
High-Speed Function Approximation

Biswanath Panda, Mirek Riedewald, Johannes Gehrke
Dept. of Computer Science

Cornell University
{bpanda,mirek,johannes}@cs.cornell.edu

Stephen B. Pope
Dept. of Mechanical & Aerospace Eng.

Cornell University
pope@mae.cornell.edu

Abstract

We address a new learning problem where the goal is
to build a predictive model that minimizes prediction time
(the time taken to make a prediction) subject to a constraint
on model accuracy. Our solution is a generic framework
that leverages existing data mining algorithms without re-
quiring any modifications to these algorithms. We show a
first application of our framework to a combustion simula-
tion problem. Our experimental evaluation shows signifi-
cant improvements over existing methods; prediction time
typically is improved by a factor between 2 and 6.

1. Introduction

Traditionally, learning algorithms for predictive models
have focused on improving prediction quality, e.g., mea-
sured by accuracy, root mean squared error (RMSE), area
under the ROC curve and other metrics [5]. Research in
data mining also considered model building time, i.e., to im-
prove the time it takes to learn predictive models for large
data sets. However, there is another aspect of a predictive
model, which is usually ignored by learning algorithms–
prediction time – the time taken by the model to process an
input and make a prediction. Let us describe an application
where prediction time is important.

High-dimensional function approximation (HFA) for
combustion simulations was recently introduced by [9].
Scientists study how the composition of gases in a com-
bustion chamber changes over time due to chemical reac-
tions. The composition of a gas particle is described by a
high-dimensional vector. The simulation consists of a series
of time steps. During each time step some particles in the
chamber react, causing their compositions to change. This
reaction is described by a complex high-dimensional func-
tion, which, given a particle’s current composition vector
and other simulation properties, produces a new composi-
tion vector. Combustion simulations usually require up to
108 to 1010 reaction function evaluations. For most experi-

ments, a single evaluation of the reaction function costs tens
of milliseconds of CPU time on a modern PC. This makes
running large scale simulations computationally infeasible.
Scientists address this problem by building computationally
less expensive models that approximate the reaction func-
tion within a user defined error tolerance of ε [10]. Our
work is motivated by these specialized solutions for build-
ing models with low prediction time.

Combustion represents one of many scientific applica-
tions that use approximate models to improve simulation
runtime. Recently Bucila et al. [4] observed that ensemble
models, while being the most accurate in many scenarios,
are often too slow to be used in practice. Low prediction
time is also important for online transactions, financial fore-
casting, fraud detection and numerous other applications.

We propose a meta-learning framework that leverages
existing data mining models and algorithms to build mod-
els optimized for prediction time. The main idea is a lo-
cal model approach, where we divide the domain of the
learning problem into regions with associated data mining
models. The search algorithms in our novel framework se-
lect appropriate regions and models across a large space of
possible region/model configurations and reduce prediction
time while maintaining high accuracy.

The rest of the paper is organized as follows. We define
the problem of Low Prediction Time Learning in Section 2
and propose a solution framework in Section 3. Sections 4
and 5 discuss an instantiation of the framework and the
improvements it provides on combustion simulation work-
loads. Section 6 discusses related work and Section 7 con-
cludes the paper.

2. Problem Formulation

Assume we are given a probability distribution D on Rm

and two functions f : Rm → Rn and M : Rm → Rn.
Let X be a random variable that takes on values from Rm

according to distribution D. We say that M is an (ε, δ)-
approximation of f with respect to D, if on expectation at
least 1−δ fraction of points are within ε of the true function

S

S

L LL L L

L L QQ

0.05 0.3 0.3 0.15 0.150.05

A

B

C

L

f

D

Figure 1. Example

value, i.e.,

E[I(X)] ≥ 1 − δ, (1)

where || is some metric and, I() is an indicator function
such that for all x ∈ Rm, I(x) = 1 if ||f(x) − M(x)|| ≤ ε
and 0 otherwise. Also, let cM(x) be the time taken by M to
compute M(x).

We can now define the Low Prediction Time
Learning Problem as follows. Given a set
I = {(x1, f(x1)), (x2, f(x2)), . . . , (xN , f(xN))}
find a function M (the model) such that M is an (ε, δ) ap-
proximation of f while minimizing the expected prediction
cost

ModelCost = E[cM(X)].

We now describe a simple example to illustrate why Low
Prediction Time Learning is an interesting problem. The
example will also provide insights into the general solution
described in the next section. Suppose we want to approxi-
mate the one-dimensional function f shown in Figure 1(A)
within a specified (ε, δ) error constraint for the distribution
D shown in the figure. Further assume that we have a set
of model types denoted by M that can be used to approxi-
mate the function. Let this set consist of polynomials up to
degree 10, that is

M = {
∑

i=0,n

ai · xi|n = 0, 1, . . . , 10}

For simplicity, assume the cost of evaluating a polynomial
of degree n is equal to the number of multiplication opera-
tions, i.e., it is 2n− 1.

Suppose the true function f is a polynomial of degree 10.
Then it is clearly possible to approximate f with a polyno-
mial of degree 10 with (ε, δ) error. If we approximate f
using a polynomial of degree 10, then the model will take
19 time units per prediction.

Observation 1: Assume f can also be approximated within
(ε, δ) by a simpler and cheaper to evaluate 6th-degree poly-
nomial. This reduces model cost to 11 time units per predic-
tion. We call this the Accuracy-Prediction Time Tradeoff.

Observation 2: In part (B) of Figure 1 the function do-
main has been divided into 6 parts and a polynomial of
degree 1(called L, for ”linear”, in the figure) is fit in each
part. Assuming that for all points in a particular partition
the linear model in that partition approximates the function
within (ε, δ), this set of linear models defines another model
that overall satisfies the (ε, δ) constraint. However, now the
prediction time is not just an evaluation of a polynomial,
but actually involves two steps. Given a query point, we
first have to find the partition that contains the point (search
time) and then evaluate the polynomial in the partition (ap-
proximation time).

In order to find a partition containing the query point, we
need a search structure S on the partitions. In this exam-
ple we use a simple linear list S as shown in part B of the
figure. For a given query point, the list is scanned until the
corresponding partition is found. For simplicity we assume
that the search cost is equal to the number of list elements
accessed. Hence for the overall prediction time we obtain
on expectation 0.05 · 1 + 0.05 · 2 + 0.3 · 3 + 0.3 · 4 + 0.15 ·
5 + 0.15 · 6 = 3.9 units for search and 1 unit for evaluating
the corresponding degree-1 polynomial, for a total cost of
4.9 units per prediction.

Fitting a polynomial of degree 6 resulted in a model with
no search time but high approximation time. Partitioning
the domain and using a linear model in each partition results
in high search cost and low approximation cost. We call this
the Search-Approximation Time Tradeoff.

Finding the best set of region-model pairs is challenging
as illustrated by Part (C) of Figure 1, where a different par-
titioning of the function and using polynomials of order 1
and order 2 (called Q, for ”quadratic”, in the figure) results
in a lower prediction time model (4.6 units). Our technique
reduces model prediction time by exploiting the tradeoffs
discussed here.

3 Algorithmic Framework

In this section we formalize the ideas of the previous ex-
ample and discuss how to explore the design space of pos-
sible regions and models in the function domain.

3.1 Model Definition

A region-model M for a function f : Rm → Rn consists
of a set of convex regions R = {ri|ri ⊆ Rm}, stored in
some search structure S, and a mapping Q of regions to stan-
dard data mining models such that ∀ri ∈ R : Q[ri] = mi.
Here mi is an instantiation of a model type in M, where M
is a set of types of data mining models (e.g. SVMs, neural
networks or decision trees).

The search structure S supports a Lookup(S,x) opera-
tion that returns a region r ∈ R containing x. Given a
query point x the prediction process consists of the fol-
lowing steps: (1) find r = Lookup(S,x), (2) then select
m = Q[r], and (3) compute prediction m(x). We can now
revisit the notion of an (ε, δ)-approximation of a function
f with respect to a region-model by redefining I() in Eq. 1
as I(x) = 1 if ||f(x) − Q[Lookup(S,x)](x)|| ≤ ε and 0
otherwise.

As described earlier, the prediction time per query con-
sists of two costs: search time and approximation time. Let
sS(x) be the time taken by Lookup to find a region r con-
taining x using search structure S. Similarly, let am(x) be
the time taken to compute an approximation using model
m = Q[r]. Then the expected total prediction time per
query can be written as ModelCost = E[sS(X)+aQ[r](X)].

Notice that there might be (R,Q) configurations where
some query points are not covered by any of the regions in
R, i.e., Lookup(S,x) returns no result. We assume that these
query points are evaluated using an expensive ground truth
model with high prediction time1.

3.2. Algorithms

Let I denote a set of input points with known function
values. We partition this set into a training set (T) and a
validation set (V) for model building.

An exhaustive exploration of all possible combinations
of region partitioning, model used for each region, and
index for managing regions, is practically infeasible. To
reduce the complexity, we divide the problem into sub-
problems. In particular, our algorithm has two major steps:

1. Generate a set of regions and find the best model for
each region.

2. For each index structure under consideration, select the
set of region-model pairs that minimizes expected pre-
diction time for this index. Return the best solution.

These two steps that we call Region-Model Candidate Set
Selection and Region-Model Selection are discussed briefly.

1In most applications there exists an expensive accurate model, e.g., the
reaction function for the combustion problem.

Region-Model Candidate Set Selection: Any subset of
points in T could be connected as a candidate region, re-
sulting in a number of regions exponential in the training set
size. We therefore have to resort to heuristics for generat-
ing “the most promising” candidate regions. To reduce the
search space, without being overly restrictive, we propose
the following general approach. Assume we are given a set
of relatively small regions, which we refer to as base re-
gions. These base regions could be obtained from a regular
grid partitioning of the space, from the leaves in a regres-
sion tree [3], or based on ISAT’s regions of accuracy [10].
The base regions do not need to be disjoint. We restrict re-
gion candidates to be either base regions or larger derived
regions, which are the union of some base regions that are
near each other. A concrete algorithm is discussed in Sec-
tion 4.

For each region under consideration, base region or de-
rived, the next step is to find the lowest prediction time
model of type in M for the region that satisfies the (ε, δ)
error constraint (measured on validation set V).
Region-Model Selection: The region-model generation
algorithm produces a set with elements of the form
(ri, mi, tmi), where ri is a region, mi a model type, and
tmi the approximation time of the mi. We call this set of
region model pairs RM. Notice that each of the models
in RM has to satisfy the (ε, δ) error constraint for its re-
gion. Region-model selection involves selecting a subset of
RM and initializing a model M (as defined in Section 3.1)
that has lowest prediction time. Therefore, selection finds a
model that minimizes

∑
x∈V(sS(x) + aQ[r](x)).

Several factors make the region-model selection problem
difficult. First, lookup cost in a search structure depends on
the properties of the regions it stores like their dimension-
ality, overlap, and orientation. If multiple regions in search
structure S contain a given query point, then approximation
cost depends on the region-model pair that will be finally
used in the prediction. These issues aside, we can show that
even if we make very restrictive assumptions about search
time and approximation time, the region model selection
problem is NP-hard.

Due to the complexity of the selection problem, we have
to resort to heuristics for solving it. We propose to use
a greedy heuristic, shown in Algorithm 1. The algorithm
starts out with an initial solution of base regions that is bi-
ased toward high search cost and low approximation cost.
In each step the algorithm replaces a set of regions in the
current solution with a larger region from the set of candi-
date regions, such that the larger region covers all the re-
moved regions. This is done greedily by selecting the re-
gion that brings about the largest reduction in prediction
time. The algorithm stops when no more improvement is
possible.

Notice that Algorithm 1 assumes the existence of a cost

Algorithm 1 : Greedy Region Selection
Require: RM, Validation Set V , Cost function C

1: Sol (⊆ RM) = {(ri, mi, tmi)|ri is a base region}
2: Cost = C(Sol)
3: while Cost improves do
4: TempSol={}
5: for all (r, m, tm) ∈ S ∧ (r, m, tm) /∈ Sol do
6: Rem = {(ri, mi, tmi)|(ri, mi, tmi) ∈ Sol∧ri ⊆ r}
7: tSolr = Sol + (r, m, tm) - Rem
8: tCostr = C(tSolr)
9: TempSol = TempSol ∪(tSolr, tCostr)

10: if ∃(tSolr, tCostr) ∈ TempSol s.t. tCostr < Cost
then

11: (Sol,Cost)=(tSolr, tCostr)
12: S= Regions in Sol, Q= Region-Model map for Sol
13: return S,Q

function (C), which, given a set of region-model pairs and
a validation set V , returns the prediction time of the best
model that can be created using the given region-model
pairs. We will discuss this in more detail in the next sec-
tion.

4. Instantiations

There are many ways to instantiate the above framework,
differing in how base regions are generated and merged and
the search structure used to store the regions. Due to the
lack of space we only discuss a general instantiation where
each individual point in I is a base region and define a
merge that creates regions enclosing the 1, 2,. . . , n near-
est neighbors of a point. This creates fairly general regions
in terms of shape, size, and overlap; some multidimensional
index is used as the search structure (S). We discuss a vari-
ation of this idea for the combustion application where sci-
entists build models with flexible region definitions. The
solution easily generalizes to many other supervised learn-
ing problems.

The ISAT algorithm used by the domain scientists [9]
approximates the combustion reaction function by a set of
(possibly overlapping) high-dimensional ellipsoids with lin-
ear models inside these ellipsoids. These regions are ob-
tained based on selective evaluations of the reaction func-
tion, which is the ground truth model for this application.

To ensure that the regions satisfy the model definition in
Section 3.1, we use a slightly modified version of the ISAT
algorithm. The main modification is a stricter error control
mechanism that periodically checks existing regions in the
model and updates region boundaries to not include parts
of the space where the model is producing poor approxima-
tions. Studies also indicated that hyper-rectangular regions
work at least as well as ellipsoids, we will therefore use

hyper-rectangular base regions. In the rest of the paper, this
modified algorithm is referred to as ISAT.

Domain scientists also observed that their long-running
simulations (> 109 queries) almost always have the follow-
ing two properties. First, the future query distribution of
the simulation can be fairly accurately estimated after a few
million queries. Second, simulation time is dominated by
model prediction time, i.e., model construction and mainte-
nance time are negligible. We describe the instantiation of
our framework for such simulations.

Without loss of generality we model the simulation as
a 2-phase process. During the first phase (a few million
queries) the ISAT algorithm is run. This algorithm produces
a set of base regions in the function domain with a similar
model in each region. In order to create this set of region-
model pairs, the ISAT algorithm has to evaluate the reaction
function for some query points. These points will be used
as the training and validation data for our technique (I).
Then in the second phase we apply our framework using I
as the input data set and build a new model optimized for
prediction time that is used for the rest of the simulation.

Our instantiation for the combustion problem starts with
the set of regions created by the ISAT algorithm during
phase one as the base regions. Larger regions are created by
merging a base region with its nearest neighbors. Specif-
ically, for each base region r, we add the following de-
rived regions: r merged with its first nearest base region,
r merged with its two nearest base regions, and so on until
some upper limit n of neighbors. Duplicate derived regions
are eliminated. We define a derived region as the smallest
bounding hyper-rectangle of the merged base regions. Con-
ceptually, we could use individual points in I as base re-
gions but if cardinality of I is large this would make nearest
neighbor search costly.

Having defined the region creation process, we can use
the algorithms introduced in the previous section, provided
we have defined a cost function C.
Cost Function (C): For high dimensional indexes, it is
difficult to accurately estimate the search cost of a query
just based on the set of regions to be stored, without actually
building the index. Unfortunately, building the index for
each iteration of the region selection algorithm (step 8 in
Algorithm 1) is very expensive. We illustrate this using a
selected index and discuss cheaper alternatives.
Random List stores regions in a simple list. The lookup
operation scans the list from the beginning until a region
containing the query point is found. Lists are not sophis-
ticated index structures, but are known to perform well for
disk-based accesses in high dimensions [13] and also as in-
memory data structures for combustion simulations [9].

Different orders of regions in the list will result in differ-
ent prediction costs. Given a set of regions, it is infeasible to
try all possible orders to find the best one. The idea behind

the random list approach is to compute and minimize the
expected cost assuming all region orders are equally likely,
and then to pick the best order for the set of regions with the
lowest expected cost.

Given a selected set of region model pairs of size |S|, the
cost function computes

∑
xi∈V(|S|

fi+1 +Avg(tm1 . . . tmfi
)).

The intuition for the formula is as follows. For a set of
regions, if a query point lies in multiple regions, then in
any random order of the list it is very likely that a region
containing the query point is found early. Therefore, the
search time for a query point is approximated as |S|

fi+1 where
fi is the number of regions that query point xi lies in. The
approximation time for a query point is simply the average
of the cost of the models in the regions that the query point
lies in (each one is equally likely to be found first in the
list). After the selection algorithm finds a set of regions
with the lowest expected cost, we try a few different sort
orders of these regions and pick one with the lowest cost.
Cost functions for other index structures can be similarly
developed but we do not discuss them here [8].

5. Experiments

As a proof of concept, we implemented and tested our
approach for the combustion application using data from a
Hydrogen+Air simulation (reaction function f : R10 →
R11). The dataset comprises 5 million simulation query
points, each with a 10 dimensional composition vector.

The overall setup is as follows. We run the ISAT algo-
rithm on the first 3 million query points to generate the base
regions and training/validation data set I, which are used by
our algorithm as discussed in Section 4. A random sample
of ≈ 2 × 105 query points from the last 2 million queries is
used as an independent test set to compare total simulation
time of the original ISAT model with our proposed method
(Opt).

All experiments used a 70−30 split of I into training (T)
and validation (V) set and δ = 0.1. For each base region, 8
derived regions are created by merging the base region with
its nearest neighbor base regions. All experiments were
run on a Windows XP PC with a 2.79GHz processor and
8GB RAM.

5.1. Results

Here we discuss results only with the Random List index.
Table 1 summarizes the results. In the table k is the average
false positive rate of the index2 and Obs δ is the observed δ
on the test set.

2The false positive rate of an index, for a query is measured as the
number of regions examined before finding a region containing the query
point.

Experiment 1 is for ε = 5 × 10−3. ISAT built regions
with linear models (L)3 and our framework used both lin-
ear and quadratic (Q) models. ISAT created 63 regions.
Since index size and search cost are small in this case, our
method (Opt) does not merge many of the linear regions into
quadratic ones (only 9). Nevertheless a significant reduc-
tion in prediction cost by ≈ 30% is achieved. The increase
in approximation cost (some query points are approximated
using quadratic models) is offset by the decrease in search
cost. Recall that our algorithm for a random list tries a few
random orders and returns the best as the solution. For ISAT
there is no optimization algorithm for selecting the best list
order, therefore we report average cost across 30 different
random sort orders and standard deviation.

To show that both approximation and search cost must
be considered for prediction time optimization, we repeated
Experiment 1 using a simpler optimization goal—only min-
imize search cost (”Only S”). In this case the selection
algorithm aggressively merges regions to cover validation
points with the smallest number of derived regions contain-
ing quadratic models. As the results show, the additional
decrease in search cost is not significant enough to offset the
higher approximation cost. A surprising observation in this
experiment is that the number of regions created by ”Only
S” is greater than for ISAT, even though the selection algo-
rithm usually replaces a set of regions with a larger region.
This happens because it is possible to select a candidate re-
gion that does not completely contain any regions in the
current solution, but significantly overlaps with a lot of them
(i.e., Rem={} in Line 6 and 7 of Algorithm 1). Adding such
a region increases list size but may still reduce expected
search cost per query as some query points now are covered
by multiple regions (recall that search cost= |S|

fi
+ 1).

Experiment 2 uses the same setup as Experiment 1 but
with ε = 5 × 10−5. As ε is stricter, it is not surprising that
ISAT creates a larger number of regions and hence search
cost dominates prediction time. Opt in this case more ag-
gressively selects regions with quadratic models, causing
the approximation time to increase significantly. An even
larger decrease in search time results in ≈ 70% improve-
ment in total time.
Discussion. Our experiments show that different indexes
and model types work well in different simulation settings.
Our proposed method (Opt) correctly and automatically
captures the tradeoffs in the problem and effectively adapts
the model to the index and simulation parameters. Our
method does not improve runtime at the cost of degrading
prediction quality (see δ values in Table 1). Finally, in
all our experiments the cost of the optimization algorithm
was negligible compared to the total cost of a long-running
simulation as used by the domain scientists. Note that we

3ISAT always uses the same model in every region; it must be specified
when the simulation starts.

ExptNo:(S, ε) Method M |S| k Obs δ Search Approximation Total StdDev
Time(ms) Time(ms) Time(ms) (ms)

1: (RL, 5 × 10−3) ISAT L L:63 26 0.01 623 337 960 68
Opt L,Q L:28,Q:9 6 0.005 114 434 548 -

Only S L,Q L:26,Q:41 1 0.0002 84 1750 1834 -
2: (RL, 5 × 10−5) ISAT L L:2263 977 0.05 20477 383 20860 2983

Opt L,Q L:1430,Q:332 122 0.01 2071 1620 3691 -

Table 1. Results Summary

have illustrated improvements using only two simple model
types. By adding more models to the framework, even bet-
ter results can be obtained, though at a higher cost of opti-
mization.

6. Related Work

Closest to our approach is recent work on model com-
pression [4] where an ensemble model is approximated with
a neural network to improve prediction time. Robot motion
planning algorithms reduce prediction time in local regres-
sion models [11]. None of this prior work formalizes the
learning problem and examines the fundamental tradeoffs
we discuss.

There is lot of work on local models. Instance based
learning [7] is a special class of local models where rather
than explicitly defining regions, function values at unknown
points are interpolated from neighboring training samples.
A regression tree [3] creates regions in the function do-
main. Regression trees are often pruned for accuracy [3],
and our framework when applied to a regression tree could
use pruning for improving prediction time. Optimizing re-
gression trees for prediction time has not been studied. Ex-
isting techniques in the combustion community use region-
models that differ in the types of regions and models used
[10, 1, 6, 9, 12]. We address the more general, and much
harder, problem of optimizing search and approximation
costs together. Numerous methods have been proposed for
finding cost models for high dimensional index structures
with different focus from our work [2].

7. Conclusions and Future Work

We introduced and formalized the low prediction time
learning problem. We proposed a general framework that
leverages existing data mining models to minimize model
prediction time and used it to significantly speed up a scien-
tific application. A longer version of this paper with imple-
mentation details, cost functions for other index structures
and additional results is available [8]. Understanding how
existing data mining models can be optimized for prediction
time is an interesting direction for future research.

Acknowledgments. This work has been supported by
the National Science Foundation through grants CBET-
0426787, EF-0427914 and IIS-0612031. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the sponsors.

References

[1] J. B. Bell, N. J. Brown, M. S. Day, M. Frenklach, J. F. Gr-
car, R. M. Propp, and S. R. Tonse. Scaling and efficiency
of PRISM in adaptive simulations of turbulent premixed
flames. In 28th International Combustion Symposium, 2000.

[2] C. Böhm, S. Berchtold, and D. A. Keim. Searching in high-
dimensional spaces: Index structures for improving the per-
formance of multimedia databases. ACM Computing Sur-
veys, 33(3):322–373, 2001.

[3] L. Breiman, J. Friedman, C. J. Stone, and R. Olshen. Clas-
sification and regression trees. McGraw-Hill, 2000.

[4] C. Bucilu, R. Caruana, and A. Niculescu-Mizil. Model com-
pression. In ACM SIGKDD, pages 535–541, 2006.

[5] R. Caruana and A. Niculescu-Mizil. Data mining in metric
space: an empirical analysis of supervised learning perfor-
mance criteria. In ACM SIGKDD, pages 69–78, 2004.

[6] J. Y. Chen, W. Kollmann, and R. W. Dibble. Pdf modeling
of turbulent nonpremixed methane jet flames. Combustion
Science and Technology, pages 315–346, 1989.

[7] T. Mitchell. Machine Learning. McGraw-Hill, 1997.
[8] B. Panda, M. Riedewald, J. Gehrke, and S. B.

Pope. High-speed function approximation. Techni-
cal Report TR2007-2092, Cornell University, 2007.
http://techreports.library.cornell.edu.

[9] B. Panda, M. Riedewald, S. B. Pope, J. Gehrke, and L. P.
Chew. Indexing for function approximation. In VLDB, 2006.

[10] S. B. Pope. Computationally efficient implementation of
combustion chemistry using in situ adaptive tabulation.
Combustion Theory Modelling, (1):41–63, 1997.

[11] S. Schaal, C. Atkeson, and S. Vijayakumar. Real-time robot
learning with locally weighted statistical learning. In IEEE
Int’l Conf. Robotics and Automation, pages 288–293, 2000.

[12] I. Veljkovic, P. Plassmann, and D. C. Haworth. A scien-
tific on-line database for efficient function approximation.
In ICCSA, pages 643–653, 2003.

[13] R. Weber, H.-J. Schek, and S. Blott. A quantitative analy-
sis and performance study for similarity-search methods in
high-dimensional spaces. In VLDB, pages 194–205, 1998.

