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Abstract. An inhomogeneous, non-premixed, stationary, turbulent, reacting model flow that is
accessible to direct numerical simulation (DNS) is described for investigating the effects of mixing
on reaction and for testing mixing models. The mixture-fraction–progress-variable approach of
Bilger is used, with a model, finite-rate, reversible, single-step thermochemistry, yielding non-
trivial stationary solutions corresponding to stable reaction and also allowing local extinction to
occur. There is a uniform mean gradient in the mixture fraction, which gives rise to stationarity
as well as a flame brush. A range of reaction zone thicknesses and Damkohler numbers are
examined, yielding a broad spectrum of behaviour, including thick and thin flames, local extinction
and near equilibrium. Based on direct numerical simulations, results from the conditional moment
closure (CMC) and the quasi-equilibrium distributed reaction (QEDR) model are evaluated. Large
intermittency in the scalar dissipation leads to local extinction in the DNS. In regions of the flow
where local extinction is not present, CMC and QEDR based on the local scalar dissipation give
good agreement with the DNS.

M This article features multimedia enhancements available from the abstract page in the online
journal; seehttp://www.iop.org.

1. Introduction

Non-premixed turbulent combustion occurs widely in industry, motivating interest in forming
better turbulent combustion models. Since probability density function (PDF) methods treat
reaction exactly and thereby show exceptional promise for these flows, a primary interest of
the authors is in the development and improvement of PDF mixing models for use in turbulent
combustion calculations. Towards this end, direct numerical simulations (DNS) of a new
model reacting flow are performed in this work.

In 1989 Givi [1] reviewed the current use of DNS for turbulent reacting flows. Single-
step chemistry was used universally at that time. Since then, some research groups have
developed multi-step chemistries to address questions such as flame structure and the effects
of more detailed chemistry in non-premixed flames [2–4]. All of the references just cited,
however, simulate decaying turbulence, which incurs the added difficulties of determining the
correct initial conditions and understanding the dependence on the initial condition. There is
also the concern that the strong dependence of the Reynolds number on time may mask the
phenomena of interest. The more detailed chemistry these groups are implementing is very
useful in that it has enabled the investigation of specific questions which single-step chemistries
cannot address; however, the price for this capability is high, both in computational cost and in
complexity. For these and other reasons we have opted to pursue another track, namely DNS
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of stationary, homogeneous, isotropic turbulence with a single-step, model thermochemistry,
but one that is finite-rate and reversible, enabling realistic effects such as local extinction
and reignition to be predicted qualitatively. A mean mixture-fraction gradient is imposed so
that the mixture-fraction variance attains stationarity without forcing, yielding a flame brush.
Through an innovative periodic definition of the model thermochemistry we achieve a unique
model reacting flow, termed ‘periodic reaction zones’ (PRZ), which is solvable using a Fourier
pseudo-spectral method and which incorporates the essential characteristics of non-premixed
combustion. This is a fundamentally different approach from that of imposing periodic initial
conditions (i.e. slabs of reactants) such as is being utilized by Hill and co-workers [5, 6]. PRZ
attains statistical stationarity without any forcing, except as required for the isotropic velocity
field, and is very accessible to other numerical methods.

A similar model flow was introduced by Lee and Pope [7]. They performed DNS for
stationary, homogeneous, isotropic turbulence, with a single-step, finite-rate, reversible, model
thermochemistry implementing the mixture-fraction–progress-variable approach of Bilger [8].
Since they did not have a mean mixture-fraction gradient, the evolution equation for the mixture
fraction was modified to include a forcing term to maintain stationarity. They compared DNS
results with the predictions of the laminar flamelet model, the conditional moment closure
(CMC) model and the quasi-equilibrium distributed reaction (QEDR) model. Results were
obtained for a range of reaction zone thicknesses and Damkohler numbers (the ratio of the
turbulent mixing time scale to the reaction time scale). They found, as expected, that, at
high Damkohler numbers, mixing and reaction balance closely and the models considered
performed well. However, as the Damkohler number decreases towards the critical extinction
value, mixing begins to overpower reaction resulting in a loss of accuracy of the models. These
results were obtained at the low value of the Taylor Reynolds number of 17, however.

This work builds on the results of Lee and Pope [7] by considering a higher
Reynolds number, incorporating a mean mixture-fraction gradient and by improving the
thermochemistry. A range of reaction zone thicknesses and Damkohler numbers are
investigated once again, with a more detailed look at the mechanisms of local extinction in this
flow. DNS solutions are then compared with the CMC and QEDR models. For a comparison
of these DNS results with Monte Carlo PDF solutions the report by Overholt and Pope [9]
should be consulted. A very recent review on DNS of non-premixed turbulent reactive flows
is given by Vervisch and Poinsot [10].

This paper is organized as follows. Section 2 describes in detail the formulation of the
periodic reaction zones model problem, including the model thermochemistry and the boundary
conditions, ending with a brief discussion of the CMC and QEDR models. Section 3 describes
the DNS simulations, with subsections addressing temporal accuracy, spatial accuracy and the
parameter space. This is followed by a section describing the DNS results, with evaluation of
the CMC and QEDR models. Finally, section 5 summarizes and gives conclusions.

2. Periodic reaction zones

The complexities of turbulent, reacting flows make it difficult to find accessible model flows
for DNS and for testing turbulent reacting flow models. This is especially true for Fourier-
based DNS methods which impose spatial periodicity on the flow. The new model flow of
Subramaniam [11], termed ‘periodic reaction zones’, shows promise in this regard and is
used in this study. This model flow is for constant-density, statistically stationary, isotropic
turbulence with a flame brush and a finite-rate, reversible reaction, yet it is periodic and in
other ways well suited to DNS.



Direct numerical simulation of a reacting flow 373

Figure 1. DNS solution of PRZ with stoichiometric isosurfaces ofξ = −ξs = − 1
2 (lower surface)

andξ = ξs = 1
2 (upper surface), for run 4 att/Te = 1.42. The variation in mean mixture fraction

and mean progress variable at this time are shown on the right.

M An MPEG movie associated with this figure is available from the article’s abstract page in the
online journal; seehttp://www.iop.org.

Periodic reaction zones is simply a two-scalar formulation for a layered, non-premixed
reacting flow, with a constant gradient in the mean mixture fraction producing the layers. The
mixture fraction is a conserved scalar, and when it is convected by statistically stationary,
homogeneous, isotropic turbulence the result is the often-studied mean scalar-gradient flow
[12–16]. What is novel about PRZ is the inclusion of a second scalar, the mass fraction of the
product (progress variable) in the finite-rate reaction,

F + O
 2P (1)

in a manner that provides for the requirements of a statistically stationary, Fourier DNS.
These requirements include non-trivial stationary solutions, periodicity and computational
tractability. PRZ meets these demands and proves itself useful as well, both for testing
turbulence models and for investigating physical phenomena such as local extinction.

Figure 1 illustrates the DNS solution of PRZ, showing the cubical solution domain on the
left with isosurfaces of the stoichiometric mixture fractions for the flame and reversed flame.
On the right is shown the variation of mean mixture fraction,〈ξ〉, and mean progress variable,
〈Y 〉, in the flow at this time. The layered mixture-fraction field is clearly visible, with large
fluctuations in mixture fraction wrinkling the isosurfaces. Fluctuation levels (i.e.ξ ′) for the
other runs are even larger.

To summarize, the PRZ model flow consists of the following elements: a homogeneous,
isotropic velocity field, which requires forcing to maintain statistical stationarity; a passive
scalar field representing the mixture fraction; and a reacting scalar field representing the
perturbation of the progress variable from equilibrium (in place of the progress variable itself, as
will be seen). There is a mean gradient in the mixture fraction, enabling it to attain stationarity
if the velocity field is stationary. Since the mixture fraction is a passive scalar it is not affected
by the reacting scalar. Conversely, the source term in the evolution equation for the reacting
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scalar is uniquely determined by the mixture-fraction–progress-variable state. The following
subsections address each of these elements in turn.

2.1. Velocity field

The velocity field is constant-density, homogeneous, isotropic turbulence, which is forced to
maintain statistical stationarity. The deterministic forcing scheme of Overholt and Pope [17] is
used, which employs a wavenumber-dependent linear amplification of the lower-wavenumber
modes of the three-dimensional (3D) energy spectrum function, relaxing them over time
towards a model energy spectrum function, which accurately represents grid turbulence. This
forcing scheme was shown to have the significant advantages, over stochastic forcing methods,
of not introducing additional statistical variability into the computations and of allowing
more physically realistic large-scale motions. In addition, it was advantageous to use this
deterministic method in this study because it afforded direct control of both the integral scale,
`, and the Kolmogorov scale,η, making it much easier to meet the unique spatial accuracy
requirements of each case.

Table 1. Results for the DNS runs. Angle brackets〈 〉 denote time and volume averaging here.

Parameter Tabulated Run 1 Run 2 Run 3 Run 4

` ≡ Li,i/3 Integral length scale κ0〈`〉 1.75 1.80 1.78 0.672
`ε ≡ u′3/ε Turbulent length scale 〈`ε〉/〈`〉 1.03 0.957 0.968 0.943
λ Taylor microscale 〈λ〉/〈`〉 0.551 0.521 0.523 0.512
η Kolmogorov length scale 〈η〉/〈`〉 0.0517 0.0471 0.0476 0.0492
Te Eddy turnover time 〈`/u′〉 2.35 2.22 2.22 0.323
τ ≡ k/ε Turbulence time scale τ/Te 1.54 1.44 1.44 1.46
τη Kolmogorov time scale 〈τη〉/Te 0.140 0.129 0.129 0.135
T Simulation length T/Te 1.47 1.49 1.02 3.12
k Turbulent kinetic energy 〈k〉 0.840 0.973 0.975 6.13
u′ ≡ (2k/3)1/2 Turbulence intensity u′ 0.748 0.805 0.806 2.02
ε Dissipation rate 〈ε〉 0.232 0.303 0.304 13.0
Re` ≡ u′`/ν Reynolds number 〈Re`〉 52.8 58.2 57.5 54.5
Reλ ≡ u′λ/ν Taylor Reynolds number 〈Reλ〉 29.0 30.3 30.0 27.8
ρvξ Mixture-fraction flux correlation 〈ρvξ 〉 −0.716 −0.601 −0.599 −0.600
ξ ′ Mixture-fraction (rms) 〈φ2〉1/2 0.613 0.502 0.512 0.246

ξ̂r ≡ 1ξr/ξ ′ Reaction zone thickness 〈ξ̂r〉 0.757 0.924 0.907 1.88
χ Scalar dissipation rate 〈χ〉 0.198 0.162 0.156 0.184
r ≡ 2k/ε/〈φ2〉/χ Time scale ratio 〈r〉 1.91 2.08 1.92 1.43

Dacrit Critical Damkohler number Dacrit(〈ξ̂r〉) 70.5 47.7 49.6 11.4
Da = ξ ′2/(〈χ〉τ ∗) Damkohler number 〈Da〉/Dacrit 27.4 25.3 52.2 25.2

Characterizations of the velocity field and its response to the various forcing parameters
can be found in Overholt and Pope [17]. Table 1 lists a number of field quantities for the four
DNS runs (κ0 is the smallest wavenumber, equal to one). The forcing parameters used are
listed in table 2 given in section 3.1 in the discussion of the DNS method.

2.2. Mixture fraction

This study focuses on the effect mixing has on reaction, and therefore particular importance
is placed on the statistics of the passive scalar, the mixture fraction.
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The mixture fraction is defined as in Bilger [18]:

ξ ≡ ϕ − ϕO

ϕF − ϕO
(2)

whereϕ is a conserved scalar (Shvab–Zeldovich function) formed by the appropriate linear
combinations of the mass fractions of the three species (fuel, oxidizer and product),ϕO is a
constant equal to the value ofϕ in pure oxidizer andϕF is a constant equal to the value ofϕ in
pure fuel. Hence the mixture fraction is a conserved scalar equal to one in pure fuel and zero
in pure oxidizer.

The mixture fraction evolves by the convection–diffusion equation,

∂ξ

∂t
+Uj

∂ξ

∂xj
= 0 ∂2ξ

∂xj ∂xj
(3)

where 0 is the molecular diffusivity, taken to be constant. As in Overholt and Pope
[16], the uniform mean mixture-fraction gradientβ is imposed in thex2-direction on the
statistically homogeneous mixture-fraction fluctuation fieldφ, yielding an inhomogeneous
mixture-fraction field. Reynolds decomposing into mean and fluctuating parts, then, as

ξ = 〈ξ〉 + φ (4)

Ui = 〈Ui〉 + ui (5)

with appropriate conditions

∂〈ξ〉
∂xj
= βδj2 (6)

〈Ui〉 = 0 (7)

yields the stationary, mean scalar-variance evolution equation for this study

d

dt
〈φ2〉 = −2〈u2φ〉β − 〈χ〉 (8)

where the scalar dissipation is defined as

χ ≡ 20

(
∂φ

∂xj

∂φ

∂xj

)
. (9)

Numerous passive scalar studies of this flow have been performed, theoretically [19–21],
experimentally [22–28] and numerically [12–16, 29, 30]. Most notably, the statistics reported
by Overholt and Pope [16] correspond directly to those of the mixture-fraction fluctuation,
φ(x, t), in this study. They used the stochastic forcing of Eswaran and Pope [31]; however,
as was shown in Overholt and Pope [17], the deterministic forcing scheme used for this study
yields the same mean statistics, but with reduced variability.

The passive scalar study of Overholt and Pope [16] used a value ofβ three times larger than
that used in this study. However, since the evolution equation forφ is linear inβ, the statistics
of φ/β are independent ofβ. Therefore, the passive scalar study of Overholt and Pope [16]
provides appropriate mixture-fraction fluctuation statistics for this study, and a proper basis
for the current investigation of the effects of mixing on reaction.

Among the most significant findings of that work as it relates to this study are the following:
the one-point PDF ofφ is Gaussian and the statistics of both dissipation and scalar dissipation
are stretched exponentials. A number of other time- and volume-averaged mixture-fraction
statistics are given in table 1 for the four DNS runs of this study.
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Figure 2. Contours of the normalized reaction rateS(ξ, Y )τc/1ξe. The reaction zone width,
1ξr = 0.464, is taken to be the maximum width inξ of the 0.10 contour line.

2.3. Progress variable and thermochemistry

Following Bilger’s formulation [8, 18, 32], the second scalar is taken to be the mass fraction
of product,Y , and is called the ‘reaction progress variable’. It evolves by the equation

∂Y

∂t
+Uj

∂Y

∂xj
= 0 ∂2Y

∂xj∂xj
+ S (10)

where the molecular diffusivity,0, is the same as that for the mixture fraction, andS is the
model reaction rate source term, uniquely determined by theξ–Y state. The reaction rate is
shown in figure 2, normalized by the chemical time scaleτc and the characteristic length scale
in ξ -space of the reaction rate,1ξe (a measure of the width of the curved portion ofYe around
ξs). For a givenξ , the realizable values ofY are [0, Ye(ξ)], whereYe(ξ) is the equilibrium
value (where forward and reverse reaction rates in equation (1) balance). The stoichiometric
valueξs is taken to be1

2. The figure gives the reaction zone width,1ξr, which is a useful
quantity in discussions of flame thickness (see section 3.3) and directly related to1ξe. Details
of the thermochemistry formulation can be found in the appendix.

In the previous section the convection–diffusion equation was shown to govern the
evolution of the mixture fraction. Although the mixture fraction has a physical meaning
only in the interval [0, 1], its evolution equation allows it to take on any value. The only way
to avoid this difficulty would be to solve equations for two reacting scalars, say the fuel and
oxidizer mass fractions, and then define the mixture fraction based on those two variables.
However, such an approach entails the need for two reaction rate source terms, which is not
desirable. Therefore, it is necessary to extend the thermochemistry definition to allow for all
values of mixture fraction.

Subramaniam [11] showed that the correct way to extend this thermochemistry is as plotted
in figure 3, or more specifically,

Ye(ξ) = Ye(ξ − bξc) ξ ∈ [2n, 2n + 1] (11)
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Figure 3. Periodic extension of the normalized reaction rate,S(ξ, Y )τc/1ξe.

Ye(ξ) = −Ye(dξe − ξ) ξ ∈ [2n− 1, 2n] (12)

S(ξ, Y ) = S(ξ − bξc, Y ) ξ ∈ [2n, 2n + 1] (13)

S(ξ, Y ) = −S(dξe − ξ, Y ) ξ ∈ [2n− 1, 2n] (14)

wheredξe is the smallest integer larger thanξ , bξc is the largest integer smaller thanξ andn
is any integer. BothYe andS are periodic inξ , and are antisymmetric about the origin. The
period, denoted by1ξL , is 2. Each period is composed of a positive portion and a negative
portion. The negative portions not only haveY 6 0, butS 6 0 as well. This means that
realizable regions whereY is positive and less thanYe, the equilibrium value, are effecting
a net creation of product, while the realizable negative regions whereY is greater thanYe

are effecting a net creation of reactants. Therefore, with mixing between the positive and
negative regions, stationary solutions are possible at values ofY other thanYe and zero, which
is highly desirable. Although the negative regions appear to be non-physical, they are well
motivated mathematically and can be interpreted in physical terms. In particular, the statistics
of (dξe − ξ,−Y ) in ‘reversed flames’ are identical to those of(ξ, Y ) in ‘flames’.

In order to facilitate future discussions it is useful to introduce the following definitions.
The positive regions spoken of in the preceding paragraph are called ‘flames’ and the negative
regions ‘reversed flames’. Similarly, we denote as ‘flame zones’ the reactive regionsξRF,

ξRF ≡ [ξs + 2n− 1
21ξr, ξs + 2n + 1

21ξr] (15)

for any integern, and as ‘reversed zones’ the reactive regionsξRR,

ξRR ≡ [ξs + 2n + 1− 1
21ξr, ξs + 2n + 1 + 1

21ξr] (16)

whereξs is the stoichiometric value of the mixture fraction. Finally, we use the term ‘reaction
zones’, orξR, to denote the sum of the above,

ξR ≡ [ξs + n− 1
21ξr, ξs + n + 1

21ξr]. (17)



378 M R Overholt and S B Pope

It is also useful to define the perturbation of the reaction progress variable from equilibrium,

y(x, t) ≡ Ye[ξ(x, t)] − Y (x, t). (18)

For very high reaction rates (high Damkohler number), the reaction is stable and the stationary
solution forY approachesYe. SinceYe is a function of the mixture fraction (which is statistically
inhomogeneous in thex2-direction), it is often more instructive to examine the statistics of the
progress-variable perturbation instead of the progress variable itself. The governing equation
for the perturbation is derived by substituting equation (18) into equation (10) and using
equations (3), (5), (7) and continuity, which yields

∂y

∂t
+
∂(ujy)

∂xj
= 0 ∂2y

∂xj∂xj
− 0

(
∂ξ

∂xj

∂ξ

∂xj

)
Y ′′e − S (19)

whereY ′′e is the second derivative of the equilibrium function with respect toξ . Since the scalar
fields are homogeneous in every spatial direction except forx2, taking expectations results in
the equation

∂〈y〉
∂t

+
∂〈u2y〉
∂x2

= 0 ∂2〈y〉
∂xj∂xj

− 0
〈
∂ξ

∂xj

∂ξ

∂xj
Y ′′e

〉
− 〈S〉. (20)

The terms in this equation are, from left to right, the change in〈y〉, turbulent transport,
molecular transport, microscale mixing and reaction rate. As has been shown by Lee and
Pope [7], the microscale mixing and reaction rate terms are always as large as the largest
terms in this equation, balancing each other at equilibrium. Additionally, at a sufficiently high
Damkohler number the two transport terms are negligible.

With ξs = 1
2, the time-dependent surfaces defined byξ(x, t) = 2n + 1

2 are the
stoichiometric surfaces of the flames, and similarly,ξ(x, t) = 2n − 1

2 are the stoichiometric
surfaces of the reversed flames. The surfacesξ(x, t) = n are the interfaces between the flames
and the reversed flames and correspond to pure reactants. Accordingly, the boundary condition
Y = 0 is imposed on these surfaces, i.e.

Y (x, t) = 0 for x such thatξ(x, t) = n. (21)

In section 3.1 numerical issues arising in the implementation of these boundary conditions are
addressed.

In summary, the second scalar adds the following parameters to the flow: a time scale for
the reaction,τ ∗; a reaction zone width,1ξr (or alternatively, the length scale,1ξe); and
a periodicity in ξ , 1ξL . Therefore, PRZ can be characterized by three non-dimensional
parameters: the Reynolds number, a Damkohler number ratio (Da/Dacrit) and a reaction zone
thickness parameter, defined asξ̂r ≡ 1ξr/ξ

′, whereξ ′ is the rms mixture-fraction fluctuation.
Further discussion of the parameter space is postponed until section 3.3.

2.4. Simple models: CMC and QEDR

The CMC, developed by Bilger [18] (similar to that derived independently by Klimenko [33]),
is based on the hypothesis that the fluctuations inY arise primarily from fluctuations inξ .
Using this assumption an evolution equation can be derived for the conditional mean ofY ,
a single and tractable ODE. This is a first-moment or average closure; higher-order closures
for the conditional reaction rate are possible and even recommended for flows with local
extinction [34–38]. However, higher-order closures are not considered in this study, and all
further use of the term ‘CMC’ refers to the first-moment CMC. For details on the solution of
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CMC see Overholt and Pope [9]. CMC predicts stable combustion above a critical value of
the Damkohler number,Dacrit, and extinction forDa < Dacrit. In table 1 the criticalDa as
determined from CMC,Dacrit, is given. Then, in section 4.3, CMC solutions for conditional
y are compared with the DNS results.

The QEDR model [39] assumes highDa such that the microscale mixing and reaction
rate terms in equation (19) balance each other. The other terms are taken to be negligible.
Hence the spatial structure of the reaction zone is determinable from the spatial structure of the
mixing field. Given an expression for the reaction rate, this approximation results in a simple
algebraic equation fory. Details are given in Overholt and Pope [9]. QEDR predictions are
compared with CMC and DNS results in the next section.

3. Direct numerical simulations

3.1. Pseudo-spectral method

The DNS algorithm is based on the pseudo-spectral method of Rogallo [40], and uses the
same fully parallelized code as was used in Overholt and Pope [16] with the new deterministic
forcing scheme presented in Overholt and Pope [17]. The full, incompressible Navier–Stokes
equations and evolution equations forξ andy are solved on a three-dimensional grid. The
grid is a cube with sides of length 2π in physical space, resulting in integer wavenumbers. An
explicit, second-order Runge–Kutta method advances the solution in time steps1t .

Aliasing errors incurred in the discrete fast Fourier transforms (FFTs) are reduced by a
combination of phase shifting and truncation techniques, which have been shown to almost
completely remove the aliasing error due to the quadratic nonlinearities of the convection terms
[40]. However, the evolution equation fory contains several additional terms with higher-order
nonlinearities which must be carefully treated to ensure that aliasing error is not incurred [7]
(addressed in section 3.2). The truncation for aliasing error removal results in a maximum
significant wavenumber ofκmax =

√
2Nκ0/3, whereN is the number of grid points in each

direction.
The deterministic forcing method requires the input of several parameters which define

the target model energy spectrum function and the number of modes forced [17]. Table 2 gives
values for these and other parameters for the simulations in this work.

To maintain realizability, the boundary condition given by equation (21) is enforced for
ξ(x, t) ∈ (n + a, n− a), wherea � 1. Given completely accurate numerics, there should be
no realizability violations. If, however, small realizability violations occur due to numerical
error, they are corrected (e.g. ifY (ξ) becomes slightly greater thanYe(ξ), then the value of
Y (ξ) is reset toYe(ξ) and the reaction rate set to zero).

Table 2. Run input parameters.

Parameter Run 1 Run 2 Run 3 Run 4

N Grid size 160 128 128 192
ν Kinematic viscosity 0.025 0.025 0.025 0.025
Pr Prandtl number 0.7 0.7 0.7 0.7
β Mean scalar gradient 1/π 1/π 1/π 1/π
E∗L % energy captured 0.75 0.79 0.79 0.99
E∗f % energy forced 0.80 0.80 0.80 0.85

κ∗η κmaxη desired 4.945 3.636 3.636 2.086

τ ∗/〈τη〉 Chemical time scale 3.04 × 10−3 4.52 × 10−3 2.26 × 10−3 2.73 × 10−2

1t/τ ∗ Time step ratio 0.2 0.2 0.2 0.2
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3.2. Accuracy

It has been well established that temporal accuracy of the velocity fields is obtained if the time
step1tu results in a Courant numberC 6 1 [31]; however, the perturbationy evolves by the
chemical time scaleτ ∗, which is entirely independent of1tu. In order to march all the fields
with the same time step,1t , that time step must be defined such that

max{1t} = min{1tu,1ty} (22)

where1ty is related toτ ∗ in some as yet unknown manner. In the related work by Lee and
Pope [7], they found it sufficient to use

1ty < τ ∗. (23)

However, in that study the scalar variance was forced, whereas in this one it is not. For
this and other reasons temporal accuracy was re-examined for these simulations using the
following methodology. First, for a given grid size a very well resolved initial condition was
obtained. Then, short runs of a fixed time duration, less than an eddy-turnover time, were made
using different values of1t/τ ∗. At the end of the run, they-fields were compared directly
in physical space (i.e. grid point by grid point) with the solution obtained for the smallest
time step (1t/τ ∗ = 0.10). This was performed for three different flows, all at highDa, and
the maximum and average differences were compared with the reference value fory. This
reference value,yref, results from the highDa approximation

y

τ ∗
≈ −0(∇ξ · ∇ξ)Y ′′e (ξ). (24)

At the stoichiometric value ofξ , ξs, where|Y ′′e | is the largest, the additional approximation

0(∇ξ · ∇ξ) ≈ 0β2 + 1
2〈χ〉

yields

yref =
(
0β2 + 1

2〈χ〉
) |Y ′′e (ξs)|τ ∗. (25)

The results clearly show that equation (23) is sufficient to ensure second-order accuracy, as
expected for our time-stepping scheme; however, in order to maintain a maximum difference of
an order of magnitude less than the reference value, a maximum time step of 0.4τ ∗ is required.
To ensure good accuracy we use

1ty = 1
5τ
∗. (26)

Regarding spatial accuracy, Lee and Pope [7] made a careful study of the spatial accuracy
requirements for the reacting scalar, resulting in several observations. They began by noting
that the microscale mixing and reaction rate terms are always dominant, or at least as large
as the largest terms in the evolution equation fory, leading to their conclusion that, if the
microscale mixing term was adequately resolved, then the reaction rate term would also be
well resolved. Under this assumption they proceeded to study the spatial accuracy requirements
for microscale mixing and found that, for Taylor Reynolds numbers in the range [18, 100], the
empirical relation

κmaxη >
6.2

ξ̂r

+ 1.1 (27)

assured good accuracy. Obviously, this condition always gives good resolution of the velocity
and passive scalar fields as well.



Direct numerical simulation of a reacting flow 381

There are several differences between Lee and Pope’s work [7] and this study, one being
the difference in chemistry. The reaction rate length scale,1ξe, is taken to be twice as large
as that used by Lee and Pope [7] in the hope that the factor 6.2 in equation (27) would scale
linearly with 1/1ξe, i.e. that

κmaxη >
0.20

ξ̂r1ξe

+ 1.1 (28)

would hold. In order to test this condition the spatial accuracy requirements fory were tested
again in this work, using an approach similar to that used for temporal accuracy, except that in
this case the grid sizes were varied from 323 to 1283, with the common nodes being compared
to the 1283 solution. A time step of1t = 0.1τ ∗ was used. The results show that satisfaction of
equation (28) results in maximum differences of more than an order of magnitude less than the
reference value, which we took as sufficient evidence to use this scaled accuracy requirement
with confidence for this PRZ model flow.

3.3. Choice of parameters

As introduced in section 2.3, PRZ is characterized by a Reynolds number, a Damkohler number,
and a non-dimensional reaction zone thickness,ξ̂r = 1ξr/ξ

′. In this section theRe–Da–ξ̂r

parameter space is discussed, showing the rationale for the runs chosen for this study. The
following subsection discusses the choice of the parameters defining the chemistry.

Unlike the case with premixed reacting flows, characteristic regions of behaviour for
non-premixed reacting flows are not well established. We simply make distinctions of flame
thickness and of reaction rate. Flame thickness distinctions are based on the reaction zone
thickness parameter,ξ̂r, where values greater than one are taken to be ‘thick flames’ and values
of less than one ‘thin flames’. Thick flames correspond to mixture-fraction fluctuations smaller
than the reaction zone width,1ξr, and narrow flame brushes (the width in thex2-direction
swept out by the fluctuating stoichiometric isosurface). Conversely, thin flames correspond to
mixture-fraction fluctuations larger than1ξr, giving wide flame brushes.

The reaction rate is well characterized byDa. Additionally,Da is divided by the critical
value predicted by CMC for global extinction,Dacrit, yielding the Damkohler number ratio
referred to previously. This gives a measure of how far the flow is from global extinction
(assuming, for the purposes of this study, that the DNS solution will experience global
extinction at the same value as that predicted by CMC), which is of particular practical
importance since models based on near-equilibrium assumptions, such as QEDR, are known
to break down when the flow nears extinction.

In choosing the parameter space to be investigated by the four runs in this study, we began
by deciding to fix the Reynolds number at the largest value that could be simulated given a
reasonably wide range of̂ξr (to be chosen) and constraints of time and computational cost
(Reλ ≈ 30). Three of the runs were then chosen to span the greatest possible width inξ̂r-space
at a fixedDa ratio, with the fourth run duplicating one of the first three at a higherDa (see
table 1). The twoDa-ratio values were chosen somewhat arbitrarily to be 25 and 50, with the
goal of seeing local extinction (but not global extinction) at 25 and very little local extinction
at 50.

3.3.1. Chemistry. The chemistry formulation described in the appendix has several variable
parameters, the choices of which are discussed in this section. For DNS it is advantageous to
have as large a physical length scale,1ξe, as possible, since that directly affects the spatial
accuracy requirements. Lee used a value of1ξe of 0.0318, which corresponds to a value of
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|Y ′′e |max of 40. As seen in the appendix, the chemistry is defined for any non-zero value of
|Y ′′e |max, but for values less than about 20 the reaction rate function,S, loses its resemblance
to real combustion systems. Hence a value of|Y ′′e |max of 20 was chosen for this study, giving
a value of1ξe of 0.0637.

There are two other parameters which must be chosen in order to define the chemistry,
the constantsC andB (see equations (A.10) and (A.11)). ParameterC determines the ratio
1ξe/1ξr. A value ofC of 0.529 was chosen to match that of Lee and Pope [11], which, given a
value of1ξe of 0.0637, results in a reaction zone width1ξr of 0.464. The actual value of1ξr is
important for DNS, due to its influence on the reaction zone thickness parameterξ̂r = 1ξr/ξ

′.
The scalar rms,ξ ′, scales likeβ`ε , and`ε has a limited range of practical values. Therefore,
it is important to choose a good value for1ξr such that̀ ε can be as large as possible for the
desiredξ̂r, thereby maximizing the Reynolds number.

This leavesB to be determined such that the functionf (y) is negligible aty = Ye (or
Y = 0). Using the arbitrary criterion of requiringf (Ye) < 0.01 max(f ) results in a total error
in S of 1.6× 10−5 at integer values ofξ , and a value ofB of 10.51ξe = 0.668. The resulting
reaction rate is that shown in figure 2.

4. DNS results

As seen in the previous section, there is considerable computational cost involved in fully
resolving this flow. Hence the DNS simulations represented in table 1 are for simply one
realization and relatively short periods of time. Therefore, the results are subject to the
variability inherent in DNS, as discussed at length in Lee and Pope [7] and evident in figure 4.
For this reason the approach taken was to examine simulation details (e.g. individual fields
undergoing local extinction) rather than to present global statistics such as the criticalDa,
which would be rendered useless due to the resulting large confidence intervals. In fact, the
issue of global statistics is further complicated in this flow by the spatial variation in thex2-

Figure 4. Fluctuations of volume-averaged quantities in the velocity and mixture-fraction fields:
——, Li,i/3; — ·—, ξ̂r . Run 1 was taken from the portiont/Te = [9.35, 10.85].
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Figure 5. Stoichiometric isosurface ofξ = ξs for run 1 att/Te = 1.41.

direction, implying that conditioning will be required. We leave the gathering of such statistics
to future work.

4.1. Characterization of the flame brush

One of the two flow parameters varied is the reaction zone width,ξ̂r, which depends inversely on
the rms mixture fraction. The flame brush, defined as the area swept out in thex2-direction by
the stoichiometric mixture-fraction isosurface, characterizes the mixture-fraction fluctuations.
Figures 1 and 5 show the instantaneous, stoichiometric, mixture-fraction isosurface(s) for
runs 4 and 1 and illustrate the differing fluctuations levelsξ ′ at the extremes of̂ξr examined.
The isosurface in the second figure has several notable features. First of all, on the right-
hand side it is intricately coiled up around itself. On the left-hand side a slab-like finger
is jutting far into the lower portion of the domain. Such features are relatively common in
these simulations. (Note for the electronic version: an MPEG movie of the evolution of the
stoichiometric isosurfaces is available.)

Scatter plots ofξ versusx2/L are shown in figures 6 and 7, where the flame brush can
be interpreted as the extent of the fluctuations along the lineξ = 0.5. Each figure consists of
about 5000 samples taken from a regularly spaced grid. The spatial variations visible in the
scatter plots for the first run, run 1, are due to the large size of the integral scales (relative to
the computational domain) yielding many fewer of the largest eddies for statistical averaging
purposes than are present in the last run. The larger fluctuations present in the first run are
also apparent. In run 1 the flame brush traverses over three-quarters of the domain, producing
extensive wrinkling of the isosurface and area ratios (to be defined) in excess of five. Runs 2
and 3 are very similar to run 1, due to their similar values ofξ̂r.

Although more common in discussions of premixed flames, the surface-to-volume and area
ratios give another measure of the mixture-fraction fluctuations in these runs. The surface-to-
volume ratio of the constant property surface (or isosurface)ξ = 9 is found using the relation
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Figure 6. Scatter plot of mixture fraction versusx2/L for run 1 at timet/Te = 0.26 (5001 points).

Figure 7. Scatter plot of mixture fraction versusx2/L for run 4 at timet/Te = 0.39 (5002 points).

of Pope [41]

6(x2;9) = fξ (x2;9)〈|∇ξ ||ξ = 9〉 (29)

wherefξ (x2;9) is the PDF of the mixture fraction. The area ratio of that surface can be found,
then, as the integral

A

L2
=
∫ L

0
fξ (x2;9)〈|∇ξ ||ξ = 9〉 dx2. (30)
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In the work of Overholt and Pope [16] it was found that the PDF ofφ is Gaussian at this
Reynolds number, and that the conditional〈χ |φ = ψ〉 is equal to the unconditional〈χ〉. If, in
addition,∇ξ · ∇ξ is taken to be log-normal, it can be shown that

〈|∇ξ |〉 = 〈∇ξ · ∇ξ〉1/2e−σ
2/8 (31)

where

σ 2 = var[ln(χ)].

Making use of these two approximations and the time-averaged values of var[ln(χ)] (see
table 3),6 can be predicted, yielding results very close to those calculated by the DNS.

Table 3. Average moments for the PDFfln(χ∗).

Moment Run 1 Run 2 Run 4

Mean −0.90 −1.19 −1.08
Variance 2.15 2.20 2.34
Skewness −0.128 −0.003 −0.044
Kurtosis 2.97 3.07 2.97
Superskewness 16.5 17.3 15.9

Figure 8 compares the time-averaged DNS results (symbols) for6(x2; ξs) versus the
mean mixture fraction (〈ξ〉(x2) = 1ξL(x2/L − 1

2)) for each of the runs to that predicted by
equation (31) (curves), with the corresponding area ratios given in the caption. Note that, due
to periodicity, the right-hand side tails of the6 plots extend into the left-hand side (since the
stoichiometric surface ofξ = − 3

2 is simply a periodic extension of theξ = 1
2 surface). All the

runs had average area ratios greater than five, which is double that usually seen in the literature,
and the predicted integrated area ratios are within 8% of those calculated by the DNS.

4.2. Statistical variation

In addition to the statistical variations inherent in DNS and mentioned earlier, there are very
large spatial variations in the instantaneous scalar dissipation fields. It was found that the
reacting scalar results were strongly dependent on these statistical variations ofχ ; therefore,
discussions ofy are prefaced here by an investigation ofχ . For normalization purposes a
nominal value of〈χ〉ref = 0.18 is used (the mean value ofχ for all the runs, see table 1). The
corresponding referencey value, as defined by equation (25), is tabulated in table 4. Using
thisyref the normalized variabley∗ is defined as

y∗ ≡
∣∣∣∣ yyref

∣∣∣∣. (32)

The large variations inχ can be seen in figure 9, which shows a contour plot of log10(χ
∗/χ∗q ),

where

χ∗ ≡ χ

〈χ〉ref
.

Based on the values ofDacrit from CMC and of the mean〈ξ ′2〉, both given in table 1, a
normalized, critical value of scalar dissipation can be defined as

χ∗q ≡
〈ξ ′2〉

τ ∗〈χ〉refDacrit
. (33)
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Figure 8. Normalized surface-to-volume ratios forξ = ξs, time-averaged over the entire run.
DNS:�, run 1,A/L2 = 5.86;4, run 2,A/L2 = 5.10;◦, run 4,A/L2 = 5.53. Predicted: ——,
run 1,A/L2 = 5.40; - - - -, run 2,A/L2 = 5.14; — ·—, run 4,A/L2 = 5.65.

Table 4. Referencey value.

Parameter Run 1 Run 2 Run 3 Run 4

yref Referencey value 1.87× 10−3 2.43× 10−3 1.22× 10−3 2.24× 10−3

Table 5. Normalized critical value of scalar dissipation.

Parameter Run 1 Run 2 Run 3 Run 4

χ∗q Critical value ofχ/〈χ〉ref 29.6 22.6 45.1 24.7

The critical values for each run are listed in table 5.
In figure 9 contours are only shown for the largest values ofχ∗/χ∗q , since they appear to be

the most significant factor in triggering local extinction, as will be seen. (The contour values
shown are for the logged ratioχ∗/χ∗q , and sinceχ∗ rarely exceedsχ∗q , the highest values of
the logged ratio are near zero and negative.) Note that the very highest levels (−0.3, full)
are on the stoichiometric isosurface in the reversed zone. It is not clear, however, why there
appears to be a clustering of high values ofχ around the stoichiometric surfaces, since theφ

field is statistically homogeneous. The large extent of the scalar dissipation fluctuations is an
intermittency effect, which is clearly present even at the moderate Reynolds number of these
simulations.

The very large range ofχ -fluctuations is most clearly shown in its PDF in figure 10,
fχ∗(X

∗; t), whereX is the sample-space variable forχ and

X∗ ≡ X

〈χ〉ref
.
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Figure 9. Contours of log10(χ
∗/χ∗q ) for run 4 at timet/Te = 0.39 at slicex3/L = 0.286. The

contour levels shown are−0.3 (full), −0.6 (broken) and−1 (full). (Only the largest levels are
shown for clarity.) The bold curves are the mixture-fraction isosurface cuts: ——,ξ = ξs; - - - -,
ξ = −ξs.

M An MPEG movie associated with this figure is available from the article’s abstract page in the
online journal; seehttp://www.iop.org.

Average moments for the PDF of ln(χ∗), fln(χ∗), are given in table 3, which shows that the
scalar dissipation is very nearly log-normal. (A normal distribution has zero skewness, a
kurtosis of 3 and a superskewness of 15. The PDFs and scalar dissipation moments for run 3
are not shown because the mixture fraction and hydrodynamic fields for run 3 are identical to
the first two-thirds of run 2.) In each run the range ofχ∗ is five decades. Only the turbulent
dissipation displays similar behaviour.

The dependence of the PDF of ln(χ∗) on the Reynolds number is an important question,
given the large variance seen at the relatively small Taylor Reynolds number of 30 here. The
passive scalar study of Overholt and Pope [16] does not give moments for the PDF of ln(χ∗);
therefore, a calculation very similar to run 128.4 in that report was made with a Taylor Reynolds
number of 80.6, resulting in a value of the variance of ln(χ∗) = 2.9± 0.2. As expected, there
is an increase in variance with Reynolds number. Further study is needed to determine more
precisely how this PDF changes with Reynolds number.
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Figure 10. PDFfχ∗ (X∗; t). Run 1: ——,t/Te = 0.26; — ·—, t/Te = 0.75; - - - -,t/Te = 1.41.
Run 2 (shifted up two decades): ——,t/Te = 0.29; — ·—, t/Te = 0.85; - - - -, t/Te = 1.44.
Run 4 (shifted up four decades): ——,t/Te = 0.39; — ·—, t/Te = 1.08; - - - -, t/Te = 2.07;
· · · · · ·, t/Te = 3.05.

In the interest of studying local extinction we examine the evolution ofχ∗ conditioned on
being in either the flame zone (ξRF) or in the reversed zone (ξRR, see equations (15) and (16)),
shown in figures 11–13. Note that these are average values. Since1ξr is equal to 0.464, on
average nearly one-half of the computational domain is within one of these two zones.

In figure 11 it can be seen that conditionalχ∗ levels are much higher in the flame zone than
in the reversed zone until the end of the run, leading one to anticipate a higher probability of
local extinction occurring in the flame zone than in the reversed zone. The drop in〈χ∗|ξ ∈ ξRF〉
at the end of the run is matched by an increase in〈χ∗|ξ ∈ ξRR〉. Runs 2 and 3 begin with
moderately low and equal values of conditionalχ∗ in the flame and reversed zones, followed
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Figure 11. Evolution of scalar dissipation for run 1. ——,〈χ∗|ξ ∈ ξRF〉; - - - -, 〈χ∗|ξ ∈ ξRR〉.

Figure 12. Evolution of scalar dissipation for run 2. ——,〈χ∗|ξ ∈ ξRF〉; - - - -, 〈χ∗|ξ ∈ ξRR〉.
(Run 3 is fort/Te = [0.0, 1.02].)

by a significant rise in the flame-zone-conditioned value. The reversed-zone-conditioned value
remains moderately low throughout. Again, it would be expected that local extinction would
occur (first) in the flame zone.

Run 4 (figure 13) shows similar large-scale trends in the conditionalχ∗ values; however,
short-duration spikes appear in both of the curves. Accompanying the reducedξ ′ in the DNS
for run 4 is the reduced integral-scale size`. The result of this is that the largest eddies
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Figure 13. Evolution of scalar dissipation for run 4. ——,〈χ∗|ξ ∈ ξRF〉; - - - -, 〈χ∗|ξ ∈ ξRR〉.

accomplishing turbulent mixing of the flow are smaller. Hence the spikes seen in conditional
χ∗ could be created by small unmixed pockets of high-scalar-dissipation fluid moving through
the reaction zone. More detailed investigation is required to ascertain whether this is actually
the case. (Note that the time increment for the output of the data shown in figures 11–13 is
fairly large and hence each spike is composed of a single high value. For this run there are
100–150 time steps per output time step.)

Central to the preceding discussions of local extinction is the influence of local scalar
dissipation. An instructive way to examine the local scalar dissipation is through its cumulative
distribution function, or CDF. A good approximation for these CDFs can be formed by
assuming that the PDF of ln(χ) is Gaussian. Figure 14 presents average CDFs of scalar
dissipation divided by the critical valueχ∗q for each run, compared with the prediction obtained
by assuming thatχ is log-normal and using the average values of the mean and variance of
ln(χ∗) obtained from the DNS. Clearly, the three runs are indistinguishable from each other,
with the predicted results giving an excellent fit to the data.

It is also clear that the probability of local scalar dissipation being greater than the critical
value (one minus the value of the CDF atχ∗/χ∗q = 1) is very low. This is true even of the
time-dependent, conditional CDF〈χ∗/χ∗q |ξ ∈ ξR〉 (not shown). Since local extinction does
occur, as will be seen, one would expect the probability of values ofχ∗ > χ∗q to be greater.
The rarity of events withχ∗ > χ∗q , however, may be partly because the critical Damkohler
number (and likewiseχ∗q ) predicted by CMC is not accurate. Lee and Pope [7] found that

CMC underpredicted the criticalDa by a factor of two to three for values ofξ̂r similar to those
in these simulations. With that in mind we denote as ‘critical probability’ the probability that
χ∗ > 1

2χ
∗
q , which is tabulated in table 6 for each run at various times.

The tabulated critical probabilities are very small, but still show the same qualitative
behaviour as seen in figures 11–13. Run 1 has larger critical probabilities in the flame zone,
runs 2 and 3 show a rapid increase in the flame zone values, and the end of run 4 shows an
increase in critical probability in the reversed zone.



Direct numerical simulation of a reacting flow 391

Figure 14. Cumulative distribution function (CDF) of scalar dissipation, CDF(χ∗/χ∗q ). Log-
normal prediction: ——, run 1;- - - -, run 2; —·—, run 4. DNS:�, run 1; 4, run 2;◦,
run 4.

Table 6. Conditional probability that 2χ∗ > χ∗q at various times for each run.

Run t/Te Prob [2χ∗ > χ∗q |ξ ∈ ξRF] Prob [2χ∗ > χ∗q |ξ ∈ ξRR]

1 0.26 0.0040 0.0009
1 0.75 0.0058 0.0004
1 1.41 0.0030 0.0017
2 0.29 0.0031 0.0053
2 0.85 0.0174 0.0080
2 1.44 0.0208 0.0005
3 0.29 0.0002 0.0000
3 0.87 0.0064 0.0011
4 0.39 0.0066 0.0075
4 1.08 0.0080 0.0071
4 2.07 0.0049 0.0076
4 3.05 0.0024 0.0117

4.3. Reaction progress-variable perturbation

Having examined the fluctuations in the mixture fraction, which wrinkle the flame, and the
spatial variations in scalar dissipation, which can cause it to locally extinguish, we are now
prepared to examine the reaction progress-variable perturbation.

Figures 15–18 give the evolution of the conditional and unconditional means ofy∗ (defined
by equation (32)), as well as its variance. For run 1 a dramatic rise in variance from near
zero is seen at the same time as, and strongly correlated with, the flame-zone-conditioned
value of y∗, which is also rising, signifying local extinction beginning somewhere in the
flame zone. The reversed-zone-conditioned value ofy∗ remains small and nearly constant
throughout the simulation. In the earlier discussion of conditionalχ∗ and in figure 11 it was
anticipated that local extinction was more likely to occur in the flame zone since the flame-
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Figure 15. Evolution of conditional and unconditional statistics ofy∗ for run 1: ——,〈y∗|ξ ∈ ξRF〉;
- - - -, 〈y∗|ξ ∈ ξRR〉; — ·—, 〈y∗〉; · · · · · ·, var(y∗).

Figure 16. Evolution of conditional and unconditional statistics ofy∗ for run 2. ——,〈y∗|ξ ∈ ξRF〉;
- - - -, 〈y∗|ξ ∈ ξRR〉; — ·—, 〈y∗〉; · · · · · ·, var(y∗).

zone-conditioned values ofχ∗ and critical probability are also relatively high for this run, but
there appears to be a time lag on the initiation of the local extinction. Given the theory that local
extinction is caused by a sufficiently large blob of high-scalar-dissipation fluid intersecting the
stoichiometric surface, in run 1 this chance event apparently does not occur until about 0.5Te

into the run.
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Figure 17. Evolution of conditional and unconditional statistics ofy∗ for run 3: ——,〈y∗|ξ ∈ ξRF〉;
- - - -, 〈y∗|ξ ∈ ξRR〉; — ·—, 〈y∗〉; · · · · · ·, var(y∗).

Figure 18. Evolution of conditional and unconditional statistics ofy∗ for run 4: ——,〈y∗|ξ ∈ ξRF〉;
- - - -, 〈y∗|ξ ∈ ξRR〉; — ·—, 〈y∗〉; · · · · · ·, var(y∗).

Figure 16, which pertains to run 2, is qualitatively the same as figure 15, only with an
even stronger local extinction. In this case the start of the local extinction correlates well with
the conditionalχ∗ evolution shown in figure 12 and with the large increase in the flame-zone-
conditioned critical probability given in table 6. Note that the flame-zone-conditioned critical
probability at timet/Te = 0.29 is relatively small, which helps explain the delay in initiation
of local extinction.
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Run 3 is represented by figure 17. Here, in spite of the highDa ratio, strong scalar
dissipation activity forces〈y∗〉 to larger values, although only to about1

4 as large a value as in
run 2.

Run 4 behaves differently, with no initial quiescent period of uniform equilibrium-like
behaviour as seen in the other three runs; local extinction in both the flame and the reversed
zones begins immediately. After one eddy-turnover time the flame zone begins to fully reignite
(i.e. local extinction begins to disappear), while the reversed zone oscillates in the appearance
of continued local extinction activity. The evolution of conditionalχ∗ supports this result,
since it shows moderately increasing values of reversed-zone-conditionedχ∗ for the second
half of the simulation, accompanied by decreasing values of flame-zone-conditionedχ∗. The
same trend is seen in the critical probabilities. This is the first simulation which continued
long enough for reignition to occur, and it is especially interesting for that reason.

Conditioning ony being in one reaction zone or another is useful for observing the overall
behaviour and evolution ofy. However, to investigate this in more detail it is necessary to
condition on the mixture fraction, i.e. to plot〈y∗|ξ = 9〉as is shown in figures 19–22. Here, the
DNS simulation results at various times are indicated with symbols (with periodicity accounted
for using equations (11)–(14)), while the full curve is the CMC solution. The CMC solutions
shown in each figure are obtained at the time-averaged values ofDa andξ̂r for each simulation,
as given in table 1. If instead CMC solutions were calculated for each of the instantaneous
values ofDa andξ̂r corresponding to the DNS output times, only very small (�yref) variations
would be seen.

Figure 19 for run 1 dramatically illustrates the local extinction occurring in the flame zone,
while the reversed zone maintains a profile remarkably close to the CMC solution. Several
characteristics should be noted, the first being the manner in which the local extinction occurs.
Since extinction occurs when microscale mixing overpowers the reaction rate and microscale
mixing is dominated byY ′′e , which is by far the largest on the stoichiometric surface, it is
expected that local extinction begins on the stoichiometric surface and then spreads to other
values ofξ . Therefore, we expect that〈y∗|ξ = 9〉 will show the initiation of local extinction
as centred on the stoichiometric mixture fraction, with the largest values there (i.e. atξ = ξs).
This is clearly seen in figure 19 where〈y∗|ξ = ξs〉 does increase first, pulling the rest of the
profile away from equilibrium.

In the reversed zone notice a slight lifting ofy∗ at the very last time shown, as anticipated
from the evolution of the reversed-zone-conditionedχ∗ in figure 11. The first two times show
almost identicaly∗ profiles, slightly below the CMC solution. However, at the final time
〈y∗|ξ = −ξs〉 has risen to just above the CMC solution.

The second characteristic to note is the asymmetry of the flame zone profile at the earliest
time (i.e. forξ > 0.5). The precise reason for this asymmetry is unknown, but several possible
causes will be suggested. This is a conditional value, therefore statistics could be the reason
(e.g. high statistical variability in that region, perhaps due to very few samples). Another
possibility is that microscale mixing for that region was initially small, slowing down the
departure from the initial condition. No other similar occurrence of such an asymmetry was
observed in the results.

Since runs 2 and 3 share the same hydrodynamic and mixture-fraction fields, figures 20
and 21 show the effect of differingDa. For one, the profile of the solution changes slightly
asDa increases (i.e. lower stoichiometric value relative to the ‘shoulders’ on either side).
The primary feature to note, however, is the decreased extent of local extinction in run 3 as
compared to run 2 at the same time. This can be seen in the maximum value of the second
output time step (t/Te = 0.85 for run 2 and 0.87 for run 3), which is twice as large in run 2
(about 13) as in run 3 (about 7). This is the anticipated result, of course.
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Figure 19. Conditional〈y∗|ξ = 9〉 for run 1.�, t/Te = 0.26;4, t/Te = 0.75;◦, t/Te = 1.41;
——, CMC.

Figure 20. Conditional〈y∗|ξ = 9〉 for run 2.�, t/Te = 0.29;4, t/Te = 0.85;◦, t/Te = 1.44;
——, CMC.

Much more staid behaviour is observed in run 4 (figure 22) where the reaction zone is
almost twice as wide as the rms fluctuation ofξ . As also seen in the temporal evolution ofy∗

(figure 18), early on there is a small local extinction in the flame zone which then reignites,
resulting in the last two profiles lying very close to the CMC solution. In the reversed zone
a small local extinction is occurring throughout most of the simulation, and is centred on the
stoichiometric value.
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Figure 21. Conditional〈y∗|ξ = 9〉 for run 3.�, t/Te = 0.29;4, t/Te = 0.87; ——, CMC.

Figure 22. Conditional〈y∗|ξ = 9〉 for run 4.�, t/Te = 0.39;4, t/Te = 1.08;◦, t/Te = 2.07;�, t/Te = 3.05; ——, CMC.

After seeing so clearly the effect of local scalar dissipation on the results, it should be
emphasized that most turbulent combustion models are based on the volume-averaged mean
scalar dissipation,〈χ〉, and thereby do not account for the local variations. This includes the
CMC and QEDR models. An exception to the rule is the Lagrangian spectral relaxation model
of Fox [42]. The effect of local scalar dissipation is illustrated here by using the CMC and
QEDR modelswith the localχ substituted for〈χ〉, resulting in a close comparison with the
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DNS results. See the report by Overholt and Pope [9] for more details on the model solutions
presented here.

Returning again to run 1, figure 23 compares the flame-zone- and reversed-zone-
conditioned values ofy∗, conditioned also on the local scalar dissipation, to CMC and QEDR
solutions. The rightmost end of the CMC line terminates in an ‘X’ symbol, corresponding
to the predicted extinction value. The QEDR line extends to the largest value ofχ∗ for
which there exists a solution toy∗ for all values ofξ in the reaction zone. Overall a strong
dependence of conditionaly∗ on localχ∗ is seen for allχ values significantly greater than
20β2. CMC and QEDR give almost identical results, both slightly overpredicting the DNS
whenχ∗ > 10−1 and when there is no local extinction. As noted earlier, the reversed zone
remains fully reacting throughout the run. However, local extinction does occur in the flame
zone, beginning at the largest value of scalar dissipation and then propagating to smaller
values.

A normalized, critical value of scalar dissipation was defined earlier by equation (33). The
value ofχ∗q is not indicated in these figures; however, the CMC predicted extinction values
(denoted by ‘X’ symbols) closely correspond to theχ∗q values. In all of the runs a general
behaviour is seen: if values ofχ∗ significantly greater thanχ∗q exist then local extinction usually
also exists. Exceptions to this rule can be explained by realizing that a single occurrence of a
large value ofχ∗ may not be sufficient to cause local extinction. A sufficiently large blob of
high-scalar-dissipation fluid may have to intersect the stoichiometric isosurface to bring about
local extinction. In run 1 (figure 23) at the earliest time the symbols (�) all have values ofχ∗

less thanχ∗q , which explains why it is still fully reacting at that time (see figures 19 and 15).
The following two output times show values ofχ∗ greater thanχ∗q as well as local extinction.

Figure 23. Conditional〈y∗|ξ ∈ ξRF, χ
∗ = X∗〉, and shifted down two decades〈y∗|ξ ∈ ξRR, χ

∗ =
X∗〉, for run 1.�, t/Te = 0.26;4, t/Te = 0.75;◦, t/Te = 1.41; ——, CMC;- - - -, QEDR.
The CMC critical extinction value is denoted by an ‘X’ symbol.

M An MPEG movie associated with this figure is available from the article’s abstract page in the
online journal; seehttp://www.iop.org.
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Note that once local extinction is triggered the disturbance propagates to values ofχ∗ much
less thanχ∗q .

Figures 24 and 25 show the same close comparison between the DNS data and the models,
with the same pattern of local extinction initiating at values ofχ∗ > χ∗q . Also, the lesser extent
of local extinction in the higherDa ratio run can be seen in the decreased propagation (of4
symbols) toward smaller values ofχ∗. In the reversed zone of run 2 values ofχ∗ do exceedχ∗q
without resulting in local extinction. However, based on figure 12 it appears that the majority
of the reversed reactive region is experiencing below-average levels ofχ∗, which could explain
why local extinction has not occurred.

The results for run 4 shown in figure 26 are similar. As noted in the discussion of figure 22,
the local extinction experienced in this simulation is less extensive, which is manifest here in
both the smaller deviations of conditionaly∗ from its fully reacting value and also in the smaller
distance in which the extinction disturbance propagates to the left (i.e. towards smaller values
of χ∗).

In summary, doubly conditioningy∗ on the local scalar dissipation and on being in the
reaction zone clearly shows a strong dependence on the local scalar dissipation to the point
that the occurrence of local extinction can almost be predicted based on whether or not points
exist or have existed withχ∗ significantly greater thanχ∗q .

In order to better understand figures 23–26, it is useful to examine the doubly conditioned
quantity〈y∗|ξ = 9,χ∗ = X∗〉. Only a few sample results are shown due to lack of space;
however, they qualitatively represent the behaviour seen throughout. Figures 27 and 28 show
the evolution ofy∗ thus conditioned in run 3. At first a uniform behaviour is seen. Then, as
local extinction begins, values ofy∗ at largeχ∗ rapidly increase and the disturbance spreads

Figure 24. Conditional〈y∗|ξ ∈ ξRF, χ
∗ = X∗〉, and shifted down two decades〈y∗|ξ ∈ ξRR, χ

∗ =
X∗〉, for run 2.�, t/Te = 0.29;4, t/Te = 0.85;◦, t/Te = 1.44; ——, CMC;- - - -, QEDR.
The CMC critical extinction value is denoted by an ‘X’ symbol.

M An MPEG movie associated with this figure is available from the article’s abstract page in the
online journal; seehttp://www.iop.org.
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Figure 25. Conditional〈y∗|ξ ∈ ξRF, χ
∗ = X∗〉, and shifted down two decades〈y∗|ξ ∈ ξRR, χ

∗ =
X∗〉, for run 3.�, t/Te = 0.29;4, t/Te = 0.87; ——, CMC;- - - -, QEDR. The CMC critical
extinction value is denoted by an ‘X’ symbol.

M An MPEG movie associated with this figure is available from the article’s abstract page in the
online journal; seehttp://www.iop.org.

Figure 26. Conditional〈y∗|ξ ∈ ξRF, χ
∗ = X∗〉, and shifted down two decades〈y∗|ξ ∈ ξRR, χ

∗ =
X∗〉, for run 4.�, t/Te = 0.39;4, t/Te = 1.08;◦, t/Te = 2.07;�, t/Te = 3.05; ——, CMC;
- - - -, QEDR. The CMC critical extinction value is denoted by an ‘X’ symbol.

M An MPEG movie associated with this figure is available from the article’s abstract page in the
online journal; seehttp://www.iop.org.
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Figure 27. Conditional〈y∗|ξ = 9,χ∗ = X∗〉 for run 3 at timet/Te = 0.29. Contour level values
are for log10(y

∗).

Figure 28. Conditional〈y∗|ξ = 9,χ∗ = X∗〉 for run 3 at timet/Te = 0.87. Contour level values
are for log10(y

∗).

to neighbouring regions of theξ–χ space. These figures should be compared with the QEDR
and CMC solutions for run 3, shown in figure 29. Again, the solutions are calculated to the
largest values ofχ∗ possible. Clearly the CMC solution corresponds very closely to figure 27.
It can also be seen that the QEDR solution is best inside the reaction zone and deteriorates
outside. Other figures (not shown) show that, after local extinction passes and reignition
occurs,〈y∗|ξ = 9,χ∗ = X∗〉 returns to its undisturbed shape.
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Figure 29. Conditional〈y∗|ξ = 9,χ∗ = X∗〉 for run 3 as predicted by QEDR (ξ < 0) and CMC
(ξ > 0). Contour level values are for log10(y

∗).

Figure 30 shows a typical local extinction, here occurring in the reversed zone of run 4.
Only one slice is shown; however, that slice is taken through the middle of the local extinction,
which has a third dimension roughly equal to the extent of the disturbance alongx1. This is
the same slice as was shown in figure 9, where it was noted that the maximum levels ofχ∗

occurred on the stoichiometric surface in the reversed zone. That is the same location where
the local extinction is occurring in this figure, validating the theory that local extinction is
brought on by large values of local scalar dissipation. (Note for the electronic version: an
MPEG movie comparing the evolution of they∗ andχ∗ fields is available.)

In summary, these results all agree with the following local extinction mechanism. It is
known that local extinction is driven by microscale mixing overpowering the reaction rate.
Microscale mixing is by far the largest near the stoichiometric surface due toY ′′e , hence local
extinction begins there. Local extinction begins, then, when a pocket or small region of high
local-scalar dissipation intersects the stoichiometric surface. In order for the disturbance to
exist for any significant period of time that pocket must be large enough in magnitude and
extent to drive the localy past the maximum reaction rate (for the thermochemistry parameters
chosen here, atξ = ξs the maximum reaction rate occurs fory = 0.094), after which the
reaction rate decreases with increasingy, allowingy to accelerate towardsYe (Y = 0).

This examination would not be complete without a look at the PDF ofy∗ (y∗ is defined
in equation (32)), given in figure 31. It is evident that the large majority of the flow in all the
runs is undergoing stable reaction or fully lit, withy near zero. As the first three runs progress,
however, the local extinction that occurs manifests itself in the rising of the tail of the PDF and
subsequent extension to larger values of they∗ sample-space variableY ∗. This phenomenon
is also present in run 4, although less dramatic.
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Figure 30. Contours of log10(y
∗) for run 4 at timet/Te = 0.39 for slicex3/L = 0.286. Contour

levels are 1, 1.5 and 2. The bold curves are the mixture-fraction isosurface cuts: ——,ξ = ξs;
- - - -, ξ = −ξs.

M An MPEG movie associated with this figure is available from the article’s abstract page in the
online journal; seehttp://www.iop.org.

5. Conclusions

Clearly the PRZ model flow (periodic reaction zones) is a useful one for studying non-premixed
turbulent reaction. It has been shown to be accessible to DNS, and results thereby obtained
can be compared with CMC and QEDR model predictions, PDF simulations [9] and other
calculations.

The parameter space for PRZ is composed of the Reynolds number, the Damkohler number
and the reaction zone thickness parameter,ξ̂r = 1ξr/ξ

′.
Large intermittency or spatial variability was found in the scalar dissipation, which has

a profound effect on the DNS results. A mechanism for local extinction consistent with the
results of this study is as follows: local extinction is initiated when a sufficiently large pocket
of high-scalar-dissipation fluid intersects a stoichiometric mixture-fraction surface, increasing
the strength of microscale mixing to well beyond that of the reaction rate. Local extinction
occurred in this study even when the Damkohler number was 25 times the critical value, due
to very large variance in the scalar dissipation (var[ln(χ/〈χ〉)] ≈ 2.2).
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Figure 31. PDFfy∗ (Y ∗; t). Run 1: ——,t/Te = 0.26; — ·—, t/Te = 0.75; - - - -,t/Te = 1.41.
Run 2 (shifted up two decades): ——,t/Te = 0.29; — ·—, t/Te = 0.85; - - - -, t/Te = 1.44.
Run 3 (shifted up four decades): ——,t/Te = 0.29; — ·—, t/Te = 0.87. Run 4 (shifted up six
decades): ——,t/Te = 0.39; — ·—, t/Te = 1.08; - - - -, t/Te = 2.07; · · · · · ·, t/Te = 3.05.

Both (first-moment) CMC and QEDR model predictions, based on the localχ , gave
remarkably good agreement with the DNS for regions of the flow where local extinction was
not present. CMC gave the best agreement for the conditional〈y∗|ξ = 9,χ∗ = X∗〉, and
also matched the DNS very well for the conditional〈y∗|ξ = 9〉. Higher-order conditional
moment closures were not considered in this study, but a future comparison with these results
would be interesting.

In summary, the value of including the scalar dissipation fluctuation in mixing models,
such as Fox is doing [42], is substantiated and shown to be essential for the prediction of local
extinction.
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Appendix A. Thermochemistry details

The reaction rate term,S(ξ, Y ), is from the self-similar model thermochemistry developed by
Subramaniam [11] for the reversible, finite-rate reaction

YF + rYO
 (1 + r)Y (A.1)

whereYF, YO andY represent the mass fractions of fuel, oxidizer and product, respectively, and
r is the stoichiometric proportion of the oxidizer to fuel mass fraction. At chemical equilibrium
the progress variableY takes on the equilibrium valueYe, which is specified as an analytic
function of the mixture fraction,ξ , and its stoichiometric value,ξs. The reaction rate, then,
is defined as an analytic function of the compositionξ–Y . Salient details of the chemistry
definition are given in subsections A.2 and A.3. First, however, the concept of self-similarity
is addressed, which motivated much of this thermochemistry’s development.

A.1. Self-similarity

The primary thermochemistry parameters are1ξr andτ ∗, which in turn determine the reaction
zone thicknesŝξr ≡ 1ξr/ξ

′ andDa. SinceDa and ξ̂r need to parametrize the PRZ model
problem solution completely, for a fixed Reynolds number, they must completely describe the
thermochemistry. This defines self-similarity for this thermochemistry, such that solutions for
a givenξ̂r, with differing values of1ξr, are the same. One outcome of self-similarity is the
requirement that the ratio between the two mixture-fraction scales in the reaction zone,1ξr

and1ξe, remains constant [11].
The thermochemistry of Lee and Pope [7] does not possess this property, although it is very

similar to this thermochemistry in other ways. They determined the equilibrium value of the
progress variable,Ye, with the specification of an equilibrium constantK and a stoichiometric
value of the mixture fraction,ξs. Therefore, for a givenξs the mixture-fraction scale1ξe is
controlled byK. However, it is not possible to vary1ξr usingK while keeping the ratio
1ξr/1ξe and other parameters constant, as required.

Therefore, Subramaniam [11] developed a self-similar thermochemistry as a one-
parameter family ofYe(ξ)–S̃(ξ, y) functions that preserves the scaling of the terms in the
scaled evolution equation for〈y〉 and maintains the ratio1ξr/1ξe. This allows the reaction
zone width,1ξr, to be varied while not affecting the scaling underlying the thermochemistry.

A.2. Equilibrium function,Ye(ξ), for the symmetric case

The model thermochemistry of Subramaniam [11] is defined for any value of stoichiometric
mixture fraction,ξs; however, the symmetric case was chosen for this work, withξs = 1

2. The
equilibrium functionȲe is specified as a function ofz ≡ ξ − ξs such thatȲe(z) = Ye(ξ). Using
the Cauchy distribution, the second derivative,Ȳ ′′e , is defined as

d2Ȳe

dz2
= − 4

π1ξe

1[
1 + (z/1ξe)2

] . (A.2)
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Figure A1. Second derivative of the equilibrium function,Y ′′e (ξ). C = 0.5289,B = 0.6684 and
1ξe = 0.06366.

Integrating twice gives

Ȳe(z) = − 4

π
z arctan

(
z

1ξe

)
+

21ξe

π
ln

[
1 +

(
z

1ξe

)2
]

+ c (A.3)

wherec is

c = 2

π
arctan

(
1

21ξe

)
− 21ξe

π
ln

[
1 +

(
1

21ξe

)2]
. (A.4)

The shape ofY ′′e is shown in figure A1 for the thermochemistry parameters chosen for this
study.

A.3. Reaction rate function

The reaction rate function is written as

S(ξ, Y ) = S̃(ξ, y) = S̄(ξ, y)/τc (A.5)

whereτc is the chemical time scale which determines the magnitude of the reaction rate with
the shape of̄S, and is related toτ ∗ as

τ ∗ ≡ τc

B exp(1)
(A.6)

with B being a specified parameter. For self-similarity the ratio1ξr/1ξe must be constant,
requiring

S̄(ξ, y;1ξr/1ξe,1ξe) = S̄(ξ̂ , ŷ;1ξe) (A.7)

S̄(ξ̂ , ŷ;1ξe) = Ŝ(ξ̂ , ŷ) (A.8)
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Figure A2. Reaction rate functionsf (y) versusy (broken curve) andg(ξ) versusξ (full curve).
C = 0.5289,B = 0.6684 and1ξe = 0.06366.

where the scaled variables are

ξ̂ ≡ ξ/1ξe ŷ ≡ y/1ξe.

In a manner analogous to the Lee and Pope thermochemistry [7] take

Ŝ(ξ̂ , ŷ) = f (ŷ) g(ξ̂ ) (A.9)

with

f (ŷ) = Bŷ exp(1− Bŷ) (A.10)

g(ξ̂ ) = exp[−CG(ξ̂)] (A.11)

whereC is a constant to be specified, andG(ξ̂), given by

G(ξ̂) = 4

π
ξ̂ arctan(ξ̂ )− 2

π
ln
[
1 + ξ̂2

]
(A.12)

is independent of1ξe. Plots of the functionsf and g are given in figure A2 for the
thermochemistry parameters chosen for this study.

A.4. Range of applicability of self-similarity

Self-similarity promises access to a much larger range of values ofξ̂r than otherwise would
be possible, both for PDF methods and for DNS. However, due to the asymptotic nature
of various functions used in the definition of this thermochemistry, self-similarity is only
maintained accurately for a certain range of parameter values. Specifically, Subramaniam [11]
found that accurate self-similarity required that1ξe 6 0.0127. In DNS it is advantageous to
have1ξe as large as possible, since spatial accuracy is directly related to1ξe. By examining
the computational cost of satisfying the self-similarity condition on1ξe, using equation (28),
it is evident that the cost would be prohibitive at this time. Hence the self-similarity feature of
this thermochemistry was not utilized in this work.
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