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Abstract

We consider the computation of the chemical equilibrium state of an ideal gas mixture of given elemental
composition, with and without general linear constraints on the species present. While computer programs to
solve these problems have been available for more than 30 years, it is found that they are not always successful
in determining the chemical equilibrium state in the presence of constraints. We present here the new method of
Gibbs function continuation, which is guaranteed to determine the chemical equilibrium state for all well-posed

constrained and unconstrained problems.

0 2004 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

For simple cases, the computation of the chem-
ical equilibrium composition of ideal gas mixtures
is a solved problem. Many codes are available for
the purpose, notably the NASA equilibrium cofdg
and STANJAN[2]. However, there are more com-
plicated cases in which these methods fail. For ex-
ample, in the method of rate-controlled constrained
equilibrium (RCCE)[3,4], it is necessary to com-
pute the equilibrium composition subject to linear
constraints on the species. In some RCCE calcula-
tions [5], the equilibrium composition is determined
subject to 20 constraints: some constraints are on in-
dividual species; others are linear combinations, such
as the total moles and the active valefitle There are
reports in the literaturgs] that both codes mentioned
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above fail to determine the constrained equilibrium
composition in some cases; and, similarly, in previous
work on RCCE we encountered well-posed problems
for which STANJAN is unable to determine the con-
strained equilibrium compositigf].

We present here the essence of a new algorithm
for computing constrained and unconstrained compo-
sitions of ideal gas mixtures which is guaranteed to
succeed for all well-posed problems. Full details of
the algorithm are given elsewhej@], and a Fortran
implementation is availablg®].

Like STANJAN, the new algorithm is based on
the element potential method (or, more generally, the
constraint potential method). Consequently, the non-
linear equations solved (which are reviewed in Sec-
tion 2) are essentially the same as those in STAN-
JAN. However, in place of Newton’s method (which
can be unstable), these equations are solved by a
stable continuation method (described in Secdhn
which is guaranteed to converge to the unique solu-
tion.
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2. Theconstraint potential equations

We consider an ideal gas mixture at fixed temper-
atureT and pressurg consisting ofis species which
are composed ofe elements. There a®¥;, moles of
the kth species, and the moles of all species are rep-
resented by thes vectorN = [Ny Na... Ny lT. The
total species moles is denoted by

N=Y M. )
k=1

and the vector of mole fractions is

X=N/N. 2)

Obviously the mole fractions sum to unity.
The species moles are subjeciito> ne indepen-
dent linear equality constraints, which are written

(©)

whereB is a givernis x nc matrix of full column rank,
andc is a given vector of lengthc. For the uncon-
strained problenyc equalsie, By; is the number of
atoms of element in a molecule of specids, so that
cj is the moles of atoms of elementFor constrained
problemsB contains additional linearly independent
columns.

For givenB andc, themax—min composition N™M
is defined to be that which satisfies E8), and which
maximizes Nmin, Where Npin is defined to be the
minimum (over all species) of the species moles. The
constrained equilibrium problem is well-posed for all
values of the constraint vectarfor which Ny, is
strictly positive.

For fixed T and p, the constrained equilibrium
composition is that which satisfies the constraints
Eg. (3) and minimizes the Gibbs functio@ of the
mixture. For an ideal gas mixtur€&; (normalized by
the universal gas constaRt andT) is given by

B'N=c,

==7 “
where the summation convention applies, afd
is the normalized molar-specific Gibbs function of
speciesx (see[2,8]).

At the minimum ofG, Eq. (4), subject to the con-
straintsB” N = ¢, Eq.(3), the quantity

= Ni(8r +In Xp),

©®)

is stationary with respect to infinitesimal changié
anddA, wherel is then vector of Lagrange multipli-
ers, orcongtraint potentials. It follows from Egs.(4)
and (5)that the corresponding infinitesimal change in
Gis

G=G-2T(®"N=0)

dG = (In Xy + gk — Byjhj) dNy
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(6)

(sinceNy dIn Xy is zero). At the minimum o, dG

is zero for alld.r and dN, which imposes the con-
ditions that the multipliers of A ; andd Ny in Eq. (6)

are zero. The first of these conditions is simply a state-
ment of the imposed constraints; the second is

— (Bij Ny —cj)da;

InXk+§k—Bijj =0, (7)
which, when exponentiated, yields
Xy = exp(—gk + Byjrj). (8)

This is an explicit expression for thes equilibrium
mole fractions in terms of the constraint potentials,
which can alternatively be written

X =exp(—g+ Bi), 9)

where ex|gf) denotes the vector whostia component
is exp(f;).

In the constrained equilibrium state, in addition to
being given by Eq(9), the mole fractions satisfy the
normalization condition

ns
Zxk:].,

k=1

(10

and the constraint equatidi8) which can be reex-
pressed as

v=BTX=c/N. (11)

These last three equations summarize the mathematic
problem to be solved in the constraint-potential ap-
proach: withX being given by Eq(9), the nc + 1
unknownsi and N are to be determined so that the
nc + 1 equationg10) and (11)re satisfied. Then the
moles of species at equilibrium are givenldy= N X.

3. Infinitesimals

The essence of the numerical problems involved
in the constraint-potential equations and the key to
overcoming them are revealed by the consideration of
infinitesimal changes in the variables. Specifically, we
consider infinitesimal change&. anddg (in A and
8), and examine the corresponding chand&sand
dv (in X andv).

It happens that, in this analysis, natural variables
are the square roots of the mole fractions. Thuis
defined as thes vector with components;, = /Xy,
and Y is defined as theirs x ns diagonal matrix
formed fromy.

From Eq.(8) we obtain

ka:X(k)(—dgk-i-BkjdAj), (12)
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where suffixes in parentheses are excluded from the linear constraints in which case component8aire

summation convention. With the definition

H=YB, (13)
Eq. (12) can be reexpressed as
dX =—-Y?dg+YHd\. (14)

And given the relatio@/ X = 2Y dy, we also obtain

2dy =Y dg+Hdx. (15)

The constraint equatiofl1l) amounts to the state-
ment that the vector

v=BX=HTy (16)

is parallel to the given constraint vectarFor the in-
finitesimaldv, from Eqs.(14) and (16)wve obtain

dv=—HTYdg+HTHaxr. 17)

As is done in STANJAN, it is natural to consider
Newton’s method (or a variant thereof) to find a so-
lution to Egs.(9)—(11) That is,A is set to an initial
guess( takes its known fixed value (i.e/g = 0), and
thena is changed iteratively to satisfy Eg4.0) and
(11). On each Newton iteration, to effect the required
changedv (so thatv + dv is parallel toc), changes in
the constraint potentials are required to satisfy

dv=HTHdx, (18)

i.e., Eq.(17) with dg = 0. Clearly, the success of this
approach depends crucially on the conditioning of the
matrixH” H; for if it is singular, then there is no value
of d\ that can effect a change in all componentgof

In exact arithmetic, the matrikl = YB has full
column rank, and hendd” H is symmetric positive
definite. This follows from the facts th& has full
column rank and thaY is nonsingular, since itis a di-
agonal matrix with strictly positive diagonal compo-
nents,y; = +/X. However, in chemical equilibrium,
it is not unusual to have extremely small species mole
fractions, e.g.X; = 1049, and henceH” H can be
numerically singular.

Suppose, for example, that the first two columns of
B are identical except for one row, denotedibysup-
pose further thai; is extremely small, e.g., 160.
Then, numerically, the first two columns &f are
identical. As a consequence, any valuei/afhas the
same effect on the first two constraintal; anddvo
cannot be changed independently.

In STANJAN “matrix conditioning” is used to ad-
dress this problem (see Section 6[@f). This de-
pends on performing exact arithmetic operations on
the matrixB, which is assumed to have (small) integer

not necessarily integer.

The alternative method presented hei@Hobs
function continuation—is based on the observation
that for arbitraryd@, and fordv being parallel tov,

a corresponding value afA can always be stably
determined, even i is rank deficient. For an in-
finitesimal scalatle, we considerlv given by

dv=vdse, (29)

i.e., parallel tov. Then from Egs(16) and (17)we
obtain

dv=vde =HTyde = —HTYdg+HTHdxr, (20)
and, rearranging the last equation, we further obtain
HT (Hd\ — Y dg—yde) =0. (21)

The essential observation is that (for arbitrdgyand
de) a least-squares solution fak to
min[|Hdx —Y dg —ydel, (22)

satisfies Eq(21) even ifH is rank deficient; for it is

a general property of such least-squares solutions that
the residual

dy =Hd: =Y dg—yde, (23)
is orthogonal to the columns &f, and hence
HT dy =HT (HdA — Y dg—yde) =0, (24)

in satisfaction of Eq(21).

4. Gibbsfunction continuation

Continuation methods have previously been used
in several different combustion applications (see,
e.g.,[10]). In the Gibbs function continuation method,
the solution to the constraint potential equati¢@js-
(11), is obtained by integrating a set of ordinary
differential equations (ODESs) in pseudo-time,As
functions ofs, we introduce the pseudo-Gibbs func-
tion §(s), and the constraint potentiabs(s). The
pseudo-Gibbs function is prescribed to vary linearly
with s, from a specifiedriitial condition ats = 0 to
the true value of the Gibbs function at 1:

3(s) = 90) + s[a— 30 ].

From a specified initial conditiod(0), the con-
straint potentialsk(s) are obtained by integrating a
set of ODEs that are constructed (as described below)
so that the final solutioi(1) is the value of the con-

(25)

components. The method is not applicable to general straint potentiald that satisfy Eqs(9)—(11)
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Based orgi(s) andAi(s), we define This equation is indeed satisfied by
X(s) = exp(—3(s) + BA(s)) @0 A e i (35)
ds

(cf. Eq.(9)); and then we redefing(s), Y (s), H(s),

- 18 iy ;
andv(s) in an obvious way based ofi(s). whereA® andA- are the least-squares solutions of
By construction, the Gibbs function continuation ) o dg
method has the following properties: min | HA® =Y -2 (36)
by Sl2
(1) Foralls (i.e., 0< s < 1), the mole fractionX(s) and
satisfy the normalization condition . .
y min [HL" —y],. (37)
s A
Z?_(k =yly=1 27) The scalar variablex(s) is determined by the
normalization condition, property (1). Differentiating
(2) For alls, the vector Eq. (27)with respect tos, we obtain
- d dy dg dx
v(s) =BT X(s) =HT 28 0=—(lyy=2yTZ = yIyZZ T2
(s) (s) y (28) T Y) =2 ==y Y= 4y T Ho
is parallel to the specified constraint vector o7dd  T.:g Tisy
(3) Ats = 1 we have =X - FY HA" +ay  HAY, (38)

where the second line follows from the analog of
Eq. (15), and the final line from Eq(35). This equa-
tion can then be solved to determimés) as

g(s) =0 (29)

It follows from properties (1) and (2) that (for al)

X(s) are the constrained-equilibrium mole fractions _ (%7498 T8
of pseudo-species with Gibbs functigts); and then () =X ds y HA")/D. (39)
from property (3) it follows thai (1) is the required where the denominator is
solution forA.

The simplest way to specify the initial conditions  p =y Hi”. (40)
'S It is necessary to show that the denominafors
X(0) = XmMm (30) strictly positive. To this end, we decompogas
where X™M are the mole fractions of the max-min  y =yl +yt, (41)
composition; where
1(0)=0; (31) yl =HL (42)
and is in the subspace spanned by the columnid cdnd
g(0) = —Inx™Mm. (32) yl=y_yl (43)
The max—min composition is readily determined by s orthogonal toH, so thatH?yL = 0 and(yh) Tyt
linear programming (s€8]), andX™™M automatically = 0. We then obtain from Eq40)
satisfies properties (1) and (2). Given the specifica-
tions(0) = 0 andX (0) = X™™, then Eq(26) deter- D=(yl )yl = |yH| >0. (44)

mines thag(0) is given by Eq(32).

. . From the definition o/, Eq.(16), we obtain
As s increases from zero, property (2) is enforced

by requiringv(s) to evolve by 0< 2=y HHTy = [HTyl ‘2, (45)
avis) _ a(s)V(s), (33) from which it follows that|y| and henceD are
ds strictly positive.

for some scalat(s). This equation ensures thats) In summary, the Gibbs function continuation

remains parallel t&(0), which is parallel tcc. It fol- method consists of:

lows from Eqs(20) and (21)hat Eq.(33) s satisfied

if and only if dL(s) /ds satisfies the equation (1) Solving the linear program (maximize the mini-
mum component oN subject to the constraints

H (Hﬂ _ y@ — Vo ) (34) BTN = ¢) to obtain the min—max mole®\™™,

ds ds and mole fractionsx ™M,
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(2) Specifying hitial conditionsx(0) and §(0) by
Egs.(31) and (32)

(3) Specifyingd(s) by Eq.(25) so thatg(1) = @.

(4) Integrating Eq(35) from s =0 tos = 1 to ob-
tain A = A(1), wherei®, 17, and« are stably
obtained from Eqs(36), (37), and (39)for all
values ofs required in the numerical integration).

Thus the method consists of solving a well-posed set

of ordinary differential equations from realizable ini-
tial conditions, the solution to which exists and is

unique. As a consequence, the method is guaranteed

to obtain the required solution.

5. Conclusions

Gibbs function continuation is a stable method to
solve the constraint-potential equations to determine
the chemical equilibrium composition of ideal gas
mixtures. The method is guaranteed to yield the equi-
librium solution for all well-posed problems. No “ma-
trix condition” is required, and the constraint matrix
can have noninteger components. An efficient algo-
rithm based on Gibbs functions continuation is de-
scribed by Popg8] and has been implemented in a
Fortran library[9].
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