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Abstract

We consider the computation of the chemical equilibrium state of an ideal gas mixture of given ele
composition, with and without general linear constraints on the species present. While computer prog
solve these problems have been available for more than 30 years, it is found that they are not always s
in determining the chemical equilibrium state in the presence of constraints. We present here the new m
Gibbs function continuation, which is guaranteed to determine the chemical equilibrium state for all well-p
constrained and unconstrained problems.
 2004 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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1. Introduction

For simple cases, the computation of the che
ical equilibrium composition of ideal gas mixture
is a solved problem. Many codes are available
the purpose, notably the NASA equilibrium code[1]
and STANJAN[2]. However, there are more com
plicated cases in which these methods fail. For
ample, in the method of rate-controlled constrain
equilibrium (RCCE)[3,4], it is necessary to com
pute the equilibrium composition subject to line
constraints on the species. In some RCCE calc
tions [5], the equilibrium composition is determine
subject to 20 constraints: some constraints are on
dividual species; others are linear combinations, s
as the total moles and the active valence[4]. There are
reports in the literature[6] that both codes mentione
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above fail to determine the constrained equilibriu
composition in some cases; and, similarly, in previo
work on RCCE we encountered well-posed proble
for which STANJAN is unable to determine the co
strained equilibrium composition[7].

We present here the essence of a new algori
for computing constrained and unconstrained com
sitions of ideal gas mixtures which is guaranteed
succeed for all well-posed problems. Full details
the algorithm are given elsewhere[8], and a Fortran
implementation is available[9].

Like STANJAN, the new algorithm is based o
the element potential method (or, more generally,
constraint potential method). Consequently, the n
linear equations solved (which are reviewed in S
tion 2) are essentially the same as those in STA
JAN. However, in place of Newton’s method (whic
can be unstable), these equations are solved
stable continuation method (described in Section4),
which is guaranteed to converge to the unique s
tion.
e. Published by Elsevier Inc. All rights reserved.
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2. The constraint potential equations

We consider an ideal gas mixture at fixed temp
atureT and pressurep consisting ofns species which
are composed ofne elements. There areNk moles of
the kth species, and the moles of all species are
resented by thens vectorN ≡ [N1 N2 . . .Nns]T . The
total species moles is denoted by

(1)N ≡
ns∑

k=1

Nk,

and the vector of mole fractions is

(2)X ≡ N/N.

Obviously the mole fractions sum to unity.
The species moles are subject tonc � ne indepen-

dent linear equality constraints, which are written

(3)BT N = c,

whereB is a givenns×nc matrix of full column rank,
andc is a given vector of lengthnc. For the uncon-
strained problem,nc equalsne, Bkj is the number of
atoms of elementj in a molecule of speciesk, so that
cj is the moles of atoms of elementj . For constrained
problems,B contains additional linearly independe
columns.

For givenB andc, themax–min composition Nmm

is defined to be that which satisfies Eq.(3), and which
maximizesNmin, whereNmin is defined to be the
minimum (over all species) of the species moles. T
constrained equilibrium problem is well-posed for
values of the constraint vectorc for which Nmin is
strictly positive.

For fixed T and p, the constrained equilibrium
composition is that which satisfies the constrai
Eq. (3) and minimizes the Gibbs functionG of the
mixture. For an ideal gas mixture,G (normalized by
the universal gas constantR andT ) is given by

(4)G̃ ≡ G

RT
= Nk(g̃k + lnXk),

where the summation convention applies, andg̃k

is the normalized molar-specific Gibbs function
speciesk (see[2,8]).

At the minimum ofG̃, Eq.(4), subject to the con
straintsBT N = c, Eq.(3), the quantity

(5)G ≡ G̃ − λT
(
BT N − c

)
is stationary with respect to infinitesimal changesdN
anddλ, whereλ is thenc vector of Lagrange multipli-
ers, orconstraint potentials. It follows from Eqs.(4)
and (5)that the corresponding infinitesimal change
G is

dG = (lnXk + g̃k − Bkjλj ) dNk
(6)− (BkjNk − cj ) dλj

(sinceNk d lnXk is zero). At the minimum ofG, dG

is zero for alldλ and dN, which imposes the con
ditions that the multipliers ofdλj anddNk in Eq.(6)
are zero. The first of these conditions is simply a st
ment of the imposed constraints; the second is

(7)lnXk + g̃k − Bkjλj = 0,

which, when exponentiated, yields

(8)Xk = exp(−g̃k + Bkj λj ).

This is an explicit expression for thens equilibrium
mole fractions in terms of thenc constraint potentials
which can alternatively be written

(9)X = exp(−g̃ + Bλ),

where exp(f) denotes the vector whoseith component
is exp(fi).

In the constrained equilibrium state, in addition
being given by Eq.(9), the mole fractions satisfy th
normalization condition

(10)
ns∑

k=1

Xk = 1,

and the constraint equation(3) which can be reex
pressed as

(11)v ≡ BT X = c/N.

These last three equations summarize the mathem
problem to be solved in the constraint-potential
proach: withX being given by Eq.(9), the nc + 1
unknownsλ andN are to be determined so that t
nc + 1 equations(10) and (11)are satisfied. Then th
moles of species at equilibrium are given byN = NX.

3. Infinitesimals

The essence of the numerical problems invol
in the constraint-potential equations and the key
overcoming them are revealed by the consideratio
infinitesimal changes in the variables. Specifically,
consider infinitesimal changesdλ and dg̃ (in λ and
g̃), and examine the corresponding changesdX and
dv (in X andv).

It happens that, in this analysis, natural variab
are the square roots of the mole fractions. Thus,y is
defined as thens vector with componentsyk ≡ √

Xk ,
and Y is defined as thens × ns diagonal matrix
formed fromy.

From Eq.(8) we obtain

(12)dXk = X(k)(−dg̃k + Bkj dλj ),
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where suffixes in parentheses are excluded from
summation convention. With the definition

(13)H ≡ YB,

Eq.(12) can be reexpressed as

(14)dX = −Y2 d g̃ + YHdλ.

And given the relationdX = 2Ydy, we also obtain

(15)2dy = −Yd g̃ + Hdλ.

The constraint equation(11) amounts to the state
ment that the vector

(16)v ≡ BT X = HT y

is parallel to the given constraint vectorc. For the in-
finitesimaldv, from Eqs.(14) and (16)we obtain

(17)dv = −HT Yd g̃ + HT Hdλ.

As is done in STANJAN, it is natural to consid
Newton’s method (or a variant thereof) to find a s
lution to Eqs.(9)–(11). That is,λ is set to an initial
guess,̃g takes its known fixed value (i.e.,d g̃ = 0), and
thenλ is changed iteratively to satisfy Eqs.(10) and
(11). On each Newton iteration, to effect the requir
changedv (so thatv + dv is parallel toc), changes in
the constraint potentials are required to satisfy

(18)dv = HT Hdλ,

i.e., Eq.(17) with d g̃ = 0. Clearly, the success of th
approach depends crucially on the conditioning of
matrixHT H; for if it is singular, then there is no valu
of dλ that can effect a change in all components ofdv.

In exact arithmetic, the matrixH ≡ YB has full
column rank, and henceHT H is symmetric positive
definite. This follows from the facts thatB has full
column rank and thatY is nonsingular, since it is a d
agonal matrix with strictly positive diagonal comp
nents,yk = √

Xk . However, in chemical equilibrium
it is not unusual to have extremely small species m
fractions, e.g.,Xi = 10−40, and henceHT H can be
numerically singular.

Suppose, for example, that the first two columns
B are identical except for one row, denoted byk. Sup-
pose further thatXk is extremely small, e.g., 10−40.
Then, numerically, the first two columns ofH are
identical. As a consequence, any value ofdλ has the
same effect on the first two constraints:dv1 anddv2
cannot be changed independently.

In STANJAN “matrix conditioning” is used to ad
dress this problem (see Section 6 of[2]). This de-
pends on performing exact arithmetic operations
the matrixB, which is assumed to have (small) integ
components. The method is not applicable to gen
linear constraints in which case components ofB are
not necessarily integer.

The alternative method presented here—Gibbs
function continuation—is based on the observatio
that for arbitraryd g̃, and fordv being parallel tov,
a corresponding value ofdλ can always be stabl
determined, even ifH is rank deficient. For an in
finitesimal scalardε, we considerdv given by

(19)dv = vdε,

i.e., parallel tov. Then from Eqs.(16) and (17)we
obtain

(20)dv = vdε = HT ydε = −HT Yd g̃ + HT Hdλ,

and, rearranging the last equation, we further obta

(21)HT (Hdλ − Yd g̃ − ydε) = 0.

The essential observation is that (for arbitrarydg̃ and
dε) a least-squares solution fordλ to

(22)min
dλ

‖Hdλ − Yd g̃ − ydε‖2

satisfies Eq.(21) even if H is rank deficient; for it is
a general property of such least-squares solutions
the residual

(23)dγ ≡ Hdλ − Yd g̃ − ydε,

is orthogonal to the columns ofH, and hence

(24)HT dγ = HT (Hdλ − Yd g̃ − ydε) = 0,

in satisfaction of Eq.(21).

4. Gibbs function continuation

Continuation methods have previously been u
in several different combustion applications (s
e.g.,[10]). In the Gibbs function continuation metho
the solution to the constraint potential equations(9)–
(11), is obtained by integrating a set of ordina
differential equations (ODEs) in pseudo-time,s. As
functions ofs, we introduce the pseudo-Gibbs fun
tion ḡ(s), and the constraint potentials̄λ(s). The
pseudo-Gibbs function is prescribed to vary linea
with s, from a specified initial condition ats = 0 to
the true value of the Gibbs function ats = 1:

(25)ḡ(s) = ḡ(0) + s
[
g̃ − ḡ(0)

]
.

From a specified initial condition̄λ(0), the con-
straint potentials̄λ(s) are obtained by integrating
set of ODEs that are constructed (as described be
so that the final solution̄λ(1) is the value of the con
straint potentialsλ that satisfy Eqs.(9)–(11).
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Based on̄g(s) andλ̄(s), we define

(26)X(s) ≡ exp
(−ḡ(s) + Bλ̄(s)

)
(cf. Eq. (9)); and then we redefiney(s), Y(s), H(s),
andv(s) in an obvious way based onX(s).

By construction, the Gibbs function continuatio
method has the following properties:

(1) For alls (i.e., 0� s � 1), the mole fractionsX(s)

satisfy the normalization condition

(27)
ns∑

k=1

Xk = yT y = 1.

(2) For alls, the vector

(28)v(s) ≡ BT X(s) = HT y

is parallel to the specified constraint vectorc.
(3) At s = 1 we have

(29)ḡ(s) = g̃.

It follows from properties (1) and (2) that (for alls)
X(s) are the constrained-equilibrium mole fractio
of pseudo-species with Gibbs functionḡ(s); and then
from property (3) it follows that̄λ(1) is the required
solution forλ.

The simplest way to specify the initial condition
is

(30)X(0) = Xmm,

whereXmm are the mole fractions of the max–m
composition;

(31)λ̄(0) = 0;
and

(32)ḡ(0) = − ln Xmm.

The max–min composition is readily determined
linear programming (see[8]), andXmm automatically
satisfies properties (1) and (2). Given the specifi
tions λ̄(0) = 0 andX(0) = Xmm, then Eq.(26) deter-
mines that̄g(0) is given by Eq.(32).

As s increases from zero, property (2) is enforc
by requiringv(s) to evolve by

(33)
dv(s)

ds
= α(s)v(s),

for some scalarα(s). This equation ensures thatv(s)

remains parallel tov(0), which is parallel toc. It fol-
lows from Eqs.(20) and (21)that Eq.(33) is satisfied
if and only if dλ̄(s)/ds satisfies the equation

(34)HT

(
H

dλ̄

ds
− Y

d ḡ
ds

− yα

)
= 0.
This equation is indeed satisfied by

(35)
dλ̄

ds
= λ̇

g + αλ̇
y
,

whereλ̇
g andλ̇

y are the least-squares solutions of

(36)min
λ̇

g

∥∥∥∥Hλ̇
g − Y

d ḡ
ds

∥∥∥∥
2
,

and

(37)min
λ̇

y

∥∥Hλ̇
y − y

∥∥
2.

The scalar variableα(s) is determined by the
normalization condition, property (1). Differentiatin
Eq.(27) with respect tos, we obtain

0 = d

ds

(
yT y

) = 2yT dy
ds

= −yT Y
d ḡ
ds

+ yT H
dλ̄

ds

(38)= −XT d ḡ
ds

+ yT Hλ̇
g + αyT Hλ̇

y
,

where the second line follows from the analog
Eq. (15), and the final line from Eq.(35). This equa-
tion can then be solved to determineα(s) as

(39)α(s) =
(

XT d ḡ
ds

− yT Hλ̇
g
)

/D,

where the denominator is

(40)D ≡ yT Hλ̇
y
.

It is necessary to show that the denominatorD is
strictly positive. To this end, we decomposey as

(41)y = y‖ + y⊥,

where

(42)y‖ ≡ Hλ̇
y

is in the subspace spanned by the columns ofH, and

(43)y⊥ ≡ y − y‖

is orthogonal toH, so thatHT y⊥ = 0 and(y‖)T y⊥
= 0. We then obtain from Eq.(40)

(44)D = (
y‖)T y‖ = ∣∣y‖∣∣2 � 0.

From the definition ofv, Eq.(16), we obtain

(45)0 < |v|2 = yT HHT y = ∣∣HT y‖∣∣2,
from which it follows that |y‖| and henceD are
strictly positive.

In summary, the Gibbs function continuatio
method consists of:

(1) Solving the linear program (maximize the min
mum component ofN subject to the constraint
BT N = c) to obtain the min–max moles,Nmm,
and mole fractions,Xmm.
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(2) Specifying initial conditions λ̄(0) and ḡ(0) by
Eqs.(31) and (32).

(3) Specifyingḡ(s) by Eq.(25) so thatḡ(1) = g̃.
(4) Integrating Eq.(35) from s = 0 to s = 1 to ob-

tain λ = λ̄(1), where λ̇
g
, λ̇

y
, and α are stably

obtained from Eqs.(36), (37), and (39)(for all
values ofs required in the numerical integration

Thus the method consists of solving a well-posed
of ordinary differential equations from realizable in
tial conditions, the solution to which exists and
unique. As a consequence, the method is guaran
to obtain the required solution.

5. Conclusions

Gibbs function continuation is a stable method
solve the constraint-potential equations to determ
the chemical equilibrium composition of ideal g
mixtures. The method is guaranteed to yield the eq
librium solution for all well-posed problems. No “ma
trix condition” is required, and the constraint matr
can have noninteger components. An efficient al
rithm based on Gibbs functions continuation is d
scribed by Pope[8] and has been implemented in
Fortran library[9].
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