Direct numerical simulation of a passive scalar with imposed mean
gradient in isotropic turbulence

M. R. Overholt? and S. B. Pope
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853

(Received 20 March 1996; accepted 30 July 1996

Mixing of a passive scalar in statistically homogeneous, isotropic, and stationary turbulence with a
mean scalar gradient is investigated via direct numerical simulation, for Taylor-scale Reynolds
numbers,R, , from 28 to 185. Multiple independent simulations are performed to get confidence
intervals, and local regression smoothing is used to further reduce statistical fluctuations. The scalar
fluctuation field,¢(x,t), is initially zero, and develops to a statistically stationary state after about
four eddy turnover times. Quantities investigated include the dissipation of scalar flux, which is
found to be significant; probability density functioripdfs) and joint-pdfs of the scalar, its
derivatives, scalar dissipation, and mechanical dissipation; and conditional expectations of scalar
mixing, V2¢. A linear model for scalar mixing jointly conditioned on the scalar andelocity is
developed, and reproduces the data quite well. Also considered is scalar mixing jointly conditioned
on the scalar and scalar dissipation. Terms appearing in the balance equation for theppateof
examined. From a solution of the scalar pdf equation two sufficient conditions arise for the scalar
pdf to be Gaussian. These are shown to be well satisfied for moderate values of the scalar, and
approximately so for large fluctuations. Many correlations are also presented, inch(@ing),

which changes during the evolution of the scalar from a value of unity when initialized to the
stationary value of 0.5-0.651070-663(96)02511-] © 1996 American Institute of Physics.

I. INTRODUCTION isotropic turbulence without a mean gradient, but a similar
report for the scalar with a mean gradient has not yet been
Direct numerical simulatiofiDNS) has recently become  plished.(A passive scalar is one that has no effect on the

an accessible approach for investigating complex phenome%locity field) The DNS results of Ruetsch and MaX&¥

in_simple turb_ulent flows. - Although S|mu_lated Reynol_ds fonsider only the small-scale vorticity and passive scalar
numbers remain lower than those found in most practical

applications, continued increases in computer power havatruCtureS for the .f|rst_sev.eral ed?'y turnover t|m(_§'sE_)(
made it possible to simulate many laboratory flows, such agvhe_re the scalar field is still evolving and_not statistically
grid turbulence or shear flow, at similar Reynolds numbers ttationary. Pumif’ also reports on a passive scalar DNS
those investigated experimentally. This opens up many opstudy with a mean gradient, but with a primary focus on the
portunities for DNS to investigate quantities currently diffi- probability density functiongpdfs) of the scalar gradients.

cult or impossible to measure experimentally. In this study In the present study direct numerical simulations are
we consider turbulent transport and mixing in the presence afised to investigate a passive scalar in statistically homoge-
a mean scalar gradient. neous, isotropic, and stationary turbulence, with a mean sca-

In 1952 Corrsin predicted that, in stationary isotropic |ar gradient in they-direction. The purpose of this work is to

turbulence with a uniform mean velocity in one direction, anconsider a number of important questions left unanswered by
imposed cross-stream mean temperature gradient ma'nta'@§perimental and DNS studies in the literature, with a moti-

itself. Sevgral_gnd .turbule_n(?e experiments were then '€V ation of later contrasting this passive scalar flow to one with
ported confirming this prediction, where a mean temperature

gradient was produced by differentially heating the turby- action-

lence producing grid-* However, the evolution of the scalar Recently it has been realized that the local isotropy cen-
variance ($2), was unclear since differentially heating the tral to Kolmogorov theor}f and long understood for veloci-

grid produces a cross-stream gradient #t). Warhaft and ties does not appear to hold for a passive scalar. Sreenivasan
Lumley5 and Sirivat and Warhafintroduced different meth- States that “statistical isotropy is not ‘natural’ or ‘obvious’
ods of producing a mean temperature gradient in grid turbufor the small-scale scalar field in a shear floW"This is
lence with better results. They found ti@?) increases lin-  evident in the persistent skewness of the scalar derivative in
early with downstream distance, as predicted theoretically byne direction of the mean gradierthenceforth d¢/ay).
Sullivan’ and Durbin? Homogeneous shear flow experi- Holzer and Siggi¥ performed a number of large, statisti-
ments hal\ge also been performed with a mean temperatugg|y stationary simulations of turbulence with a passive sca-
gradlenti'l " lar and found a persistent skewnessaef/dy at all Pelet
Kerr numbers(up to Pe=2700. Their results are for synthetic
turbulence(two dimensional(2-D) and with forcing. They
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reported DNS results for a passive scalar in
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TABLE I. Run parameters. Angle brackets denote the time-averaged stationary value.

Parameter Tabulated Run 32.3 Run 64.3 Run 128.3 Run 128.4 Run 256.5
N—qrid size N 32 64 128 128 256
n—number of simulations n 16 16 4 4 1
v—kinematic viscosity v 0.025 0.025 0.025 0.025 0.025
Pr—Prandtl number _ Pr 0.7 0.7 0.7 0.7 0.7
B—mean scalar gradient(#)/dy) B 1.0 1.0 1.0 1.0 1.0
K —largest forced wave number Ke ko 242 22 2\2 22 2
kmax—largest resolved wave number Kmax 17) 1.120 1.107 1121 1.133 1.060
ko—smallest wave number ko(7) 0.07422 0.03668 0.01859 0.01878 0.008786
IE%Li,i—integraI length scale ko(l) 1.259 1.091 0.9649 0.9696 1.378
L .=u’3/e—turbulent length scale (L) 1.124 1.640 1.927 1.931 2.072
N—Taylor microscale (N1) 0.6119 0.4761 0.3472 0.3484 0.1704
n—Kolmogorov length scale (/) 0.05893 0.03361 0.01926 0.01937 0.006374
Tg—eddy turnover time (Iu"y 1.396 0.4371 0.1540 0.1567 0.07028
7,—Kolmogorov time scale (T ) Te 0.1580 0.1232 0.08981 0.0901 0.04397
Ts—start of the stationary period Ts/Te 5.923 6.142 4.595 14.08 4.698
T—duration of the stationary period TITe 25.24 13.18 9.488 4.897 1.971
k—turbulent kinetic energy (k) 1.221 9.352 58.89 57.42 577.0
u’ = (2k/3)¥2—turbulence intensity u’ 0.9024 2.497 6.266 6.187 19.61
v’ —uv-velocity rms value (v") 0.8970 2.486 6.265 6.176 17.97
e—dissipation (e) 0.5193 8.703 132.3 126.5 2641
Re=u’l/v—Reynolds number (Re) 45.69 109.5 2425 241.0 1092
R,=u’\/v—Taylor Reynolds number (Ry) 27.84 51.93 83.94 83.69 185.0
(v ¢py—scalar flux (vop) —0.7726 —2.059 —4.749 —4.723 -13.31
{¢?)—scalar variance () 2.027 2.179 2.019 1.891 2.488
¢'—scalar rms value (p?)12 1.424 1.476 1.421 1.375 1.577
rms(d ¢/ Jy)—scalar gradient rms ((agpl ay)?)V2 2.733 4.493 6.976 6.637 12.91
€ s—scalar dissipation (€4 0.7694 2.068 4.928 4.506 17.01
r 4=€4/{$?)—scalar dissipation rate (re 0.3795 0.9490 2.441 2.383 6.837
r=2k/el{ $?)/ e ,—time scale ratio (r) 1.822 2.080 2.215 2.216 3.038

field, which was shown by Sreenivasanal!® to explain the  lence” for higher Reynolds number turbulence where the
skewness in the scalar derivative. This same structure wéhictuations are exponential.
observed in the grid turbulence experiments of Tong and Theoretical results were advanced by Puetial?® in
Warhaft® and in the atmospheric measurements of Phongthe form of a very general one-dimensioratD) phenom-
Anant et al?! Holzer and Siggi¥ show that this structure enological model predicting exponential tails in the presence
derives from the large scale organization of the scalar fieldpf a mean gradient. Kerstéfhhas shown that the linear-eddy
with large regions of fluid of relatively constant value being model also yields scalar pdfs with exponential tails when
joined by steep ramps. Their conclusions have been genethere is a mean scalar gradient.
ally confirmed at low Reynolds numbers by the DNS results ~ Several other experiments with mean scalar gradients
of Pumir!® These results are all evidence that the passivéiave been done with mixed results. Thoroddsen and Van
scalar field is different from that which is predicted by the Atta®’ investigated stably stratified grid turbulence and found
hypothesis of local isotropy and the Kolmogorov first simi- Gaussian scalar pdfs even when the scalar was passive. How-
larity hypothesis®t’ ever, their maximum value @®, is 41, which according to
Kolmogorov's 1962 small scale intermittency extensionJayesh and Warhaftis too small for exponential behavior.
to his original theor$? inspired a number of local isotropy But that is not true of the turbulent shear flow results of
studies which found among other things that the pdf of theTavoularis and CorrsifThey also observed Gaussian scalar
scalar derivative had “stretched-exponential” tails. But in pdfs in spite ofR, being greater than 200.
1989 the Chicago Rayleigh-Bard convection experimetit Published DNS results on this topic have been minimal
ignited interest in the tails of the scalar pdf itself by showinguntil recently, with all but one study observing only Gauss-
that they could be exponential as well. It was proposed thaian pdfs. Kert! performed stationary simulations for values
there exists a universal threshold Rayleigh numbef R, ranging from 9 to 83, and observed Gaussian pdfs;
(Ra~4x%10") across which the tails of the scalar pdf changeboth the velocity and the scalar were forced. Eswaran and
from Gaussian to exponential. Jayesh and Wathfiftd this ~ Popé® also performed stationary simulations with a forced
same transition at an integral-scale Reynolds numbey) (Revelocity field and values dR, from 28 to 51, but they allow
of about 70 in their grid turbulence experiments with a mearthe scalar field to evolve from a double-delta pdf initial con-
scalar gradient. Hence the terminology “soft turbulence” for dition. They find that the evolving scalar pdf tends to a
turbulence below this critical Reynolds numbésr Ra Gaussian. However, the first authors to formally address the
where the scalar fluctuations are Gaussian, and “hard turbwase of a mean scalar gradient were Jagieal ° who made
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a more comprehensive study of the scalar pdf tails and founthemory message-passing architectures such as the IBM SP2.
that the long-time scalar pdat R, =58) is not necessarily This is the same algorithrtwithout the particle trackingas
Gaussian or exponential, but rather is sensitive to severafeung developed independently using MRIBM's Mes-
factors. If any forcing or a mean scalar gradient is presentsage Passing Librayy® We use MPI(Message Passing In-
then non-Gaussian behavior is not sustained for any initialerface Standayd
conditions. Otherwise the scalar pdf is very sensitive to the  The full Navier—Stokes and scalar equations are solved
initial conditions. without modeling on a three-dimensional grid. The grid is a

The scalar pdf is of interest not only for its own sake, butcube with sides of length 2 in physical space. In wave
also because pdf methods are finding increased use for probumber space the grid represents the integer wave numbers
lems of turbulent mixing and reactidft®* An emphasis of
this study is the determination of statistics appearing in equa- k;=*n;, (D)
tions such as the scalar pdf transport equation. In this equa-
tion the conditional expectation®|¢=y) and(e4|¢=v)  wheren;=0,1,2 ... ,N/2 for i=1,2,3. The pseudo-spectral
need to be modeled.(The conditional expectation method advances the solution in time in wave number space;
(v|p=1y), for example, is the expectation of given that however, the nonlinear products in the convection terms are
¢=14, wherev is they-component of velocity ands is the  formed in physical space, requiring discrete fast Fourier
scalar valueg, is the scalar dissipationThe grid turbulence transforms(FFTS to transform the fields back and forth be-
experiments of Jayesh and Warf&fand the DNS simula- tween physical space and wave number space. The use of a
tions of Eswaran and Poffewithout a mean scalar gradient Fourier representation imposes periodic boundary conditions
examine these conditional quantities for decaying turbulencen all three directions, and assures homogeneous fields.
The paper by Milleret al*? gives some DNS results for the The aliasing errors incurred in the FFTs are almost com-
stationary case, but our results are the most comprehensiygetely removed by phase shifting and truncation
to date for stationary turbulence with a mean scalar gradientechniques® The truncation results in a maximum signifi-

A great advantage of pdf methods is their closed-formcant wave numberk . of V2Nko/3.
exact treatment of reaction and convection; however, mixing  The time-stepping scheme is an explicit second-order
needs to be modeled. Almost all currently employed modelfRunge—Kutta method. Time-stepping errors are small as
for scalar mixing require information on the coupling be- long as the Courant number, defined as
tween the turbulence time scale and the scalar dissipation
time scale for closuré® One such relation is the mechanical- At
to-thermal time scale ratia,. Another such relation is the C=(|U|+|U|+|W|)maxﬂ, 2
scalar dissipation rate, which is a key quantity in the model-
ing of both inert and reactive turbulent scalar fieltighis
coupling is examined in this paper via pdfs, joint pdfs, and
conditional expectations of the turbulent and scalar dissip
tion.

is not greater than 1.Qwhereu, v, andw are the three
fluctuating velocitiesAt is the time step, andx is the grid
% pacing.®® All the simulations in this study use the Courant

Th . . tigated via DNS id . numberC=0.8. Table | provides a summary of the different
ese Issues are Investigated via on grids ranging; ., jations performed, and of the definitions and values of

fFEom ;I? to 2563’ _yieolcgng valuei ?R* from 28 t;)h185r(]the b the primary quantities characterizing the flow.
randtl number is 0.7), a much larger range than has been The largest Reynolds number flow that can be accurately

considered before in thr.ee—Q|menIS|ons.. The Igrgegt Veloc'tgimulated for any grid size has been determined to be that for
scales are forced to maintain stationarity. Multiple mdepen—WhiCh the highest wave numbiy. . 7=1.0, where is the
ax’/= LY

dggt s.|mulat|t(;]n§MIS])c§re pe_rfct)rme? for aILbut tlhelle:r%es_lt_ Kolmogorov length scale, the smallest length scale of the
gnd size so that confiaence intervais can be caiculated. ow.3® As can be seen in Table I, these simulations all have

large grid sizes and MIS are made possible by using fromk n~11
max Lt

16tt0 64 processors in paraliel on the 1BM SP2 supercom- The velocity field is stochastically forced by adding ac-
puter. celeration increments to the largest scales only, such that

| _The Or?amistlo&\g tr:e p_{;\ﬁer 'S ;‘? f(;lk?wst. f:n the_ fOI'continuity is satisfied and on average dissipation equals the
owing section the algorithm and turbulent HOow SIMU-  4ificiq| production. This results in the Reynolds number

lated are briefly described. In Sec. lll some relevant Statisnc?emaining relatively constant throughout each simulation

and the smoothing method are reviewed. Section IV de—Only the wave numbers inside a sphere of radiys are

scribes and discusses the results, with comparison to eXPefh ced (excluding the origii This forcing introduces a forc-

ment, and final conclusions and research directions are giveiﬂg Reynolds number and time scale into the simulation that
in Sec. V.

can be varied to give a flow of the desired Reynolds number

and large scale siz@éntegral length scalé). This forcing

scheme is the same one used by Yeung and Popeefine-
The DNS algorithm used is a fully parallelized version ment of that developed and tested by Eswaran and Pdpe.

of the pseudo-spectral method of Rogaflon detail, the these works it is shown that the resulting velocity fields are

method used is almost identical to that used by Eswaran anstationary and isotropic, to a good approximation.

Pope?® Yeung and Pop& and Lee and Pop¥.However, a The physically analogous turbulent flow is “grid turbu-

completely new code has been written for distributed-lence” with one exception: grid turbulence is decayiiigy-

Il. METHOD
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FIG. 1. Smoothing example for the pdf &fp/dy. X is the sample space
variable, which is standardized by the rmsdaf/dy. R, =52; (a) raw data
(symbols and the smoothed resuline) for 1 of the 16 simulations(b)
confidence intervals based on 16 simulations; unsmoothed;— —,
smoothed.

bulent kinetic energy decreases downstream from the turbu- 10!
lence producing grig whereas in our simulations the i

velocity fields are statistically stationary.
The scalar fluctuation equatidsee Eq.(24)) is solved

for the evolution of the passive scalar fluctuation, which is
initially set to zero. No scalar forcing is necessary since the ¢ 0
mean scalar gradient gives rise to a nonzero production termg—~ 3

in the scalar variance evolution equati@ee Eq(15)). The

initial mean scalar gradient is maintained because, for homo-

geneous turbulence, its evolution equation is
12 ( & ¢>)

atl o |0 @

2.3 hours for each process@a sum total of 9.2 houjs
256° split over 32 processors requires 12.8 hours each (410
hours tota).

lll. STATISTICS

Since turbulence is a stochastic process, each DNS simu-
lation is by nature a stochastic simulation in that the results
are random variables which depend on the initial condition.
In addition, randomness enters the simulation through the
stochastic forcing of the velocity field. Hence the idea of
using MIS, which involves performing several statistically
identical simulations with randomly different initial condi-
tions. Using the IBM SP2 supercomputer, individual proces-
sors each perform one simulation, each with identical run
parameters; the only differences between the simulations are
the stochastic forcing and the initial fields, which are ran-
domly specified according to the same distribution. Output
from all the processors or simulations can then be combined
to form means and confidence intervals.

In addition, for the larger simulations it becomes neces-
sary to split up each simulation via domain-decomposition
over several processors, both for memory and CPU time con-
straints. All this is very efficiently accomplished in parallel
using MPI.

The use of MIS allows confidence intervals to be deter-
mined for every quantity desired, and they appear in many of
the figures in this paper. Confidence intervals of 90% were
chosen: for a random variabl¥, the confidence interval
[a,b] is such that Prdla<X=<hb]=0.90. This is very useful
for determining statistical significance. For instance, if two
guantities are being compared and one lies inside the confi-
dence interval of the other, then statistically the difference is

2
~—
~ -
—_— -
1
g
L

«Q
Oy 107 |

|
B>

For each simulation, the velocity field is initalized and - °
allowed to evolve until it reaches stationarigt least 4 eddy
turnover time$ so the effects of its initial condition are mini- B R N R
mal. Then the scalar is introduced. After the scalar field is 1073 102 107 10° 10"
deemed to have reached stationarity, the simulation is carried KM
on for 2 to 25 eddy turnover times, over which time interval

statistics are averaged in time as well as in space. _ _
FIG. 2. Energy spectrum function from DN8nes) and from the experi-

The time requ,lred to compute 1 eddy turnover time Onments of Comte-Bellot and Corrsigsymbolg, scaled to show the-5/3
1 SP2 processor is 0.019 hours for’3and 0.37 hours for region. Values foR, are:O, 71.6; A, 65.3; 1, 60.7; —, 185:— —, 84;
64°. For 128 split over 4 processors, the time required is - —, 52; ---, 28.
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not significant. The difference is only significant if there is In a histogram formed from the data, the largest statisti-

no overlap between the two confidence intervals. cal fluctuations are in the tails, which are formed by a few
Let n be the number of simulations. Then for some vari-very rare events. A similar situation occurs for conditional

abley; from theith simulation, the first two statistical mo- expectations at their extreméie., for the largest fluctua-

ments, the sample mean and variance, are tions of the random variable conditioned)orSince these
n gquantities are central to this study, a smoothing technique is
y= 12 Vi, (4) employed to further minimize the statistical fluctuations of
ni=1 the results.
N The data are processed as follows. Individual histograms
5= %Z (yi=y)% (5 are output for each simulatiofwith time-averaging only

within each respective simulatinpnEach histogram is then
. . . ... .. . smoothed using a local regression procedure to be described.
To form the confidence interval the Student-t distribution is g 9 P

; : ) ghe smoothed histograms from each simulation are then
used because the true variance is unknown; the calculated- _, " . :
.combined to form smoothed means and confidence intervals.

variance is the sample variance. The Student-t distribution 316 sole difference between the processing of the smoothed
a function of the number of degrees of freedom of the sys-

tem, which here is the number of simulations. For an intervaresu“ﬁ and thehpormal MIS reslgl;[]s :js the STOOtlhmg step..
[a,b] of the random variableX with Profa<X<=b] The smoothing is accomplished via a local regression

= '1— & andn simulations, the Student-t confidence interval Method developed by RuppéftGiven a functiory = f(x) to

is be smoothed in the interv@h,b] and then evaluated at the
pointx, € [a,b], alocal regression smoother fits a low-order
_ s __ s polynomial in the independent variabkelocally at x,, and
y_talz,n—lﬁ'yﬂa/z,n—lﬁ : (6)  then takes the estimate B(x,) from the fitted polynomial at

Xg. Local regression smoothers automatically avoid biases
The values of the coefficients used dggs ~2.3534 and common to kernel smoothers. These biases can occur at the
to.05,15=1.7530. boundary of the predictor space since there the kernel neigh-
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/3 1.5 [T | B ML LI i N: 1.0 ....... T T T
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FIG. 3. Evolution of the normalized scalar variance, scalar flux and its correlation coefficient¢*)?); ---, confidence intervals ofi(¢*)?); — —,
(V*d*) — =, pue- (@ R\=28; (b) R,=52; (c) R,=84; (d) R,=185.
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TABLE Il. Normalized stationary scalar variance and scalar flux.

Variable Run 32.3 Run 64.3 Run 128.3 Run 128.4 Run 256.5
(2I(BL,)? 1.012 0.6810 0.5838 0.5395 0.3052
(D1(B1)? 1.279 1.831 2.169 2.011 1.310

(v)l(v'BL,) —0.6087 —0.4631 —0.4076 —0.4084 —0.2594
(vp)l(v'Bl) —0.6842 —0.7593 —0.7856 —0.7887 —0.5375

borhood is asymmetric; they can occur in the interior as welber or dissipation range, the low wave number distortion is

if the data are nonuniform or has substantial curvati‘es  allowable. However, in the following discussions of the evo-

well as avoiding bias, the local regression method of Ruppetution of scalar variance and scalar flux the influence of the

automatically adjusts to the data itself, so that the width oforcing must be remembered.

the neighborhood of, consideredbandwidth, or number of

points for evenly spaced dat& continuously variable. The

support is thereby kept small in the center of the pdfs wher . .

th(f?/ariability of the d%ta is small, and increased Fi)n the tailgs' Evolution of the scalar field

where the variability is large. The focus of this study is on the behavior of the scalar
Figure 1 gives an example of smoothing for the pdf offield; we begin with the lower-order moments. The mean of

d¢l gy from the 64 run. In Fig. Xa) the original data and the the scalar field is zero. The variance evolves from a zero

resulting smoothed curve are shown for 1 of the 16 simulainitial value to a statistically stationary value after some pe-

tions. Figure 1b) shows the confidence intervals obtainedriod of time, as predicted by Corrshn.

from all 16 simulations. In the center of the pdf the smoothed  The convection-diffusion equation for a passive scalar

confidence interval curves fall on top of the unsmootheds is

curves, but in the tails the smoothed intervals are more uni-

form and a bit smaller. The sharp peak of this pdf is slightly 0d - (95 _

rounded since the curvature is very high there, but otherwise —- +U; ﬁ—zl“qus, )

the smoothing does not degrade the results in the center X

where the accuracy of the unsmoothed pdf is already good,

and in the tails the smoothed result shows much less fluctuavherel’ is the molecular diffusivity. After Reynolds decom-

tion with values that appear reasonable. posing the scalar and velocity into mean and fluctuating parts

IV. RESULTS b=(d)+ ¢, (8

A. Energy spectrum function

We begin the results discussion with the energy spec- Ui=(Up+ui, ©

trum function to establish the validity of these simulations. -

Figure 2 shows the energy spectrum functions from the foulVith the conditions

simulations with a—5/3 Kolmogorov scaling, compared _

with the experimental data of Comte-Bellot and Corf&in. N b)

The forcing of the large scales does significantly distort the TZO' (10
DNS spectra at low wave numbers when compared with the

experimental data; however, they approach-&3 scaling 0~

region, and the high wave number portions of the spectra v (#)=0, (11)
match the experimental data very well. Since we are more

interested in quantities which scale with the high wave numthe evolution equation for the scalar variance becomes

TABLE Ill. Reynolds stresses and scalar fluxes.

Run 32.3 Run 64.3 Run 128.3 Run 256.5
(ui)/u’2 +1.007£0.018 +1.006+0.025 +1.028+0.080 +1.075
(u%)/u’2 +0.995+0.026 +0.995+0.022 +1.004+0.137 +0.845
(u%)/u’2 +0.998+0.028 +0.999+0.037 +0.967+0.071 +1.080
(uluz}/u’2 +0.009+0.011 —0.006+0.016 +0.023+0.038 +0.085
(u1u3)/u’2 —0.003+0.012 —0.015-0.015 —0.007+0.038 +0.027
<u2u3)/u’2 +0.013+0.018 +0.009+0.015 +0.018+0.028 -0.115
(ug)/u’ ¢’ —0.015:£0.013 +0.008+0.019 —0.026+0.033 +0.023
(Uyp)/u' ¢’ —0.601+0.030 —0.559+0.024 —0.533+-0.094 —0.430
(uzg)/u' ¢’ —0.016£0.025 —0.012+0.018 —0.018+0.061 +0.206
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R, =28, (r)=1.822+0.031

0| R — R, =52, (r)=2.080+0.032 ]

------- R, =84, (r)=2.215+0.083

o T D Qe R, =185, (r)=38.04

10’ 10° 10° L 7 N T
Ry t/Te

dissipation / production

FIG. 5. Evolution of the mechanical-to-thermal time scale ratio.
FIG. 4. Dissipation/production in the scalar flux equation. Error bars denote

the 90% confidence intervals. The solid line corresponds toRf.81%. ' o .
Equation (15) indicates that for the scalar variance to be

stationary, gradient production must be balanced by molecu-
lar dissipation.

Gradient production for the scalar variance comes from
the scalar flux working against the mean gradignthere-
fore, the scalar flux dynamics are important when consider-

1 U;
2 )

B &(E) af/r N\ rra ., ing the evolution of the scalar variance.
=—(u;¢) ox % Uit =5 (9_)(].<¢ ) The scalar flux evolution equation is
B O —(vd)+(Uj))—(vd
r<ﬁxj aXj>. 12 FEHHU)H )
For homogeneous fields with the additional conditions ) V) 9
=—(oup— ——(ujp)— —— - (U )
(Uj)=0, (13 i j i
X$) —3<¢‘?—p>+r<vvz¢>+v<¢vzv> (17
——— =B85, (14) p\"ay '

0X;
i , : "
) . . For homogeneous fields with the same conditions as above
we get the scalar variance evolution equation for our study\ye get the scalar flux evolution equation for our study

1d a 1/ 9 v d
5 gl 8=~ (vd)B—(ey), (15 E(z)(ﬁ):—(vz)B—;<¢a—§>—(v+r)<a—)(ja—z>,
wherev =u, and the scalar dissipation is defined as (18)
wherey=x,. The terms on the right-hand side are produc-
€5= (@ ﬁ) (16) tion, pressure-scrambling, and dissipation. The dissipation
IX;j IX; term is often neglected on the grounds that it is zero if local

TABLE IV. Correlation coefficients.

Correlation Run 32.3 Run 64.3 Run 128.3 Run 256.5
p1=p(dpldx ,dvlIx) —0.447+0.005 —0.310+0.006 —-0.219+0.016 —-0.124
po=p(dpldy ,dvldy) —0.295+0.005 —0.202+0.005 —0.148+0.012 —0.085
p3=p(d¢ldz ,dvldz) —0.448+0.005 —0.310+0.006 —0.218+0.016 -0.124
pa=p(Vo,Vv) —0.401+=0.004 —0.277+0.005 —0.196+0.014 -0.112
ps=p(d¢pldy ,dul dy) —0.009+0.008 +0.002+0.006 —0.004+0.012 +0.000
pe=p(ddlay ,dul Ix) +0.144+0.004 +0.101+0.004 +0.074+-0.004 +0.043
p7=p(d¢ldx ,dul Jy) +0.106+0.004 +0.074+-0.003 +0.055+-0.003 +0.031
pg=p(v,P) —0.603+0.005 —0.560+0.007 —0.534-0.012 —0.464
po=p(U, ) -0.015-0.013 +0.008+0.019 —0.022+0.028 +0.022
pr=p(€y4,d?) —0.022+0.004 —0.011+0.006 —0.021+0.010 -0.010
p11=p (Il Ix 0Pl dy) —0.003-0.011 +0.001+0.007 —0.001+0.011 —0.025
p1=p(dul dx ,dul 3y) —0.005+0.009 +0.006+0.008 —0.001+0.012 +0.000
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PlIn(el€')]. O, R,=28; ¢, R, =84, shifted up two decades.

10% p—r ————t . S
102 '
10" |
10°
107
102§
107§
104§
10°°
10}
107 |
108

N / £¢’

FIG. 8. Stationary standardized pdf of scalar dissipat®pX=¢€,/e,].
The dashed line is a stretched-exponential fit as in Figdd7.R, =28,
(a1,05)=(1.59,0.600); ¢, R,=84, (a;,a,)=(2.16,0.469), shifted up
two decades.

isotropy prevails, as is hypothesized at high Reynolds

number® We will examine this claim in more detail later.

Figure 3 shows the evolution of the nondimensionalize

Oadditional length scale is needed from the turbulence, and
L =u’'3/e seems appropriatésee Table )l However, this

scalar variance, scalar flux and its correlation coefficient for-¢—

each of the simulations¢(* = ¢/(BL.), the normalized sca-

lar fluctuation; for velocity we have*=uv/v’). Time is

normalization incurs a Reynolds number dependence. One

could also use the integral length scaldp normalize. Table

nondimensionalized by the eddy turnover time, and is set to
zero at the time when the scalar fluctuations are initialized to
zero. The solid line is the mean value and the dotted lines

denote the limits of the 90% confidence intervals for the sbs  todol ' ' ' ' ]
scalar variance. The mean value and confidence interval of 2 1.0x102 /f’;”_“ ]
printed in each figure is the temporal average value for the F 1 1.ox10? 1 1
stationary portion of each simulatiofsee Table | for the  ~ /
starting time, T, of the stationary portion of each simula- & oF - ]
tion). ~ 1F E
The only appropriate quantity available to normalize the f‘E’, 2t ]
scalar fluctuation is the mean scalar gradightHence an = 3 ]
-4 F al 2\\",2 ]
5t (@) 1 ]
-6 L L 4 L L T | L 1
5 4 83 2 A 0 1 2
In(e/€")
4 T L T L T 1 T T T T T
4 10x10" 1
2ls  1.0x102 23/‘\ ]
1.0x1073
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FIG. 7. Stationary standardized pdf of pseudo-dissipatRiiX=e,/e,].
The dashed line is a stretched-exponential fit of the fofoons)
X* ~YZexd — ay X* 2], where  X*=X—Xp,. O, R, =28,
(a1,a5)=(1.48,0.720); ¢, R,=84, (a;,a,)=(2.98,0.450), shifted up
two decades.

In(e/¢g")

FIG. 9. Stationary joint pdf of Ing,/€;) vs In(e/€’). (The variablese;, and
e are the means plus the fluctuation®) R, =28; (b) R,=84.
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TABLE V. Stationary moments of the pdf ef TABLE VII. Parameters of Eq(23) with X=¢€/¢€'.

Moment Run 32.3 Run 64.3 Run 128.4 P[X*] Run 32.3 Run 64.3 Run 128.4
Mean 0.519-0.008 8.7¢:0.20 127+4 ay 1.38 2.30 2.81
Variance 0.21%0.007 77.13.6 (2.02:0.15)x10* ay 0.778 0.584 0.500
Skewness 2.320.03 2.970.04 3.62£0.12

Kurtosis 11.8-0.4 19.6:0.6 28.4:2.6

Superskewness 49%9 1740230 4900+ 1440

bers. The dependence wiR), is approximately represented
by a power law with exponent 0.77, which corresponds to
the curve in the figure. Extrapolating from this data, for the
Il gives the stationary values of the scalar variance and theissipation to be less than 5% of the production,Ranof
scalar flux normalized using both, andl. 350 would be required.
We see that in each simulation the scalar variance un- This decrease in importance of dissipation is also seen in
dergoes an initial transient for 3 to 4 eddy turnover timesthe decrease of the correlation coefficigntin Table IV.
where it is growing, shortly after which it reaches stationar-
ity. Once stationary, however, there is still a considerabld®. Mechanical-to-thermal time scale ratio
a_lmognt of fluctuation. As a stochastic process some fluctua-  an often considered time scale ratio is the mechanical
tion is expected; however, the large extent of these fluctuggissipation to thermalor scalay dissipation ratio, usually
tions is most likely due to large fluctuations in the velocity yonoted byr
scales from the forcing, which in turn affect the large scalar
scales. ( 2kl €
The evolution of the scalar flux in the same figures is RUSITS

qualitatively very similar to that of the scalar variance with . . . .
both achieving stationarity at about the same time. Table IIIWhICh relates the large-scale time scales of the velocity and
9 y ' alar fields. Although it has been suggested that this ratio be

X ) S
lists the stationary values for all the Reynolds stresses ant(gken as a universal constant for modeling purp@3ésere

scalar fluxes for these simulations. is now considerable evidence to show that it does not take on

The time scale for the evolution of the scalar variance . . .
a universal valué***including our results.

and scalar flux is seen to be independent of Reynolds num- Figure 5 shows the evolution of for the first 10 eddy

gir;nrgoﬁe\ﬁrﬁq\g; Tﬁ;’;;ﬁiﬁegr;:&jﬁgsgvﬁ'éd;‘jré?ne turnover times in each of the four runs. Note thateaches
y 9 stationarity after 2 or 3 eddy turnover times, which is before

method employedand the time to stationarity increases. . . I
This is one of the main reasons for decreadiato 2 for the scalar variance and scalar flux reach stationésig Fig.
s0g 3). (The large bump in the value forR, =185 is due to a

the 256 run (a smaller forcing radius will result in a larger | . . ) . :
arge surge in the forcing energy input. Since there is only

). one simulation for this case, that fluctuation is not averaged
out)
C. Dissipation of scalar flux Evidently there is a statistically significant increase in

It has been assumed that the dissipation term in the sc&-With Reynolds number, which lends further support to the
lar flux evolution equation is negligible in flows with Rey- Pelief thatr is flow dependent. The kinetic enerdy, is of

nolds numbers of this size or largeThe destruction of sca- COUrse directly affected by the artificial forcing, and so the

lar flux must then come from the pressure-scrambling termyalues ofr obtained here may also be influenced by the
ng. However, they are well within the range of values

To investigate this further, Fig. 4 shows the ratio of the mear{rC Wi :
dissipation term to the mean production term in the scalafePOrted by other researchers. Sirivat and WafHafind in
flux evolution equatior(Eq. (18)) for the stationary portions their grid turbulence experiments thattended to decrease
of the four runs. The pressure-scrambling term, which in th¢lownstream as the Reynolds number decreased, with ap-
steady-state equals the difference between production arRjoximate values of 1.2 to 2.0. Warhaft and Lunlegview
dissipation, was not calculated. a number of heated grid experiments and findalues of

It can be seen that the ratio of dissipation to productiono'6 to 2.4.
does indeed decrease towards zero as Reynolds number 'I:D Dissinai dth lar dissipati ;
creases; however, it is not negligible at these Reynolds num=" —'>>Pation and the scalar dissipation rate

(19

The scalar dissipation rate is a key quantity in the mod-
eling of both inert and reactive turbulent scalar fieltisl-

TABLE VI. Stationary moments of the pdf of, . most all currently employed models for scalar mixing, rang-
Moment Run 32.3 Run 64.3 Run 128.4

TABLE VIII. Parameters of Eq(23) with X=eplsl').
Mean 0.5190.008 8.7¢:0.20 1274
Variance 0.196:0.007 82.94.1 (232t 0.18))(104 P[X*] Run 32.3 Run 64.3 Run 128.4
Skewness 2.640.04 3.73:0.08 4.68-0.13
Kurtosis 15.53:0.7 31.2-1.8 49.4-3.8 ay 1.48 2.52 2.98
Superskewness 1020150 6350- 1260 (1.75 0.42)x10* ay 0.720 0.517 0.450
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TABLE IX. Parameters of Eq(23) with X=¢, /€.

40 . . . .
1.0E-2 P[X*]. Run 32.3 Run 64.3 Run 128.4
1.0E-3
30} 1oE4 ] ay 1.59 1.78 2.16
1 0E-5 @, 0.600 0.546 0.469
& 20l 1.0E-6 |
Ry
=g
® Jdu; du
10 1 - [Nl
€=V — —. 22
p (9Xj F?Xj ( )
o} @ ] Pseudo-dissipation is easier to calculate and hence is often
. . . , used in application, since in homogeneous turbulence mean
-5 0 5 10 15 20 dissipation equals mean pseudo-dissipation. However, as
) /Sp seen in Yeung and Pop@pther statistics of these two quan-

tities are quite different, and for that reason both are pre-

40 T~ ; - - - sented in this paper.
g 6 10E2 Dissipation can also be calculated from the spectrum;
a0k } i 18;2 ] however, to construct the pdf and conditional expectations of
\%{\ 3 10ES5 dissipation a localin space evaluation of dissipation is re-
‘o 5> 10E-6 quired. Hence Eq921) and(22) are used to find the dissi-
& 20p | 1 1.0E7 | pation at each grid point.
g S The stationary moments of the pdfs of dissipation and
10 4 . y pseudo-dissipation are given in Tables V and VI. Figure 6
R shows the pdfs of In{e’) for R, =28 and 84, with confi-
ol '\2?\\@9\41 _ ] dence intervals(The confidence intervals for the largest val-
() == ues of the independent variable are of zero size because there
-10 0 10 20 30 40 50 was only one simulation which had a value for that birhe
& /gp’ pdfs ofep/e", are shown in Fig. 7 to emphasize the stretched-

exponential nature of the tailthe pdfs of Ing/¢;) are very

similar to the pdfs of In¢/€’)). All show the same Reynolds
FIG. 10. Stationary standardized joint pdf ©f vs €, (means plus fluctua-  humber dependence; as Reynolds number increases, the
tions). (a) R, =28; (b) R, =84. range of the standardized variable increases and the pdf tail

lifts (or becomes stronger stretched exponential

The stretched-exponential nature of the scalar gradient

ing from simple moment closures to full pdf closures, requirepdf tails (seen in Sec. IV H.suggests that the dissipation pdf
information concerning the coupling between the turbulencenight be stretched exponential as well. Holzer and Sidgia
time scale and the scalar dissipation time scale for cloSure. find that for largeX the dissipation pdf is approximated by a
The mechanical-to-thermal time scale ratio gives one suchtretched exponential of the form
.relationsh.ip be.twee.n the turbul_ence and the scalar, anq aS  pIX]~CX Yexp — a;X%2), (23)
just seen it varies widely according to the flow under consid-
eration. The scalar dissipation rate is another such relatiovtherea; anda, are parameters, ard is a constant. This

and is defined by expression also fits our data weee Figs. 7 and)8and
serves to quantify the dissipation pdfs. The parameters for
= €o _ (20) these and other fits are shown in Tables VII-IX. The lifting
¢ (¢%) of the pdf tail is clearly seen in the decreaseagfas Rey-

enolds number increases, a phenomenon which occurs for
both the turbulent and the scalar dissipati@dote: For the
stretched-exponential fits the function plotted is
CX* ~Yexp(— ayX*2), whereX* =X—Xmp, Xmp being the
most probable value of—whereP[X] is peaked.

In this section we present a number of statistics involving th
turbulent dissipation and the scalar dissipatiehich by in-
ference includes the scalar dissipation yate

1. Turbulent dissipation

T ! . 2. Scalar dissipation
Turbulent dissipation is defined, according to the turbu- ssipat

lent kinetic energy equation, as The stationary moments of the scalar dissipation pdfs are
given in Table X. Figure 8 shows the pdfs of &(,](6;,)) for
€=2vS;;Sjj R, =28 and 84. At the smallest Reynolds number the pdf tail
T{ou au)\][1[au; oy of sca}lar. dis.sipation i_s lifted higher than either of the turbu-
=2v > (9—XJ (9_x|) E(a_xj + a_x, . (21 lent dissipation pdf tail§see Tables VII-IX For the larger

Reynolds numbersg, for €, is similar to the value for
A related quantity, often called the “pseudo-dissipation,” is €, ; however, the value ok, for € is larger. In summary, all
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TABLE X. Stationary moments of the pdf afy .

Moment Run 32.3 Run 64.3 Run 128.4 Run 256.5
Mean 0.7680.035 2.07-0.09 4.50-0.76 17.05
Variance 1.750.18 17.7+1.7 11544 2080
Skewness 4.280.07 5.44-0.12 6.89-0.61 8.14
Kurtosis 31512 51.5-2.9 84.2-16.8 117
Superskewness 326(B70 (1.01-0.21)x10* (2.86+1.22)x10* 6.04x10*

of the dissipation pdfs have qualitatively the same shape, Joint pdf contour plots of Ing,/€,) vs In(e/€’) are shown
with the same kind of Reynolds number dependence. in Fig. 9. (Note that the contour levels have exponential

We are now prepared to consider how scalar dissipatiospacing). It is evident that the contours for both Reynolds
is correlated to the mechanical turbulent dissipation andchumbers differ from the ellipses of joint-lognormal random
pseudo-dissipation. We examine the joint pdfs and correlavariables, and have a small but significant positive correla-
tion coefficients to begin to answer this question. tion.

For the dependence of the scalar dissipation on pseudo-
dissipation the standardized joint pdf is shown in Fig (@
joint pdfs of €, vs € ande, vs €, are almost identical This

10 : : : : figure shows that the mechanical dissipation is inhibited by
large values of scalar dissipatigand vice versa to a lesser
degreg, since the contours are concave and have sharp
points at near zero scalar dissipation. This inhibition may be
increasing slightly with Reynolds number, while the actual
6F o ] correlation as given in Table Xl is decreasing.
' o © Now that we have examined the correlation between sca-
4t JRS - lar and mechanical dissipation via joint pdfs, we conclude
® ® with an examination of the conditional expectatian|e).
o Figure 11 gives the conditional expected value of scalar
dissipation given the full mechanical dissipation. Results for
0o o & % three Reynolds numbers are shown because there is some
Reynolds number dependence. The behavior at each Rey-
nolds number is similar, but not identical. Each plot begins
8 ] with an approximately linear departure from zero, increasing
< to a maximum with little statistical variability, after which
6 . the values quickly gain considerable variability.

Figure 12 gives similar results for the conditional ex-
pected scalar dissipation given the mechanical pseudo-
dissipation; however, the behavior has some distinct differ-
ences. For one, the conditional expected value has a steeper
slope near zero and levels off much quickat a smaller
mechanical dissipation valyeafter which it begins to de-

' crease before scattering out. This phenomenon becomes
more apparent as Reynolds number increases. Also, the
] maximum value attained is only about one-half the maxi-
mum value in Fig. 11 for the full mechanical dissipation.

N / e¢'

F. Modeled quantities in pdf evolution equations

The pdf approach is finding more and more use for prac-
tical computations of turbulence, especially for turbulent
combustion. It has the great advantage of being able to treat

40 50
TABLE XI. Correlation coefficients for dissipation.

Correlation Run 32.3 Run 64.3 Run 128.4

FIG. 11. Stationary conditional expectation of scalar dissipation given thep;s=p(e,€,) 0.235-0.004 0.18%0.004 0.165:0.013
mechanical dissipatiofmeans plus fluctuations(e,|e). 0, R,=28; <, pra=p(ep.€y) 0.124+0.004 0.087%0.0035 0.077%0.0130
R,=52; ¢, R,=84.
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J J

3 - - ' ' ' a—‘f+u/a+a—xj(uj¢)=rv2¢. (24)
(For this equation, the gradients of the scalar fluxiand
ot i z are zero by symmetry, and the gradient of the scalar flux in
y is neglected on the assumption thatand ¢ are jointly
homogeneous.

From this equation we can infer the governing equation
© o for the pdf of the scalat* Assuming homogeneity and sta-
tionarity of the pdf gives

s . d 42
0 : r X VA 0=B@(f<v|¢>)—wz(f<€¢|¢>), (25)

where(a| ) signifies(al ¢(x,t) =) for any quantitya.
An explicit solution to this equation can be found. Inte-
2r T grating once we obtain

€ / e¢’
»

d
< Ci=—Bf(v[y)+ w(f<f¢|¢>)- (26)

As ¢ tends to infinity, each term on the right hand side of Eq.
(26) tends to zero, so that the integration constants zero.
Integrating again we obtain

_C vBoly')
= <6¢|¢>exp< o (€gl¥") d¥ )

om This is the general solution for the homogeneous, stationary
o scalar pdf,f(¢). The constanC is determined by the nor-

malization condition/” .f(#)dy=1.

. This equation is in the form of the result of Pope and

Ching*® and hence we know two sufficient conditions for

this pdf to be Gaussian:

(27)

30 40 50 60 (eglt)=(ey), (28)

e, /¢, _
p’*p b
(vlh)y= 27— (29)

B(€y)
FIG. 12. Stationary conditional expectation of scalar dissipation given theFigure 13 shows the nondimensionalized scalar dissipation
mechanical pseudo-dissipatiofmeans plus fluctuations (ele). 0. conditioned on the scalar for one Reynolds number, typical

R,=28; <, R,=52; ¢, R,=84. . . .

of all the simulations. We see that for the large center portion
the curve is nearly constant as required in the first condition

the convection and reaction processes exactly; models bas@@ove, Eq(28), and at the correct value. However, for large
on the assumption of gradient diffusion are not needed, an# it seems to droop down towards zef@though there is
treatment of arbitrarily complex finite-rate reactions is pos-Substantial statistical uncertainty in these fails

sible. The ability to treat convection and reaction exactly I the experiments of Jayesh and Warffaftith decay-
alleviates many of the difficulties encountered in theind grid turbulence and exponential scalar pdf tails, a
Reynolds-stress approach; however, the pdf method is népunded V-shape is seen for the conditional scalar dissipa-
without its own set of unclosed terms which need to be mod1ion, persisting as the Reynolds number decays and similar in

eled. shape to that found by Eswaran and P8ge their DNS
N o ] simulations without a mean scalar gradient, after the initial
1. Conditional scalar dissipation and velocity transient. In those DNS simulations the scalar field was ini-

One such pdf evolution equation, which applies to thistialized as a double-delta pdf, and decayed to a Gaussian.
study, is the scalar pdf equation. This equation in an Eulerian  Miller et al®? have proposed and demonstrated that the
frame is derived as follows. We begin again with theshape of the conditional scalar dissipation depends on the
convection-diffusion equation for a passive scalar, &). shape of the scalar pdf. If the scalar pdf has Gaussian tails,
Reynolds decomposing the scalar and velocity into mean antthen the conditional scalar dissipation has a flat shape, inde-
fluctuating parts with the previously given conditions, Eqs.pendent ofis, as seen in our analysis. For exponential tails,
(10), (13)—(14), gives the scalar fluctuation equation the conditional scalar dissipation has a sharp V-shape. This
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FIG. 13. Stationary scalar dissipation conditioned on the scdlds the ) ) ) ) .
sample space variable fah. R, =52; — - —, Eq. (29). FIG. 15. Evolution of the scalar pdf to stationariffNote: Each curve is
normalized by its respective instantaneous scalar rms yaRje=84; A,
0.39T¢; O, 1.15T¢; O, 2.74T¢ ; —, stationary pdf,— - —, Gaussian.

is reminiscent of the results of Sahay and O‘Brfényho

predicted similar shape dependencies based on a model for 0.60,-0.46] and becoming smaller with Reynolds num-

(v|¥). Since, as will be seen, the scalar pdf tails in this studyPer.

are at least quite close to Gaussian, the nearly flat shapes Although the center portion of the stationary scalar pdf

observed here for the conditional scalar dissipation agreeshould be very close to Gaussian based on these results, the

both with the above theories and with our analysis, at leas$tate of this pdf's tails is still in question. This question is

for moderate values of. examined in some detail later in this paper; we only consider
In examining these conditional quantities it is helpful to it very briefly here.

consider the appropriate correlation coefficients as well. As  Figure 15 details the evolution of the scalar pdf for

expected, the Corre|atiqmlo (see Table IV between the sca- R, =84, characteristic of all of the simulation§hese tran-

lar dissipation and the scalar variance is very small for alisient curves and those following are not smoothéegins

Reynolds numbers. However, considering the entireas a delta function at zefaot shown and then very quickly

y-range of the figuresand the drooping of the tajlst is ~ becomes Gaussian. Hence all the curves shown, each nor-

questionable how accurate the first condition, &), is in ~ malized by its respective scalar variance value, are Gaussian

general for this flow. to a good approximatior(Although the confidence intervals
The normalized conditional-velocity is shown in Fig. —are not shown in these figures for clarity, the Gaussian curve

14. In contrast to the conditional scalar dissipation, the conis inside the confidence interval of almost every point in each

fidence intervals are very small for this quantity. There is aPdf) Moments for the stationary scalar pdfs are given in

clear almost linear dependence on the scalar, with a slope dfable XII.

—1, corresponding to the second condition, E2P). The If one considers the transient shapes of the conditional

results for this quantity from the other simulations are veryscalar dissipation, shown in Fig. 16, one sees a shape similar

similar with a slope of minus one as well. The appropriatet0 the stationary shap&ig. 13, rising in value as the scalar
correlation coefficient in Table IVpg, is in the range dissipation increases in response to the scalar variance. The

4 1 1 1 ] T
[ 1.0 T T .
> . ~ ]
-~ «
N
> - N ]
_ > |
> _ ]
S~ g
. <
%)
~ -
-4 Il L 1 1 1
-6 -4 -2 0 2 4 6 N 5
/e
FIG. 14. Stationaryw-velocity conditioned on the scalaR,=52; —- —, FIG. 16. Evolution of the scalar dissipation conditioned on the scébae
Eq. (29). note in Fig. 15, R,=52: A, 0.40T; J, 1.26T¢; O, 2.60T¢.
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TABLE XII. Stationary moments of the scalar pdf. TABLE XIV. Model coefficients for Eq.(32).

Moment Run 32.3 Run 64.3 Run 128.3 Run 256.5 Run a b

Mean 0.006:0.000 0.00@:0.000 0.00€-0.000 0.000 32.3 —-1.231 —-0.384
Variance 2.026¢0.120 2.18%#0.123 2.0320.475 2.537 64.3 —1.268 —0.478
Skewness —0.022-0.031 0.008&0.045 0.06%0.072 0.159 128.4 —-1.310 —-0.561
Kurtosis 2.90%0.031 2.976:0.072 2.866:0.097 3.171 256.5 —1.229 —0.493

Superskewness 13.61.38 14.7¢1.05 13.0&1.20 16.85

. . . . region in the plot shaped like an ellipse and oriented at an
gualitative behavior or shape begins as a bit concave down- : . :
le to both axes, falling off to exponential spikes at the

ward, but soon assumes the stationary shape. The associa?egag
transient correlation coefficients at these times are shown i 95> of the accesseg,p) space.
Table XIllIl. They are fairly constant at a small negative value A model for these data can be formulated as
very close to the stationary value. V2 ¢ v

The transient shapes of the conditionalelocity are <6¢>/(—F¢,)=a?+b7+§, (32
shown in Fig. 17. Here we see a change in behavior as the . L. )
scalar evolves. Since thevelocity variance is already sta- Where ¢’ is the scalar rms valug;” is the v-velocity rms
tionary when the scalar is introduced, the ratio 0fva_llue, andé¢ is a zero-mean random variable uncorrelated
v-velocity variance to scalar variance changes as the scal¥fith v and¢. Now let®=¢/¢’ andV=o/v’, so that Eq.
evolves, thereby affecting the slope. There is also an in(32) €an be written as
creased range in the conditionalvelocity when the scalar V2®
variance is small. This shows that the furthest excursions of m=a‘b+bV+ £. (33
the scalar early on are more closely correlated to the largest
v-velocity fluctuations, which is mirrored in the transient Multiply by @ and take the mean for

correlatiqn coeﬁ_‘icient 'valuessee Table XII). .Fr'or_n' Eq. —1=a+bp,s. (34)

(24), at time dt immediately after the scalar is initialized, _

¢=—vpdt, henceg andv are perfectly correlated. Now multiply Eq.(33) by V and take the mean to get
—(VV.V®)

2. Scalar mixing apyyth= (VO -VO)

(VV-VV) |¥2
<V<I>-V<1>>}

For the stationary case, an alternative form of the scalar
pdf equation is

B(f(w|y)) =T[F(V2p|)]. (30)

12
The scalar mixing terniV2¢| ) in this equation needs mod- ¢—<6>
eling, and is of much interedt.In the case of the velocity- 2Prk(ey)

scalar composition equation, the corresponding term to bgqyations(34) and (35) can be solved for the coefficients
modeled is a andb; these are shown in Table XIV for each of the four
T(V2¢|u, ). (31)  simulations. Note that the coefficients have only a small

Reynolds number dependence.
This leads to the fundamental question “What does sca- y P

lar mixing depend on?” Figure 18 shows the dependence of
V2¢ on the scalar value for two of the simulations. Both
show a linear relationship with a slope of minus one. Figure

= TPV,

1/2

== Pve,vo (35

19 shows a similar linear relationship withvelocity; how- 4 . ——— ———
ever, here there is a Reynolds number dependence. The slope [
for R,=28 is about 0.33, and fdr, =52 it is about 0.23. I

o . ' N 2t ]
(The remaining simulations have slopes of 0.15 for > ]
R, =84, and 0.083 foR, =185) Figure 20 shows contours ™~ | ]
of the dependence ofV?¢ on both the scalar and ; of .
v-velocity, overlayed with the straight contour lines given by — [
the model to be described. There is a large center planar 2 ol 1
TABLE XIIl. Transient correlation coefficients for 4R, =52. g ! L ! L

-6 -4 -2 0 2 4 6
Correlation 0.40¢ 1.26T¢ 2.60T¢ v / ¢'
ps=p(v, ) —-0.969-0.002 —0.758-0.018 —0.630+0.013
pr=p(€y L b?) —0.029-0.011 —-0.041+0.008 —0.021+0.012 FIG. 17. Evolution of they-velocity conditioned on the scaldiSee note in
Fig. 15) R,=52: A, 0.40T¢; O, 1.26T¢; O, 2.60T¢.
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FIG. 18. Stationary expectation of the normaliZétip conditioned one.
—, Ry,=28 (-*+, 90% confidence intervals— —, R,=52.

Checking the accuracy of our linear model, E2R) with
the above coefficients, we find slopes of 0.359 and 0.232 for
Run 32.3 and Run 64.3, respectively, which is very close to
the actual valuegNote: The mean of Eq:32) conditioned .
on velocity is @p,4+b)V.) The comparison in Fig. 20 of
the linear model with the jointly conditioned data is quite
good in the large center region of both plofRecently Fox
has obtained good results as well for a velocity-conditioned
IEM (VCIEM) model for Eq.(31).%%)

Figure 21 show&/?¢ jointly conditioned on the scalar
and the scalar dissipation. In Fig. (2l it appears like the
contours would be straight lines on a log scale. To check this
Fig. 21(b) gives the results foR, =84 (which are qualita-
tively identical to the results foR, =28 in Fig. 21a)) on a

V/v

log scale, plotting only the negative half-plane ¢f where  FIG. 20. Stationary expectation of the normaliZet jointly conditioned

$»<0 andV2¢>0. However, the contours are Straiqm'th on ¢ anduv-velocity, overlayed with contours from the linear model, Eq.
(32). (8 R,=28; (b) R,=84.

a slope of minus fLfor only for a small region near zero.
The evolution of the expectations of scalar mixing con-
ditioned on the scalar anglvelocity are shown in Figs. 22

and 23. The behavior does not change when conditioned anes of scalar dissipation and rms. If each curve is normalized
velocity; however, when conditioned on the scalar we see 8y its respective value oé, and ¢’', then the curves are
slope change since the normalization uses the stationary vahcident on each other.

FIG. 19. Stationary expectation of the normaliz€d¢ conditioned on
v-velocity. —, R, =28 (--+, 90% confidence intervals— —, R,=52.

3142

4
*E [
S 2 B
<
w L
~ of
P
> [
& 2r
>
S~
- 4_; ! L 1 1
46 -4 2 2 4

Phys. Fluids, Vol. 8, No. 11, November 1996

G. Tails of the scalar pdf

We saw in the previous section that the scalar pdf is very
close to a Gaussian, although its tails remain in question.
Recently many have been investigating scalar pdf tails.
Among these, Jayesh and WarlR&found that the pdf of the
scalar(temperaturgfluctuations has pronounced exponential
tails for values of Regreater than about 70, but below this
critical value the pdf is close to Gaussian. The Reynolds
numbers of our simulations include values both above and
below this critical value.

Our first simulation is for Re=46 (R,=28), so by the
above hypothesis the scalar pdf should have Gaussian tails.
Figure 24 shows all the scalar pdfs compared to Gaussian
curves on a log scale to emphasize the tails. The result
for Rg=46 is also shown in a Q-Q plot in Fig. 25, where
the departure of the curve from the diagonal shows the
departure of the pdf from a Gaussia(The coordinates
for this Q-Q plot are X,y), such that Prdhp<<x]
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FIG. 21. Stationary expectation of the normaliZétp jointly conditioned ! \‘" .
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-8 [F 3
= Prol g<y], where the cumulative distribution functions 107 -4 2 0 2 4 6

for the scalar and for a Gaussian dg(x)=Prol ¢<x] v/
and Fy(y)=Prolfg<y].) Even though the pdf appears
slightly asymmetric, it is close to the Gaussian, and theFlG. 24. Stationary standardized pdf ¢f Each curve has been shifted up

Gaussian curve is everywhere inside the confidence intervaf§© decades with respect to the lower one. — —-R45; —, Re=110;
—-—,Rg=243; — —, Rg=1092;---, Gaussian.
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FIG. 25. Q-Q plot of the stationary standardized pdf¢#fy vs x for
FIG. 22. Evolution of the normalizeB%¢ conditioned ong. (See note in  Prolj ¢<x]=Prof g<y], where theg is a standardized Gaussian random
Fig. 15) R,=52; A, 0.407¢; O, 1.26T¢; O, 2.60T¢. variable. Re=46.
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FIG. 26. Stationary standardized pdfswfandu. Rg=46. —, pdf ofv; FIG. 27. Stationary standardized pdfs &&/dx, —, and d¢/dz, ——.
——, pdf ofu; —-—, Gaussian. R, =52.

) ] ) o As was seen earlier, the conditional expectations

(not shown in the figure for clarijy Therefore, on statistical (v|¢p=y) and(e4|¢p=y) confirm the overall Gaussian be-
grounds one cannot say that this scalar pdf is non-Gaussiafayior seen here in the scalar pdfs, if allowance is made for

One observes that the center portions of the pdfs are veryome departure at the ends of the tails where statistical error
close to the Gaussian curves, but bgibsitive and negative i the highest.
tails seem to droop down at their extremes. If we examine  These results are in contrast to the exponential pdfs
two pdfs of the turbulent velocity _flelcbee Fig. 2bwe see  found by Jayesh and Warh#ffor the same Reynolds num-
that they are perfectly symmetric and very close 10 thepers, but there are a number of possible reasons for this
Gaussian one might expect them to be, but their tails als@ifference. It has been suggest@ng?®) that this may be a
droop. _ _ . . result of the limited number of large eddiéategral scales

In order to investigate the effects of numerical resolutlonpresent in our DNS simulations, usually being around 5 or 6
on the tails of the pdf, a simulation at this same Reynoldgsee Table )l They found that 8 integral scales across the
number was performed with twice as fine a grid;6diving tynnel width was not always sufficient to get exponential
a value ofkya,=>2. All the results were essentially identical. tajls_ It should also be remembered that the turbulence inves-
Hence we can conc!ude that the*3@rid is sufficient to tigated by Jayesh and Warlfts decaying grid turbulence
completely resolve this Reynolds number turbulent flow, andyhich will have different spectra than our simulatiohe
that a value ok Of 1.1 or higher, as seen in this case, Reynolds number does not fully characterize isotropic turbu-
gives satisfactory resolution of the pdf taiss expectet)).  |ence)

Our 6‘.? simulation is for Re=110 (R, =52). From Fig. However, our results are in agreement with the recent
24 it is evident that only minimal differences exist betweenstudy by Jaberét al,2? which found that the long-time scalar
this scalar pdf and that for iRe46; the Gaussian curve falls gt (at R, =58) is not necessarily Gaussian or exponential,
within the confidence intervals for both. A slight raising of pt rather is sensitive to several factors. If forcing or a mean
the tails is echoed in the increase of the kurtosis from 2.9 fogcajar gradient is present, then non-Gaussian behavior is not
the Re of 46 t0 3.0 here. This is the value for a Gaussian; thestained. This study extends their result, and shows that for

stretched-exponential pdfs seen in Jayesh and WatHEft  forced simulations with a mean scalar gradient, the scalar pdf
similar Reynolds numbers have kurtosis values around 4. g essentially Gaussian up Ry, = 185.

Our 128 simulation is for Re=243 (R, =84). The sca-
lar pdf shown has a kurtosis of 2.9the same as for
Rg=46), and it still includes the Gaussian curve inside
much of its confidence intervals. The lower value of kurtosis  In contrast to the previous section, there is no shortage
appears to be accounted for by the asymmetric dropping inf experimental and DNS data for the first derivatives of the
the negative tail. This is statistical error, which is more of ascalar, especially fof ¢/3y. Holzer and Siggi# did a num-
problem for the two largest simulations in this study. Theseber of large, high Reet number, stationary 2-D simulations
simulations also exhibit more pronounced drooping of theof turbulence with a passive scalar and found that the skew-
pdf tails. ness in the scalar derivative persisted throughout. This skew-

The largest simulation is for Re 1092 (R, =185). Here  ness was also observed at low Reynolds number in the three-
the “stationary” portion of the run is not very stationary on dimensional3-D) DNS results of Pumit®
the large scale, due to large fluctuations from the forcing, We find a persistent skewnessd/dy as well. Figure
only one simulation, and a short duration of slightly less thar27 shows the pdfs of the scalar derivativeg/dx and
2 eddy turnover timesgsee Fig. 8)). Hence the statistical d¢/dz for R,=52, and Fig. 28 showg¢/dy for all four
error is high. However, the scalar pdf is still quite close to asimulations. The tails of these pdfs are of stretched-
Gaussian, with a kurtosis of 3.2. exponential form, and skewness is only seeddidy. (Be-

H. Derivatives of the scalar
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N
cause of the symmetries in the problem, the pdfgéfox % 1.00
and d ¢/ 9z are symmetric, apart from statistical variabiljty. = o
The skewness is in the positive tails;Afwere negative N 8 &
then it would appear in the negative tails. Since the skewness QZ 090t .
is of order 1 in each case there is evidently no local isotropy & O (3uax)? term
of the scalar, in fact, the skewness is essentially constantw,;: ®) & (30/0z2)? term
with Reynolds number. Figure 29 shows the dependence g ggo .
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FIG. 30. Stationary mean squared gradients. The error bars indicate the 90%
confidence intervalga) u-velocity; (b) ¢.

of the skewness on Reynolds number, along with the results
of Tong and Warhaft® Holzer and Siggid® and Pumir®
and Fig. 29b) shows the kurtosis.

Another measure of local isotropy is the ratio of the
mean squared gradients of the velocity and the scalar in dif-
ferent directions. In Fig. 3@) the u-velocity field shows
signs of being locally isotropic for each Reynolds number
studied(up through the second-moments at Igalsbwever,
that is not the case for the scalar field. In Fig(l3Ghere are
small but clear differences between the scalar gradient
dpldy anddgl ox or dpl iz, which is due to the mean scalar
gradient in they-direction. Hence local isotropy does not
hold for these scalar fields, and the situation does not change
as Reynolds number increas@ser the range studigd

The reason for the skewness in the scalar derivative has
been shown to be the organization of the scalar in physical
space. A number of researchers have observed a ramp-cliff
structure in the scalar fluctuation field, which for the total
scalar field (mean plus fluctuationcorresponds to cliffs
separating large areas of well-mixed flice., near constant
scalar valug?1918

We find a similar structure in our results, although the
effect is not pronounced. We examine a few contour plots of
the scalar fluctuation here to show the orientations of the
largest gradients. Figure 31 shows contours of the scalar in
the constant plane passing through the region of maximum
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FIG. 31. Contours of the scalar through the region of highest scalar gradient|. 33. Contours of the scalar through the region of highest scalar gradient
magnitude. The tick marks represent the grid spacing. Contour line SPacinghagnitude. Two grid points per tick mark. Contour line spacing is 0.96.
is 0.76.R,=28,z=24. R),=84,x=18.

. . . V. CONCLUSIONS
scalar gradient magnitude fét, =28. Here the one cliff or

steep gradient region is close to being aligned witliNote In the present study direct numerical simulations are
that the contour levels have constant spagirfggure 32  used to investigate mixing of a passive scalar in statistically
shows similar scalar contours fd%,=52. Here there are homogeneous, isotropic, and stationary turbulence, with a
several high gradient regions, with all except one having itgnean scalar gradient in thedirection. The range oR,’s
gradients aligned roughly parallel tp. As the Reynolds investigated is 28 to 185. Multiple independent simulations
number increases the large gradient regions become mo@é€ performed for all but the largest simulation to get confi-
distinct. Figure 33 shows the corresponding field in adence intervals, and local regression smoothing is used to
constantx plane forR, =84, and Fig. 34 foR, =185. Each further reduce statistical fluctuations.
case shows a definite preference for the highest gradients to After initialization of the scalar at zero, the scalar vari-
be parallel toy, and since these four data sets were chosen &nce and scalar flux evolve to a stationary state in about 4
random from the stationary portions of the four simulationseddy turnover times. Contrary to former assumptions, the
(i.e., the last time stépit is likely that this effect persists dissipation term in the scalar flux evolution equation is not
throughout. negligible at these Reynolds numbers. Although it certainly
does decrease witR, (asR, %%, the ratio of dissipation to

)

‘
Vo
Al ]

A

FIG. 32. Contours of the scalar through the region of highest scalar gradierftIG. 34. Contours of the scalar through the region of highest scalar gradient
magnitude. The tick marks represent the grid spacing. Contour line spacinmagnitude. Four grid points per tick mark. Contour line spacing is 1.09.
is 0.83.R,=52,z=52. R\, =185,x=149.
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production ranges from 0.4 to 0.1 for our simulations. Ex-space confirms what others have obserf¢dIn regions of
trapolating from this data, for the dissipation to be less thamimaximum scalar gradient, the steepest gradients are roughly
5% of the production, a value d®, of 350 would be re- parallel to the mean scalar gradient direction.
quired. This should be checked as higher Reynolds number
DNS simulations become possible. ACKNOWLEDGMENTS
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