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Mixing of a passive scalar in statistically homogeneous, isotropic, and stationary turbulence with a
mean scalar gradient is investigated via direct numerical simulation, for Taylor-scale Reynolds
numbers,Rl , from 28 to 185. Multiple independent simulations are performed to get confidence
intervals, and local regression smoothing is used to further reduce statistical fluctuations. The scalar
fluctuation field,f(x,t), is initially zero, and develops to a statistically stationary state after about
four eddy turnover times. Quantities investigated include the dissipation of scalar flux, which is
found to be significant; probability density functions~pdfs! and joint-pdfs of the scalar, its
derivatives, scalar dissipation, and mechanical dissipation; and conditional expectations of scalar
mixing, ¹2f. A linear model for scalar mixing jointly conditioned on the scalar andv-velocity is
developed, and reproduces the data quite well. Also considered is scalar mixing jointly conditioned
on the scalar and scalar dissipation. Terms appearing in the balance equation for the pdf off are
examined. From a solution of the scalar pdf equation two sufficient conditions arise for the scalar
pdf to be Gaussian. These are shown to be well satisfied for moderate values of the scalar, and
approximately so for large fluctuations. Many correlations are also presented, includingr(v,f),
which changes during the evolution of the scalar from a value of unity when initialized to the
stationary value of 0.5–0.6.@S1070-6631~96!02511-1# © 1996 American Institute of Physics.

I. INTRODUCTION

Direct numerical simulation~DNS! has recently become
an accessible approach for investigating complex phenomena
in simple turbulent flows. Although simulated Reynolds
numbers remain lower than those found in most practical
applications, continued increases in computer power have
made it possible to simulate many laboratory flows, such as
grid turbulence or shear flow, at similar Reynolds numbers to
those investigated experimentally. This opens up many op-
portunities for DNS to investigate quantities currently diffi-
cult or impossible to measure experimentally. In this study
we consider turbulent transport and mixing in the presence of
a mean scalar gradient.

In 1952 Corrsin1 predicted that, in stationary isotropic
turbulence with a uniform mean velocity in one direction, an
imposed cross-stream mean temperature gradient maintains
itself. Several grid turbulence experiments were then re-
ported confirming this prediction, where a mean temperature
gradient was produced by differentially heating the turbu-
lence producing grid.2–4However, the evolution of the scalar
variance,^f2&, was unclear since differentially heating the
grid produces a cross-stream gradient in^f2&. Warhaft and
Lumley5 and Sirivat and Warhaft6 introduced different meth-
ods of producing a mean temperature gradient in grid turbu-
lence with better results. They found that^f2& increases lin-
early with downstream distance, as predicted theoretically by
Sullivan7 and Durbin.8 Homogeneous shear flow experi-
ments have also been performed with a mean temperature
gradient.9,10

Kerr11,12 reported DNS results for a passive scalar in

isotropic turbulence without a mean gradient, but a similar
report for the scalar with a mean gradient has not yet been
published.~A passive scalar is one that has no effect on the
velocity field.! The DNS results of Ruetsch and Maxey13,14

consider only the small-scale vorticity and passive scalar
structures for the first several eddy turnover times (TE)
where the scalar field is still evolving and not statistically
stationary. Pumir15 also reports on a passive scalar DNS
study with a mean gradient, but with a primary focus on the
probability density functions~pdfs! of the scalar gradients.

In the present study direct numerical simulations are
used to investigate a passive scalar in statistically homoge-
neous, isotropic, and stationary turbulence, with a mean sca-
lar gradient in they-direction. The purpose of this work is to
consider a number of important questions left unanswered by
experimental and DNS studies in the literature, with a moti-
vation of later contrasting this passive scalar flow to one with
reaction.

Recently it has been realized that the local isotropy cen-
tral to Kolmogorov theory16 and long understood for veloci-
ties does not appear to hold for a passive scalar. Sreenivasan
states that ‘‘statistical isotropy is not ‘natural’ or ‘obvious’
for the small-scale scalar field in a shear flow’’.17 This is
evident in the persistent skewness of the scalar derivative in
the direction of the mean gradient~henceforth ]f/]y).
Holzer and Siggia18 performed a number of large, statisti-
cally stationary simulations of turbulence with a passive sca-
lar and found a persistent skewness of]f/]y at all Péclet
numbers~up to Pe52700!. Their results are for synthetic
turbulence~two dimensional~2-D! and with forcing!. They
observed a ramp-cliff type of structure in the Eulerian scalar
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field, which was shown by Sreenivasanet al.19 to explain the
skewness in the scalar derivative. This same structure was
observed in the grid turbulence experiments of Tong and
Warhaft20 and in the atmospheric measurements of Phong-
Anant et al.21 Holzer and Siggia18 show that this structure
derives from the large scale organization of the scalar field,
with large regions of fluid of relatively constant value being
joined by steep ramps. Their conclusions have been gener-
ally confirmed at low Reynolds numbers by the DNS results
of Pumir.15 These results are all evidence that the passive
scalar field is different from that which is predicted by the
hypothesis of local isotropy and the Kolmogorov first simi-
larity hypothesis.16,17

Kolmogorov’s 1962 small scale intermittency extension
to his original theory22 inspired a number of local isotropy
studies which found among other things that the pdf of the
scalar derivative had ‘‘stretched-exponential’’ tails. But in
1989 the Chicago Rayleigh–Be´nard convection experiment23

ignited interest in the tails of the scalar pdf itself by showing
that they could be exponential as well. It was proposed that
there exists a universal threshold Rayleigh number
(Ra;43107) across which the tails of the scalar pdf change
from Gaussian to exponential. Jayesh and Warhaft24 find this
same transition at an integral-scale Reynolds number (Rel)
of about 70 in their grid turbulence experiments with a mean
scalar gradient. Hence the terminology ‘‘soft turbulence’’ for
turbulence below this critical Reynolds number~or Ra!
where the scalar fluctuations are Gaussian, and ‘‘hard turbu-

lence’’ for higher Reynolds number turbulence where the
fluctuations are exponential.

Theoretical results were advanced by Pumiret al.25 in
the form of a very general one-dimensional~1-D! phenom-
enological model predicting exponential tails in the presence
of a mean gradient. Kerstein26 has shown that the linear-eddy
model also yields scalar pdfs with exponential tails when
there is a mean scalar gradient.

Several other experiments with mean scalar gradients
have been done with mixed results. Thoroddsen and Van
Atta27 investigated stably stratified grid turbulence and found
Gaussian scalar pdfs even when the scalar was passive. How-
ever, their maximum value ofRl is 41, which according to
Jayesh and Warhaft24 is too small for exponential behavior.
But that is not true of the turbulent shear flow results of
Tavoularis and Corrsin.9 They also observed Gaussian scalar
pdfs in spite ofRl being greater than 200.

Published DNS results on this topic have been minimal
until recently, with all but one study observing only Gauss-
ian pdfs. Kerr11 performed stationary simulations for values
of Rl ranging from 9 to 83, and observed Gaussian pdfs;
both the velocity and the scalar were forced. Eswaran and
Pope28 also performed stationary simulations with a forced
velocity field and values ofRl from 28 to 51, but they allow
the scalar field to evolve from a double-delta pdf initial con-
dition. They find that the evolving scalar pdf tends to a
Gaussian. However, the first authors to formally address the
case of a mean scalar gradient were Jaberiet al.29 who made

TABLE I. Run parameters. Angle brackets^& denote the time-averaged stationary value.

Parameter Tabulated Run 32.3 Run 64.3 Run 128.3 Run 128.4 Run 256.5

N—grid size N 32 64 128 128 256
n—number of simulations n 16 16 4 4 1
n—kinematic viscosity n 0.025 0.025 0.025 0.025 0.025
Pr—Prandtl number Pr 0.7 0.7 0.7 0.7 0.7
b—mean scalar gradient (d^f̃&/dy) b 1.0 1.0 1.0 1.0 1.0
KF—largest forced wave number KF /k0 2A2 2A2 2A2 2A2 2
kmax—largest resolved wave number kmax̂ h& 1.120 1.107 1.121 1.133 1.060
k0—smallest wave number k0^h& 0.07422 0.03668 0.01859 0.01878 0.008786
l[

1
3Li ,i—integral length scale k0^ l & 1.259 1.091 0.9649 0.9696 1.378

Le[u83/e—turbulent length scale ^Le / l & 1.124 1.640 1.927 1.931 2.072
l—Taylor microscale ^l/ l & 0.6119 0.4761 0.3472 0.3484 0.1704
h—Kolmogorov length scale ^h/ l & 0.05893 0.03361 0.01926 0.01937 0.006374
TE—eddy turnover time ^ l /u8& 1.396 0.4371 0.1540 0.1567 0.07028
th—Kolmogorov time scale ^th&/TE 0.1580 0.1232 0.08981 0.0901 0.04397
Ts—start of the stationary period Ts /TE 5.923 6.142 4.595 14.08 4.698
T—duration of the stationary period T/TE 25.24 13.18 9.488 4.897 1.971
k—turbulent kinetic energy ^k& 1.221 9.352 58.89 57.42 577.0
u8[(2k/3)1/2—turbulence intensity u8 0.9024 2.497 6.266 6.187 19.61
v8—v-velocity rms value ^v8& 0.8970 2.486 6.265 6.176 17.97
e—dissipation ^e& 0.5193 8.703 132.3 126.5 2641
Rel[u8l /n—Reynolds number ^Rel& 45.69 109.5 242.5 241.0 1092
Rl[u8l/n—Taylor Reynolds number ^Rl& 27.84 51.93 83.94 83.69 185.0
^vf&—scalar flux ^vf& 20.7726 22.059 24.749 24.723 213.31
^f2&—scalar variance ^f2& 2.027 2.179 2.019 1.891 2.488
f8—scalar rms value ^f2&1/2 1.424 1.476 1.421 1.375 1.577
rms(]f/]y)—scalar gradient rms ^(]f/]y)2&1/2 2.733 4.493 6.976 6.637 12.91
ef—scalar dissipation ^ef& 0.7694 2.068 4.928 4.506 17.01
rf[ef /^f

2&—scalar dissipation rate ^rf& 0.3795 0.9490 2.441 2.383 6.837
r[2k/e/^f2&/ef—time scale ratio ^r & 1.822 2.080 2.215 2.216 3.038

3129Phys. Fluids, Vol. 8, No. 11, November 1996 M. R. Overholt and S. B. Pope

Downloaded¬22¬Sep¬2004¬to¬140.121.120.39.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp



a more comprehensive study of the scalar pdf tails and found
that the long-time scalar pdf~at Rl558) is not necessarily
Gaussian or exponential, but rather is sensitive to several
factors. If any forcing or a mean scalar gradient is present,
then non-Gaussian behavior is not sustained for any initial
conditions. Otherwise the scalar pdf is very sensitive to the
initial conditions.

The scalar pdf is of interest not only for its own sake, but
also because pdf methods are finding increased use for prob-
lems of turbulent mixing and reaction.30,31 An emphasis of
this study is the determination of statistics appearing in equa-
tions such as the scalar pdf transport equation. In this equa-
tion the conditional expectationŝvuf5c& and ^efuf5c&
need to be modeled.~The conditional expectation
^vuf5c&, for example, is the expectation ofv given that
f5c, wherev is they-component of velocity andc is the
scalar value;ef is the scalar dissipation.! The grid turbulence
experiments of Jayesh and Warhaft24 and the DNS simula-
tions of Eswaran and Pope28 without a mean scalar gradient
examine these conditional quantities for decaying turbulence.
The paper by Milleret al.32 gives some DNS results for the
stationary case, but our results are the most comprehensive
to date for stationary turbulence with a mean scalar gradient.

A great advantage of pdf methods is their closed-form,
exact treatment of reaction and convection; however, mixing
needs to be modeled. Almost all currently employed models
for scalar mixing require information on the coupling be-
tween the turbulence time scale and the scalar dissipation
time scale for closure.33 One such relation is the mechanical-
to-thermal time scale ratio,r . Another such relation is the
scalar dissipation rate, which is a key quantity in the model-
ing of both inert and reactive turbulent scalar fields.34 This
coupling is examined in this paper via pdfs, joint pdfs, and
conditional expectations of the turbulent and scalar dissipa-
tion.

These issues are investigated via DNS on grids ranging
from 323 to 2563, yielding values ofRl from 28 to 185~the
Prandtl number is 0.7), a much larger range than has been
considered before in three-dimensions. The largest velocity
scales are forced to maintain stationarity. Multiple indepen-
dent simulations~MIS! are performed for all but the largest
grid size so that confidence intervals can be calculated. The
large grid sizes and MIS are made possible by using from
16 to 64 processors in parallel on the IBM SP2 supercom-
puter.

The organization of the paper is as follows. In the fol-
lowing section the DNS algorithm and turbulent flow simu-
lated are briefly described. In Sec. III some relevant statistics
and the smoothing method are reviewed. Section IV de-
scribes and discusses the results, with comparison to experi-
ment, and final conclusions and research directions are given
in Sec. V.

II. METHOD

The DNS algorithm used is a fully parallelized version
of the pseudo-spectral method of Rogallo.35 In detail, the
method used is almost identical to that used by Eswaran and
Pope,28 Yeung and Pope,36 and Lee and Pope.37 However, a
completely new code has been written for distributed-

memory message-passing architectures such as the IBM SP2.
This is the same algorithm~without the particle tracking! as
Yeung developed independently using MPL~IBM’s Mes-
sage Passing Library!.38 We use MPI~Message Passing In-
terface Standard!.

The full Navier–Stokes and scalar equations are solved
without modeling on a three-dimensional grid. The grid is a
cube with sides of length 2p in physical space. In wave
number space the grid represents the integer wave numbers

ki56ni , ~1!

whereni50,1,2, . . . ,N/2 for i51,2,3. The pseudo-spectral
method advances the solution in time in wave number space;
however, the nonlinear products in the convection terms are
formed in physical space, requiring discrete fast Fourier
transforms~FFTs! to transform the fields back and forth be-
tween physical space and wave number space. The use of a
Fourier representation imposes periodic boundary conditions
in all three directions, and assures homogeneous fields.

The aliasing errors incurred in the FFTs are almost com-
pletely removed by phase shifting and truncation
techniques.35 The truncation results in a maximum signifi-
cant wave number,kmax, of A2Nk0/3.

The time-stepping scheme is an explicit second-order
Runge–Kutta method. Time-stepping errors are small as
long as the Courant number, defined as

C5~ uuu1uvu1uwu!max
Dt

Dx
, ~2!

is not greater than 1.0~where u, v, and w are the three
fluctuating velocities,Dt is the time step, andDx is the grid
spacing!.39 All the simulations in this study use the Courant
numberC50.8. Table I provides a summary of the different
simulations performed, and of the definitions and values of
the primary quantities characterizing the flow.

The largest Reynolds number flow that can be accurately
simulated for any grid size has been determined to be that for
which the highest wave numberkmaxh>1.0, whereh is the
Kolmogorov length scale, the smallest length scale of the
flow.39 As can be seen in Table I, these simulations all have
kmaxh'1.1.

The velocity field is stochastically forced by adding ac-
celeration increments to the largest scales only, such that
continuity is satisfied and on average dissipation equals the
artificial production. This results in the Reynolds number
remaining relatively constant throughout each simulation.
Only the wave numbers inside a sphere of radiusKF are
forced~excluding the origin!. This forcing introduces a forc-
ing Reynolds number and time scale into the simulation that
can be varied to give a flow of the desired Reynolds number
and large scale size~integral length scalel ). This forcing
scheme is the same one used by Yeung and Pope,36 a refine-
ment of that developed and tested by Eswaran and Pope.39 In
these works it is shown that the resulting velocity fields are
stationary and isotropic, to a good approximation.

The physically analogous turbulent flow is ‘‘grid turbu-
lence’’ with one exception: grid turbulence is decaying~tur-
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bulent kinetic energy decreases downstream from the turbu-
lence producing grid!, whereas in our simulations the
velocity fields are statistically stationary.

The scalar fluctuation equation~see Eq.~24!! is solved
for the evolution of the passive scalar fluctuation, which is
initially set to zero. No scalar forcing is necessary since the
mean scalar gradient gives rise to a nonzero production term
in the scalar variance evolution equation~see Eq.~15!!. The
initial mean scalar gradient is maintained because, for homo-
geneous turbulence, its evolution equation is

]

]t S ]^f̃&
]xi

D 50. ~3!

For each simulation, the velocity field is initalized and
allowed to evolve until it reaches stationarity~at least 4 eddy
turnover times! so the effects of its initial condition are mini-
mal. Then the scalar is introduced. After the scalar field is
deemed to have reached stationarity, the simulation is carried
on for 2 to 25 eddy turnover times, over which time interval
statistics are averaged in time as well as in space.

The time required to compute 1 eddy turnover time on
1 SP2 processor is 0.019 hours for 323, and 0.37 hours for
643. For 1283 split over 4 processors, the time required is

2.3 hours for each processor~a sum total of 9.2 hours!;
2563 split over 32 processors requires 12.8 hours each (410
hours total!.

III. STATISTICS

Since turbulence is a stochastic process, each DNS simu-
lation is by nature a stochastic simulation in that the results
are random variables which depend on the initial condition.
In addition, randomness enters the simulation through the
stochastic forcing of the velocity field. Hence the idea of
using MIS, which involves performing several statistically
identical simulations with randomly different initial condi-
tions. Using the IBM SP2 supercomputer, individual proces-
sors each perform one simulation, each with identical run
parameters; the only differences between the simulations are
the stochastic forcing and the initial fields, which are ran-
domly specified according to the same distribution. Output
from all the processors or simulations can then be combined
to form means and confidence intervals.

In addition, for the larger simulations it becomes neces-
sary to split up each simulation via domain-decomposition
over several processors, both for memory and CPU time con-
straints. All this is very efficiently accomplished in parallel
using MPI.

The use of MIS allows confidence intervals to be deter-
mined for every quantity desired, and they appear in many of
the figures in this paper. Confidence intervals of 90% were
chosen: for a random variableX, the confidence interval
@a,b# is such that Prob@a<X<b#50.90. This is very useful
for determining statistical significance. For instance, if two
quantities are being compared and one lies inside the confi-
dence interval of the other, then statistically the difference is

FIG. 1. Smoothing example for the pdf of]f/]y. X is the sample space
variable, which is standardized by the rms of]f/]y. Rl552; ~a! raw data
~symbols! and the smoothed result~line! for 1 of the 16 simulations;~b!
confidence intervals based on 16 simulations:•••, unsmoothed;22,
smoothed.

FIG. 2. Energy spectrum function from DNS~lines! and from the experi-
ments of Comte-Bellot and Corrsin~symbols!, scaled to show the25/3
region. Values forRl are:s, 71.6;n, 65.3;h, 60.7; —, 185;22, 84;
2•2, 52; •••, 28.
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not significant. The difference is only significant if there is
no overlap between the two confidence intervals.

Let n be the number of simulations. Then for some vari-
able yi from the i th simulation, the first two statistical mo-
ments, the sample mean and variance, are

ȳ5
1

n(i51

n

yi , ~4!

s5
1

n21(i51

n

~yi2 ȳ!2. ~5!

To form the confidence interval the Student-t distribution is
used because the true variance is unknown; the calculated-
variance is the sample variance. The Student-t distribution is
a function of the number of degrees of freedom of the sys-
tem, which here is the number of simulations. For an interval
@a,b# of the random variableX with Prob@a<X<b#
5 12a andn simulations, the Student-t confidence interval
is

F ȳ2ta/2,n21

s

An
,ȳ1ta/2,n21

s

AnG . ~6!

The values of the coefficients used aret0.05,352.3534 and
t0.05,1551.7530.

In a histogram formed from the data, the largest statisti-
cal fluctuations are in the tails, which are formed by a few
very rare events. A similar situation occurs for conditional
expectations at their extremes~i.e., for the largest fluctua-
tions of the random variable conditioned on!. Since these
quantities are central to this study, a smoothing technique is
employed to further minimize the statistical fluctuations of
the results.

The data are processed as follows. Individual histograms
are output for each simulation~with time-averaging only
within each respective simulation!. Each histogram is then
smoothed using a local regression procedure to be described.
The smoothed histograms from each simulation are then
combined to form smoothed means and confidence intervals.
The sole difference between the processing of the smoothed
results and the normal MIS results is the smoothing step.

The smoothing is accomplished via a local regression
method developed by Ruppert.40 Given a functiony5 f (x) to
be smoothed in the interval@a,b# and then evaluated at the
pointx0 P @a,b#, a local regression smoother fits a low-order
polynomial in the independent variablex locally at x0, and
then takes the estimate off (x0) from the fitted polynomial at
x0. Local regression smoothers automatically avoid biases
common to kernel smoothers. These biases can occur at the
boundary of the predictor space since there the kernel neigh-

FIG. 3. Evolution of the normalized scalar variance, scalar flux and its correlation coefficient. —,^(f* )2&; •••, confidence intervals on̂(f* )2&; 22,
^v*f* &; 2•2, rvf . ~a! Rl528; ~b! Rl552; ~c! Rl584; ~d! Rl5185.
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borhood is asymmetric; they can occur in the interior as well
if the data are nonuniform or has substantial curvature.41 As
well as avoiding bias, the local regression method of Ruppert
automatically adjusts to the data itself, so that the width of
the neighborhood ofx0 considered~bandwidth, or number of
points for evenly spaced data! is continuously variable. The
support is thereby kept small in the center of the pdfs where
the variability of the data is small, and increased in the tails
where the variability is large.

Figure 1 gives an example of smoothing for the pdf of
]f/]y from the 643 run. In Fig. 1~a! the original data and the
resulting smoothed curve are shown for 1 of the 16 simula-
tions. Figure 1~b! shows the confidence intervals obtained
from all 16 simulations. In the center of the pdf the smoothed
confidence interval curves fall on top of the unsmoothed
curves, but in the tails the smoothed intervals are more uni-
form and a bit smaller. The sharp peak of this pdf is slightly
rounded since the curvature is very high there, but otherwise
the smoothing does not degrade the results in the center
where the accuracy of the unsmoothed pdf is already good,
and in the tails the smoothed result shows much less fluctua-
tion with values that appear reasonable.

IV. RESULTS

A. Energy spectrum function

We begin the results discussion with the energy spec-
trum function to establish the validity of these simulations.
Figure 2 shows the energy spectrum functions from the four
simulations with a25/3 Kolmogorov scaling, compared
with the experimental data of Comte-Bellot and Corrsin.42

The forcing of the large scales does significantly distort the
DNS spectra at low wave numbers when compared with the
experimental data; however, they approach a25/3 scaling
region, and the high wave number portions of the spectra
match the experimental data very well. Since we are more
interested in quantities which scale with the high wave num-

ber or dissipation range, the low wave number distortion is
allowable. However, in the following discussions of the evo-
lution of scalar variance and scalar flux the influence of the
forcing must be remembered.

B. Evolution of the scalar field

The focus of this study is on the behavior of the scalar
field; we begin with the lower-order moments. The mean of
the scalar field is zero. The variance evolves from a zero
initial value to a statistically stationary value after some pe-
riod of time, as predicted by Corrsin.1

The convection-diffusion equation for a passive scalar
f̃ is

]f̃

]t
1Ũ j

]f̃

]xj
5G¹2f̃, ~7!

whereG is the molecular diffusivity. After Reynolds decom-
posing the scalar and velocity into mean and fluctuating parts

f̃5^f̃&1f, ~8!

Ũ i5^Ui&1ui , ~9!

with the conditions

]^f̃&
]t

50, ~10!

¹2^f̃&50, ~11!

the evolution equation for the scalar variance becomes

TABLE II. Normalized stationary scalar variance and scalar flux.

Variable Run 32.3 Run 64.3 Run 128.3 Run 128.4 Run 256.5

^f2&/(bLe)
2 1.012 0.6810 0.5838 0.5395 0.3052

^f2&/(b l )2 1.279 1.831 2.169 2.011 1.310
^vf&/(v8bLe) 20.6087 20.4631 20.4076 20.4084 20.2594
^vf&/(v8b l ) 20.6842 20.7593 20.7856 20.7887 20.5375

TABLE III. Reynolds stresses and scalar fluxes.

Run 32.3 Run 64.3 Run 128.3 Run 256.5

^u1
2&/u82 11.00760.018 11.00660.025 11.02860.080 11.075

^u2
2&/u82 10.99560.026 10.99560.022 11.00460.137 10.845

^u3
2&/u82 10.99860.028 10.99960.037 10.96760.071 11.080

^u1u2&/u82 10.00960.011 20.00660.016 10.02360.038 10.085
^u1u3&/u82 20.00360.012 20.01560.015 20.00760.038 10.027
^u2u3&/u82 10.01360.018 10.00960.015 10.01860.028 20.115
^u1f&/u8f8 20.01560.013 10.00860.019 20.02660.033 10.023
^u2f&/u8f8 20.60160.030 20.55960.024 20.53360.094 20.430
^u3f&/u8f8 20.01660.025 20.01260.018 20.01860.061 10.206
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1

2

]

]t
^f2&1

^Uj&
2

]

]xj
^f2&

52^ujf&
]^f̃&
]xj

2
]

]xj
F K 12 ujf2L 2

G

2

]

]xj
^f2&G

2G K ]f

]xj

]f

]xj
L . ~12!

For homogeneous fields with the additional conditions

^Ui&50, ~13!

]^f̃&
]xj

5bd j2 , ~14!

we get the scalar variance evolution equation for our study

1

2

d

dt
^f2&52^vf&b2^ef&, ~15!

wherev5u2 and the scalar dissipation is defined as

ef[GS ]f

]xj

]f

]xj
D . ~16!

Equation ~15! indicates that for the scalar variance to be
stationary, gradient production must be balanced by molecu-
lar dissipation.

Gradient production for the scalar variance comes from
the scalar flux working against the mean gradientb; there-
fore, the scalar flux dynamics are important when consider-
ing the evolution of the scalar variance.

The scalar flux evolution equation is

]

]t
^vf&1^Uj&

]

]xj
^vf&

52^vuj&
]^f̃&
]xj

2^ujf&
]^V&
]xj

2
]

]xj
^ujvf&

2
1

r K f
]p

]y L 1G^v¹2f&1n^f¹2v&. ~17!

For homogeneous fields with the same conditions as above
we get the scalar flux evolution equation for our study

]

]t
^vf&52^v2&b2

1

r K f
]p

]y L 2~n1G!K ]v
]xj

]f

]xj
L ,

~18!
wherey5x2. The terms on the right-hand side are produc-
tion, pressure-scrambling, and dissipation. The dissipation
term is often neglected on the grounds that it is zero if local

FIG. 4. Dissipation/production in the scalar flux equation. Error bars denote
the 90% confidence intervals. The solid line corresponds to 4.61Rl

20.769.

FIG. 5. Evolution of the mechanical-to-thermal time scale ratio.

TABLE IV. Correlation coefficients.

Correlation Run 32.3 Run 64.3 Run 128.3 Run 256.5

r1[r(]f/]x ,]v/]x) 20.44760.005 20.31060.006 20.21960.016 20.124
r2[r(]f/]y ,]v/]y) 20.29560.005 20.20260.005 20.14860.012 20.085
r3[r(]f/]z ,]v/]z) 20.44860.005 20.31060.006 20.21860.016 20.124
r4[r(¹f,¹v) 20.40160.004 20.27760.005 20.19660.014 20.112
r5[r(]f/]y ,]u/]y) 20.00960.008 10.00260.006 20.00460.012 10.000
r6[r(]f/]y ,]u/]x) 10.14460.004 10.10160.004 10.07460.004 10.043
r7[r(]f/]x ,]u/]y) 10.10660.004 10.07460.003 10.05560.003 10.031
r8[r(v,f) 20.60360.005 20.56060.007 20.53460.012 20.464
r9[r(u,f) 20.01560.013 10.00860.019 20.02260.028 10.022
r10[r(ef ,f

2) 20.02260.004 20.01160.006 20.02160.010 20.010
r11[r(]f/]x ,]f/]y) 20.00360.011 10.00160.007 20.00160.011 20.025
r12[r(]u/]x ,]u/]y) 20.00560.009 10.00660.008 20.00160.012 10.000
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isotropy prevails, as is hypothesized at high Reynolds
number.6 We will examine this claim in more detail later.

Figure 3 shows the evolution of the nondimensionalized
scalar variance, scalar flux and its correlation coefficient for
each of the simulations (f*[f/(bLe), the normalized sca-
lar fluctuation; for velocity we havev*[v/v8). Time is
nondimensionalized by the eddy turnover time, and is set to
zero at the time when the scalar fluctuations are initialized to
zero. The solid line is the mean value and the dotted lines
denote the limits of the 90% confidence intervals for the
scalar variance. The mean value and confidence interval
printed in each figure is the temporal average value for the
stationary portion of each simulation~see Table I for the
starting time,Ts , of the stationary portion of each simula-
tion!.

The only appropriate quantity available to normalize the
scalar fluctuation is the mean scalar gradient,b. Hence an

additional length scale is needed from the turbulence, and
Le[u83/e seems appropriate~see Table I!. However, this
normalization incurs a Reynolds number dependence. One
could also use the integral length scale,l , to normalize. Table

FIG. 6. Stationary pdf of the log of dissipation~mean plus fluctuation!,
P@ ln(e/e8)#. h, Rl528; L, Rl584, shifted up two decades.

FIG. 7. Stationary standardized pdf of pseudo-dissipation,P@X5ep /ep8#.
The dashed line is a stretched-exponential fit of the form~const!
X* 21/2exp@2a1X*

a2#, where X*5X2Xmp. h, Rl528,
(a1 ,a2)5(1.48, 0.720);L, Rl584, (a1 ,a2)5(2.98, 0.450), shifted up
two decades.

FIG. 8. Stationary standardized pdf of scalar dissipation,P@X5ef /ef8 #.
The dashed line is a stretched-exponential fit as in Fig. 7.h, Rl528,
(a1 ,a2)5(1.59, 0.600);L, Rl584, (a1 ,a2)5(2.16, 0.469), shifted up
two decades.

FIG. 9. Stationary joint pdf of ln(ef /ef8 ) vs ln(e/e8). ~The variablesef and
e are the means plus the fluctuations.! ~a! Rl528; ~b! Rl584.
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II gives the stationary values of the scalar variance and the
scalar flux normalized using bothLe and l .

We see that in each simulation the scalar variance un-
dergoes an initial transient for 3 to 4 eddy turnover times
where it is growing, shortly after which it reaches stationar-
ity. Once stationary, however, there is still a considerable
amount of fluctuation. As a stochastic process some fluctua-
tion is expected; however, the large extent of these fluctua-
tions is most likely due to large fluctuations in the velocity
scales from the forcing, which in turn affect the large scalar
scales.

The evolution of the scalar flux in the same figures is
qualitatively very similar to that of the scalar variance with
both achieving stationarity at about the same time. Table III
lists the stationary values for all the Reynolds stresses and
scalar fluxes for these simulations.

The time scale for the evolution of the scalar variance
and scalar flux is seen to be independent of Reynolds num-
ber; however, we have found it to be sensitive tol . As the
Reynolds number increasesl decreases~due to the forcing
method employed! and the time to stationarity increases.
This is one of the main reasons for decreasingKF to 2 for
the 2563 run ~a smaller forcing radius will result in a larger
l ).

C. Dissipation of scalar flux

It has been assumed that the dissipation term in the sca-
lar flux evolution equation is negligible in flows with Rey-
nolds numbers of this size or larger.6 The destruction of sca-
lar flux must then come from the pressure-scrambling term.
To investigate this further, Fig. 4 shows the ratio of the mean
dissipation term to the mean production term in the scalar
flux evolution equation~Eq. ~18!! for the stationary portions
of the four runs. The pressure-scrambling term, which in the
steady-state equals the difference between production and
dissipation, was not calculated.

It can be seen that the ratio of dissipation to production
does indeed decrease towards zero as Reynolds number in-
creases; however, it is not negligible at these Reynolds num-

bers. The dependence withRl is approximately represented
by a power law with exponent20.77, which corresponds to
the curve in the figure. Extrapolating from this data, for the
dissipation to be less than 5% of the production, anRl of
350 would be required.

This decrease in importance of dissipation is also seen in
the decrease of the correlation coefficientr4 in Table IV.

D. Mechanical-to-thermal time scale ratio

An often considered time scale ratio is the mechanical
dissipation to thermal~or scalar! dissipation ratio, usually
denoted byr

r5
2k/e

^f2&/ef
, ~19!

which relates the large-scale time scales of the velocity and
scalar fields. Although it has been suggested that this ratio be
taken as a universal constant for modeling purposes,43 there
is now considerable evidence to show that it does not take on
a universal value,5,44,45 including our results.

Figure 5 shows the evolution ofr for the first 10 eddy
turnover times in each of the four runs. Note thatr reaches
stationarity after 2 or 3 eddy turnover times, which is before
the scalar variance and scalar flux reach stationarity~see Fig.
3!. ~The large bump in ther value forRl5185 is due to a
large surge in the forcing energy input. Since there is only
one simulation for this case, that fluctuation is not averaged
out.!

Evidently there is a statistically significant increase in
r with Reynolds number, which lends further support to the
belief thatr is flow dependent. The kinetic energy,k, is of
course directly affected by the artificial forcing, and so the
values of r obtained here may also be influenced by the
forcing. However, they are well within the range of values
reported by other researchers. Sirivat and Warhaft6 found in
their grid turbulence experiments thatr tended to decrease
downstream as the Reynolds number decreased, with ap-
proximate values of 1.2 to 2.0. Warhaft and Lumley5 review
a number of heated grid experiments and findr values of
0.6 to 2.4.

E. Dissipation and the scalar dissipation rate

The scalar dissipation rate is a key quantity in the mod-
eling of both inert and reactive turbulent scalar fields.34 Al-
most all currently employed models for scalar mixing, rang-

TABLE V. Stationary moments of the pdf ofe.

Moment Run 32.3 Run 64.3 Run 128.4

Mean 0.51960.008 8.7060.20 127.64
Variance 0.21160.007 77.163.6 (2.0260.15)3104

Skewness 2.3260.03 2.9760.04 3.6260.12
Kurtosis 11.860.4 19.060.6 28.462.6
Superskewness 499659 17406230 490061440

TABLE VI. Stationary moments of the pdf ofep .

Moment Run 32.3 Run 64.3 Run 128.4

Mean 0.51960.008 8.7060.20 12764
Variance 0.19660.007 82.964.1 (2.3260.18)3104

Skewness 2.6460.04 3.7360.08 4.6860.13
Kurtosis 15.5360.7 31.261.8 49.463.8
Superskewness 10206150 635061260 (1.7560.42)3104

TABLE VII. Parameters of Eq.~23! with X5e/e8.

P@X* # Run 32.3 Run 64.3 Run 128.4

a1 1.38 2.30 2.81
a2 0.778 0.584 0.500

TABLE VIII. Parameters of Eq.~23! with X5ep /ep8 .

P@X* # Run 32.3 Run 64.3 Run 128.4

a1 1.48 2.52 2.98
a2 0.720 0.517 0.450
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ing from simple moment closures to full pdf closures, require
information concerning the coupling between the turbulence
time scale and the scalar dissipation time scale for closure.33

The mechanical-to-thermal time scale ratio gives one such
relationship between the turbulence and the scalar, and as
just seen it varies widely according to the flow under consid-
eration. The scalar dissipation rate is another such relation,
and is defined by

rf5
ef

^f2&
. ~20!

In this section we present a number of statistics involving the
turbulent dissipation and the scalar dissipation~which by in-
ference includes the scalar dissipation rate!.

1. Turbulent dissipation

Turbulent dissipation is defined, according to the turbu-
lent kinetic energy equation, as

e52nsi j si j

52nF12 S ]ui
]xj

1
]uj
]xi

D GF12 S ]ui
]xj

1
]uj
]xi

D G . ~21!

A related quantity, often called the ‘‘pseudo-dissipation,’’ is

ep5n
]ui
]xj

]ui
]xj

. ~22!

Pseudo-dissipation is easier to calculate and hence is often
used in application, since in homogeneous turbulence mean
dissipation equals mean pseudo-dissipation. However, as
seen in Yeung and Pope,36 other statistics of these two quan-
tities are quite different, and for that reason both are pre-
sented in this paper.

Dissipation can also be calculated from the spectrum;
however, to construct the pdf and conditional expectations of
dissipation a local~in space! evaluation of dissipation is re-
quired. Hence Eqs.~21! and ~22! are used to find the dissi-
pation at each grid point.

The stationary moments of the pdfs of dissipation and
pseudo-dissipation are given in Tables V and VI. Figure 6
shows the pdfs of ln(e/e8) for Rl528 and 84, with confi-
dence intervals.~The confidence intervals for the largest val-
ues of the independent variable are of zero size because there
was only one simulation which had a value for that bin.! The
pdfs ofep /ep8 are shown in Fig. 7 to emphasize the stretched-
exponential nature of the tails~the pdfs of ln(ep /ep8) are very
similar to the pdfs of ln(e/e8)). All show the same Reynolds
number dependence; as Reynolds number increases, the
range of the standardized variable increases and the pdf tail
lifts ~or becomes stronger stretched exponential!.

The stretched-exponential nature of the scalar gradient
pdf tails~seen in Sec. IV H.! suggests that the dissipation pdf
might be stretched exponential as well. Holzer and Siggia18

find that for largeX the dissipation pdf is approximated by a
stretched exponential of the form

P@X#;CX21/2exp~2a1X
a2!, ~23!

wherea1 anda2 are parameters, andC is a constant. This
expression also fits our data well~see Figs. 7 and 8!, and
serves to quantify the dissipation pdfs. The parameters for
these and other fits are shown in Tables VII–IX. The lifting
of the pdf tail is clearly seen in the decrease ofa2 as Rey-
nolds number increases, a phenomenon which occurs for
both the turbulent and the scalar dissipation.~Note: For the
stretched-exponential fits the function plotted is
CX* 21/2exp(2a1X*

a2), whereX*5X2Xmp, Xmp being the
most probable value ofX—whereP@X# is peaked.!

2. Scalar dissipation

The stationary moments of the scalar dissipation pdfs are
given in Table X. Figure 8 shows the pdfs of ln(ef /ef8 ) for
Rl528 and 84. At the smallest Reynolds number the pdf tail
of scalar dissipation is lifted higher than either of the turbu-
lent dissipation pdf tails~see Tables VII–IX!. For the larger
Reynolds numbers,a2 for ep is similar to the value for
ef ; however, the value ofa2 for e is larger. In summary, all

FIG. 10. Stationary standardized joint pdf ofef vs ep ~means plus fluctua-
tions!. ~a! Rl528; ~b! Rl584.

TABLE IX. Parameters of Eq.~23! with X5ef /ef8 .

P@X* #. Run 32.3 Run 64.3 Run 128.4

a1 1.59 1.78 2.16
a2 0.600 0.546 0.469
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of the dissipation pdfs have qualitatively the same shape,
with the same kind of Reynolds number dependence.

We are now prepared to consider how scalar dissipation
is correlated to the mechanical turbulent dissipation and
pseudo-dissipation. We examine the joint pdfs and correla-
tion coefficients to begin to answer this question.

Joint pdf contour plots of ln(ef /ef8 ) vs ln(e/e8) are shown
in Fig. 9. ~Note that the contour levels have exponential
spacing.! It is evident that the contours for both Reynolds
numbers differ from the ellipses of joint-lognormal random
variables, and have a small but significant positive correla-
tion.

For the dependence of the scalar dissipation on pseudo-
dissipation the standardized joint pdf is shown in Fig. 10~the
joint pdfs ofef vs e andef vs ep are almost identical!. This
figure shows that the mechanical dissipation is inhibited by
large values of scalar dissipation~and vice versa to a lesser
degree!, since the contours are concave and have sharp
points at near zero scalar dissipation. This inhibition may be
increasing slightly with Reynolds number, while the actual
correlation as given in Table XI is decreasing.

Now that we have examined the correlation between sca-
lar and mechanical dissipation via joint pdfs, we conclude
with an examination of the conditional expectation^efue&.

Figure 11 gives the conditional expected value of scalar
dissipation given the full mechanical dissipation. Results for
three Reynolds numbers are shown because there is some
Reynolds number dependence. The behavior at each Rey-
nolds number is similar, but not identical. Each plot begins
with an approximately linear departure from zero, increasing
to a maximum with little statistical variability, after which
the values quickly gain considerable variability.

Figure 12 gives similar results for the conditional ex-
pected scalar dissipation given the mechanical pseudo-
dissipation; however, the behavior has some distinct differ-
ences. For one, the conditional expected value has a steeper
slope near zero and levels off much quicker~at a smaller
mechanical dissipation value!, after which it begins to de-
crease before scattering out. This phenomenon becomes
more apparent as Reynolds number increases. Also, the
maximum value attained is only about one-half the maxi-
mum value in Fig. 11 for the full mechanical dissipation.

F. Modeled quantities in pdf evolution equations

The pdf approach is finding more and more use for prac-
tical computations of turbulence, especially for turbulent
combustion. It has the great advantage of being able to treat

FIG. 11. Stationary conditional expectation of scalar dissipation given the
mechanical dissipation~means plus fluctuations!, ^efue&. h, Rl528; v,
Rl552; L, Rl584.

TABLE X. Stationary moments of the pdf ofef .

Moment Run 32.3 Run 64.3 Run 128.4 Run 256.5

Mean 0.76860.035 2.0760.09 4.5060.76 17.05
Variance 1.7560.18 17.761.7 115644 2080
Skewness 4.2860.07 5.4460.12 6.8960.61 8.14
Kurtosis 31.561.2 51.562.9 84.2616.8 117
Superskewness 32006370 (1.0160.21)3104 (2.8661.22)3104 6.043104

TABLE XI. Correlation coefficients for dissipation.

Correlation Run 32.3 Run 64.3 Run 128.4

r13[r(e,ef) 0.23560.004 0.18960.004 0.16560.013
r14[r(ep ,ef) 0.12460.004 0.087760.0035 0.077760.0130

3138 Phys. Fluids, Vol. 8, No. 11, November 1996 M. R. Overholt and S. B. Pope

Downloaded¬22¬Sep¬2004¬to¬140.121.120.39.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp



the convection and reaction processes exactly; models based
on the assumption of gradient diffusion are not needed, and
treatment of arbitrarily complex finite-rate reactions is pos-
sible. The ability to treat convection and reaction exactly
alleviates many of the difficulties encountered in the
Reynolds-stress approach; however, the pdf method is not
without its own set of unclosed terms which need to be mod-
eled.

1. Conditional scalar dissipation and velocity

One such pdf evolution equation, which applies to this
study, is the scalar pdf equation. This equation in an Eulerian
frame is derived as follows. We begin again with the
convection-diffusion equation for a passive scalar, Eq.~7!.
Reynolds decomposing the scalar and velocity into mean and
fluctuating parts with the previously given conditions, Eqs.
~10!, ~13!–~14!, gives the scalar fluctuation equation

]f

]t
1vb1

]

]xj
~ujf!5G¹2f. ~24!

~For this equation, the gradients of the scalar flux inx and
z are zero by symmetry, and the gradient of the scalar flux in
y is neglected on the assumption thatv andf are jointly
homogeneous.!

From this equation we can infer the governing equation
for the pdf of the scalar.34 Assuming homogeneity and sta-
tionarity of the pdf gives

05b
d

dc
~ f ^vuc&!2

d2

dc2 ~ f ^efuc&!, ~25!

where^auc& signifies^auf(x,t)5c& for any quantitya.
An explicit solution to this equation can be found. Inte-

grating once we obtain

C152b f ^vuc&1
d

dc
~ f ^efuc&!. ~26!

As c tends to infinity, each term on the right hand side of Eq.
~26! tends to zero, so that the integration constantC1 is zero.

Integrating again we obtain

f ~c!5
C

^efuc&
expS E

0

cb^vuc8&

^efuc8&
dc8D . ~27!

This is the general solution for the homogeneous, stationary
scalar pdf,f (c). The constantC is determined by the nor-
malization condition*2`

` f (c)dc51.
This equation is in the form of the result of Pope and

Ching,46 and hence we know two sufficient conditions for
this pdf to be Gaussian:

^efuc&5^ef&, ~28!

^vuc&5
2c

b^ef&
. ~29!

Figure 13 shows the nondimensionalized scalar dissipation
conditioned on the scalar for one Reynolds number, typical
of all the simulations. We see that for the large center portion
the curve is nearly constant as required in the first condition
above, Eq.~28!, and at the correct value. However, for large
c it seems to droop down towards zero~although there is
substantial statistical uncertainty in these tails!.

In the experiments of Jayesh and Warhaft24 with decay-
ing grid turbulence and exponential scalar pdf tails, a
rounded V-shape is seen for the conditional scalar dissipa-
tion, persisting as the Reynolds number decays and similar in
shape to that found by Eswaran and Pope28 in their DNS
simulations without a mean scalar gradient, after the initial
transient. In those DNS simulations the scalar field was ini-
tialized as a double-delta pdf, and decayed to a Gaussian.

Miller et al.32 have proposed and demonstrated that the
shape of the conditional scalar dissipation depends on the
shape of the scalar pdf. If the scalar pdf has Gaussian tails,
then the conditional scalar dissipation has a flat shape, inde-
pendent ofc, as seen in our analysis. For exponential tails,
the conditional scalar dissipation has a sharp V-shape. This

FIG. 12. Stationary conditional expectation of scalar dissipation given the
mechanical pseudo-dissipation~means plus fluctuations!, ^efuep&. h,
Rl528; v, Rl552; L, Rl584.
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is reminiscent of the results of Sahay and O‘Brien,47 who
predicted similar shape dependencies based on a model for
^vuc&. Since, as will be seen, the scalar pdf tails in this study
are at least quite close to Gaussian, the nearly flat shapes
observed here for the conditional scalar dissipation agrees
both with the above theories and with our analysis, at least
for moderate values ofc.

In examining these conditional quantities it is helpful to
consider the appropriate correlation coefficients as well. As
expected, the correlationr10 ~see Table IV! between the sca-
lar dissipation and the scalar variance is very small for all
Reynolds numbers. However, considering the entire
c-range of the figures~and the drooping of the tails! it is
questionable how accurate the first condition, Eq.~28!, is in
general for this flow.

The normalized conditionalv-velocity is shown in Fig.
14. In contrast to the conditional scalar dissipation, the con-
fidence intervals are very small for this quantity. There is a
clear almost linear dependence on the scalar, with a slope of
21, corresponding to the second condition, Eq.~29!. The
results for this quantity from the other simulations are very
similar with a slope of minus one as well. The appropriate
correlation coefficient in Table IV,r8, is in the range

@20.60,20.46# and becoming smaller with Reynolds num-
ber.

Although the center portion of the stationary scalar pdf
should be very close to Gaussian based on these results, the
state of this pdf’s tails is still in question. This question is
examined in some detail later in this paper; we only consider
it very briefly here.

Figure 15 details the evolution of the scalar pdf for
Rl584, characteristic of all of the simulations.~These tran-
sient curves and those following are not smoothed.! It begins
as a delta function at zero~not shown! and then very quickly
becomes Gaussian. Hence all the curves shown, each nor-
malized by its respective scalar variance value, are Gaussian
to a good approximation.~Although the confidence intervals
are not shown in these figures for clarity, the Gaussian curve
is inside the confidence interval of almost every point in each
pdf.! Moments for the stationary scalar pdfs are given in
Table XII.

If one considers the transient shapes of the conditional
scalar dissipation, shown in Fig. 16, one sees a shape similar
to the stationary shape~Fig. 13!, rising in value as the scalar
dissipation increases in response to the scalar variance. The

FIG. 13. Stationary scalar dissipation conditioned on the scalar.c is the
sample space variable forf. Rl552; 2•2, Eq. ~28!.

FIG. 14. Stationaryv-velocity conditioned on the scalar.Rl552; 2•2,
Eq. ~29!.

FIG. 15. Evolution of the scalar pdf to stationarity.~Note: Each curve is
normalized by its respective instantaneous scalar rms value.! Rl584; n,
0.39TE ; h, 1.15TE ; s, 2.74TE ; —, stationary pdf;2•2, Gaussian.

FIG. 16. Evolution of the scalar dissipation conditioned on the scalar.~See
note in Fig. 15.! Rl552: n, 0.40TE ; h, 1.26TE ; s, 2.60TE .
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qualitative behavior or shape begins as a bit concave down-
ward, but soon assumes the stationary shape. The associated
transient correlation coefficients at these times are shown in
Table XIII. They are fairly constant at a small negative value
very close to the stationary value.

The transient shapes of the conditionalv-velocity are
shown in Fig. 17. Here we see a change in behavior as the
scalar evolves. Since thev-velocity variance is already sta-
tionary when the scalar is introduced, the ratio of
v-velocity variance to scalar variance changes as the scalar
evolves, thereby affecting the slope. There is also an in-
creased range in the conditionalv-velocity when the scalar
variance is small. This shows that the furthest excursions of
the scalar early on are more closely correlated to the largest
v-velocity fluctuations, which is mirrored in the transient
correlation coefficient values~see Table XIII!. From Eq.
~24!, at time dt immediately after the scalar is initialized,
f52vbdt, hencef andv are perfectly correlated.

2. Scalar mixing

For the stationary case, an alternative form of the scalar
pdf equation is

b~ f ^vuc&!5G@ f ^¹2fuc&#. ~30!

The scalar mixing term̂¹2fuc& in this equation needs mod-
eling, and is of much interest.34 In the case of the velocity-
scalar composition equation, the corresponding term to be
modeled is

G^¹2fuu,c&. ~31!

This leads to the fundamental question ‘‘What does sca-
lar mixing depend on?’’ Figure 18 shows the dependence of
¹2f on the scalar value for two of the simulations. Both
show a linear relationship with a slope of minus one. Figure
19 shows a similar linear relationship withv-velocity; how-
ever, here there is a Reynolds number dependence. The slope
for Rl528 is about 0.33, and forRl552 it is about 0.23.
~The remaining simulations have slopes of 0.15 for
Rl584, and 0.083 forRl5185.! Figure 20 shows contours
of the dependence of¹2f on both the scalar and
v-velocity, overlayed with the straight contour lines given by
the model to be described. There is a large center planar

region in the plot shaped like an ellipse and oriented at an
angle to both axes, falling off to exponential spikes at the
edges of the accessed (f,v) space.

A model for these data can be formulated as

¹2f

^ef&/~Gf8!
5a

f

f8
1b

v
v8

1j, ~32!

wheref8 is the scalar rms value,v8 is the v-velocity rms
value, andj is a zero-mean random variable uncorrelated
with v andf. Now letF[f/f8 andV[v/v8, so that Eq.
~32! can be written as

¹2F

^¹F•¹F&
5aF1bV1j. ~33!

Multiply by F and take the mean for

215a1brvf . ~34!

Now multiply Eq. ~33! by V and take the mean to get

arvf1b5
2^¹V–¹F&

^¹F–¹F&

52r¹f,¹vF ^¹V–¹V&

^¹F•¹F&G
1/2

52r¹f,¹vF f82^e&
2Prk^ef&G

1/2

. ~35!

Equations~34! and ~35! can be solved for the coefficients
a andb; these are shown in Table XIV for each of the four
simulations. Note that the coefficients have only a small
Reynolds number dependence.

FIG. 17. Evolution of thev-velocity conditioned on the scalar.~See note in
Fig. 15.! Rl552: n, 0.40TE ; h, 1.26TE ; s, 2.60TE .

TABLE XII. Stationary moments of the scalar pdf.

Moment Run 32.3 Run 64.3 Run 128.3 Run 256.5

Mean 0.00060.000 0.00060.000 0.00060.000 0.000
Variance 2.02060.120 2.18160.123 2.03260.475 2.537
Skewness 20.02260.031 0.00860.045 0.06760.072 0.159
Kurtosis 2.90360.031 2.97660.072 2.86060.097 3.171
Superskewness 13.6060.38 14.7061.05 13.0861.20 16.85

TABLE XIII. Transient correlation coefficients for 643, Rl552.

Correlation 0.40TE 1.26TE 2.60TE

r8[r(v,f) 20.96960.002 20.75860.018 20.63060.013
r10[r(ef ,f

2) 20.02960.011 20.04160.008 20.02160.012

TABLE XIV. Model coefficients for Eq.~32!.

Run a b

32.3 21.231 20.384
64.3 21.268 20.478
128.4 21.310 20.561
256.5 21.229 20.493
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Checking the accuracy of our linear model, Eq.~32! with
the above coefficients, we find slopes of 0.359 and 0.232 for
Run 32.3 and Run 64.3, respectively, which is very close to
the actual values.~Note: The mean of Eq.~32! conditioned
on velocity is (arvf1b)V.! The comparison in Fig. 20 of
the linear model with the jointly conditioned data is quite
good in the large center region of both plots.~Recently Fox
has obtained good results as well for a velocity-conditioned
IEM ~VCIEM! model for Eq.~31!.48!

Figure 21 shows¹2f jointly conditioned on the scalar
and the scalar dissipation. In Fig. 21~a! it appears like the
contours would be straight lines on a log scale. To check this
Fig. 21~b! gives the results forRl584 ~which are qualita-
tively identical to the results forRl528 in Fig. 21~a!! on a
log scale, plotting only the negative half-plane off, where
f,0 and¹2f.0. However, the contours are straight~with
a slope of minus 1! for only for a small region near zero.

The evolution of the expectations of scalar mixing con-
ditioned on the scalar andv-velocity are shown in Figs. 22
and 23. The behavior does not change when conditioned on
velocity; however, when conditioned on the scalar we see a
slope change since the normalization uses the stationary val-

ues of scalar dissipation and rms. If each curve is normalized
by its respective value ofef and f8, then the curves are
incident on each other.

G. Tails of the scalar pdf

We saw in the previous section that the scalar pdf is very
close to a Gaussian, although its tails remain in question.
Recently many have been investigating scalar pdf tails.
Among these, Jayesh and Warhaft24 found that the pdf of the
scalar~temperature! fluctuations has pronounced exponential
tails for values of Rel greater than about 70, but below this
critical value the pdf is close to Gaussian. The Reynolds
numbers of our simulations include values both above and
below this critical value.

Our first simulation is for Rel546 (Rl528), so by the
above hypothesis the scalar pdf should have Gaussian tails.
Figure 24 shows all the scalar pdfs compared to Gaussian
curves on a log scale to emphasize the tails. The result
for Rel546 is also shown in a Q-Q plot in Fig. 25, where
the departure of the curve from the diagonal shows the
departure of the pdf from a Gaussian.~The coordinates
for this Q-Q plot are (x,y), such that Prob@f,x#

FIG. 18. Stationary expectation of the normalized¹2f conditioned onf.
—, Rl528 ~•••, 90% confidence intervals!; 22, Rl552.

FIG. 19. Stationary expectation of the normalized¹2f conditioned on
v-velocity. —,Rl528 ~•••, 90% confidence intervals!; 22, Rl552.

FIG. 20. Stationary expectation of the normalized¹2f jointly conditioned
on f and v-velocity, overlayed with contours from the linear model, Eq.
~32!. ~a! Rl528; ~b! Rl584.
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5 Prob@g,y#, where the cumulative distribution functions
for the scalar and for a Gaussian areFf(x)5Prob@f,x#
and Fg(y)5Prob@g,y#.! Even though the pdf appears
slightly asymmetric, it is close to the Gaussian, and the
Gaussian curve is everywhere inside the confidence intervals

FIG. 21. Stationary expectation of the normalized¹2f jointly conditioned
onf andef . ~a! Rl528; ~b! Rl584. For part~b! the left half-plane where
f,0 is plotted on a log scale, with contour levels of the log of the normal-
ized¹2f.

FIG. 22. Evolution of the normalized¹2f conditioned onf. ~See note in
Fig. 15.! Rl552; n, 0.40TE ; h, 1.26TE ; s, 2.60TE .

FIG. 23. Evolution of the normalized¹2f conditioned onv-velocity. ~Note:
Each curve is normalized by its respective instantaneousv-velocity rms
value.! Rl552; n, 0.40TE ; h, 1.26TE ; s, 2.60TE .

FIG. 24. Stationary standardized pdf off. Each curve has been shifted up
two decades with respect to the lower one. — —, Rel546; —, Rel5110;
2•2, Rel5243;22, Rel51092; •••, Gaussian.

FIG. 25. Q-Q plot of the stationary standardized pdf off: y vs x for
Prob@f,x#5Prob@g,y#, where theg is a standardized Gaussian random
variable. Rel546.
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~not shown in the figure for clarity!. Therefore, on statistical
grounds one cannot say that this scalar pdf is non-Gaussian.

One observes that the center portions of the pdfs are very
close to the Gaussian curves, but both~positive and negative!
tails seem to droop down at their extremes. If we examine
two pdfs of the turbulent velocity field~see Fig. 26! we see
that they are perfectly symmetric and very close to the
Gaussian one might expect them to be, but their tails also
droop.

In order to investigate the effects of numerical resolution
on the tails of the pdf, a simulation at this same Reynolds
number was performed with twice as fine a grid, 643, giving
a value ofkmaxh.2. All the results were essentially identical.
Hence we can conclude that the 323 grid is sufficient to
completely resolve this Reynolds number turbulent flow, and
that a value ofkmaxh of 1.1 or higher, as seen in this case,
gives satisfactory resolution of the pdf tails~as expected39!.

Our 643 simulation is for Rel5110 (Rl552). From Fig.
24 it is evident that only minimal differences exist between
this scalar pdf and that for Rel546; the Gaussian curve falls
within the confidence intervals for both. A slight raising of
the tails is echoed in the increase of the kurtosis from 2.9 for
the Rel of 46 to 3.0 here. This is the value for a Gaussian; the
stretched-exponential pdfs seen in Jayesh and Warhaft24 at
similar Reynolds numbers have kurtosis values around 4.

Our 1283 simulation is for Rel5243 (Rl584). The sca-
lar pdf shown has a kurtosis of 2.9,~the same as for
Rel546), and it still includes the Gaussian curve inside
much of its confidence intervals. The lower value of kurtosis
appears to be accounted for by the asymmetric dropping in
the negative tail. This is statistical error, which is more of a
problem for the two largest simulations in this study. These
simulations also exhibit more pronounced drooping of the
pdf tails.

The largest simulation is for Rel51092 (Rl5185). Here
the ‘‘stationary’’ portion of the run is not very stationary on
the large scale, due to large fluctuations from the forcing,
only one simulation, and a short duration of slightly less than
2 eddy turnover times~see Fig. 3~d!!. Hence the statistical
error is high. However, the scalar pdf is still quite close to a
Gaussian, with a kurtosis of 3.2.

As was seen earlier, the conditional expectations
^vuf5c& and ^efuf5c& confirm the overall Gaussian be-
havior seen here in the scalar pdfs, if allowance is made for
some departure at the ends of the tails where statistical error
is the highest.

These results are in contrast to the exponential pdfs
found by Jayesh and Warhaft24 for the same Reynolds num-
bers, but there are a number of possible reasons for this
difference. It has been suggested~Tong,49! that this may be a
result of the limited number of large eddies~integral scales!
present in our DNS simulations, usually being around 5 or 6
~see Table I!. They found that 8 integral scales across the
tunnel width was not always sufficient to get exponential
tails. It should also be remembered that the turbulence inves-
tigated by Jayesh and Warhaft24 is decaying grid turbulence
which will have different spectra than our simulations.~The
Reynolds number does not fully characterize isotropic turbu-
lence.!

However, our results are in agreement with the recent
study by Jaberiet al.,29 which found that the long-time scalar
pdf ~at Rl558) is not necessarily Gaussian or exponential,
but rather is sensitive to several factors. If forcing or a mean
scalar gradient is present, then non-Gaussian behavior is not
sustained. This study extends their result, and shows that for
forced simulations with a mean scalar gradient, the scalar pdf
is essentially Gaussian up toRl5185.

H. Derivatives of the scalar

In contrast to the previous section, there is no shortage
of experimental and DNS data for the first derivatives of the
scalar, especially for]f/]y. Holzer and Siggia18 did a num-
ber of large, high Pe´clet number, stationary 2-D simulations
of turbulence with a passive scalar and found that the skew-
ness in the scalar derivative persisted throughout. This skew-
ness was also observed at low Reynolds number in the three-
dimensional~3-D! DNS results of Pumir.15

We find a persistent skewness in]f/]y as well. Figure
27 shows the pdfs of the scalar derivatives]f/]x and
]f/]z for Rl552, and Fig. 28 shows]f/]y for all four
simulations. The tails of these pdfs are of stretched-
exponential form, and skewness is only seen in]f/]y. ~Be-

FIG. 26. Stationary standardized pdfs ofv and u. Rel546. —, pdf of v;
22, pdf of u; 2•2, Gaussian.

FIG. 27. Stationary standardized pdfs of]f/]x, —, and ]f/]z, 22.
Rl552.

3144 Phys. Fluids, Vol. 8, No. 11, November 1996 M. R. Overholt and S. B. Pope

Downloaded¬22¬Sep¬2004¬to¬140.121.120.39.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp



cause of the symmetries in the problem, the pdfs of]f/]x
and]f/]z are symmetric, apart from statistical variability.!

The skewness is in the positive tails; ifb were negative
then it would appear in the negative tails. Since the skewness
is of order 1 in each case there is evidently no local isotropy
of the scalar, in fact, the skewness is essentially constant
with Reynolds number. Figure 29~a! shows the dependence

of the skewness on Reynolds number, along with the results
of Tong and Warhaft,20 Holzer and Siggia,18 and Pumir,15

and Fig. 29~b! shows the kurtosis.
Another measure of local isotropy is the ratio of the

mean squared gradients of the velocity and the scalar in dif-
ferent directions. In Fig. 30~a! the u-velocity field shows
signs of being locally isotropic for each Reynolds number
studied~up through the second-moments at least!; however,
that is not the case for the scalar field. In Fig. 30~b! there are
small but clear differences between the scalar gradient
]f/]y and]f/]x or ]f/]z, which is due to the mean scalar
gradient in they-direction. Hence local isotropy does not
hold for these scalar fields, and the situation does not change
as Reynolds number increases~over the range studied!.

The reason for the skewness in the scalar derivative has
been shown to be the organization of the scalar in physical
space. A number of researchers have observed a ramp-cliff
structure in the scalar fluctuation field, which for the total
scalar field ~mean plus fluctuation! corresponds to cliffs
separating large areas of well-mixed fluid~i.e., near constant
scalar value!.21,19,18

We find a similar structure in our results, although the
effect is not pronounced. We examine a few contour plots of
the scalar fluctuation here to show the orientations of the
largest gradients. Figure 31 shows contours of the scalar in
the constant-z plane passing through the region of maximum

FIG. 28. Stationary standardized pdf of]f/]y. — —, Rl528; —,
Rl552; 2•2, Rl584; 22, Rl5185.

FIG. 29. Stationary moments of the pdf of]f/]y. ~a! Skewness;~b! kurto-
sis.

FIG. 30. Stationary mean squared gradients. The error bars indicate the 90%
confidence intervals.~a! u-velocity; ~b! f.
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scalar gradient magnitude forRl528. Here the one cliff or
steep gradient region is close to being aligned withy. ~Note
that the contour levels have constant spacing.! Figure 32
shows similar scalar contours forRl552. Here there are
several high gradient regions, with all except one having its
gradients aligned roughly parallel toy. As the Reynolds
number increases the large gradient regions become more
distinct. Figure 33 shows the corresponding field in a
constant-x plane forRl584, and Fig. 34 forRl5185. Each
case shows a definite preference for the highest gradients to
be parallel toy, and since these four data sets were chosen at
random from the stationary portions of the four simulations
~i.e., the last time step!, it is likely that this effect persists
throughout.

V. CONCLUSIONS

In the present study direct numerical simulations are
used to investigate mixing of a passive scalar in statistically
homogeneous, isotropic, and stationary turbulence, with a
mean scalar gradient in they-direction. The range ofRl’s
investigated is 28 to 185. Multiple independent simulations
are performed for all but the largest simulation to get confi-
dence intervals, and local regression smoothing is used to
further reduce statistical fluctuations.

After initialization of the scalar at zero, the scalar vari-
ance and scalar flux evolve to a stationary state in about 4
eddy turnover times. Contrary to former assumptions, the
dissipation term in the scalar flux evolution equation is not
negligible at these Reynolds numbers. Although it certainly
does decrease withRl ~asRl

20.77), the ratio of dissipation to

FIG. 31. Contours of the scalar through the region of highest scalar gradient
magnitude. The tick marks represent the grid spacing. Contour line spacing
is 0.76.Rl528, z524.

FIG. 32. Contours of the scalar through the region of highest scalar gradient
magnitude. The tick marks represent the grid spacing. Contour line spacing
is 0.83.Rl552, z552.

FIG. 33. Contours of the scalar through the region of highest scalar gradient
magnitude. Two grid points per tick mark. Contour line spacing is 0.96.
Rl584, x518.

FIG. 34. Contours of the scalar through the region of highest scalar gradient
magnitude. Four grid points per tick mark. Contour line spacing is 1.09.
Rl5185,x5149.
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production ranges from 0.4 to 0.1 for our simulations. Ex-
trapolating from this data, for the dissipation to be less than
5% of the production, a value ofRl of 350 would be re-
quired. This should be checked as higher Reynolds number
DNS simulations become possible.

The scalar variance and other large-scale quantities show
considerable fluctuation in our simulations, due in large part
to the forcing method. It would be very desirable for better
forcing algorithms to be developed and employed for exam-
ining these quantities, algorithms that realistically simulate
the largest scales of the energy spectrum.

Mechanical-to-thermal time scale ratios range from 1.8
to 3.0, increasing with Reynolds number. The scalar dissipa-
tion conditioned on the mechanical dissipation shows some
Reynolds number dependence. It begins by increasing lin-
early away from a non-zero value at zero, rising to a maxi-
mum with little variability. After the maximum it becomes
scattered. When conditioned on the pseudo-dissipation the
maximum value is reached more quickly, and a gradual de-
crease towards zero at very high values of the mechanical
pseudo-dissipation is evident. The pdfs of turbulent and sca-
lar dissipation are all successfully fit to stretched exponen-
tials, which quantitatively show the lifting of the pdf tail as
Reynolds number increases.

The evolution equation for the pdf of the scalar in our
study is derived and solved. From this solution two sufficient
conditions arise for the scalar pdf to be Gaussian. They are:
^efuc&5^ef& and ^vuc&52c/(b^ef&). We find that these
conditions are well satisfied in the center of these conditional
expectations~for c/f8 P @23,3#); however, at the extremes
^efuc& is not constant. It droops down towards zero, corre-
sponding to the drooping also seen in the scalar pdf tails.

Scalar mixing,¹2f, is seen to depend on the scalar, on
the log of the scalar dissipation, and onv-velocity. A linear
model for scalar mixing jointly conditioned on the scalar and
v-velocity is developed, and it reproduces the data quite
well.

In considering the evolution of these conditional expec-
tations, only^vuc& changes behavior as it evolves. Since the
v-velocity variance is initially much larger than the scalar
variance, the correlationr(v,f) evolves from a value of
unity when initialized to the stationary value of 0.5–0.6.

The tails of the scalar pdf are found to be Gaussian, or at
least very nearly so, at all the Reynolds numbers examined,
which is in agreement with the DNS results of Jaberiet al.29

However, the grid turbulence experiments of Jayesh and
Warhaft24 at similar Reynolds numbers gave exponential
tails. One possible explanation for this difference comes
from Jaberiet al.,29 who noted that the presence of a mean
scalar gradient was sufficient to prevent the formation of
exponential tails in their DNS simulations atRl558. Obvi-
ously this topic still has questions left unanswered.

We find a persistent skewness of the scalar derivative in
the mean scalar gradient direction as expected, comparable
to that observed by Holzer and Siggia,18 Pumir,15 and Tong
and Warhaft.20 An absence of local isotropy of the scalar is
also evident in the mean squared gradients. No change with
Reynolds number is seen.

A quick look at the organization of the scalar in physical

space confirms what others have observed.18,15 In regions of
maximum scalar gradient, the steepest gradients are roughly
parallel to the mean scalar gradient direction.
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