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A new stochastic model is presented and used to calculate the properties of turbulent
premixed flames in the flame-sheet regime. The flame sheet is represented statistically by
infinitesimal flamelets, each characterized by its position, its unit normal vector, and its (in-
finitesimal) area. The evolution of the position and normal are completely determined by the
fluid velocity and its spatial derivatives following the flamelet, which are modeled by sto-
chastic processes. The flamelet area changes by stretching caused by velocity gradients, by
the propagation of cusps, and because of curvature. An additional model is developed to
account for the latter two mechanisms.

The Stochastic Flamelet Model is used in conjunction with the joint pdf approach to make
calculations of non-stationary, statistically plane turbulent premixed flames. These calculations
demonstrate the practicality of the method and illustrate its attributes. Because it contains
a natural and comprehensive statistical description of the flame sheet, the model allows the

essential physical processes to be incorporated in a straightforward manner.

Introduction

Both in spark ignition engines and in laboratory
flames, turbulent premixed combustion most often
occurs in the flame-sheet regime.'® A thin flame
sheet (thinner than the Kolmogorov scale) forms a
surface*®>—possibly highly corrugated—that sepa-
rates reactants from products (see Fig. 1). This flame
surface is convected, bent and strained by the
turbulence® and propagates (relative to the reac-
tants ahead) at a speed that can depend on the lo-
cal conditions.

A wide variety of modeling approaches has been
applied to turbulent premixed flames in the flame-
sheet regime. Some (e.g. Refs. 7-9) aim at calcu-
lating global quantities—turbulent flame speed,
overall mass-burning rate, etc.—while others (e.g.,
Refs. 10-14) are more comprehensive in that they
attempt to describe the temporal and spatial vari-
ations of statistics through the flame. Both the Bray-
Moss-Libby model'®!! and the pdf method!2-14
(which are in the latter category) have been suc-
cessful in accounting for some of the experimental
observations related to counter-gradient diffusion and
flame-generated turbulence.ll:1* But both models
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have shortcomings in determining the local burning
rate. In the Bray-Moss-Libby model the local burn-
ing rate is not determined at all,’! and so the tur-
bulent flame speed is required as an input to the
calculation rather than emerging as a calculated re-
sult. In the pdf method the local burning rate is
calculated, but not in an entirely satisfactory man-
ner: the burning rate is (implicitly) assumed to be
inversely proportional to the turbulent time
scale,1215 and the incorporation of the influence of
the laminar flame speed is ad hoc.®

The Stochastic Flamelet Model, presented here,
provides a method for determining the local burn-
ing rate. It does so by explicitly representing the
flame sheet and the processes that affect its evo-
lution. The numerical implementation of the model
is a Monte Carlo method in which the flame sheet
is represented by large numbers of flame elements,
or flamelets. Each flamelet has a position, an ori-
entation and an (infinitesimal) area, which evolve
according to stochastic models.

The Stochastic Flamelet Model is used in con-
junction with the pdf method,"® there being a two-
way coupling between the two methods. A mod-
eled equation is solved for the joint pdf of velocity,
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FiG. 1. Sketch of a flame sheet.

dissipation and reaction progress variable, the local
mean reaction rate being supplied by the flamelet
model. The pdf method determines the mean
fields—velocity, progress variable, etc.—required
by the flamelet model.

The model is described in the next section. Cal-
culations have been performed for the idealized case
of an initially plane flame sheet in constant-density,
stationary, isotropic turbulence. These calculations,
reported in the third section, prove the practicality
of the model and illustrate the influence of the lam-
inar flame speed. Conclusions are drawn in the fi-
nal section.

The Stochastic Flamelet Model

An infinitesimal flame element—or flamelet—has
position X(t), area dA(t), and unit normal N(t)
(pointing into the reactants). By definition,® as it
evolves, the flamelet remains part of the flame sheet
by its position changing according to the equation

X(#) = U(t) + wN(). Q)

Here U(t) is the fluid velocity just ahead of the
flame, and w is the local propagation speed of the
flame-sheet relative to the reactants. In the present
work we take w to be a constant—the laminar flame
speed—but there is no difficulty in allowing for a
dependence on the local strain rate.

In the variable-density case, the Eulerian veloc-
ity u(x,t) is discontinuous at the flame sheet.> Hence,
since U(t) and w are defined with respect to the
reactants, we have

U(t) = linr(l) u(X(t) + | yIN(£),0). @)
y—

In the constant-density case considered here u(x,t)
is continuous, and Eq. (2) reduces to U(t) =
u(X[t],t).

The initial condition for Eq. (1) is of great im-
portance. Let S, denote the flame surface at the
initial time t,. Then the initial flamelet position X,
= X(t,) is a random variable uniformly distributed

on S,. Let A, be the expected’ initial surface area,
and let dA, be the initial (infinitesimal) area of the
flamelet (i.e. dA(t,) = dA,). We define

A(t) = dA(t)/dA,, )

to be the area amplification of the flamelet.

From these definitions and a knowledge of the
flamelet properties, much useful information can be
obtained.® The total expected surface area is

Allt) = AA(D)), @

and, most importantly, the expected surface-to-vol-
ume ratio is

2(xt) = ALA)S(x — X(t)- ®)

The importance of the surface-to-volume ratio
stems from the following expression for the local
expected burning rate o(x,t) (volume burned per
unit volume per unit time):

o(x,t) = wi(x,t). (6)

Referring to Fig. 1, this formula can be understood
by considering the volume V centered on the point
x. On a given realization let A,(t) be the area of
the surface within V at time t. (A,(t) may well be
zero.) In the infinitesimal time interval dt, the vol-
ume of fluid burned by the propagating surface
within V is wA,dt. Hence the volume-averaging
burning rate is wA,/V. Equation (6) is then ob-
tained as

o(x,t) = lim (wA,/V)

v—>0

= w3(x,t).

In addition to the equation for X(¢) (Eq. 1), evo-
lution equations for N(t) and A(t) can be derived
from first principles.® They are:

N; = N,N;N U — N,;Uj )

and
A= —ANN;U;; — Ag, ®)

where U;; denotes the velocity derivative du;/dx;
in the reactants just ahead of the flamelet. The ini-
tial condition N(t,) is determined by the initial ori-
entation of the flamelet, while we have (from Eq.
3) A(t,) = 1. The term Ay is discussed at length

If the initial flame sheet varies from one real-

ization to the next, S, is a random surface, and A,
is a random variable.
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below. For the moment we just observe® that it is
zero for the case of a material surface (w = 0).

It is worth mentioning that the. equations ob-
tained depend on few assumptions: Eqgs. (1-3) are
definitions; while Eqs. (4-8) are obtained purely
from geometry® with the assumption that the prop-
agation speed w is constant.

We now turn our attention to the case of a ma-
terial surface (w = 0) which is of great theoretical
interest, and is the starting point for the develop-
ment of the Stochastic Flamelet Model. With w =
0, a “flamelet” becomes an infinitesimal material
surface element, and X(¢) becomes the location of
a fluid particle.

Since Ag is zero (for w = 0), Egs. (1), (7) and
(8) can be integrated to determine the flamelet
properties if U(t) and U, () are known. Hence the
first components of the model are stochastic models
for these Lagrangian time series.

Space does not allow a full description of these
models. Briefly, U(t) is simulated by a diffusion
process'>!® in which the diffusion coefficient de-
pends on the dissipation €(t) following the fluid
particle.!” The logarithm of the dissipation is mod-
eled as an Ornstein-Uhlenbeck stochastic process.®
The velocity gradients are modeled as the product
of €'/%(t) and a linear combination of Gaussian sto-
chastic processes. The linear combination is chosen
so as to satisfy all constraints appropriate to ho-
mogeneous isotropic turbulence.!® The coefficients
in all these models are approximately matched to
correlation functions (e.g. (U;;(t + s)Ug(¢)) ob-
tained from direct numerical simulations'® of iso-
tropic turbulence at a Taylor-scale Reynolds num-
ber of about 40.

For the initially plane, infinite, material surface
Xi(t,) = 0, the surface-to-volume ratio Z(x,t) de-
pends solely on x; and ¢: initially it is 2(xy,t,) =
3(x1). The stochastic model for U(t) causes X;(t) to
disperse in accord with Taylor’s theory:2® X1(t) is
Gaussian with zero mean, and its standard devia-
tion increases first linearly with time, but ulti-
mately as V/¢. The stochastic model for the velocity
gradients is independent of U and X, and hence so
also is A(t). Consequently, the profiles of Z(x,t)
have a Gaussian shape, their width increasing from
zero, first linearly with time, and later as \%t_

The model for U;;(t) correctly results in (A(#))
being zero initially; but after a few Kolmogorov time
scales, (A(t)) increases exponentially with time in
accord with Batchelor’s supposition.?’ Hence the
peak value =(0,t)—infinite initially—first decreases
as the surface disperses (but stretches little) and then
increases as stretching becomes dominant, eventu-
ally increasing as e'/Vt.

A flame sheet (w > o) differs in three ways from
the material surface considered above: the flamelet
does not follow a fluid particle; the density jump
across the flame sheet influences U and U (through
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the associated pressure fields'); and, the term Ag
in Eq. (8) is non-zero. In this initial study we con-
centrate on the third effect—area reduction caused
by propagation. We consider the constant-density
case (thus eliminating the second effect), and use
the models for U and U;; described above even for
w > 0. (Direct numerical simulations are in prog-
ress to investigate the effect of non-zero w on these
time series.) The flamelet motion (relative to the
fluid) is correctly accounted for by Eq. (1).

Two mechanisms are responsible for the area-re-
duction term Agr. Let H be the mean curvature of
the surface, which is positive if the flame sheet is
convex towards the reactants. Then one contribu-
tion to Ay is ®2wHA. The second contribution is
due to cusps which can form either by the curva-
ture becoming infinite, or by the flame-sheet prop-
agating into itself. However caused, as cusps prop-
agate, they tend to reduce the flame-sheet area®*—
leading to a positive contribution to Ag.

We model both contributions together by

Ag(t) = CroA®S(X[t],Om()/b(X[t]t),  (9)

where Cg is a model constant, b(x,t) is the mean
volume fraction of reactants, and m(¢) is an orien-
tation factor defined below. This, we claim, is the
simplest possible model that has the correct qual-
itative behavior. With the exception of the orien-
tation factor, it is the same as that proposed by
Marble & Broadwell®? in the context of turbulent
diffusion flames. .

One justification for the form of the model Ay
(Eq. 9) is that it accurately describes the rate of
area change of a diversity of geometrically simple
surfaces. We cite three examples:

i) Consider the (disconnected) flame-sheet con-
sisting of many infinite, plane, parallel surfaces
separated by slabs of reactants and products. If
the thickness of the reactant slabs is uniformly
distributed (in some finite interval) then the rate
of area reduction is given by Eq. (9) with Cgn
=1/2;

Consider the (disconnected) flame-sheet con-

sisting of many equal-size spherical surfaces

surrounding pockets of reactants. Then Eq. (9)

with Cgm = 2/3 correctly gives the rate of area

reduction. The same result (but with Cgn =

1/2) holds for circular cylindrical pockets of

reactants;

iii) Similar to ii), if the reactant pockets are equal-
size regular polyhedra (e.g. cubes) then Eq. (9)
holds again with Cgm = 2/3, or for cylinders
of regular polygonal cross-section we find Cgm
=1/2.

While these examples bear little resemblance to
the geometry of turbulent flame sheets, they never-
theless illustrate that different shapes and mecha-

=

ii
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nisms lead to the same formula, i.e. Eq. (9). Note
that in i) the area is reduced by the mutual anni-
hilation of colliding flame sheets; in ii) the area re-
duction is solely due to curvature; and, in iii) it is
solely due to cusps.

As well as arising automatically in the above ex-
amples, the factor b™! in Eq. (9) is suggested by a
realizability condition: in the statistically homoge-
neous case, as reaction nears completion, 2 and b
must vanish together. If, as assumed, Ag is linearly
proportional to =, then this realizability condition
requires (as b tends to zero) that Agx be propor-
tional to b™1. For the homogeneous case the model
then predicts that = and b vanish together in finite
time.

In the examples cited, the flame sheets are ran-
domly orientated, and Eq. (9) holds with a constant
value of Cgm. But the further example of a single,
plane flame-sheet illustrates the need for the ori-
entation factor m(¢). For this case there are no cusps
or self-intersections, and the curvature is zero
everywhere. Thus Ag is zero. But it may be de-
duced (by a limiting process) that Eq. (9) (with Cgm
being of order unity) implies that Ag is infinite. This
problem is remedied by introducing the orientation
factor m(t).

For the plane flame, a flamelet (with properties
X, A, N) has the same orientation as any other fla-
melet (with properties X', A’, N’). Thus N-N' is
unity. In general, if two flamelets (separated by a
distance uniformly distributed in a finite interval L)
are on a collision course, then the probability of
their colliding in the time interval dt is

dP = V2 wdt(l — N-N")Y2/L. (10)
This follows from simple geometric considerations.
For the case of a plane flame, the two flamelets
collide at infinity, and hence Eq. (10) correctly yields
dP = 0, since N-N’ is unity.

In the Stochastic Flamelet Model, the orienta-
tion factor m(t) is based on the factor (1 — N -N’)"/2
appearing in Eq. (10). To be precise, m(t) is the
conditional expectation of this factor, for N’ being
any other flamelet at the same location (on a dif-
ferent realization):

[

() = (1 = N(&)- N' ()X (1) = X(¢)). ~ (11)
For the statistically isotropic case (randomly orien-
tated flamelets) the orientation factor is unity.

We have described the area-reduction model as
a deterministic process: at the rate Ay, the flame-
let’s area decreases smoothly and deterministically.
This is the appropriate physical model if the area
reduction is due to curvature. Alternatively the
model could be implemented as a stochastic point
process: in the time interval dt, with probability
Agdt, the flamelet is annihilated (i.e. A(t + dt) =
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0), while with probability 1 — Agdt the flamelet
area is unchanged. This is the appropriate physical
model if the area reduction is due to cusps. As far
as single-time statistics are concerned, the result is
the same however the model is implemented. The
deterministic implementation is chosen since it re-
sults in smaller statistical errors in the Monte Carlo
solution algorithm.

To summarize the model: stochastic processes are
used to simulate the velocity U(t) and its derivative
U;;(t) following the flamelet. Equations (1) and (7)
are integrated to determine the position X(¢) and
orientation N(t) of the flamelet, while the area am-
plification A(t) is obtained by integrating Eq. (8).
The first term in Eq. (8), on average, causes an area
increase, while the second is an area reduction due
to curvature, cusps and self-intersections. This area
reduction term is given by Egs. (9) and (11). From
the flamelet properties the surface-to-volume ratio
S(x,t) can be determined (Eq. 4), and hence the
local burning rate w(x,t) (Eq. 6) is obtained.

We have described the model for a single rep-
resentative flamelet. To implement the model nu-
merically we consider an ensemble of Ny =~.13,000
such flamelets. The expectations—such as are re-
quired to determine Z(x,t)—are approximated by
ensemble averages.

The burning rate w(x,t) obtained from the fla-
melet model is used in the solution of the modeled
transport equation'® for the joint pdf of velocity,
dissipation, and reaction progress variable, c. The
Monte Carlo solution of the joint pdf equation
amounts to simulating the evolution of velocity, dis-
sipation and ¢ of an ensemble of N, = 35,000 fluid
particles. For velocity and dissipation, exactly the
same stochastic models are used as for the flame-
lets. At (x,t), the mean rate at which reactants
(¢ = 0) burn (i.e. change to ¢ = 1) is simply w(x,?).
From the joint pdf calculation, the mean volume
fraction of reactants b(x,t) = 1 — (c(x,t)) is ob-
tained and supplied to the Stochastic Flamelet
Model.

Results

The Stochastic Flamelet Model in combination
with the joint pdf method has been used to sim-
ulate the idealized case of an initially plane flame.
The flow is statistically-stationary, homogeneous,
isotropic turbulence with zero mean velocity. The
turbulent kinetic energy k and the mean dissipation
rate (€) are taken to be unity: hence the turbulence
intensity is u’ = \/2/3. The Taylor-scale Reynolds
number is 40, and the Kolmogorov time scale is
0.064.

At the initial time (¢t = t, = 0) a plane flame
sheet at x; = 0 separates reactants (¢ = 0,x; > 0)
from products (¢ = 1, x; < 0). We investigated two
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laminar flame speeds: w = 0.01 and w = 1.0 (or
w/u' = 0.0122 and w/u’ = 1.22).

For the smaller laminar flame speed (w = 0.01)
Fig. 2 shows the total flame sheet area At (per unit
initial area) as a function of time. It may be seen
that for large times (t > 2, say) At asymptotes to
a value of about 300. At these times the area gen-
eration by stretching (the first term in Eq. 8) is bal-
anced by the area reduction Ag. But at early times
(t < 0.5, say), because w X is small, Ag is small.
Thus the flame sheet behaves much like a material
surface: after a small transient (0 < ¢ < 0.1, say),
At increases exponentially with time.

Figure 3 shows the loci of the constant concen-
tration points in the flame: x,(t) is defined such that

(c(x1 = x4[t], 1)) = . 12)
Thus x¢ 5(t) is the locus of the center of the flame,
and x¢.1(t) and x¢g(t) are taken to mark the front
and back of the flame, respectively.

It may be seen that initially (¢ < 0.5, say) the
flame barely moves (x5 = 0), and its width x¢ -
Xo.9 grows linearly in time. Again, this is because
the slowly propagating flame sheet behaves (ini-
tially) like a material surface: there is little com-
bustion. But as time progresses and Ay grows,
burning becomes significant, and the flame begins
to move. At large times (¢ > 2, say) the turbulent
flame speed ut = dx¢5/dt (or wAT) adopts a con-
stant value of about 3.0, and the constant width x¢ ;—
Xo.9 is about 1.2.

The same plots for the fast laminar flame speed
(w = 1.0) are shown in Figs. 4 and 5. Initially, At
decreases to a minimum of 0.95, then increases
rapidly, and more slowly asymptotes to a value of
3.4. The initial decrease is physically impossible and

6.0 T T T T T T T 400

logA, A
w=0.01 10

T

20

1.0

FiG. 2. Natural logarithm of flame sheet area (per
initial area) against time, propagation speed w =
0.01.
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FIG. 3. Loci of points x,(), xo5(t), xoe(t) at which
the mean progress variable is 0.1, 0.5 and 0.9 re-
spectively. Propagations speed w = 0.01.

is a defect—perhaps a small one—in the model.
Even ‘with the inclusion of the orientation factor,
n(t), at small (non-zero) times an initially plane flame
develops positive area reduction Ay faster than it
is stretched by the turbulence.

In contrast to the case w = 0.01, Fig. 5 shows
that with w = 1.0, significant burning starts im-
mediately. The asymptotic value of the turbulent
flame speed urt is 3.4, while the thickness is again
about 1.2.

An interesting statistic is (N(t))—the component
of the normal in the x;-direction, averaged over the

12 -

1.0

logA, -

06

04 -

FiG. 4. Natural logarithm of flame sheet area (per
initial area) against time. Propagation speed w =
1.0.
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Fi1G. 5. Loci of points x,(t), xos(t), Xoo(t) at which
the mean progress variable is 0.1, 0.5 and 0.9 re-
spectively. Propagations speed w = 1.0.

flame sheet. Initially it is unity. For the slow flame
speed (w = 0.01), and for a material surface (w =
0), after about one time unit (N;) asymptotes to zero
as the flamelets lose memory of their initial ori-
entation. But for the faster flame speed (w = 1.0)
the asymptotic value is 0.32. This is because fla-
melets moving backwards (negative N;) or sideways
(N} = 0) suffer greater area reduction than those
moving forward (N; > 0).

Figure 6 shows profiles of the mean reaction
progress variable (c(x1,t)), and the surface-to-vol-
ume ratio 2(x1,t) in the asymptotic state of the flame
with w = 1.0. (For the flame with w = 0.01 the
shapes of the profiles are similar, but = is larger
by a factor of about 100.) The profile shapes are
quite different at the front and back of the flame.
At the front both = and (c) have long tails, while
at the back 2 and b (=1 — (c¢)) vanish quite
abruptly. At the front, because b is small, area re-
duction is small, and the flame area grows by tur-
bulent straining. Towards the center of the flame,
as b becomes significant, area reduction begins to
dominate causing 2 to decrease.

Discussion and Conclusions

In this work we have described and demon-
strated the Stochastic Flamelet Model for turbulent
premixed flames in the flamelet regime. The sam-
ple Monte Carlo calculations presented in the pre-
vious section confirm that the model and numerical
algorithm provide a tractable calculation procedure
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for non-stationary, inhomogeneous flames. Each of
the calculations reported required about 150 CPU
minutes on a minicomputer which is equivalent to
2 CPU minutes on a CRAY XMP.

As mentioned in the introduction, existing
models—the Bray-Moss-Libby model,'®! or the
joint pdf method,'*** for example—have difficulty
in determining the local rate of burning. Perhaps
this is inevitable, since these models contain no in-
formation about the flame sheet that is responsible
for the fuel consumption. The Stochastic Flamelet
Model, on the other hand, contains a rather natural
and complete statistical description of the flame
sheet—its position, 'orientation and area. Because
of this, the essential physical processes are readily
incorporated in a natural manner. Most important
among these are the straining of the flame sheet,
the influence of the laminar flame speed, and the
area reduction caused by curvature and cusps.

This first effort leaves many improvements and
extensions ahead. The models of velocity U(t) and
its gradient U, ;(¢) following a flamelet require fur-
ther development and validation, in particular with
regard to their dependence on Reynolds number
and the laminar flame speed. Direct numerical sim-
ulations will provide invaluable information for this
purpose.

The essential extension of the model to the vari-
able-density case holds both difficulty and promise.
The principal difficulty is that the velocity field—
especially in the vicinity of the flame sheet—is af-
fected by the flame sheet’s propagation. Hence U
and U;; are no longer purely turbulence quantities,
but are directly affected by the flame sheet itself.
Modeling aside, there is no difficulty in extending
the calculation procedure to variable-density flow:
indeed, previous pdf calculations of premixed
flames!>1* have incorporated realistic density ra-
tios.

The promise is that the additional information
contained in the flamelet model may lead to im-

F1G. 6. Profiles of mean progress variable and
surface-to-volume ratio. (The origin of x has been

shifted.)
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provements in the modeling of the effect of com-
bustion on the turbulence. A ma{or uncertainty in
both the Bray-Moss-Libby model'®!! and the joint
pdf method!* is that the pressure fluctuations due
to combustion are ignored. As observed by Pope,!
some of these pressure effects can be directly re-
lated to flame-sheet processes.

Nomenclature

A(t) flamelet area amplification factor

A, initial expected surface area

AR rate of area reduction due to cusps and
curvature

A4t)  total expected surface area

At total expected surface area per unit initial
area

A, flamelet area within volume V

b(x,t) mean volume fraction of reactants

Cr model constant for area reduction

c(x,t)  reaction progress variable

dA(t) flamelet area

dA, initial flamelet area

H mean curvature

N(t) unit normal vector into reactants

S, initial surface

t time

to initial time

U(t)  velocity of a flamelet

U;;(t) velocity derivative du;/dx; following a
flamelet

\% volume

u(x,t) Eulerian fluid velocity field

w surface propagation speed (here equals

laminar flame speed)
X(t) flamelet position
X, initial flamelet position
x position (independent variable)
3(x) three-dimensional Dirac delta function at x
(t) dissipation rate
orientation factor

3(x,t) surface to volume ratio

o(x,t) local mean burning rate (volume burnt per
unit volume per unit time)

() mean
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COMMENTS

S. Candel, Ecole Centrale Paris, France. 1 would
like to point out that your review of previous work
dealing with the flame area per unit volume and its
dynamics was incomplete (at least in the oral pre-
sentation). This concept has been put forward by
Marble and Broadwall (1977) in an unpublished but
nevertheless widely known report. The concept was
introduced for non-premixed flames but it has been
extended by our group to premixed flame situa-
tions. These authors also pointed out the main
physical mechanisms which govern the balance of
flame area:

« production by stretch
+ destruction by mutual annihilation
* destruction by quenching

One recent publication is contained in the Pro-
ceedings of the French-American workshop which
was held in Rouen in 1987. We have applied the
model to the description of ducted premixed tur-
bulent flames and the results obtained are ‘quite
encouraging.

Various extensions of the model have also been
worked out to account, e.g., 1) the quenching of
flamelets by high strain rates; and 2) the existence,
in certain configurations, on non-premixed and pre-
mixed flamelets as well as contact surfaces across
which no reaction takes place.

Of course this comment does not deny the orig-
inality of your own work but puts your contribution
in the proper perspective.

Author’s Reply. As may be seen from text, the
work of Marble and Broadwell (1977) is referenced
in the paper. This reference also appeared on a vi-
ewgraph in the oral presentation.

The concept of a turbulent premixed flame as a
propagating surface goes back at least to Damkéhler
(1940). Since then there have been numerous dis-
cussions in the published literature on the phenom-
ena affecting such a surface and its propagation
(Karlovitz et al.* 1953, for example). A full histor-
ical account is not attempted in the paper.

The relationship between the current stochastic
flamelet model and previous models based on the
surface-to-volume ratio 2 is precisely the same as
that between the pdf method” and second-order
turbulence closures. The stochastic model provides
a complete one-point description of the surface,
through the surface density function® (analogous to
the joint pdf). And the stochastic model can be
viewed as the Monte Carlo solution of the mo-
delled evolution equation for the surface density
function (analogous to the joint pdf equation). This
modelled equation can be integrated to obtain cor-
responding equations for mean quantities—such as
S. Thus, when this procedure is performed, it is

found that the current area-reduction model re-
duces to a form similar to Marble & Broadwell’s
model for 2. (Just as a modelled Reynolds stress
equation can be obtained by integrating the equa-
tion for the joint pdf of velocity, and hence a com-
parison with existing Reynolds-stress models is pos-
sible.)

The advantage of the current stochastic flamelet
model over moment closures is that it provides a
much more complete description of the surface, and
so allows more direct and natural modelling of the
processes affecting the surface.

REFERENCE
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A. Kerstein, Sandia National Laboratories, USA.
Do the effects of turbulence intermittency, as in-
corporated into your model through the lognor-
mality assumption, significantly influence the com-
puted results?

Author’s Reply. In the results reported, the only
parameter varied is the w/u'—the ratio of the lam-
inar flame speed to the turbulence intensity. The
influence of other parameters—the variance of Ine,
for example—has yet to be investigated.

R. C. Aldredge, Princeton Univ., USA. Please ex-
plain how the variation of the laminar burning ve-
locity of the front (due to curvature) has been or
could be taken into account in your model.

Author’s Reply. In the results reported, the lam-
inar burning velocity is taken to be constant. It is
generally supposed that the laminar burning veloc-
ity w depends both on the strain-rate and on the
curvature. Since the time-dependent strain-rate ex-
perienced by each flamelet is a dependent variable
in the model, its effect on w is readily accounted
for.

On the other hand, in the model the curvature
is not known. It could be incorporated either by
assuming a distribution of curvature, or by solving
additional ordinary differential equations for the
curvature. The latter approach requires additional
stochastic models for the second derivatives of ve-
locity—adding significant complexity to the ap-
proach.
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J. F. Driscoll, Univ. of Michigan, USA. In your
model, diffusion would increase flame area (A;) to
infinity after a large time if it were not for your
flame shortening mechanisms, which occur when
flamelets burn out parcels between themselves or
when the flame is thermodiffusively stable. How-
ever, there must be additional mechanisms that
prevent excessive growth of flame area. Experi-
ments show that A7/A, may only be as large as three
when your flame shortening mechanisms are not
present (i.e., the flame is thermodiffusively unsta-
ble and is only slightly wrinkled so flame regions
never touch each other). Please comment.

Author’s Reply. There are four—and, we main-
tain, only four—mechanism by which the area of a
flamelet changes. These are:

1. straining by the fluid
2. the combination of propagation and curvature
3. cusps

4. self-intersections

For the slightly-wrinkled flames mentioned in the
question, only the first two mechanisms are pres-

ent. Then, solely from geometrical considerations,
it follows® that rate of area increase is

A/A = sr — wH, 1)

where s; is the rate of strain in the tangent plane,
and H is the mean curvature (which is positive if
the surface is concave to the reactants).

For a statistically-stationary flame, the total sur-
face area A (per unit initial area) does not change
with time. Equation (1) then implies

(st A = (wH),, @

where ( ). denotes an area-weighted mean. Con-
sequently, assuming that (sr), is positive, we de-
duce that the mean curvature (weighted with A and
w) is positive—that is, loosely, the flame is more
concave than convex. This appears to provide a suf-
ficient explanation of the experimental observa-
tions, and additional mechanisms need not be
sought.

It may be observed from Fig. 4 that for w/n' =
1.22, the asymptotic value of Ay is about 3.4.



