
flatness factor remains below 3.5, while for N1 it exceeds 7.

For the evolution of the turbulent kinetic energy, Fig. 8,
the conclusions are parallel: RLM and MD are indistin-
guishable, while AI deviates from these results less than NI.

From these results it can be concluded that the modified
determinant model is well conditioned, and under normal

L ! 1 ! 1 T T ' | T I T T 4
70F 3
. N1 ;
6.0 3
FF ]
u r ]
50F 3
a0 3
a3 Al 3
F ALM/MD ]
L L 1 i 1 L i 1 1 i 1 1 ] 3

0 1.0 2.0 3.0 4.0 5.0 6.0

FIG. 7. Flatness factor of u, against time in homogeneous shear flow ac-
cording to different models.
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FIG. 8. Turbulent kinetic energy of «, against time in homogeneous shear
flow according to different models.

circumstances (e.g., homogeneous shear) its performance is
indistinguishable from RLM (and hence GLM). However,
for two-dimensional turbulence non-Gaussian velocity pdf’s
occur. Approximating the inverse by the identity (AI) [Eq.
(B4)] results in modest departures from Gaussianity. Thus
Al is a reasonable approximate model, that can be imple-
mented without the evaluation of the Reynolds-stress ten-
sor.

2. Locally anisotropic model
The locally anisotropic model (LAM) is defined by
dut = K{ut dt + (Cpe*)'?4 [> dW, (B6)

tJ77
where K ¢, is defined below, and 4 1/ is the square root of
A;;, i.e., the symmetric tensor such that

A4 =4, (B7)

According to this model, for small time intervals s, the veloc-
ity increment is anisotropic: specifically

(Aul Aut|e*) = Coe*sA

[cf. Eq. (38)].

An analysis, similar to that performed in Sec. III C
shows that the one-time joint pdf of u* and e* evolves in the
same way for this locally anisotropic model as it does for the
refined Langevin model and for generalized Langevin mod-
els, provided that K /! is specified to be

K=K, +3C({0)4 ;" — 0*s,))

= — (o) +ICw*)5;; + 31C w)(4 ;' —6,;)
(U,

+ G — .

/ ox;

At first sight, this LAM provides no advantage over the
RLM for two-dimensional turbulence, since it contains the
inverse 4 ; !in the definition of K j‘l However, the analysis
shows that the joint pdf of velocity given by LAM is joint

ije

(B8)

ijo

(B9)

S.B.Pope and Y. L. Chen 1448

Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



normal providing only that the coefficient of w* is that given
by Eq. (B9) (i, 3Cob;)). If the coefficient 4 ;' —§;; is
replaced by an approximation 4;; — §;; then the Reynolds-
stress evolution is affected, but not the joint normality.

In summary, the locally anisotropic model is defined by
Egs. (B6) and (B9), with a finite approximation A4, ; to
A7 ! Even for two-dimensional (homogeneous) turbulence
this model yields a joint normal pdf of velocity. It is expected
that a model applicable both to three-dimensional turbu-
lence—in which local isotropy prevails—and to two-dimen-
sional turbulence can be obtained by a blending of RLM and
LAM.

[Simple analysis shows that the LAM is unaltered if, in
Eq. (B6), the tensor 4 ;/? is replaced by any matrix Z,; that

ij
satisfies Z,Z; = A;;. In the numerical implementation of

the method it is convenient to make this replacement, taking
Z,; to be the Cholesky factorization* of 4,;.]
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