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Calculations are reported that compare the properties of idealized premixed flames in which
either flamelet or distributed combustion occurs. The calculations are based on the Monte
Carlo solution of a modelled transport equation for the joint probability density function (pdf)
of the velocities and the reaction progress variable. In the joint pdf equation, it is the mo-
lecular diffusion term that is fundamentally different for the two types of combustion, and
consequently different models for the term are employed. For flamelet combustion, at mod-
erate and high Damkohler numbers, the progress variable pdf is a double-delta-function dis-
tribution, and the turbulent flame speed is more than twice the turbulence intensity (in-
dependent of the Damkohler number). For distributed combustion, on the other hand, even
at high Damkohler number, the progress variable pdf shows significant probability of partially
reacted fluid. The flame speed is. less than in flamelet combustion and increases with Damkohler

number.

Introduction

Premixed turbulent flames are important because
of their occurrence in spark ignition engines* and
because they are fundamental to our understanding
of yet more complicated combustion phenomena.®
Their behavior is difficult to describe theoretically
because several interconnected processes—reac-
tion, -diffusion, volume expansmn——occur in an in-
homogeneous stochastic flow field.* The turbulence
can have a dominant influence on reaction and dif-
fusion, while the volume expansion can have a sig-
nificant effect on the turbulence.

The present work is concerned with the influ-
ence of the micro-scale structure of the flame on
macro-scale properties—the turbulent flame speed,
for example. Two extreme cases are studied: flame-
let combustion, in which combustion occurs in thin
sheets which, locally, have the properties of undis-
turbed laminar flames; and distributed combustion,
in which reaction is distributed more uniformly in
space and is not necessarily accompanied by steep
spatial concentration gradients. Flamelet combus-
tion occurs when the laminar flame thickness &, is
much smaller than the Kolmogorov scale n whereas,
conversely, distributed combustion occurs for 8,/
>> 1.

Flamelet and distributed combustion are studied
in an idealized premixed turbulent flame in which
many of the previously-mentioned complicating dif-
ficulties are absent. The flame is statistically sta-

tionary and one-dimensional, and propagates through
high-Reynolds-number non-decaying homogeneous
turbulence. The density and transport properties
are constant, and a one-step reaction is assumed so
that the instantaneous thermochemical state is
uniquely related to a progress variable &(x,t). (The
progress varlable o(x,t)—denoted by ¢ in the Bray-
Moss model®—is zero in the unburnt reactants and
unity in the burnt products.) The consideration of
this idealized case has the advantage that constant-
density turbulence-modelling assumptions can be
used with confidence. On the other hand it has the
significant disadvantage of being too far removed
from real flames to allow a direct comparison be-
tween theory and experiment.

The theoretical approach adopted is to solve a
modelled transport equation for the joint probabil-
ity density function (pdf) of the velocities u(x,t) and
the progress variable ¢(x,).% In this approach, re-
action and convection (by mean and fluctuating ve-
locities) are treated exactly, while the effects of
pressure fluctuations and molecular transport have
to be modelled. We use models for the effects of
pressure fluctuations and” molecular viscosity that
have been developed and tested for turbulent shear
flows.”® In flamelet and distributed combustion, the
micro-scale structure of &(x,t) is quite different and
hence different models for the effects of molecular
diffusion are needed. These are described in the
next section.

The sole dimensionless parameter- is the
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Damkohler number Da, which is the turbulence-
to-reaction time scale ratio. For both flamelet and
distributed combustion, the modelled joint pdf
equation was solved by a Monte Carlo method”®
for a wide range of Damkohler numbers. The re-
sults reported in the third section include the tur-
bulent flame speed Sy, profiles of the mean and
variance of ¢, as well as the progress variable pdf.

Theory

The idealized flame considered propagates through
constant (unit) density, homogeneous, isotropic, non-
decaying turbulence. The velocity u(x,), which has
zero mean ((u) = 0), satisfies the equations
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where p(x,t) is the pressure and v is the viscosity.
The last term in Eq. (2) represents a source of tur-
bulence energy that exactly balances the rate of vis-
cous dissipation €. Thus the turbulent kinetic en-
ergy k = 1/2(u;u;) remains constant and uniform.

The progress variable &(x,t) evolves according to
the equation

Dé_ w2
oo = YV + S(0). (3)

The use of v as the transport coefficient implicitly
assumes unit Lewis and Prandtl numbers. The
source S(¢) represents the rate of change of ¢ due
to reaction and is taken to be

S() = S*(d)/x,

where Ty is the reaction time scale, and the nor-
malized rate S*(¢) is given by the Arrhenius
expression

S*(d) = 6.11 X 107¢(1 — ¢)
- exp{—30,000/(300 + 1,800¢)}. (4)

This expression, which is plotted on Fig. 1, cor-
responds to an activation temperature of 30,000 K
and unburnt and burnt temperatures of 300 and
2,100 K. The numerical constant is chosen so that
the maximum value of S*(d) is unity.

For reaction the characteristic time scale is 7g.
For the turbulence the characteristic time scale is
T = k/e, the velocity scale is u' = (2k/3)"%, and
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Fic. 1. Normalized reaction rate and laminar flame
function against progress variable.

the length scale is € = u't. From these scales and
from the viscosity v, two dimensionless parameters
can be formed. We take these to be the Reynolds
number Re = u'€/v and the Damkohler number
Da = 7/7g. Any other dimensionless group—S,/v’,
d¢/€ or 8,/m, for example—is uniquely related to
Re and Da. The Reynolds number is assumed to
be very large, but—according to the modelled
equations—its value does not affect the results (ex-
cept to determine the type of combustion). The value
of the Damkohler number, on the other hand, is
of prime importance. ‘

As discussed by Bray,* McNutt,'> and Stambu-
leanu,’® different regimes of premixed turbulent
combustion occur for different values of the two
dimensionless groups. Distributed combustion
occurs for Re >> 1 and Da << Re'2 from
which it follows'® 8,/ >> 1 and S,/u’ << 1,
(where S, is the laminar flame speed). Flamelet
combustion occurs for Re >> 1 and Re!/2 << Da
<< Re, from which it follows'® 8,/n << 1 and
Se/u’ << 1.

The flame is statistically one-dimensional, with
statistical quantities varying only in the x; direc-
tion. At x; = —o there are pure products (d(—)
= 1) while at x; = o there are pure reactants (d()
= (). The flame propagates at the turbulent flame
speed St in the x; direction and is statistically sta-
tionary (in a coordinate system moving at the speed
St). It is emphasized that the flame speed St is
determined as part of the solution.

The joint pdf f(V,¥;x,t) is defined to be the
probability density of the simultaneous events u(x,?)
= V and é(x,t) = Y. As written, the joint pdf
f(V,lix,t) is a function of eight independent vari-
ables—three velocity variables V;,V,, V3, the com-
position variable (s, three spatial variables and time.
But because the flame is statistically one-dimen-
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sional and stationary, three independent variables
can be eliminated. For example, defining

fO(V’\"';xI) Ef(V,lb;xl,O,O,()), (5)
we have, at any (x,t), ‘
fVabxt) = £V, — Sqt). ©6)

The boundary conditions on f are

f(V,l'J;_m,X2,X3,t> = g(V)B(l - '*"‘)’ (7)

and

f<V>¢;w$x2>x3at) = g(V)a(\w, (8)

where g(V) is the joint pdf of the velocities.
An exact evolution equation for f(V,;x,t) can be
derived®® from Egs. (1)-(3):

f G 3 10
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The terms on the left-hand side are exact and rep-
resent, respectively the change with time, convec-
tion, reaction, and the source of turbulence energy.
The terms on the right-hand side of the equation
contain (as unknowns to be modelled) conditional
expectations. (For any quantity Q, (Q|V,)) denotes
the expectation conditional upon the events u(x,?)
=V, éxt) = ¢)

As in previous work,®71° the effect of the fluc-
tuating pressure. gradient is modelled by the sto-
chastic reorientation model; and the effect of dis-
sipation is modelled by the improved stochastic
mixing model.”® The corresponding modelled
equation for the Reynolds stresses (uu;) is

" (uay) — (uu;) /v

= —Crluwy) — 2/3k 8y)/7 — 2/3 €d;. (10)

It may be seen that this corresponds to the as-
sumption of isotropic dissipation and Rotta’s!! re-
turn to isotropy model. Following Launder, Reece
and Rodi,’? we choose the Rotta constant to be
CR = 1.5.

We now consider the modelling of the crucial
molecular diffusion term—first for distributed com-
bustion. In this case the Kolmogorov scale 7 is much
smaller than the laminar flame thickness 8. It fol-
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lows from scaling arguments*® that the Kolmogorov
time scale 7, is much smaller than the reaction time
scale TR or, equivalently, than the laminar flame
transit time T, = 8,/S, (where S is the laminar flame
speed). Consequently the steepest gradients of ¢—
which provide the dominant contribution to
(vW20|V,)—are due to turbulent straining, and are
not associated with reaction fronts. Thus the mi-
croscale is oblivious to the presence of reaction, and
the molecular diffusion term can be modelled in the
same way as for inert flows: we asgain use the im-
proved stochastic mixing model.”

With this modelling of the molecular diffusion
term appropriate to distributed combustion, the
corresponding model equations for the variance (¢'2)

and the flux (u;’) are
)
ox;

1

E 12 _a_ 2 Y
at<¢ >+axi<u,¢ ) + 2Auid’)

— Ad'S(d)) = —Cold")/7, (11)

and
5 1+ 2 s+
py (ud") + ox (uid") + (uu;) o
- %i—)—) = (S(®)) = —Cyuid’) /7. (12)

The terms on the left-hand side are exact, while
those on the right-hand side are modelled. The
model constants are C, = 2.0 and Cy = 3.1. (It
is emphasized that these moment equations, Egs.
(10)(12), are presented solely to demonstrate the
effect of the models on the second moments. The
equation solved is for the joint pdf f.)

For flamelet combustion the picture is quite dif-
ferent. The Kolmogorov scale m is much larger than
the laminar flame thickness 8, and, it follows,'® the
time scale 7., is much larger than the reaction time
scale T (or the laminar flame transit time 7,). Con-
sequently a laminar flamelet suffers little turbulent
straining and its local radius of curvature (of order
m) is large compared to 8,. Thus, locally, the flame-
let behaves like an unstrained plane laminar flame.
(It should be noted that this conclusion follows from
the assumed strong inequality Da >> Re'% In
practice, this strong inequality may not hold, and
the straining of laminar flamelets may be an im-
portant phenomenon.?)

The evolution equation for ¢(x,t), Eq. (3), admits
a solution corresponding to a plane laminar flame
propagating in the x; direction. From this solution,
quantities such as

H=vV% + S(¢), (13)

can be determined as functions of x;. But since the
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solution ¢(x;) is a monotonic function of x;, H can
be expressed as a function of ¢. Thus, there is a
function A() such that in a plane laminar flame
h(¥) = [H]¢=¢ = [szd) + S(¢)]¢=¢- (14)
Equation (3) was solved numerically to determine
the laminar flame profile and hence h(y). The
normalized function h*(s) = h(y)rg is shown on
Fig. 1.
The consequence of these observations for the
joint pdf equation is remarkable. The reaction and
diffusion terms in Eq. (9) can be combined to vield

of
oy

2w
oy V0 + S@IV.0)

ad
"o {fH[V. W)}, (15)

(where the dots indicate the remaining terms in Eq.
(9). Now for flamelet combustion, it is assumed that
locally the flamelet behaves like a plane laminar
flame, in which case H is a unique function of ¢.

Thus
(H|V, ) = h(y),

and the effect of reaction and diffusion on the joint
pdf evolution is, simply,

of
at

(16)

d
= =5 (17)

Equation (17) shows that, under the extreme as-
sumption of flamelet combustion, reaction and dif-
fusion can be expressed in closed from in the joint
pdf equation in terms of the known function h(}).
Thus, in contrast to the situation in inert flows and
distributed combustion, the diffusion term does not
have to be modelled. This conclusion requires qual-
ification. It has been assumed that the gradients of
¢ in the flamelet are of order. 1/8, and hence are
much greater than those caused by turbulent
straining (of order 1/v). This assumption is justified
in the central part of the flame, but not remote
from the flame where ¢ approaches zero or unity.
Indeed, the laminar flame solution shows that all
spatial derivatives of ¢ tend to zero as ¢ tends to
zero or unity. In these outer regions, turbulent
straining causes the steepest gradients of ¢ and it
is appropriate, therefore, to model the diffusion term
in the same way as for inert flows or for distributed
combustion. :

The approach we adopt is to use Eq. (17) and
also the improved mixing model. Close to the ex-
treme values of ¢ (zero and one) the diffusion term
is modelled appropriately by the mixing model and
the contribution from h(l) is negligible. Con-
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versely, for intermediate values of ¢, the term in
h() correctly accounts for the effect of diffusion,
and the contribution from the mixing model is neg-
ligible in comparison. It is interesting to note that
the resulting modelled joint pdf equation for flame-
let combustion is identical to that for distributed
combustion except that h({s) replaces S(}s).
Starting from an almost arbitrary initial condi-
tion, the modelled joint pdf equation is solved by
a Monte Carlo method.% ! The results reported in
the next section were obtained after the statisti-
cally-stationary state had been reached. ;

Results and Discussion

For one condition (distributed combustion, Da =
100) the profiles of the mean and variance of the
progress variable ¢ are shown on Fig. 2. The spa-
tial coordinate x; is normalized by the turbulent
length scale € = u'r, and the choice of origin is
immaterial. The flame propagates to the right into
the pure reactants (¢ = 0), leaving products (¢ =
1) behind it. The variance (¢'2) is zero outside the
flame and reaches a peak close to where (¢) =
1/2.

It may be seen that both ($) and (¢'%) go rap-
idly to their boundary values on the product side
(x; < 0), but they do so slowly on the reactant side
(x; > 0). On the product side reaction is the dom-
inant process. Fluid with intermediate values of ¢
rapidly react (tg = 7/100) to attain the value ¢ =
1. On the reactant side, where ¢ is small, so also
is the reaction rate (see Fig. 1). Thus fluid attains
higher values of ¢ by the relatively slow (v = 1007g)
mixing process.

On Fig. 3, the turbulent flame speed St nor-
malized by the turbulence intensity u’ is shown as
a function of Damkohler number for both kinds of
combustion. For flamelet combustion, an asymp-
totic value of St/u’ = 2.1 is attained for Da > 5.
This flame speed, it should be recognized, is very
high. The only transport mechanism in physical space
is convection, and yet the probability of fluid trav-
elling at a speed greater than 2.1 u’ is less than
2%." For distributed combustion, on the other hand,

'A reviewer of this paper observed that the cal-
culated flame speed Sy = 2u’ is in accord with some
empirical correlations.'®*® While this agreement is
encouraging, there are three reasons why we are
reluctant to draw firm conclusions from the com-
parison; first, the idealized flame considered here
differs in several important respects from real flames;
second, it is not clear that the experimental con-
figurations conform very closely to a statistically-sta-
tionary one-dimensional normal flame; and third,
there are numerous empirical correlations,'® only
some of which yield (in the appropriate limit) S; =
2u'.
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F1G. 2. Mean and variance of progress variable
against normalized distance. Distributed combus-

tion, Da = 100.

significantly different behavior is observed. The flame
speed is lower, and by Da = 10* it is still increas-
ing linearly with €n(Da). The reasons for these dif-
ferences are discussed below. (For flamelet com-
bustion, although results are reported for Da = 1,
it should be noted that the condition 3,/n << 1
implies Da >> Re'/2. Thus, at moderate or high
Reynolds number, flamelet combustion occurs only
at high Damkohler number.) ‘

The flame thickness & normalized by the turbu-
lent length scale is shown on Fig. 4. The thickness
can be defined in many ways: for reasons of com-
putational stability, we choose to define 8 to be the
standard deviation of the distribution

glx) =(d)1 ~ (d)) / f (G)1 = (d)dx1.  (18)

It may be seen from the figure that, for both types
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of combustion, the flame thickness decreases with
increasing Da, reaching asymptotic values of 8/¢ =~
1 by Da = 10.

We now examine the variance {(¢'2). Since ()
is a monotonic function of x; (see Fig. 2), ($'2) can
be plotted as a function of (¢). This is done for
flamelet and distributed combustion on Figs. 5
and 6, respectively. For a given value of (), the
variance reaches its maximum possible value of

(6) 1 — () when the pdf of &, fy(l), is com-
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posed of delta functions at ¢ = 0 and ¢ = 1. It
may be seen from Fig. 5 that for flamelet combus-
tion the variance increases with Damkohler number
and that for Da = 20 it is close to its extreme value
and hence f (i) is close to a double-delta-function
distribution. For distributed combustion (Fig. 6) a
slower 1ncrease of (¢'%) with Da is evident: even
for Da = 10* the variance is significantly less than
its extreme value.

The different flame behavior for flamelet and dis-
tributed combustion is due to the different shapes
of S*(y) and h*(), Fig. 1. For both types of com-
bustion, at high Damkohler number, the rate-con-
trolling process is the turbulent mixing of pure
reactants (¢ = 0). For flamelet combustion, mixing
has to increase ¢ from zero only a small amount
before the rate of i increase of ¢ (i.e. h(d)) becomes
large. With Da = 10* for example, at ¢ = 0.01
we have h(}) = 40/7. Once the fluid attains a value
of ¢ greater than zero (0.01, say) it rapidly reacts
to a value close to 1 (0.99 say). Consequently, the
probability of ¢ having an intermediate value 0.01
< ¢ < 0.99 is very small, and, to a good approx-
imation, the pdf f, () is a double-delta-function dis-
tribution.

In distributed combustion, turbulent mixing has
to increase ¢ significantly before the rate of in-
crease of ¢ due to reaction (i.e. S(¢)) becomes large.
With Da = 10%, at ¢ = 0.4, the reaction rate is
small: S(¢) = 0.025/7. As the Damkohler number
increases, the value to which ¢ has to be raised
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FI1G. 6. Progress variable variance against mean
for different Damkohler numbers. Distributed com-
bustion.
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by mixing decreases—but extremely slowly. With
Da = 107, at ¢ = 0.3, the reaction rate is just
0.04/7. It is for this reason that the flame speed
rises slowly with Damkohler number, Fig. 3.

A pdf of the progress variable in distributed
combustion 1s shown on Fig. 7. The Damkohler
number is 10* and the pdf f, () is reported at the
location where (¢) = 1/2. There are spikes (with
probabilities 0.095 and 0.418) at zero and unity cor-
responding to pure reactants and products. But it
is the shape of the intermediate distribution that
confirms the validity of the reasoning given above.
In the range 0.55 < ¢ < 0.99 the reaction rate is
greater than 12/t and the probability is negligible:
in the range 0 < ¢ < 0.45 the reaction is less than
0.3/7 and there is significant probability.

Conclusion

A modelled transport equation for the joint pdf
of velocity and the progress variable has been solved
by a Monte Carlo method for idealized premixed
turbulent flames. Different models have been used
for distributed and flamelet combustion.

Significant differences are found between the two
types of combustion. In flamelet combustion, the
progress variable pdf adopts a double-delta-function
distribution for moderate and high Damkohler
numbers (Da > 20). For Da = 5 the turbulent flame
speed has the high value St = 2.1 u'. For distrib-
uted combustion, on the other hand, even at high
Damkohler number the progress variable pdf shows
significant probability over a range of low ¢ values.
As the Damkohler number increases, this range de-
creases slightly and the flame speed increases
shghtly At Da = 10* the flame speed is St = 1.5
u' and appears to increase linearly with €n(Da).

These results support the assumption of a dou-
ble-delta-function distribution for flamelet combus-
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tion that is a corner stone of the Bray-Moss model.*®

The edd%/-break-up model for distributed
combustion'* assumes that (at high Damkohler
number) turbulent mixing is the rate-controlling
process and so the mean reaction rate (and hence
the flame speed) scale with turbulence quantities,
independent of Da. In the present model it is also
found that turbulent mixing is the rate-controlling
process. But the amount of mixing required before
reaction becomes rapid depends on Da. Conse-
quently the flame speed also depends on the
Damkohler number.

Nomenclature

Cwm, Cgr,Cy,  turbulence model constants

Da Damkohler number (1/75)
f(V.dsx,t)  joint pdf of u(x,t) and d(x,t)
fellsxt)  pdf of &(x,t)

g(V) joint pdf of u(x,t)

h({) laminar flame function (Eq. 14)

h*() normalized laminar flame function
(Trh())

k turbulent kinetic energy (3/2 u'?)

¢ turbulent length scale (u't)

p(x,1) pressure

Re Reynolds number (u'¢/v)

S($),S*(d) reaction rate, normalized reaction rate

Se,St laminar and turbulent flame speeds

t time

u(x,t) velocity

u' turbulence intensity

\% independent velocity variables

x position

Greek Letters

3¢, 8 laminar and turbulent flame thick-
nesses

€ rate of dissipation of turbulent kinetic
energy

n Kolmogorov length scale

v viscosity

T,T¢, TR, Tn  time scales: turbulent; laminar flame
(8¢/S¢); reaction; Kolmogorov

b(x, 1) reaction progress variable

&'(x,1) fluctuation in ¢ (¢ — ()

U independent reaction progress variable
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COMMENTS

R. W. Bilger, University of Sydney. What are the
implications of this work for finite rate kinetic ef-
fects in turbulent non-premixed flames? Will the
molecular mixing term in the joint PDF equation

need to include chemistry effects in its modelling?
What sort of errors can be expected if the normal
coalescence/dispersion modelling as for conserved
scalars is used?
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Authors’ Reply. In order to account for finite-rate
kinetic effects in turbulent diffusion flames, we need
to consider the joint pdf of the mixture fraction (f)
and of a perturbation variable (z) that measures de-
partures from equilibrium. The transport equation
for z contains a source term, the characteristic time
scale of which is 7,. According to our modelling, if
7, is much greater than the Kolmogorov time scale,
then a conventional mixing model can be used. But
if 7, is smaller than (or of the same order as) the
Kolmogorov scale, then different modelling—based
on the flamelet structure—is needed.

W. A. Sirignano, Carnegie-Mellon University, USA.
Since your two models indicate that mixing is a
controlling factor in each limiting case, it might be
expected that a turbulent Reynolds number depen-
dence should be seen. Apparently, this is not al-
lowed by assumption. Could that assumption be
justified by theory or experiment?

Authors’ Reply. In our theory we have assumed
the Reynolds number to be high. Then it can be
assumed"® that the rates of mixing (i.e. dissipation
rates) are determined by the larger scale turbulent
motions, independent of the molecular transport
properties. Thus we do not expect a Reynolds-
number dependence.

In premixed turbulent combustion experiments it
is difficult to vary the dimensionless parameter in
a controlled manner over a significant range. But
in principle the assumption could be tested by
varying the (high) Reynolds number while keeping
the Damkohler number fixed.
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