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NEW CLASS OF TIME INTEGRATION SCHEMES FOR
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Abstract. We describe a new family of weak pth order accurate SDE time integration schemes,
called the direct Richardson pth order accurate (DRp) schemes. The DRp schemes use the idea of
Richardson extrapolation on Euler time steps, performed by way of an acceptance-rejection algo-
rithm. Previous applications of Richardson extrapolation to the Euler scheme are applicable only
when the objective is to estimate a functional of the final distribution of the process. In contrast,
provided that the diffusion matrix is strictly positive definite, the DRp class of schemes can be used
in all applications which require a weak SDE time integration scheme. Numerical results have been
obtained, and a comparison is made between the second- and third-order accurate DRp schemes
and other modern SDE time integration schemes, indicating that the DRp schemes incur less error
than standard algorithms based on Ito–Taylor expansions, and have similar computational efficiency.
Finally, we provide a proof of the convergence properties of the DRp schemes.
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1. Introduction. In this work, we introduce a new class of weak pth order
accurate numerical schemes for the integration of the n-dimensional nonhomogeneous
and anisotropic Ito stochastic differential equation (SDE):

dX = D (X, t) dt+ σ (X, t) dW,(1)

where X(t) is the random process governed by the Ito SDE, D (x, t) denotes the drift,
which is an n-dimensional vector field, σ (x, t) is a strictly positive definite n × n
matrix field, and dW as usual indicates that the SDE is driven by the standard n-
dimensional Wiener process. In this form and generality, the Ito SDE has numerous
applications in science and engineering [4]: for example, its solution is an essential
component of particle-based numerical schemes for turbulent combustion [3], which
is the authors’ particular interest.

Given the wide range of applicability of the Ito SDE, it is not surprising that
over the years numerous methods have been developed for its numerical approxima-
tion, in both the strong and weak senses. Strong SDE integration schemes aim to
accurately reconstruct the trajectory X (t) as a function of the Wiener sample path
W (t). In contrast, weak schemes only need to satisfy the condition that the distri-
bution of the numerical solution approximates that of the actual SDE solution. Here,
we concentrate on numerical schemes which exhibit weak convergence.

One of the most widespread numerical schemes for the solution of nonstiff SDEs
in Ito form is the forward Euler scheme. Using Δt to denote the length of a time step,
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and η to denote a sample vector from the n-dimensional standard normal distribution
N (0, I), a single time step of the Euler scheme has the form

ZE (t+Δt) = ZE (t) +D
(
ZE (t) , t

)
Δt+ σ

(
ZE (t) , t

)
η
√
Δt,(2)

and it is well known [4] that the Euler scheme is strong 0.5th order accurate and weak
first-order accurate.

There are also numerous higher-order weak SDE integration schemes in existence
[7, 4, 3, 12]. To the authors’ knowledge, all of these are based on approximating
higher-order terms in the Ito–Taylor expansion of X (t). One way to perform this
approximation is through the explicit evaluation of derivatives of the fields D (x, t)
and σ (x, t) at the initial point (for an example, see the second-order weak Taylor
scheme presented in [4]). Alternatively, the fields can be sampled at additional points,
thereby implicitly obtaining the required derivatives through finite differences (for an
example, see the two families of weak second-order derivative-free schemes developed
in [12]).

Here, we present a different approach—to approximate each time step increment
through Euler steps of varying length, and then employ Richardson extrapolation via
an acceptance-rejection procedure in order to obtain a higher-order scheme. This
may sound somewhat familiar to the reader, inasmuch as Richardson extrapolation
on Euler solutions is a well-known [9] method for obtaining higher-order estimates
of functionals E (g (X(T ))) of the solution at the end time T . Additionally, the
recently developed multilevel Monte Carlo method [5, 6] uses an approximation based
on Euler solutions with varying time steps to minimize the computational cost for
approximating functionals of X(t) over the entire interval t ∈ [0, T ]. Furthermore,
the acceptance-rejection methodology has previously been used in SDE time-stepping
algorithms, for example, the method introduced in [2], for the purposes of obtaining
an integrator which is ergodic with respect to the SDE equilibrium distribution.

The significant difference in the class of schemes that we present is that the
Richardson extrapolation is applied at each time step directly to the PDF of the
random variable that approximates the SDE solution. This yields a family of SDE
integration schemes, called the direct Richardson pth order (DRp) schemes, which are
pth order accurate at each time step, and not just at the end of the simulation. This
high-order accuracy at each time step is essential when the solution to the SDE is just
one part of a more complex simulation, such as, for example, in a Lagrangian Monte
Carlo solution for turbulent reactive flows.

To elaborate upon this issue, we note that in such a solution [13], the chemical
composition in the reaction domain is represented by an ensemble of particles whose
temperature and density affects the velocity and diffusivity of the flow. The solution
algorithm alternates between an SDE time step, which advances the particle loca-
tions using the current velocity and diffusivity fields, and a finite-volume time step,
which solves the Navier–Stokes and turbulence modeling equations, using density and
temperature fields based on the new particle locations.

Thus, while the methods described in [9, 5, 6] are computationally more efficient
for the purpose of evaluating expectations of functionals of an a priori known SDE,
they cannot be employed in an application of mathematical physics such as the one
outlined in the above paragraph, because in such an application the coefficients of
(1) at a given time t are not known until the particles’ positions have been advanced
to time t. For this reason, we compare the performance of the DRp class of schemes
with that of SDE time integrators such as those of Kloeden and Platen [4] and the
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Cao and Pope [3], which can also be used in an application where the SDE coefficients
are known only locally in time, i.e., only for the duration of the current finite volume
time step.

In this work, we present the general form of the DRp family of SDE integration
schemes and provide a proof of the weak pth order accuracy of its members, subject
to certain smoothness criteria on the SDE drift and diffusion terms. We also provide
results from numerical test cases which compare the performance of the two simplest
DRp schemes—DR2 and DR3—with that of other modern weak second-order accurate
SDE integration schemes.

The organization of the rest of this paper is as follows: In section 2, we present
the simplest member of the DRp family, DR2, and comment on its implementation in
a computational code. In section 3, we present results from numerical test cases which
compare the performance of DR2 and DR3 with that of two modern weak second-
order schemes. The numerical results indicate that, for the purpose of approximating
Ito SDEs with strictly positive definite diffusion, the DRp schemes are at least as
efficient as current SDE integration schemes.

Section 4 introduces Richardson extrapolation and the way in which it is employed
in the DRp schemes. Section 5 introduces the regularity and boundedness criteria
which need to be satisfied by the fields D (x, t) and σ (x, t) in order to achieve weak
pth order accuracy. Section 6 introduces the framework and notation for the general
form of the DRp schemes, and section 7 gives a pseudocode description of the general
DRp scheme. Section 8 contains a proof of the weak pth order accuracy of the DRp
schemes, and section 9 provides a summary. Finally, Appendices A and B contain the
proofs of two theorems which are used in section 8.

The mathematical developments in the second half of this paper are essential, as
they prove the convergence of the schemes proposed by the authors. Nevertheless, it
is appreciated that some readers are primarily interested in employing a DRp scheme
for a particular application, and may wish to skip the more theoretical aspects of this
work. Such readers are advised to read sections 2, 3, 5, as well as section 4 up to and
including (20), and section 7 up to and including (41).

2. Description of the second-order member of the DRp family: DR2.
Below, we give a pseudocode description of a single time step of length Δt of the weak
second-order accurate DR2 scheme. Without loss of generality, we assume that the
initial position is X (t = 0) = 0. Also, for the sake of compactness of notation, we
shall use B (x, t) to denote σ (x, t)σT (x, t).

1. Obtain two independent samples η1, η2 ∼ N (0, I) from the standard normal
distribution.

2. Set

U
(2)
1 ≡ 0+D (0, 0)

Δt

2
+ σ (0, 0) η1

√
Δt

2
,

U
(2)
2 ≡ U

(2)
1 +D

(
U

(2)
1 ,

Δt

2

)
Δt

2
+ σ

(
U

(2)
1 ,

Δt

2

)
η2

√
Δt

2
.(3)

3. Compute

v1 ≡ U
(2)
2 −U

(2)
1 −D (0, 0)

Δt

2
,

v2 ≡ U
(2)
2 −U

(2)
1 −D

(
U

(2)
1 ,

Δt

2

)
Δt

2
,
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f1 ≡ 1

|B (0, 0)|1/2
exp

(
− 1

Δt
vT
1 (B (0, 0))−1 v1

)
,

f2 ≡ 1∣∣∣B (
U

(2)
1 , Δt

2

)∣∣∣1/2 exp
(
− 1

Δt
vT
2

(
B

(
U

(2)
1 ,

Δt

2

))−1

v2

)
,

H ≡ 1− f1
2f2

.(4)

4. Sample a one-dimensional (1D) random variable ξ from the standard uniform
distribution: ξ ∼ U(0, 1).

5. If the acceptance criterion

ξ < max (H, 0.1)(5)

is met, then set ZDR2
Δt = U

(2)
2 . Else, go back to step 1.

The above algorithm is easily implemented in a computational code: each accep-
tance-rejection step involves two evaluations of the drift and diffusion fields, along
with the computations involved in calculating H , which are trivial for the case of
isotropic diffusion, and can be optimized to involve just one determinant evaluation
and one solution of an n× n linear system for the anisotropic case.

Taking a more abstract view on the DR2 algorithm, we can see that it is basically
a rejection sampling algorithm which takes two Euler time steps (3) at each sampling
step, and accepts with probability max (H, 0.1). The reader is referred to [1] for
an accessible introduction to rejection sampling methods, also known as acceptance-
rejection methods. The essential idea of acceptance-rejection methods is that we
can generate a random variable with a desired distribution (the target distribution)
by obtaining a sample from a simpler distribution on the same sample space (the
instrumental distribution) and accepting that sample with a probability based on the
ratio of the PDFs associated with the target and instrumental distributions.

One might wonder, then, where exactly is the Richardson extrapolation after
which this scheme is named. To answer this question, let us define f2

Δt (x,y) to be
the PDF of the random variable

(
U

(2)
1 ,U

(2)
2

)
, in other words the PDF associated with

the event
{
U

(2)
1 = x,U

(2)
2 = y

}
. Also, let η3 ∼ N (0, I), define U

(2)
2 by

U
(2)
2 ≡ U

(2)
1 +D (0, 0)

Δt

2
+ σ (0, 0) η3

√
Δt

2
,(6)

and let us define f1
Δt (x,y) to be the PDF of the random variable

(
U

(2)
1 ,U

(2)
2

)
, in

other words, the PDF associated with the event
{
U

(2)
1 = x,U

(2)
2 = y

}
. It can then

be shown that

f1
Δt

(
U

(2)
1 ,U

(2)
2

)
f2
Δt

(
U

(2)
1 ,U

(2)
2

) =
f1
f2

,(7)

and so, since f2
Δt (x,y) is the instrumental distribution of the rejection sampling, we

arrive at the conclusion that the PDF of the pair
(
U

(2)
1 ,U

(2)
2

)
which gets accepted by

the DR2 algorithm approximates 2f2
Δt (x,y)

(
1− f1

Δt(x,y)

2f2
Δt(x,y)

)
= 2f2

Δt (x,y)− f1
Δt (x,y).
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For the above result to hold, however, we need to show that the probability of H
deviating significantly from 1

2 is negligible; we shall elaborate on this claim, and
demonstrate its correctness, later on.

Note, however, that (6) implies that U
(2)
2 has the same distribution as the end

value after a single Euler step of length Δt, whereas by its definition U
(2)
2 is the

end value after two Euler steps of length Δt
2 each. Therefore, the PDF of ZDR2

Δt

approximates the second-order Richardson extrapolation of the PDFs of the final
value at t = Δt, as given by one and two Euler steps.

And so we see that the DR2 scheme applies Richardson extrapolation directly
to the PDF of the process’s value after a single time step. This makes it weakly
second-order accurate, as demonstrated by the numerical results presented in the
next section.

3. Numerical test cases: Comparing the accuracy and efficiency of DR2
and DR3 with that of other weakly convergent SDE integration schemes. In
this section, we provide results from numerical test cases which compare the accuracy
and computational cost of the DR2 and DR3 schemes with those of two other modern
SDE time integration schemes. The first of these is the weak second-order midpoint
scheme, developed by Cao and Pope [3], which we refer to as the Cao and Pope
scheme, or CP for short. In the authors’ experience [8], the Cao and Pope SDE
integration scheme is both accurate and computationally efficient. However, having
been designed specifically for its application in Lagrangian Monte Carlo methods for
turbulent combustion, the CP scheme can only treat cases with isotropic diffusion.
We compare its performance with that of DR3 on a 1D, and hence isotropic, test case.

We also make a comparison with the multidimensional explicit second-order weak
scheme described by Kloeden and Platen [4, pp. 486–487] and generalized to a family
of derivative-free weak second-order schemes by Tocino and Vigo-Aguiar [12] (the
particular member of the family of schemes used here is referred to as SIE-A in [12]).
As the Kloeden and Platen (KP) scheme allows for anisotropic diffusion, we compare
its performance with that of DR2 on a two-dimensional (2D) anisotropic test case.

Two dimensional, anisotropic test case: Comparison between the DR2
and KP schemes. We perform a simulation on the domain x = (x, y) ∈ [0, 2π) ×
[0, 2π) with periodic boundary conditions, from t = 0 to t = 1. We specify an analytic
solution with the functional form

f(x, y, t) =
3∑

k,l,m=0

R1,f
klm sin (xk + yl + πtm) +R2,f

klm cos (xk + yl+ πtm)(8)

for the PDF of the process X(t). The same functional form is used for the coefficients

(σij)
2
i,j=1 of the diffusion matrix σ:

σij(x, y, t) =

3∑
k,l,m=1

R
1,σij

klm sin (xk + yl+ πtm) +R
2,σij

klm cos (xk + yl + πtm).(9)

At the beginning of the simulation, the coefficients R1,f
klm, R2,f

klm, R
1,σij

klm , R
2,σij

klm are
assigned randomly from a standard normal distribution. Then all of the coefficients
are rescaled and a constant offset is added, in order to enforce

min
x,y,t

(f(x, y, t)) =
1

8π2
, max

x,y,t
(f(x, y, t)) =

3

8π2
,
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min
x,y,t

(σij(x, y, t)) = 0.6, max
x,y,t

(σij(x, y, t)) = 1.4 for i = j,

min
x,y,t

(σij(x, y, t)) = −0.3, max
x,y,t

(σij(x, y, t)) = 0.3 for i �= j,(10)

thus ensuring that f(x, y, t) is positive and integrates to 1, and that σ(x, y, t) is positive
definite. We then specify D(x, y, t) such that the Fokker–Planck equation is satisfied.
Denoting by f̃(x, y, t) the PDF of a given numerical approximation Z(t) to X(t), and

denoting by Ã1,f
kl , Ã2,f

kl the coefficients of the Fourier expansion of f̃(x, y, t = 1),

f̃(x, y, t = 1) =
∑

k,l∈(−∞,+∞)

Ã1,f
kl sin(xk + yl) + Ã2,f

kl cos(xk + yl),(11)

with a similar definition for the Fourier coefficients A1,f
kl , A2,f

kl of f(x, y, t = 1) we

estimate the following measure of error between f(x, y, t = 1) and f̃(x, y, t = 1):

εf =

√√√√ 4∑
k,l=0

(
Ã1,f

kl −A1,f
kl

)2
+
(
Ã2,f

kl −A2,f
kl

)2
.(12)

Note that εf can be estimated only stochastically from the sample PDF of f̃(x, y, t
= 1). We use a sufficient number of samples of Z(t = 1) to ensure that the 95% confi-
dence interval for εf has a width smaller than the sample mean for εf , and we employ
a jackknife estimator to reduce bias. In addition to estimating the error, we also
measure the computational cost of each numerical scheme, in terms of microseconds
per sample computation on a single processor. The machine used was a medium-sized
cluster of 35 3.0GHz quad-core Xeon processors, and the numerical test cases were
implemented in Fortran 90, using the Intel 10.032 compiler.

The results for this test case are given in Table 1, and in graphical form in Figures
1 and 2. In Figure 1, which is a log-log plot of error vs. time step, we see that both
the DR2 and KP data points fall close to a line of slope two, which confirms the
second-order accuracy of both schemes. In Table 1, it can be seen that DR2 has a
slightly higher computational cost—it takes about 20% more time for the same time
step size—than the KP scheme. This, however, is offset by the lower error produced
by the DR2 scheme—only a third of the KP error—to yield a numerical method which
is overall computationally more efficient for this test case. This can be seen in Figure
2, which is a log-log plot of error vs. computational cost. On this plot, the DR2 data
points are closer to the lower left corner of the plot, which indicates that a given level
of error can be achieved at lower computational cost by the DR2 scheme.

Table 1

Summary of accuracy and computational cost of the DR2 and KP schemes for the 2D
anisotropic test case.

DR2 Δt 1
2

1
4

1
8

1
16

1
32

εf 1.04e-3 2.91e-4 9.06e-5 2.75e-5 7.67e-6

95% CI half-width 2.31e-4 5.65e-5 1.34e-5 3.10e-6 7.80e-7

μs/sample 14.56 27.16 50.65 100.38 195.92

KP Δt 1
2

1
4

1
8

1
16

εf 2.58e-3 1.01e-3 3.09e-4 8.49e-5

95% CI half-width 2.90e-4 8.55e-5 1.60e-5 4.80e-6

μs/sample 13.04 22.98 43.01 84.92
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Fig. 1. Numerical results comparing the accuracy of the DR2 scheme (black diamonds, hor-
izontal bars denote 95% confidence intervals) with that of the KP scheme (gray circles), for the
2D, anisotropic test case. The light gray, dark gray, and black sloped reference lines illustrate,
respectively, first-, second-, and third-order convergence.
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Fig. 2. Numerical results comparing the computational efficiency of the DR2 scheme (black
diamonds, horizontal bars denote 95% confidence intervals) with that of the KP scheme (gray cir-
cles), for the 2D, anisotropic test case. The black sloped reference line illustrates the second-order
convergence behavior of DR2. The gray sloped reference line illustrates the second-order convergence
behavior of KP.
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Table 2

Summary of accuracy and computational cost of the DR3 and CP schemes for the 1D isotropic
test case.

DR3 Δt 1
2

1
4

1
8

1
16

εf 2.08e-3 5.62e-4 1.10e-4 1.53e-5

95% CI half-width 6.65e-4 8.85e-5 1.05e-5 1.19e-5

μs/sample 7.81 15.60 30.69 60.85

CP Δt 1
2

1
4

1
8

1
16

1
32

εf 9.07e-3 2.37e-3 7.32e-4 1.69e-4 4.28e-5

95% CI half-width 1.40e-3 3.35e-4 8.77e-5 2.13e-5 5.34e-6

μs/sample 3.22 6.27 11.82 23.61 47.03

One-dimensional, isotropic test case: Comparison between the DR3
and CP schemes. We have chosen to test DR3 (which is defined in section 7) on a
1D test case due to the prohibitive computational cost associated with the stochastic
verification of the convergence properties of an SDE integration scheme with a high
order of accuracy. For example, for a third-order scheme, halving the time step
requires 27 times more computational effort in order to obtain a reasonable confidence
interval.

The methodology is similar to that of the 2D test case described above. In
particular, we set

f(x, t) = 1 + 0.3 sin (x− πt) ,

B(x, t) = 1 + 0.25 sin (x+ π/3) ,(13)

with D(x, t) such that the Fokker–Planck equation is satisfied. We simulate on the
periodic domain x ∈ [0, 2π), from t = 0 to t = 1, and we define the error as

εf =

√√√√ 6∑
k=0

(
Ã1,f

k −A1,f
k

)2
+
(
Ã2,f

k −A2,f
k

)2
,(14)

where again Ã1,f
k , Ã2,f

k and A1,f
k , A2,f

k are the Fourier coefficients of f̃(x, t = 1) and
f(x, t = 1), respectively.

The results are presented in Table 2, and in graphical form in Figures 3 and 4.
In Figure 3, which is a log-log plot of error vs. time step, it can be seen that the CP
data points fall close to a line of slope two, confirming the second-order convergence
of this scheme, whereas the DR3 scheme achieves third-order convergence for time
steps lower than Δt = 1/8. Also, as can be seen in Table 2, for all time steps the
error produced by DR3 is at least 4 times smaller than that produced by CP. On
the other hand, the computational cost of DR3 is about 2.5 times higher for a given
time step than that of Cao and Pope’s scheme. In Figure 4, which is a log-log plot
of error vs. computational cost, it can be seen that at high error levels, CP is more
computationally efficient (its data points lie to the left of those of DR3), whereas at
low error levels DR3 is more efficient, as it has attained its higher order of convergence.

Based on these numerical test cases, we establish the practical significance of
the DR2 and DR3 schemes, which (for fixed Δt) produce less error than other mod-
ern SDE integration schemes, have comparable computational efficiency, and can be
implemented with ease in a computational code, as we saw from the pseudocode
description of DR2.
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Fig. 3. Numerical results comparing the accuracy of the DR3 scheme (black diamonds, hori-
zontal bars denote 95% confidence intervals) with that of the CP scheme (gray circles), for the 1D,
isotropic test case. The light gray, dark gray, and black sloped reference lines illustrate, respectively,
first-, second-, and third-order convergence.
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Fig. 4. Numerical results comparing the computational efficiency of the DR3 scheme (black di-
amonds, horizontal bars denote 95% confidence intervals) with that of the CP scheme (gray circles),
for the 1D, isotropic test case. The black sloped reference line illustrates the third-order convergence
behavior of DR3 for small time steps. The gray sloped reference line illustrates the second-order
convergence behavior of CP.
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Finally, we note that as the DRp class of SDE integration schemes are based on
an acceptance-rejection procedure on a fixed number of explicit Euler time steps, its
stability properties are the same as that of the explicit Euler scheme. While this may
prevent DRp from being an appropriate SDE integrator for certain applications, it
does not pose a problem in the context of turbulent reactive flow simulations and
related applications in mathematical physics, in which the time steps used are small,
for the sake of time resolution of the turbulent flow, and for stability of the finite
volume solver. Indeed, explicit schemes such as those developed in [12, 3] and even
explicit Euler are the SDE integrators most often used in this field.

In the subsequent sections, we present the mathematical theory of the general
DRp scheme and prove its properties. We start this with a brief description of Richard-
son extrapolation and the manner in which it is used by the DRp family of schemes
in order to achieve weak pth order accuracy.

4. Richardson extrapolation and its use by the DRp scheme. Richardson
extrapolation, as introduced in [10], introduces the elegant idea that, if we have a first-
order accurate numerical approximation A1

Δt to an exact solution A, and the error
with respect to some linear functional g(·) varies smoothly,

g(A1
Δt −A) =

∞∑
i=1

KiΔti,(15)

then we can construct from A1
Δt a second-order accurate approximation A2

Δt to A by
setting A2

Δt = 2A1
Δt/2 −A1

Δt. Then (15) gives us that

g(A2
Δt −A) = 2g(A1

Δt/2 −A)− g(A1
Δt −A)

=

∞∑
i=1

Ki(2(Δt/2)i −Δti)

=

∞∑
i=2

Ki(2(Δt/2)i −Δti),(16)

and so we see that the first-order component of the error has vanished. Applying this
method inductively, we can obtain a scheme with an arbitrarily high order of accuracy
from the first-order scheme A1

Δt by the linear combination

Ap
Δt =

p∑
k=1

lpkA
1

Δt

2k−1
,(17)

where the coefficients lpk satisfy the following recursive relation:(
l21, l

2
2

)
= (−1, 2),

(
lp1 , . . . , l

p
p

)
=

[
2p−1

(
0, lp−1

1 , . . . , lp−1
p−1

)
−
(
lp−1
1 , . . . , lp−1

p−1, 0
)]

2p−1 − 1
.(18)

In the context of solutions to SDEs [4, 9], Richardson extrapolation has been
used to obtain pth order accurate estimates for the expected value of a function of the
SDE solution at the end time, E (g (X(T ))). This can done by computing, for each
time step Δt,Δt/2, . . . , Euler solutions with that time step, which we shall denote
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by ZE
Δt (T ) ,Z

E
Δt/2 (T ) , . . . , and approximating E (g (X(T ))) by the expected value of

the Richardson extrapolate of g
(
ZE
Δt (T )

)
:

E (g (X(T ))) ≈ E

(
p∑

k=1

lpkg
(
ZE

Δt

2k−1
(T )

))
.(19)

The approximation given by (19), while elegant and effective, is applicable only if we
are interested in a functional of the solution at the end time, T . On the other hand,
in many applications it is necessary to use an SDE integration procedure which gives
an accurate result at each intermediate time step, due to the fact that the SDE is
coupled to another process. As an example, in the implementation of a Monte Carlo
method for turbulent combustion [13], an overall time step may consist of a transport
substep (in which an SDE of the form of (1) is solved), followed by a reaction substep
and a diffusion substep. As the last of these substeps uses the values provided by the
first, it is easily seen that the transport substep needs to employ an SDE integration
scheme which is accurate at intermediate times as well.

With this in mind, we adopt an alternative way of performing Richardson ex-
trapolation on the Euler SDE solutions. Without loss of generality, let X (t = 0) = 0,
let, for k = 0, . . . , p − 1, fk

Δt(x) be the probability density functions (PDFs) of the
random variables ZE

Δt

2k

(Δt), respectively, and let fX(Δt)(x) be the PDF of the random

variable X(Δt) which we are approximating numerically. Furthermore, let us denote

by ZDRp
Δt the random variable which is the DRp solution after a single time step of

length Δt, and let fDRp
Δt (x) be its PDF.

Following [12], we note that a sufficient condition for the weak pth order accuracy
of the DRp scheme is that it satisfies, for any multi-index of nonnegative integers
(i1, i2, . . . , in) with

∑n
m=1 im ≤ 2p+ 2, the inequality

∣∣∣∣∣E
(

n∏
m=1

(
ZDRp
Δt,m

)im −
n∏

m=1

(Xm(Δt))
im

)∣∣∣∣∣ ≤ C̃Δtp+1,(20)

where C̃ is a positive constant which depends only on n, p and the fieldsD(x, t), σ(x, t).
Previously [9, 11] it has also been demonstrated that for fields D(x, t), σ(x, t) which
are sufficiently smooth, there exist constants CE

1 , CE
2 , . . . , CE

p+1 such that

∣∣∣∣∣E
(

n∏
m=1

(
ZE
Δt,m

)im −
n∏

m=1

(Xm(Δt))
im

)
−

p∑
m=1

CE
mΔtm

∣∣∣∣∣ ≤ C̃E
p+1Δtp+1,(21)

and hence∣∣∣∣∣E
(

p∑
k=1

lpk

n∏
m=1

(
ZE

Δt

2k−1 ,m

)im −
n∏

m=1

(Xm(Δt))
im

)∣∣∣∣∣ ≤ C̃E
p+1Δtp+1.(22)

We have designed the DRp solution so that fDRp
Δt (x) satisfies

∫ ∣∣∣∣∣fDRp
Δt (x)−

p−1∑
k=0

lpk+1f
k
Δt(x)

∣∣∣∣∣ |dx| ≤ CΔtp+1(23)
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for a given finite constant C, independent of Δt. It is proved in Theorem 2 in Appendix
B that (23) implies that∣∣∣∣∣E

(
n∏

m=1

(
ZDRp
Δt,m

)im −
p∑

k=1

lpk

n∏
m=1

(
ZE

Δt

2k−1 ,m

)im)∣∣∣∣∣ ≤ C′Δtp+1,(24)

where C′ is another constant which depends only on n, p and the fields D(x, t), σ(x, t).
Since (20) follows directly from (22), (24), we see that (23) and Theorem 2 imply that
the DRp scheme is weak pth order accurate.

In the remainder of this paper, we give a general description of the DRp schemes
and a proof of (23). First, however, we need to specify smoothness and boundedness
criteria on the SDE drift and diffusion fields, which are necessary for the correct
operation of the DRp schemes.

5. Smoothness requirements of the DRp scheme. As previously men-
tioned, we are computing, in R

n × [0, T ], weak solutions to the SDE problem as
given by (1). We require that the fields D, σ be smooth (all derivatives exist and are
bounded), so that the result of (21), derived in [11], holds true. Furthermore, for the
correct operation of the DRp family of numerical schemes, we require that the drift
vector field, D (x, t) ∈ Rn, be bounded,

‖D (x, t) ‖ ≤ CD
1 ,(25)

and globally Lipschitz continuous in both space and time,

‖D (x1, t1)−D (x2, t2) ‖ ≤ CD,x
2 ‖x1 − x2‖+ CD,t

2 |t1 − t2| ,(26)

and that the diffusion field of matrices, σ (x, t) ∈ Mat(n, n), be globally bounded,

‖σ (x, t)v‖ ≤ Cσ
1 ‖v‖ for any v ∈ Rn,(27)

as well as being globally coercive,

‖σ (x, t)v‖ ≥ Cσ
2 ‖v‖ for any v ∈ Rn,(28)

and globally Lipschitz continuous with respect to the matrix norm,

‖σ (x1, t1)− σ (x2, t2) ‖ ≤ Cσ,x
3 ‖x1 − x2‖+ Cσ,t

3 |t1 − t2| .(29)

Here it is understood that constants CD
1 , CD,x

2 , CD,t
2 , Cσ

1 , C
σ
2 , C

σ,x
3 , Cσ,t

3 are finite and
strictly positive. Note also that (27)–(29) imply similar regularity conditions on σ−1,
the matrix inverse of σ:∥∥σ−1 (x, t)v

∥∥ ≤ Cσ−1

1 ‖v‖ for any v ∈ Rn,(30)

∥∥σ−1 (x, t)v
∥∥ ≥ Cσ−1

2 ‖v‖ for any v ∈ Rn,(31)

and

‖σ−1 (x1, t1)− σ−1 (x2, t2) ‖ ≤ Cσ−1,x
3 ‖x1 − x2‖+ Cσ−1,t

3 |t1 − t2| ,(32)

where Cσ−1

1 = 1
Cσ

2
, Cσ−1

2 = 1
Cσ

1
, Cσ−1,x

3 =
Cσ,x

3

(Cσ
2 )

2 , and Cσ−1,t
3 =

Cσ,t
3

(Cσ
2 )

2 are again finite

and strictly positive constants. For the sake of compactness of notation, we shall
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call CD
1 , CD,x

2 , CD,t
2 , Cσ

1 , C
σ
2 , C

σ,x
3 , Cσ,t

3 , Cσ−1

1 , Cσ−1

2 , Cσ−1,x
3 , Cσ−1,t

3 the Richardson
regularity constants, and we shall denote them collectively as {C}.

We note that in the application of Lagrangian Monte Carlo turbulent reactive
flow simulations, the above regularity conditions hold for simulations on well-resolved
finite-volume grids and in the absence of compressible shocks (i.e., a subsonic simula-
tion).

6. Framework of the DRp scheme. Here we describe the random variable
ZDRP
Δt and demonstrate why its PDF satisfies (23). Due to the fact that the Richard-

son extrapolation vectors lpk have negative components, (23) requires that the PDF
of ZDRP

Δt approximate a nonconvex linear combination of other PDFs, which are in
themselves easily sampled from. To achieve this goal, we use an acceptance-rejection
approach, with fp−1

Δt (x) as the instrumental distribution.

An additional concept which we need to achieve this is that of the 2p−1-step
sample path which corresponds to the random variables ZE

Δt

2k

. This concept embodies

the idea that if we do not update the coefficients for the second step, two Euler steps
of length Δt/2 produce exactly the same result as a single Euler step of length Δt, and
hence we can use time steps of length Δt

2p−1 to sample from each of ZE
Δt

2k

by updating

the values of D(x, t), σ(x, t) only when we reach a time which is an integer multiple
of Δt

2k
, instead of at each time step.

More concretely, let us denote
⌊
i
⌋
p,k

≡ ⌊
i

2p−1−k

⌋
2p−1−k, let ηi ∼ N (0, I) be in-

dependent samples from the standard normal distribution, and define the random

variable U(k), for each k = 0, 1, . . . , p − 1 as U(k) =
(
U

(k)
i

)2p−1

i=1
, where U

(k)
i are de-

fined by

U
(k)
0 = 0,

U
(k)
i = U

(k)
i−1 +D

(
U

(k)
�i−1�p,k , �i− 1�p,k

Δt

2p−1

)
Δt

2p−1

+ σ

(
U

(k)
�i−1�p,k , �i − 1�p,k

Δt

2p−1

)
ηi

√
Δt

2p−1
.(33)

Finally, let fU,k
Δt (x1,x2, . . . ,x2p−1) be the probability density function of U(k),

i.e., the PDF of the event
{
U

(k)
i = xi

}
. This variable, U(k) is what we will call the

2p−1-step sample path generated by the 2k-step Euler scheme. Note that it is an
n2p−1-dimensional random variable, and, correspondingly, its PDF is defined on an
n2p−1-dimensional sample space.

Noting that in the definition of U(k), the coefficients D, σ are updated only when
the number of the time step is an integer multiple of 2p−1−k, we have that

U
(k)

i2p−1−k = U
(k)

(i−1)2p−1−k +D

(
U

(k)

(i−1)2p−1−k , (i − 1)
Δt

2k

)
Δt

2k

+ σ

(
U

(k)

(i−1)2p−1−k , (i − 1)
Δt

2k

)[∑i2p−1−k

j=(i−1)2p−1−k+1
ηj

√
Δt

2p−1

]
,(34)

and so, since the vectors ηj are independent standard normal random variables, we
have that the term in the square brackets in (34) is distributed as N

(
0, Δt

2k

)
, which

implies that the random variables
{
U

(k)

i2p−1−k |U(k)

(i−1)2p−1−k = x
}
and

{
Zk
i |Zk

i−1 = x
}
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are identically distributed; in other words, the 2p−1−k steps corresponding to (34) are
identical to a singe Euler step of length Δt

2k .

The above paragraph implies that, for each k = 0, 1, . . . , p − 1, the PDF fk
Δt(x)

is the marginal PDF of fU,k
Δt (x1,x2, . . . ,x2p−1) in the last variable, and so we can

achieve the goal of (23) by approximating a linear combination of the PDFs of the
2p−1-step sample paths.

The reason for this approach is the rather unexpected result that if we compute

a realization of U(p−1), we can also compute exactly the ratio
fU,k
Δt (U

(p−1))
fU,p−1
Δt (U(p−1))

. To

see how, define fU,k
Δt,Uj

(xj ;x1,x2, . . . ,xj−1) to be the PDF of U
(k)
j , conditional upon{

U
(k)
1 = x1,U

(k)
2 = x2, . . . ,U

(k)
j−1 = xj−1

}
, and note that

fU,k
Δt

(
U(p−1)

)
=

2p−1∏
j=1

fU,k
Δt,Uj

(
U

(p−1)
j ;U

(p−1)
1 ,U

(p−1)
2 , . . . ,U

(p−1)
j−1

)
,(35)

which gives us that

fU,k
Δt

(
U(p−1)

)
fU,p−1
Δt

(
U(p−1)

) =

2p−1∏
j=1

fU,k
Δt,Uj

(
U

(p−1)
j ;U

(p−1)
1 ,U

(p−1)
2 , . . . ,U

(p−1)
j−1

)
fU,p−1
Δt,Uj

(
U

(p−1)
j ;U

(p−1)
1 ,U

(p−1)
2 , . . . ,U

(p−1)
j−1

) ,(36)

where the factors of the above expression are easily evaluated, as they are just evalu-
ations of the joint normal distributions which correspond to the Euler steps in (33):

fU,k
Δt,Uj

(xj ;x1,x2, . . . ,xj−1)

=
1

(2π)n/2
∣∣B (x∗, t∗) Δt

2p−1

∣∣1/2 exp

(
−vT 1

2

(
B (x∗, t∗)

Δt

2p−1

)−1

v

)
,(37)

where, for the sake of brevity in the above equation, we use the notation

x∗ = x�j−1�p,k ; t∗ = �j − 1�p,k
Δt

2p−1
(38)

and

v =

[
xj − xj−1 −D (x∗, t∗)

Δt

2p−1

]
.(39)

Note that (36)–(39) require values of D(x), σ(x) at x = U∗ = U
(p−1)
�j−1�p,k only,

and in the process of computing a realization of U(p−1) (i.e., taking 2p−1 Euler steps
of length Δt

2p−1 ) we have already computed these values, so no further sampling of the
diffusion and drift fields is needed in order to evaluate the products in (36).

And so, we are ready to proceed to the pseudocode description of the DRp scheme.

7. Pseudocode description of the DRp scheme. Here, we give a pseudocode
description of the pth order accurate direct Richardson scheme. As in the previous
sections we assume, without loss of generality, that the initial location is Z(t = 0) =

0, and we describe the algorithm by which we calculate ZDRp
Δt . First, we choose a

parameter c ∈ (0, 0.5) which will serve as a lower bound for the acceptance probability;
in the computational results presented in this work, the value c = 0.1 is used. Later
on, we shall demonstrate that the unconditional acceptance probability of the DRp
algorithm converges to 0.5 in the limit Δt ↓ 0.
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1. Obtain a sample of the random variable U(p−1), according to (33) (i.e., take
2p−1 Euler time steps).

2. For each k = 0, 1, . . . , p − 2, evaluate
fU,k
Δt (U

(p−1))
fU,p−1
Δt (U(p−1))

according to (36)–(39),
and calculate

H (x1, . . . ,x2p−1) ≡ 1

2

p−1∑
k=0

lpk+1

fU,k
Δt (x1, . . . ,x2p−1)

fU,p−1
Δt (x1, . . . ,x2p−1)

(40)

at (x1, . . . ,x2p−1) = U(p−1).
3. Sample a random variable ξ with a standard uniform distribution: ξ ∼

U(0, 1).
4. If the acceptance criterion

ξ < max
(
H
(
U(p−1)

)
, c
)

(41)

is met, then set ZDRp
Δt = U

(p−1)
2p−1 . Else, go back to step 1.

As can be seen, the DR2 algorithm described earlier is the particular case of the
above algorithm when p = 2 and c = 0.1. Examining (41) it is easily seen that the
probability of acceptance at each iteration of steps 1–4 is at least equal to c. In fact,
in Appendix A we shall prove the following theorem, which implies that as the time
step Δt decreases, the probability of acceptance converges to 1

2 .
Theorem 1. For any integer m, p ≥ 1 and any real number d > 0, if the fields

D (x, t) and σ (x, t) satisfy the regularity conditions stated in (25)–(32), then there
exists a constant C̄ ∈ (0,∞), dependent only on p,m, d, {C}, such that if the set

E ⊂ Rn2p−1

is defined by

E =

{
(x1,x2, . . . ,x2p−1) ∈ Rn2p−1

∣∣∣
∣∣∣∣∣ fU,k

Δt (x1,x2, . . . ,x2p−1)

fU,p−1
Δt (x1,x2, . . . ,x2p−1)

− 1

∣∣∣∣∣ > d

}
,(42)

then ∫
E

fU,k
Δt (x1,x2, . . . ,x2p−1) |dx1| |dx2| . . . |dx2p−1 | ≤ C̄Δtm(43)

and ∫
E

fU,p−1
Δt (x1,x2, . . . ,x2p−1) |dx1| |dx2| . . . |dx2p−1 | ≤ C̄Δtm.(44)

Theorem 1 is a very powerful result, as it implies that the probability of the
quantityH

(
U(p−1)

)
differing considerably from 1

2 on a given acceptance-rejection step
decreases faster than any power of Δt, as Δt ↓ 0. This implies that the unconditional
acceptance probability of the DRp algorithm converges to 1

2 as Δt ↓ 0.
To see why this is so, note that by the definition of the Richardson extrapolation

coefficients, (18), we have that
∑p−1

k=0 l
p
k+1 = 1; hence H

(
U(p−1)

)
differing consider-

ably from 1
2 implies that at for least one k ∈ {0, 1, 2, . . . , p− 1}, fU,k

Δt (U
(p−1))

fU,p−1
Δt (U(p−1))

differs

considerably from 1, and by Theorem 1 the probability of this is negligible.
More concretely, choosing an arbitrary c′ ∈ (c, 1

2

)
and setting d = 1−2c′∑p−1

k=0|lpk+1| , weget that

H
(
U(p−1)

)
�∈ [c′, 1− c′](45)
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implies that for at least one k ∈ {0, 1, . . . , p− 1} we have that
∣∣ fU,k

Δt (U
(p−1))

fU,p−1
Δt (U(p−1))

−1
∣∣ > d.

However, denoting by PU(p−1) {·} the probability of a given event (dependent on
U(p−1)) for one sampling of U(p−1), i.e., one acceptance-rejection step, we have that

PU(p−1)

{∣∣∣∣∣ fU,k
Δt

(
U(p−1)

)
fU,p−1
Δt

(
U(p−1)

) − 1

∣∣∣∣∣ > d

}
=

∫
E

fU,p−1
Δt (x1, . . . ,x2p−1) |dx1| . . . |dx2p−1 | ,

(46)

where E is as defined in (42). Hence, applying Theorem 1 for this value of d, an
arbitrary m ≥ p+ 1, and all k = 0, 1, . . . , p− 1, we get that there exists a constant C̄
such that

PU(p−1)

{
H
(
U(p−1)

)
�∈ [c′, 1− c′]

}

≤
p−1∑
k=0

PU(p−1)

{∣∣∣∣∣ fU,k
Δt

(
U(p−1)

)
fU,p−1
Δt

(
U(p−1)

) − 1

∣∣∣∣∣ > d

}
≤ C̄Δtm.(47)

Since c′ ∈ (c, 1
2

)
and m ≥ p+ 1 are arbitrary, (47) implies that for an arbitrarily

narrow interval [c′, 1− c′], centered on 1
2 , as Δt ↓ 0, the probability that H

(
U(p−1)

)
falls outside of this interval decreases faster than any power of Δt. This, combined
with (41) (which implies that the probability of acceptance is at least c, on each
acceptance-rejection step of the DRp algorithm), implies that the DRp acceptance-
rejection algorithm is well behaved, and as Δt ↓ 0, the expected number of steps to
acceptance converges to 2.

In the next section, we use the result of Theorem 1 to prove that, with ZDRp
Δt

being generated by the above algorithm, fDRp
Δt satisfies (23).

8. Proving that the DRp scheme satisfies its objective. Before we pro-
ceed, we need some additional definitions. Let us define Vc′ as follows:

Vc′ =
{
(x1, . . . ,x2p−1) ∈ Rn2p−1 |H (x1, . . . ,x2p−1) ∈ [c′, 1− c′]

}
.(48)

It is important to note that, by Theorem 1, the complement of Vc′ , (Vc′)
c
contains

a negligible part of the mass of the PDFs fU,k
Δt (x1, . . . ,x2p−1), in the sense that∫

(Vc′)
c

fU,k
Δt (x1, . . . ,x2p−1) |dx1| . . . |dx2p−1 | ≤ C̄Δtm.(49)

Next, let W(p−1) =
(
W

(p−1)
i

)2p−1

i=1
be the value of U(p−1) at the last step of

the acceptance-rejection loop, that is, the value which leads to an acceptance, and
let fW,p−1

Δt (x1,x2, . . . ,x2p−1) be its PDF on the sample space Rn2p−1

. Finally, let
PW(p−1) {·} denote the probability of a given event dependent on W(p−1). Note that
the difference between PU(p−1) {·} and PW(p−1) {·} is that the former is the probability
for one acceptance-rejection step, whereas the latter is the probability for the entire
time step, i.e., until the algorithm results in acceptance.

We then have that

ZDRp
Δt = W

(p−1)
2p−1(50)
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and

fDRp
Δt (x) =

∫
Rn(2p−1−1)

fW,p−1
Δt (x1, . . . ,x2p−1−1,x) |dx1| |dx2| . . . |dx2p−1−1| .(51)

Now, by (48), we have that, on Vc′ , max (H (x1, . . . ,x2p−1) , c) = H (x1, . . . ,x2p−1) ∈
[c′, 1− c′], and so for (x1, . . . ,x2p−1) ∈ Vc′

max (H (x1, . . . ,x2p−1) , c)× fU,p−1
Δt (x1, . . . ,x2p−1)

=
1

2

p−1∑
k=0

lpk+1

fU,k
Δt (x1, . . . ,x2p−1)

fU,p−1
Δt (x1, . . . ,x2p−1)

× fU,p−1
Δt (x1, . . . ,x2p−1)

=
1

2

p−1∑
k=0

lpk+1f
U,k
Δt (x1, . . . ,x2p−1) .(52)

Therefore, since fU,p−1
Δt (x1, . . . ,x2p−1) is the instrumental distribution in the DRp

acceptance-rejection scheme, and the acceptance probability is as defined in (41), we
have that, on Vc′ ,

fW,p−1
Δt (x1,x2, . . . ,x2p−1)∑p−1

k=0 l
p
k+1f

U,k
Δt (x1, . . . ,x2p−1)

= Q1,(53)

where Q1 is a constant that does not vary with (x1,x2, . . . ,x2p−1), and hence, because

fW,p−1
Δt is strictly positive, we have that

∫
Vc′

∣∣∣∣∣fW,p−1
Δt (x1, . . . ,x2p−1)−

p−1∑
k=0

lpk+1f
U,k
Δt (x1, . . . ,x2p−1)

∣∣∣∣∣ |dx1| . . . |dx2p−1 |

=

∣∣∣∣∣
∫
Vc′

fW,p−1
Δt (x1, . . . ,x2p−1)−

p−1∑
k=0

lpk+1f
U,k
Δt (x1, . . . ,x2p−1) |dx1| . . . |dx2p−1 |

∣∣∣∣∣
≤
∫
(Vc′ )

c

fW,p−1
Δt (x1,x2, . . . ,x2p−1) |dx1| . . . |dx2p−1 |

+

∫
(Vc′ )

c

∣∣∣∣∣
p−1∑
k=0

lpk+1f
U,k
Δt (x1, . . . ,x2p−1)

∣∣∣∣∣ |dx1| . . . |dx2p−1 | ,(54)

where, in order to get the inequality in the above (54), we used the triangle inequal-

ity and the fact that fW,p−1
Δt (x1, . . . ,x2p−1) and

∑p−1
k=0 l

p
k+1f

U,k
Δt (x1, . . . ,x2p−1) both

integrate to 1 over the entire space Rn2p−1

. The above result, and (51), imply that

∫ ∣∣∣∣∣fDRP
Δt (x) −

p−1∑
k=0

lpk+1f
k
Δt(x)

∣∣∣∣∣ |dx|
=

∫
Rn2p−1

∣∣∣∣∣fW,p−1
Δt (x1, . . . ,x2p−1)−

p−1∑
k=0

lpk+1f
U,k
Δt (x1, . . . ,x2p−1)

∣∣∣∣∣ |dx1| . . . |dx2p−1 |

≤ 2

∫
(Vc′ )

c

fW,p−1
Δt (x1,x2, . . . ,x2p−1) |dx1| . . . |dx2p−1 |

+ 2

∫
(Vc′ )

c

∣∣∣∣∣
p−1∑
k=0

lpk+1f
U,k
Δt (x1, . . . ,x2p−1)

∣∣∣∣∣ |dx1| . . . |dx2p−1 | .(55)
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Now, by (49), we have that

∫
(Vc′ )

c

∣∣∣∣∣
p−1∑
k=0

lpk+1f
U,k
Δt (x1, . . . ,x2p−1)

∣∣∣∣∣ |dx1| . . . |dx2p−1 | ≤ C̄Δtm
p−1∑
k=0

∣∣lpk+1

∣∣ ,(56)

and by the definition of fW,p−1
Δt we have that∫

(Vc′ )
c

fW,p−1
Δt (x1,x2, . . . ,x2p−1) |dx1| . . . |dx2p−1 | = PW(p−1)

{
W(p−1) ∈ (Vc′)

c
}
.(57)

Also, by (47) and the fact that the acceptance probability is at least c, we have
that

PW(p−1)

{
W(p−1) ∈ (Vc′)

c
}

≤ 1

c
PU(p−1)

{
U(p−1) ∈ (Vc′)

c
}
≤ 1

c
C̄Δtm.(58)

Substituting the result of (56)–(58) into (55), we get that

∫ ∣∣∣∣∣fDRp
Δt (x)−

p−1∑
k=0

lpkf
k
Δt(x)

∣∣∣∣∣ |dx| ≤ 2C̄Δtm

(
1

c
+

p−1∑
k=0

∣∣lpk+1

∣∣) ,(59)

which proves that the DRp scheme satisfies the required condition, (23). In fact, as
m ≥ p+1 can be arbitrarily large, the result of (59) is much stronger than the required

condition of (23): we have just shown that the L1 difference between fDRp
Δt (x) and

the Richardson extrapolate,
∑p−1

k=0 l
p
kf

k
Δt(x), decreases faster than any power of Δt,

as Δt ↓ 0. This concludes the proof that the DRp scheme is weak pth order accurate.

9. Summary and conclusions. We have developed a new class of weak pth
order accurate SDE integration schemes, for the solution of nonhomogeneous, an-
isotropic Ito SDEs with strictly positive definite diffusion matrices. These schemes,
called the direct Richardson pth order accurate (DRp) schemes, perform Richardson
extrapolation on the Euler algorithm in a conceptually new way, by means of an
acceptance-rejection algorithm, after each time step.

Unlike previous applications of Richardson extrapolation to an Euler SDE so-
lution, which are only applicable to the problem of estimating functionals of the
distribution of the SDE process at the end time, the DRp solution is weak pth order
accurate at each time step of the simulation, and can therefore be applied to any
problem which requires a weakly convergent SDE integration scheme.

A simplified description of a particular member of the DRp class, DR2, has been
provided. This description illustrates the elegance of the direct Richardson schemes
and their ease of implementation in a computational code. Numerical results have
been provided for both 2D anisotropic and 1D isotropic test cases, which compare the
performance of DR2 and DR3 with that of other modern SDE integration schemes, in
particular those developed by Kloeden and Platen [4] and by Cao and Pope [3]. The
numerical results indicate that the error of the DR2, DR3 schemes is smaller than that
of existing schemes based on Ito–Taylor expansions, whereas the computational cost
of the DR schemes is somewhat higher, so that the overall computational efficiency
is comparable. This suggests that the DRp family of SDE integration schemes are a
practical alternative to existing SDE integration schemes, with the benefit of being
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easier to implement, especially in cases where the SDE diffusion is isotropic, or its
matrix decomposition is known.

Appendix A. Proof of Theorem 1. Here, we prove Theorem 1.
Theorem 1. For any integer m, p ≥ 1 and any real number d > 0, if the fields

D (x, t) and σ (x, t) satisfy the regularity conditions stated in (25)–(32), then there
exists a constant C̄ ∈ (0,∞), dependent only on p,m, d, {C}, such that if the set

E ⊂ Rn2p−1

is defined by

E =

{
(x1,x2, . . . ,x2p−1) ∈ Rn2p−1

∣∣∣
∣∣∣∣∣ fU,k

Δt (x1,x2, . . . ,x2p−1)

fU,p−1
Δt (x1,x2, . . . ,x2p−1)

− 1

∣∣∣∣∣ > d

}
,(60)

then ∫
E

fU,k
Δt (x1,x2, . . . ,x2p−1) |dx1| |dx2| . . . |dx2p−1 | ≤ C̄Δtm(61)

and ∫
E

fU,p−1
Δt (x1,x2, . . . ,x2p−1) |dx1| |dx2| . . . |dx2p−1 | ≤ C̄Δtm.(62)

Proof. We use the convention x0 = 0. For a given value of ε ∈ (0,∞), consider

the set Gε
Δt ∈ Rn2p−1

defined by

Gε
Δt =

{
(x1,x2, . . . ,x2p−1) ∈ Rn2p−1

∣∣∣‖xj − xj−1‖ ≤ Δt1/2−ε
}
.(63)

Our proof consists of two parts. In the first, we demonstrate that for a suitable
ε and a small enough Δt, a point (x1,x2, . . . ,x2p−1) is in E only if it is also in the
complement of Gε

Δt (in other words E ⊆ (Gε
Δt)

c). In the second part, we prove that

the integral of either fU,k
Δt (x1,x2, . . . ,x2p−1) or fU,p−1

Δt (x1,x2, . . . ,x2p−1) over the set
(Gε

Δt)
c is small; the reader can get some intuition as to why this is so by noting that,

by their definition, the functions fU,k
Δt (x1,x2, . . . ,x2p−1) and fU,p−1

Δt (x1,x2, . . . ,x2p−1)
consist of products of Gaussian PDFs with characteristic width Δt1/2, whereas
Gε

Δt is a region of characteristic width Δt1/2−ε, and for small Δt we have that

Δt1/2−ε > Δt1/2, so that Gε
Δt contains most of the mass of fU,k

Δt (x1,x2, . . . ,x2p−1)

and fU,p−1
Δt (x1,x2, . . . ,x2p−1).

Consider a given point (x1,x2, . . . ,x2p−1) ∈ Gε
Δt. We have then, from (35)–(39),

that

fU,k
Δt,Uj

(xj ;x1, . . . ,xj−1)

fU,p−1
Δt,Uj

(xj ;x2, . . . ,xj−1)

=

∣∣B (xj−1, tj−1)
Δt

2p−1

∣∣1/2∣∣B (x∗, t∗) Δt
2p−1

∣∣1/2 ×
exp

(
−vT 1

2

(
B (x∗, t∗) Δt

2p−1

)−1
v
)

exp
(
−ṽT 1

2

(
B (xj−1, tj−1)

Δt
2p−1

)−1
ṽ
) ,(64)

where x∗,v, t∗ are as defined in (38), (39), and we introduce, for the sake of compact-
ness, the notation, tj−1 = (j − 1) Δt

2p−1 , and we shall also denote

ṽ =

[
xj − xj−1 −D (xj−1, tj−1)

Δt

2p−1

]
.
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Considering the term
|B(xj−1,tj−1)

Δt

2p−1 |1/2
|B(x∗,t∗) Δt

2p−1 |1/2 first, we have that since ‖xj−1 − x∗‖ ≤
Δt1/2−ε and |tj−1 − t∗| ≤ Δt, then from the regularity equations, (25)–(32),∣∣∣∣∣

∣∣B (xj−1, tj−1)
Δt

2p−1

∣∣1/2∣∣B (x∗, t∗) Δt
2p−1

∣∣1/2 − 1

∣∣∣∣∣ ≤
(
Cσ,x

3 Δt1/2−ε + Cσ,t
3 Δt

Cσ
2

)n

.(65)

Next, considering the term

exp
(
−vT 1

2

(
B (x∗, t∗) Δt

2p−1

)−1
v
)

exp
(
−ṽT 1

2

(
B (xj−1, tj−1)

Δt
2p−1

)−1
ṽ
) ,

we have that

exp
(
−vT 1

2

(
B (x∗, t∗) Δt

2p−1

)−1
v
)

exp
(
−ṽT 1

2

(
B (xj−1, tj−1)

Δt
2p−1

)−1
ṽ
) = exp

(
−2p−2

Δt

(
wTw − w̃T w̃

))
,(66)

where w = σ (x∗, t∗)−1
v and w̃ = σ (xj−1, tj−1)

−1
ṽ. Now, we have that wTw −

w̃T w̃ = (w − w̃)
T
(w+ w̃), and using again (25)–(32), we have that

‖w + w̃‖ ≤ 2Cσ−1

1

(
Δt1/2−ε + CD

1

Δt

2p−1

)
(67)

and

w − w̃ = σ (x∗, t∗)−1
v − σ (xj−1, tj−1)

−1
ṽ

=
(
σ (x∗, t∗)−1 − σ (xj−1, tj−1)

−1
)
v + σ (xj−1, tj−1)

−1 (v − ṽ)

=
(
σ (x∗, t∗)−1 − σ (xj−1, tj−1)

−1
)
v

+ σ (xj−1, tj−1)
−1

(D (xj−1, tj−1)−D (x∗, t∗))
Δt

2p−1
.(68)

Again invoking (25)–(32) to bound the magnitude of the two terms on the right-
most side of (68), we have that

‖w − w̃‖ ≤
(
Δt1/2−ε + CD

1

Δt

2p−1

)(
Cσ−1,x

3 2p−1Δt1/2−ε + Cσ−1,t
3 Δt

)

+
Δt

2p−1
Cσ−1

1

(
CD,x

2 2p−1Δt1/2−ε + CD,t
2 Δt

)
.(69)

Combining the results of (67), (69), we get that for Δt < 1, ε ∈ (0, 0.5) there
exists a constant A1 ∈ (0,∞) such that∥∥wTw− w̃T w̃

∥∥ ≤ A1Δt3/2−3ε.(70)

Choosing ε = 1/12, substituting the result of (70) into (66), and combining with
the result of (65), we get that for any h ∈ (0,∞), we can choose Δt small enough such

that if (x1,x2, . . . ,x2p−1) ∈ G
1/12
Δt , then we have that

∣∣ fU,k
Δt,Uj

(xj ;x1,...,xj−1)

fU,p−1
Δt,Uj

(xj ;x2,...,xj−1)
− 1

∣∣ ≤ h.
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Since this result holds for any j ∈ {
1, 2, 3, . . . , 2p−1

}
, by (36) we can choose h small

enough that
∣∣ fU,k

Δt (x1,x2,...,x2p−1)
fU,p−1
Δt (x1,x2,...,x2p−1)

− 1
∣∣ ≤ d for any (x1,x2, . . . ,x2p−1) ∈ G

1/12
Δt .

Therefore, for Δt small enough, we have that E ⊆ (
G

1/12
Δt

)c
, which implies that∫

E

fU,k
Δt (x1,x2, . . . ,x2p−1) |dx1| . . . |dx2p−1 |

≤
∫
(
G

1/12
Δt

)c
fU,k
Δt (x1,x2, . . . ,x2p−1) |dx1| . . . |dx2p−1 | .(71)

Note that if (x1,x2, . . . ,x2p−1) ∈ (
G

1/12
Δt

)c
, then for some i between 1 and 2p−1

we have that ‖xi − xi−1‖ ≥ Δt5/12, and so we have that∫
(
G

1/12
Δt

)c
fU,k
Δt (x1,x2, . . . ,x2p−1) |dx1| . . . |dx2p−1 |

≤
2p−1∑
i=1

∫
{‖xi−xi−1‖≥Δt5/12}

fU,k
Δt (x1,x2, . . . ,x2p−1) |dx1| . . . |dx2p−1 | ,(72)

where
{‖xi − xi−1‖ ≥ Δt5/12

}
denotes the set of all points (x1,x2, . . . ,x2p−1) ∈ Rn2p−1

such that ‖xi − xi−1‖ ≥ Δt5/12. Let’s consider a single term in the sum in (72). We
have, by (35), that∫

{‖xi−xi−1‖≥Δt5/12}
fU,k
Δt (x1,x2, . . . ,x2p−1) |dx1| . . . |dx2p−1 |

=

∫
{‖xi−xi−1‖≥Δt5/12}

2p−1∏
j=1

fU,k
Δt,Uj

(xj ;x1, . . . ,xj−1) |dx1| . . . |dx2p−1 |

=

∫
{‖xi−xi−1‖≥Δt5/12}

i∏
j=1

fU,k
Δt,Uj

(xj ;x1, . . . ,xj−1) |dx1| . . . |dxi| ,(73)

where the second inequality follows from Fubini’s theorem and the fact that, since
fU,k
Δt,Uj

(xj ;x1, . . . ,xj−1) are conditional PDFs, as defined in (37), then for any x1, . . . ,
xj−1 we have that ∫

Rn

fU,k
Δt,Uj

(xj ;x1, . . . ,xj−1) |dxj | = 1.(74)

By inductively applying (74), we also get that

∫
Rn(i−1)

i−1∏
j=1

fU,k
Δt,Uj

(xj ;x1, . . . ,xj−1) |dx1| |dx2| . . . |dxi−1| = 1.(75)

Applying (75) and Fubini’s theorem to (73), we get that

∫
{‖xi−xi−1‖≥Δt5/12}

i∏
j=1

fU,k
Δt,Uj

(xj ;x1, . . . ,xj−1) |dx1| . . . |dxi|

≤ sup
(x1,...,xi−1)

(∫
{‖xi−xi−1‖≥Δt5/12}

fU,k
Δt,Ui

(xi;x1, . . . ,xi−1) |dxi|
)
,(76)
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where the supremum in the above inequality is taken over all (x1, . . . ,xi−1) ∈ Rn(i−1).

Note, however, that by its definition, (37), we have that the function fU,k
Δt,Ui

(xi;x1, . . . ,
xi−1) is a multivariate Gaussian distribution whose covariance matrix roughly scales
as Δt

2p−1 , and so it is intuitively easy to see that integrating that distribution over

the region
{‖xi − xi−1‖ ≥ Δt5/12

}
gives a quantity which decreases faster than any

power of Δt as Δt ↓ 0. More concretely, we have that, for fixed x1, . . . ,xi−1, using
the definition of fU,k

Δt,Ui
and the bounds given by (25)–(32), the inequality

fU,k
Δt,Ui

(xi;x1, . . . ,xi−1)(77)

≤ 1(
2π Δt

2p−1

)n/2
(Cσ

2 )
n
exp

⎛
⎜⎝−

(
Cσ−1

2

)2
2p−2

Δt

∥∥∥∥xi − xi−1 −D (x∗, t∗)
Δt

2p−1

∥∥∥∥
2

⎞
⎟⎠ ,

holds, and for Δt ≤ (
2p−2

CD
1

)12/7
, we have that ‖xi − xi−1‖ ≥ Δt5/12 implies that∥∥xi − xi−1 −D (x∗, t∗) Δt

2p−1

∥∥ ≥ 1
2 ‖xi − xi−1‖; hence for Δt ≤ (

2p−2

CD
1

)12/7
and

‖xi − xi−1‖ ≥ Δt5/12, we have that

fU,k
Δt,Ui

(xi;x1, . . . ,xi−1)(78)

≤ 1(
2π Δt

2p−1

)n/2
(Cσ

2 )
n
exp

⎛
⎜⎝−

(
Cσ−1

2

)2
2p−4

Δt
‖xi − xi−1‖2

⎞
⎟⎠ ,

which implies that

sup
(x1,...,xi−1)

(∫
{‖xi−xi−1‖≥Δt5/12}

fU,k
Δt,Ui

(xi;x1, . . . ,xi−1) |dxi|
)

≤
∫
{‖y‖≥Δt5/12}

1(
2π Δt

2p−1

)n/2
(Cσ

2 )
n
exp

⎛
⎜⎝−

(
Cσ−1

2

)2
2p−4

Δt
‖y‖2

⎞
⎟⎠ |dy|

=

∫
{‖z‖≥Δt−1/12}

1(
2π

2p−1

)n/2
(Cσ

2 )
n
exp

(
−
(
Cσ−1

2

)2
2p−4 ‖z‖2

)
|dz| ,(79)

where the third line follows from the second by the simple change of variables z =
yΔt−1/2. Using this result in conjunction with (76), (73), (72), we get that for

Δt ≤ (
2p−2

CD
1

)12/7
∫
(
G

1/12
Δt

)c
fU,k
Δt (x1,x2, . . . ,x2p−1) |dx1| . . . |dx2p−1 |

≤ 2p−1

∫
{‖z‖≥Δt−1/12}

1(
2π

2p−1

)n/2
(Cσ

2 )
n
exp

(
−
(
Cσ−1

2

)2
2p−4 ‖z‖2

)
|dz| ,(80)

and it is a simple, albeit lengthy, calculus exercise to demonstrate that for any integer
m there exists a constant C̄ such that

2p−1

∫
{‖z‖≥Δt−1/12}

1(
2π

2p−1

)n/2
(Cσ

2 )
n
exp

(
−
(
Cσ−1

2

)2
2p−4 ‖z‖2

)
|dz| ≤ C̄Δtm,

(81)
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which proves the first part of Theorem 1, (43). The proof of the second part is
completely identical, with the only difference being that we have (xi−1, ti−1) in place
of (x∗, t∗) in (77), which has no impact on the argument of (77)–(81). And so, we
have proven Theorem 1.

Appendix B. Proof of Theorem 2. Here, we state and prove Theorem 2,
which was used to demonstrate that the DRp schemes satisfy the criterion for weak
pth order accuracy.

Theorem 2. For the random variable ZDRp
Δt defined in section 7, if (23) holds,

then so does (24).
Proof. We shall divide the domain, Rn, into two parts: a ball of radius 1 centered

on the origin, B(0, 1), and its complement, B(0, 1)c. We have that∣∣∣∣∣E
(

n∏
m=1

(
ZDRp
Δt,m

)im −
p∑

k=1

lpk

n∏
m=1

(
ZE

Δt

2k−1 ,m

)im)∣∣∣∣∣
=

∣∣∣∣∣
∫ n∏

m=1

xim
m

(
fDRp
Δt (x)−

p−1∑
k=0

lpk+1f
k
Δt(x)

)
|dx|

∣∣∣∣∣
≤
∫
B(0,1)

‖x‖
∑n

m=1 im

∣∣∣∣∣fDRp
Δt (x) −

p−1∑
k=0

lpk+1f
k
Δt(x)

∣∣∣∣∣ |dx|
+

∫
B(0,1)c

‖x‖
∑n

m=1 im

∣∣∣∣∣fDRp
Δt (x)−

p−1∑
k=0

lpk+1f
k
Δt(x)

∣∣∣∣∣ |dx| ,(82)

and since ‖x‖
∑n

m=1 im is bounded on B(0, 1), we have that (23) implies that there
exists a constant, C′′, such that

∫
B(0,1)

‖x‖
∑n

m=1 im

∣∣∣∣∣fDRp
Δt (x) −

p−1∑
k=0

lpk+1f
k
Δt(x)

∣∣∣∣∣ |dx| ≤ C′′Δtp+1.(83)

Now, let us consider the second term in (82) and obtain a result analogous to (83)
for it. From the boundedness of σ and D, there exists a parameter Δt0, dependent
on {C} and n only, such that for all Δt ≤ Δt0 and any k between 0 and p − 1, we
have that ‖x‖ ≥ 1 implies that

fk
Δt(x) ≤

1

(2πΔt)
n/2

(2Cσ
1 )

n
exp

(
− ‖x‖2
2Δt (2Cσ

1 )
2

)
.(84)

Also, since c > 0, as defined in section 7, gives a lower bound on the acceptance
probability, we have that

fW,p−1
Δt

fU,p−1
Δt

≤ 1

c
,(85)

which implies that

fDRp
Δt

fp−1
Δt

≤ 1

c
,(86)
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and so (84), (86) jointly imply that for Δt ≤ Δt0 and x ∈ B(0, 1)c, we have that∣∣∣∣∣fDRp
Δt (x)−

p−1∑
k=0

lpk+1f
k
Δt(x)

∣∣∣∣∣
≤
(
1

c
+

p−1∑
k=0

∣∣lpk+1

∣∣) 1

(2πΔt)
n/2

(2Cσ
1 )

n
exp

(
− ‖x‖2
2Δt (2Cσ

1 )
2

)
,(87)

which implies that for Δt ≤ Δt0 we have

∫
B(0,1)c

‖x‖
∑n

m=1 im

∣∣∣∣∣fDRp
Δt (x)−

p−1∑
k=0

lpk+1f
k
Δt(x)

∣∣∣∣∣ |dx|
≤
∫
B(0,1)c

‖x‖
∑n

m=1 im
1
c +

∑p−1
k=0

∣∣lpk+1

∣∣
(2πΔt)

n/2
(2Cσ

1 )
n
exp

(
− ‖x‖2
2Δt (2Cσ

1 )
2

)
|dx| .(88)

As the Gaussian distribution on the second line of (88) has characteristic width
2Cσ

1

√
Δt, whereas the domain of integration is over all x with ‖x‖ ≥ 1, it is a simple,

albeit lengthy, calculus exercise to demonstrate that there exists a constant C′′ such
that ∫

B(0,1)c
‖x‖

∑n
m=1 im

1
c +

∑p−1
k=0

∣∣lpk+1

∣∣
(2πΔt)

n/2
(2Cσ

1 )
n
exp

(
− ‖x‖2
2Δt (2Cσ

1 )
2

)
|dx| ≤ C′′Δtp+1.(89)

Combining the results of (83), (89) into (82), (24) follows immediately, which
concludes the proof of Theorem 2.
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