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The filtered density function (FDF) closure is extended to a “self-contained” format to
include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables
in turbulent flows. These are the thermodynamic pressure, the specific internal energy,
the velocity vector, and the composition field. In this format, the model is comprehensive
and facilitates large-eddy simulation (LES) of flows at both low and high compressibility
levels. A transport equation is developed for the joint pressure-energy-velocity-composition
filtered mass density function (PEVC-FMDF). In this equation, the effect of convection
appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled
via a set of stochastic differential equation for each of the transport variables. This yields
a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear
flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation
is established, and its overall predictive capability is appraised via comparison with direct
numerical simulation (DNS) data.
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I. INTRODUCTION

The filtered density function (FDF) and its density-weighted filtered mass density function
(FMDF) have proven very effective for large-eddy simulation (LES) of turbulent flows [1–8]. The
most sophisticated form of the model to date is one accounting for the joint frequency-velocity-scalar
subgrid-scale (SGS) statistics (FVS-FMDF) [9], and a simpler version (VS-FMDF) which does
not include the SGS frequency [10–12]. Inclusion of entropy and irreversibility is reported in
Refs. [13–15], and extension to multiphase flows in Refs. [16,17]. Hydrodynamic closure in
incompressible, nonreacting flows has been achieved via the marginal velocity-FDF (V-FDF) [18],
and the FDF which considers only the species mass fraction field is the scalar FDF (S-FDF and
S-FMDF). This is the most elementary form of the model [19–23], and it has widespread applications
for LES of a variety of reactive flows. Some examples are in Refs. [24–48]; see Ref. [1] for a recent
review. In almost all of these contributions, the FDF is considered for flows at low compressibility
levels. As such, the effects of pressure fluctuations in the energy transport is negligible, and the latter
is governed by a scalar equation similar to that for the composition. Some corrections to account for
the effects of pressure in LES of compressible flows have been attempted [49–51].

The objective of the present work is to extend the FDF methodology to a self-contained manner
for flows with both low and high levels of compressibility. This is facilitated by SGS modeling
of all of the pertinent transport variables of compressible flows, as required for a stand-alone
description. The central part of the formulation is the pressure term, which provides the coupling
between hydrodynamics and thermochemistry. This term is coupled with the internal energy, the fluid
velocity, and the composition field. Consistent with established terminology, the resulting model is
termed PEVC-FMDF. With the formal definition of PEVC-FMDF, the mathematical framework for
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its implementation in LES is established. A transport equation is developed for the PEVC-FMDF in
which the effect of the SGS convection appears in closed form. The unclosed terms are modeled via
a set of stochastic differential equations (SDEs). Since the FDF is a single-point descriptor, all of the
multipoint statistics are also modeled externally. A Lagrangian Monte Carlo procedure is developed
and implemented for the numerical solution of these SDEs. Simulations are conducted of a turbulent
shear flow with variable levels of compressibility. The consistency and the overall capability of the
closure is assessed via comparison with DNS data.

II. FORMULATION

For the mathematical description of compressible flows involving Ns species, the primary
transport variables are the density ρ(x,t), velocity vector ui(x,t) (i = 1,2,3), pressure p(x,t),
temperature T (x,t), internal energy e(x,t), and species mass fractions φα(x,t) (α = 1 . . . Ns). The
equations which govern the transport of the above variables in space (xi) and time (t) are the
continuity, conservation of momentum, internal energy, and species mass fractions:

∂ρ

∂t
+ ∂ρuj

∂xj

= 0, (1a)

∂ρui

∂t
+ ∂ρuiuj

∂xj

= − ∂p

∂xi

+ ∂τij

∂xj

, (1b)

∂ρe

∂t
+ ∂ρeuj

∂xj

= −∂qj

∂xj

+ σij

∂ui

∂xj

, (1c)

∂ρφα

∂t
+ ∂ρφαuj

∂xj

= −∂J α
j

∂xj

, α = 1,2, . . . ,Ns. (1d)

For a Newtonian fluid, the viscous stress tensor τij , the heat flux qj , the species α diffusive mass
flux vector J α

j , and σij tensor are represented by

τij = μ

(
∂ui

∂xj

+ ∂uj

∂xi

− 2

3

∂uk

∂xk

δij

)
, qj = −λ

∂T

∂xj

, J α
j = −ρ
α

∂φα

∂xj

, σij = τij − pδij , (2)

where μ is the fluid dynamic viscosity, λ is the thermal conductivity, and 
α denotes the mass
diffusion coefficient. To put the equations in a compact form, and for compatibility with the
simulation results presented in the next section, we assume a perfect gas with the specific heat
ratio γ = cp/cv and internal energy de = cvdT , where cp and cv denote the specific heats at
constant pressure and constant volume, respectively, and are assumed to be constants. The diffusion
coefficients are the same for all of the species (
α = 
β = 
), and we assume μ = ρ
 and cvμ = λ,
i.e., unity Schmidt (Sc = μ

ρ

) and Prandtl (Pr = cvμ

λ
) numbers. The viscosity and molecular diffusion

coefficients can, in general, be temperature dependent but in this initial study, they are assumed to be
constants. In reactive flows, molecular processes and thermodynamics are much more complicated
than portrayed here. These are not our primary concern here, so the simple model is adopted with
justifications and caveats given in Refs. [52–54]. With these assumptions, the equation of state is
expressed as

p = ρR0T/M = ρRT = (γ − 1)ρe, (3)

where R0 and R are the universal and mixture gas constants, and M is the molecular weight for the
mixture. Therefore, the pressure is governed by [55]

∂p

∂t
+ ∂puj

∂xj

= −(γ − 1)
∂qj

∂xj

+ (γ − 1)σij

∂ui

∂xj

. (4)
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Large-eddy simulation involves the spatial filtering operation [56–60]

〈Q(x,t)〉
 =
∫ +∞

−∞
Q(x′,t)G�1 (x′,x)dx′, (5)

where G�1 (x′,x) denotes a filter function, and 〈Q(x,t)〉
 is the filtered value of the transport variable
Q(x,t). In this definition, the subscript “1” for the filter function indicates that 〈Q(x,t)〉
 is the
first-level filter value of variable Q(x,t) [61]. In variable-density flows, it is convenient to use the
Favre-filtered quantity 〈Q(x,t)〉L = 〈ρQ〉
/〈ρ〉
. We consider a filter function that is spatially and
temporally invariant and localized, thus G�1 (x′,x) ≡ G�1 (x′ − x) with the properties G�1 (x) � 0,∫ +∞
−∞ G�1 (x)dx = 1. Also, the second-level spatial filtering operation is defined as

〈〈Q(x,t)〉
〉
2 =
∫ +∞

−∞
〈Q(x′,t)〉
G�2 (x′,x)dx′, (6)

where G�2 (x′,x) denotes a secondary filter function. Similar to the first-level filtering operation,
〈〈Q(x,t)〉L〉L2 = 〈〈ρQ〉
〉
2/〈〈ρ〉
〉
2 .

III. PEVC-FMDF

A. Exact transport equation

The PEVC-FMDF, denoted by PL, is formally defined as [19]

PL(v,ψ,θ,η,x; t) =
∫ +∞

−∞
ρ(x′,t)ζ (v,ψ,θ,η; u(x′,t),φ(x′,t),e(x′,t),p(x′,t))G(x′ − x)dx′, (7)

where

ζ (v,ψ,θ,η; u(x,t),φ(x,t),e(x,t),p(x,t)) =
(

3∏
i=1

δ(vi − ui(x,t))

)(
σ=Ns∏
α=1

δ(ψα − φα(x,t))

)

×δ(θ − e(x,t)) × δ(η − p(x,t)), (8)

where δ denotes the Dirac δ function, and v, ψ , θ , and η are the velocity vector, composition vector,
internal energy, and pressure in the sample space. The term ζ is the “fine-grained” density [53,62].
Equation (7) defines the PEVC-FMDF as the spatially filtered value of the fine-grained density. With
the condition of a positive filter kernel [63], PL has all of the properties of a mass density function
(MDF) [53]. For further developments, it is useful to define the “conditional filtered value” of the
variable Q(x,t) as

〈Q(x,t)|u(x,t) = v,φ(x,t) = ψ,e(x,t) = θ,p(x,t) = η〉L ≡ 〈Q|v,ψ,θ,η 〉L

=
∫ +∞
−∞ Q(x′,t)ρ(x′,t)ζ

(
v,ψ,θ,η; u(x′,t),φ(x′,t),e(x′,t),p(x′,t)

)
G(x′ − x)dx′

PL(v,ψ,θ,η,x; t)
. (9)

Equation (9) implies the following:
(1) For Q(x,t) = c,

〈Q(x,t)|v,ψ,θ,η〉L = c, (10a)

i.e., the conditional mean of a constant is the constant.
(2) For Q(x,t) ≡ Q̂(u(x,t),φ(x,t),e(x,t),p(x,t)),

〈Q(x,t)|v,ψ,θ,η〉L = Q̂(v,ψ,θ,η), (10b)

i.e., the conditional mean of a known function of the dependent variables is simply the function
evaluated based on the conditioning (sample-space) variables.
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(3) Integral properties:

〈ρ(x,t)〉
〈Q(x,t)〉L = 〈ρ(x,t)Q(x,t)〉

=

∫ +∞

−∞

∫ +∞

−∞
〈Q(x,t)|v,ψ,θ,η〉LPL(v,ψ,θ,η,x; t)dvdψdθdη, (10c)

i.e., the probability weighted mean of the conditional mean is the unconditional mean.
From Eqs. (10), it follows that the filtered value of any function of the velocity, composition, energy,
and/or pressure variables is obtained by its integration over the entire sample spaces:

〈ρ(x,t)〉
〈Q(x,t)〉L =
∫ +∞

−∞

∫ +∞

−∞
Q̂(v,ψ,θ,η)PL(v,ψ,θ,η,x; t)dvdψdθdη. (11)

The exact transport equation for the PEVC-FMDF is derived by starting with the time derivative of
the fine-grained density function:

∂ζ

∂t
= −

(
∂uk

∂t

∂ζ

∂vk

+ ∂φα

∂t

∂ζ

∂ψα

+ ∂e

∂t

∂ζ

∂θ
+ ∂p

∂t

∂ζ

∂η

)
. (12)

Substituting Eqs. (1), (2), and (4) into Eq. (12) yields

∂ρζ

∂t
+ ∂ρuj ζ

∂xj

=
(

∂p

∂xj

− ∂τkj

∂xk

)
∂ζ

∂vj

+
(

∂J α
j

∂xj

)
∂ζ

∂ψα

+
[
γρp

∂uj

∂xj

+ (γ − 1)ρ
∂qi

∂xi

− (γ − 1)ρτij

∂ui

∂xj

]
∂ζ

∂η
+

(
∂qi

∂xi

− τij

∂ui

∂xj

+ p
∂uj

∂xj

)
∂ζ

∂θ
. (13)

Integration of this equation according to Eq. (7), while employing Eq. (9), results in

∂PL

∂t
+ ∂vjPL

∂xj

= ∂

∂vi

(〈
1

ρ

∂p

∂xi

∣∣∣∣v,ψ,θ,η

〉
L

PL

)
− ∂

∂vi

(〈
1

ρ

∂τij

∂xj

∣∣∣∣v,ψ,θ,η

〉
L

PL

)

+ ∂

∂ψα

(〈
1

ρ

∂J α
j

∂xj

∣∣∣∣v,ψ,θ,η

〉
L

PL

)
+ ∂

∂θ

(〈
1

ρ

∂qi

∂xi

∣∣∣∣v,ψ,θ,η

〉
L

PL

)

− ∂

∂θ

(〈
1

ρ
τij

∂ui

∂xj

∣∣∣∣v,ψ,θ,η

〉
L

PL

)
+ ∂

∂θ

(〈
1

ρ
p

∂uj

∂xj

∣∣∣∣v,ψ,θ,η

〉
L

PL

)

+ (γ − 1)
∂

∂η

(〈
∂qi

∂xi

∣∣∣∣v,ψ,θ,η

〉
L

PL

)
− (γ − 1)

∂

∂η

(〈
τij

∂ui

∂xj

∣∣∣∣v,ψ,θ,η

〉
L

PL

)

+ γ
∂

∂η

(〈
p

∂uj

∂xj

∣∣∣∣v,ψ,θ,η

〉
L

PL

)
. (14)

This is the exact PEVC-FMDF transport equation in which the effect of convection, the second
term on the left-hand side, appears in closed form. The conditional terms on the right hand side
are unclosed. The first moments of this equation give the filtered transport equations (with the
conventional LES approximation for the diffusion terms) [Eqs. (1)]:

∂〈ρ〉

∂t

+ ∂〈ρ〉
〈uj 〉L
∂xj

= 0, (15a)

∂〈ρ〉
〈ui〉L
∂t

+ ∂〈ρ〉
〈ui〉L〈uj 〉L
∂xj

= −∂〈p〉

∂xi

+ ∂τ̆ij

∂xj

− ∂〈ρ〉
τL(ui,uj )

∂xj

, (15b)

∂〈ρ〉
〈e〉L
∂t

+ ∂〈ρ〉
〈uj 〉L〈e〉L
∂xj

= −∂q̆j

∂xj

− ∂〈ρ〉
τL(e,uj )

∂xj

+ τ̆ij

∂〈ui〉L
∂xj

+ ε − �d − 〈p〉
 ∂〈ui〉

∂xi

,

(15c)
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∂〈ρ〉
〈φα〉L
∂t

+ ∂〈ρ〉
〈uj 〉L〈φα〉L
∂xj

= −∂J̆ α
j

∂xj

− ∂〈ρ〉
τL(φα,uj )

∂xj

, (15d)

where τL(a,b) = 〈ab〉L − 〈a〉L〈b〉L,

τ̆ij = μ

(
∂〈ui〉L
∂xj

+ ∂〈uj 〉L
∂xi

− 2

3

∂〈uk〉L
∂xk

δij

)
, q̆j = −λ

∂〈T 〉L
∂xj

, J̆ α
j = −〈ρ〉

 ∂〈φα〉L

∂xj

, (16)

and �d and ε denote the SGS pressure dilatation and dissipation, respectively:

�d =
〈
p

∂ui

∂xi

〉



− 〈p〉
 ∂〈ui〉

∂xi

, ε =
〈
τij

∂ui

∂xj

〉



− τ̆ij

∂〈ui〉L
∂xj

. (17)

B. Modeled transport equation

To develop the model for the PEVC-FMDF, the notion of stochastic particles [56] is used. This is
via development of SDEs governing the FDF transport variables: U+

i , φ+
α , E+, and P +. The internal

energy is modeled according to the first law of thermodynamics:

dE+ =
(

−Ce�[E+ − 〈e〉L] + E+(γ − 1)

P + ε

)
dt − P +dξ+, (18)

where Ce is the model constant, � denotes the SGS mixing frequency, and ξ+ = 1/ρ+ is the
specific volume relating E+ and P + through the equation of state. In the context of single-point
formulation, both of these variables need closures. In the absence of better alternatives, the simple
models suggested in the previous work [9] are adopted:

ε = 〈ρ〉
Cεk
3/2/�L, � = ε/(〈ρ〉
k); (19)

here Cε is the model constant, �L is the LES filter size, and k = 1
2 τL(ui,ui) is the SGS kinetic

energy. The pressure SDE is written in the general form

dP + = P +(Adt + BdWp), (20)

where Wp(t) denotes the Wiener process [64]. With this, the energy SDE takes the form

dE+ =
[
−Ce�

γ
(E+ − 〈e〉L) + γ − 1

γ

E+

P + ε + γ − 1

γ
E+

(
A − B2

γ

)]
dt + γ − 1

γ
E+BdWp.

(21)

The coefficients A and B are determined so that the exact and modeled transport equations for
energy are identical, and the filtered specific volume is consistently determined by the FDF and
the equation of state. There are different combinations of A and B that satisfy these constraints. To
ensure realizability, we select the model [65,66]

A = ε(γ − 1)

P + − γ
∂〈uj 〉

∂xj

+ �P (γ − 1)(P + − 〈p〉
) + γ
∂

∂xj

[
μ

∂

∂xj

(
1

〈ρ〉


)]
, (22)

B = 0, (23)

with

�P = γ

(γ − 1)τ
(p,p)

{
τ̆ij

∂〈ui〉L
∂xj

− Fd − 〈p〉
 ∂

∂xj

[
μ

∂

∂xi

(
1

〈ρ〉


)]}
, (24)

where Fd is the general form of the model for the pressure dilatation based on known SGS statistics.
For modeling of the other variables, we follow Refs. [12,18,22,67,68] and use the simplified Langevin
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model (SLM) and linear mean-square estimation (LMSE) model [69]:

dXi
+ = U+

i dt +
√

2μ

〈ρ〉
 dWi, (25a)

dU+
i = − 1

〈ρ〉

∂〈p〉

∂xi

dt + 2

〈ρ〉

∂

∂xj

(
μ

∂〈ui〉L
∂xj

)
dt + 1

〈ρ〉

∂

∂xj

(
μ

∂〈uj 〉L
∂xi

)
dt

− 2

3

1

〈ρ〉

∂

∂xi

(
μ

∂〈uj 〉L
∂xj

)
dt + Gij (U+

j − 〈uj 〉L)dt +
√

C0
ε

〈ρ〉
 dW ′
i

+
√

2μ

〈ρ〉

∂〈ui〉L
∂xj

dWj , (25b)

dφ+
α = −Cφ�

(
φ+

α − 〈φα〉L
)
dt, (25c)

where W, W′ denote the Wiener process in the physical and the velocity spaces, respectively, and

Gij =
[

�d

2k〈ρ〉
 − �

(
1

2
+ 3

4
C0

)]
δij , (26)

in which we employ the model

�d = C�

(〈
〈p〉
 ∂〈ui〉l

∂xi

〉

2

− 〈〈p〉
〉
1

∂〈〈ui〉l〉l2
∂xi

)
. (27)

The parameters C0, Cφ , and C� are the model constants and needed to be specified [11,70]. The
Fokker-Planck equation [71], governing the joint probability density function of the SGS transport
parameters, is

∂FL

∂t
+ ∂viFL

∂xi

= 1

〈ρ〉

∂〈p〉

∂xi

∂FL

∂vi

− 2

〈ρ〉

∂

∂xj

(
μ

∂〈ui〉L
∂xj

)
∂FL

∂vi

− 1

〈ρ〉

∂

∂xj

(
μ

∂〈uj 〉L
∂xi

)
∂FL

∂vi

+ 2

3

1

〈ρ〉

∂

∂xi

(
μ

∂〈uj 〉L
∂xj

)
∂FL

∂vi

− ∂(Gij (vj − 〈uj 〉L)FL)

∂vi

+ ∂

∂xi

(
μ

∂(FL/〈ρ〉
)

∂xi

)

+ ∂

∂xi

(
2μ

〈ρ〉

∂〈uj 〉L

∂xi

∂FL

∂vj

)
+ μ

〈ρ〉

∂〈uk〉L
∂xj

∂〈ui〉L
∂xj

∂2FL

∂vk∂vi

+ 1

2
C0

ε

〈ρ〉

∂2FL

∂vi∂vi

+Cφ�
∂((ψα − 〈φα〉L)FL)

∂ψα

+ Ce�

γ

∂((θ − 〈e〉L)FL)

∂θ
− γ − 1

γ
(ε)

∂

∂θ

(
θ

η
FL

)

− γ − 1

γ

∂(θAFL)

∂θ
+ γ − 1

γ 2

∂
(
θB2FL

)
∂θ

− ∂(ηAFL)

∂η
+ 1

2

(γ − 1)2

γ 2

∂2
(
θ2B2FL

)
∂θ∂θ

+ γ − 1

γ

∂2
(
θηB2FL

)
∂θ∂η

+ 1

2

∂2
(
η2B2FL

)
∂η∂η

. (28)

The transport equations for the first-order moments are obtained by integration of Eq. (28)
according to Eqs. (10).

IV. NUMERICAL SOLUTION

The modeled PEVC-FMDF transport equation is solved by a hybrid finite-difference (FD)–Monte
Carlo (MC) method, similar to those in previous works [3,72]. The FDF is represented by an
ensemble of MC particles, each carrying the information pertaining to its position X+, velocity U+,
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FIG. 1. Scatter plots of (a) 〈u〉L, (b) 〈v〉L, (c) 〈e〉L, and (d) 〈φ〉L, with Ma = 0.6 and s = 2 at t = 45.
r denotes the correlation coefficient.

composition φ+, energy E+, and pressure P +. We define the Z+(t), a 8 + Ns vector, as

Z+(t) = [X+(t),U+(t),φ+(t),E+(t),P +(t)], (29)

which evolves by

d Z+ = D(Z+)dt + B(Z+)dW , (30)

where W is the Wiener-Levy vector, and the matrices D and B can be identified from Eqs. (18),
(20), and (25). The vector Z is updated via the Euler-Maruyama discretization [73],

Z+(tk+1) = Z+(tk) + D(Z+(tk))�t + B(Z+(tk))�t1/2ζk, (31)

where ζk is an independent standardized Gaussian random variable at time tk and �t is the time
step. This scheme preserves the Markovian character of the diffusion processes and the Itô-Gikhman
character of the SDEs [74].
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FIG. 2. Contour surfaces of the instantaneous 〈φ〉L field. (a) Ma = 0.2, s = 2 and t = 50. (b) Ma = 1.2,
s = 2 and t = 75.

The computational domain is discretized on equally spaced FD grid points. These are used to
identify the regions where the statistical information are to be obtained and to perform complementary
LES solely by FD discretization. The latter is referred to as LES-FD and is useful for assessing the
consistency of the MC solver. In this solver, the statistical information is obtained by considering
an ensemble of NE MC particles residing within a cubic domain of side �E centered around
each of the FD points. For reliable statistics with minimal numerical dispersion, it is desired to
minimize the size of the ensemble domain and maximize the number of the MC particles [53]. In
this way,

〈a〉E ≡
∑

n∈�E
w(n)a(n)∑

n∈�E
w(n)

−−−−−→
NE → ∞
�E → 0

〈a〉L,

(32)

τE(a,b) ≡
(∑

n∈�E
w(n)a(n)b(n)∑

n∈�E
w(n)

)
− 〈a〉E〈b〉E −−−−−→

NE → ∞
�E → 0

τL(a,b),
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FIG. 3. Cross-stream variation of Reynolds-averaged (a) 〈ρ〉
 and (b) 〈u〉L with Ma = 0.6 at t = 45.

where w(n) is the weight of the nth MC particle and a(n) denotes the information carried by
that particle pertaining to transport variable a. The LES-FD solver is based on the second-order
predictor-corrector scheme. All of the FD operations are conducted on fixed grid points. The
transfer of information from these points to the MC particles is via a trilinear interpolation. The
transfer of information from the particles to the grid points is by means of ensemble averaging.
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FIG. 4. Temporal variation of the normalized momentum thickness: (a) s = 2, (b) Ma = 1.2.

The transport equations to be solved by the LES-FD include unclosed second-order moments
which are obtained from the MC. The LES-FD also determines the filtered values of the transport
variables. This redundancy is useful in monitoring the accuracy and consistency of the FDF results
[18,72,75].

V. RESULTS

A. Flow and numerical specifications

Simulations are conducted of a three-dimensional (3D) temporally developing mixing layer
involving the transport of a passive scalar. The temporal layer consists of two parallel streams
traveling in opposite directions with the same speed [20,76–78]. The LES predictions are compared
with direct numerical simulation (DNS) data of the same layer. In this layer, x, y, and z denote the
streamwise, the cross-stream, and the spanwise directions, respectively. The velocity components
along these directions are denoted, in order, by u, v, and w. The transport variables are normalized
with respect to the half initial vorticity thickness, Lr = δv (t=0)

2 . Here, δv = �U

|∂〈u〉L/∂y|max
, where 〈u〉L

is the Reynolds-averaged value of the filtered streamwise velocity and �U is the velocity difference
across the layer. The length Lv is specified such that Lv = 2NP λu, where NP is the desired number
of successive vortex pairings and λu is the wavelength of the most unstable mode corresponding to
the mean streamwise velocity profile imposed at the initial time. The normalized filtered streamwise
velocity, the scalar composition, and the temperature are initialized with a hyperbolic tangent profiles
with 〈u〉L = 1, 〈φ〉L = 1 on the top stream, and 〈u〉L = −1, 〈φ〉L = 0 on the bottom stream. With
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FIG. 5. Cross-stream variation of some of the components of R at t = 50 with Ma = 0.2 and s = 2. The
thick solid line denote LES predictions using PEVC-FMDF and circles show the DNS data.

a constant initial pressure, the parameter “s” denotes the initial density ratio across the layer; the
values s = 1, 2, 4 are considered. The reference velocity is Ur = �U/2. The Reynolds number is set
(Re = UrLr

ν
) = 50, and the Mach numbers (Ma = Ur√

γRTr
) values of 0.2, 0.6, and 1.2 are considered.

The number of test cases and the magnitude of the Reynolds number, as considered, are based on
the amount of available computational resources.

FIG. 6. Cross-stream variation of some of the Reynolds-averaged components of τL at t = 50 with Ma = 0.2
and s = 2. The thick solid line denote LES predictions using PEVC-FMDF and circles show the DNS data.
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FIG. 7. Cross-stream variation of some of the components of r at t = 50 with Ma = 0.2 and s = 2. The
thick solid line denote LES predictions using PEVC-FMDF and circles show the DNS data.

The three-dimensional (3D) field is initialized in a procedure somewhat similar to that in
Ref. [78]. The formation of the large-scale structures are expedited through eigenfunction-based
initial perturbations. This includes 2D and 3D perturbations with a random phase shift between the
modes. This yields the formation of two successive vortex pairings and strong three-dimensionality.
Periodic boundary conditions are imposed in the homogeneous directions (x and z), and characteristic

FIG. 8. Cross-stream variation of some of the components of R at t = 65 with Ma = 0.6 and s = 2. The
thick solid line denote LES predictions using PEVC-FMDF and circles show the DNS data.
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FIG. 9. Cross-stream variation of some of the Reynolds-averaged components of τL at t = 65 with Ma = 0.6
and s = 2. The thick solid line denote LES predictions using PEVC-FMDF and circles show the DNS data.

boundary conditions [79] are employed in the cross-stream direction. Simulations are conducted on a
box, 0 � x � L, −3L

2 � y � 3L
2 , 0 � z � L, where L = Lv/Lr . The layer is discretized with nearly

equally spaced grid points (�y ∼= �x = �z) with the number of grid points 193 × 577 × 193 for
DNS and 65 × 193 × 65 for LES. Some lower resolution LES 33 × 97 × 33 were also conducted
for production runs. The resolution in LES was determined in such a way that a reasonable amount
(75–85%) of turbulent energy is captured by the resolved scale. To filter the DNS data, a top-hat

FIG. 10. Cross-stream variation of some of the components of r at t = 65 with Ma = 0.6 and s = 2. The
thick solid line denote LES predictions using PEVC-FMDF and circles show the DNS data.
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FIG. 11. Cross-stream variation of some of the components of R at t = 75 with Ma = 1.2 and s = 2. The
thick solid line denote LES predictions using PEVC-FMDF and circles show the DNS data.

function is used with �L = 2 �, where � = (�x�y�z)1/3. The LES filter sizes are �1 = �L and
�2 = 2�L. No attempt is made to investigate the sensitivity of the results to the filter function [63]
or the size of the filter [80–82].

The MC particles are initially distributed uniformly within the domain in a random fashion. The
particle weights, w(n), are set according to filtered fluid density at the initial time. The initial number
of particles per grid point (NPG) is 80, and the ensemble domain size (�E) is set equal to the grid
spacing. The effects of both of these parameters have been assessed in previous works [11,18,22,23].
All results are analyzed both instantaneously and statistically. In the former, the instantaneous
scatter plots of the variables of interest are analyzed. In the latter, the Reynolds-averaged statistics
constructed from the instantaneous data are considered. These are constructed by spatial averaging
over homogeneous directions. All Reynolds-averaged results are denoted by an overbar. No attempt
is made to determine the optimum magnitudes of the model constants. The values as suggested in the
literature are adopted for C0 = 2.1 and Cφ = Cε = 1 [11,83]. The values of C� = 1 and Ce = 1.4
were chosen based on comparison with DNS data for one set of the simulations and were used in all
the subsequent ones.

B. Consistency and validity assessments

To demonstrate consistency, the redundancy of the repeated fields is portrayed by scatter plots of
the instantaneous values. The accuracy of the LES-FD is relatively well-established (at least for the
first-order filtered quantities), thus the comparative assessment provides a good measure of the MC
performance. Sample results are given in Fig. 1, and portray a reasonable consistency.

For comparison with DNS data, the resolved and the total components of the Reynolds-
averaged moments are considered. The former is denoted by R(a,b), with R(a,b) =
(〈a〉L − 〈a〉L)(〈b〉L − 〈b〉L), and the latter by r(a,b), with r(a,b) = (a − a)(b − b). In DNS,
the total components are directly available, while in LES they are approximated via r(a,b) ≈
R(a,b) + τL(a,b) [55].

Figure 2 shows the instantaneous isosurfaces of the composition field 〈φ〉L obtained by PEVC-
FMDF for Ma = 0.2 at t = 50 and Ma = 1.2 at t = 75. By these times, the flows have gone through
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FIG. 12. Cross-stream variation of some of the Reynolds-averaged components of τL at t = 75 with Ma =
1.2 and s = 2. The thick solid line denote LES predictions using PEVC-FMDF and circles show the DNS data.

pairings and exhibit strong 3D effects. This is evident by the formation of large-scale spanwise
rollers with the presence of secondary structures in streamwise planes [84].

Figure 3 shows the Reynolds-averaged, filtered density, and streamwise velocity fields. The level
of agreement between PEVC-FMDF and DNS is satisfactory. Similar agreements are observed for
all other filtered variables. The figure is also indicative of the accurate prediction of shear layer
center location by PEVC-FMDF. As the density ratio increases, the shear layer center, defined as the
dividing mean streamline position (the position where 〈u〉L is equal to the average of the free stream
velocities), is shifted further to the low-density side. As a result, the peak values of the Reynolds
stresses and scalar fluxes also show a shift to the low-density side. The shift is known to be responsible
for the decreased correlation between density and velocity components [85] and hence reduction
in turbulent production terms. The growth rate of the later is related to the integrated turbulent
production [86]. Therefore, a decrease in this production results in reduction of the layer growth
rate. This is evidenced in Fig. 4, which shows the temporal evolution of the momentum thickness
(δm) [63]. As Fig. 4 shows, the shear layer growth rate reduces with increasing the density ratio, and
increasing the Ma number. This is consistent with previous DNS results [20,76,87]. However, the
spreading rates as predicted by the FDF are somewhat smaller than those by DNS. This was also
observed in previous FDF simulations [9].

Several components of the resolved second-order resolved and SGS moments are presented in
Figs. 5, 6, 8, 9, 11, and 12. As observed, the PEVC-FMDF yields reasonable predictions. As a result,
the total components also yield very good agreements with DNS data as shown in Figs. 7, 10, and 13.

VI. SUMMARY AND CONCLUSIONS

The filtered density function (FDF) has proven to be a very effective subgrid scale closure for large-
eddy simulation of turbulent reactive flows [2,3]. In all previous works, the FDF were considered
for selected transport variables; the closure for other variables was provided by other means. The
objective of the present work is to develop the FDF in a self-contained manner, accounting for SGS
statistics of all of the transport variables. For this purpose, the pressure-energy-velocity-composition
filtered mass density function (PEVC-FMDF) is developed. The exact transport equation governing
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FIG. 13. Cross-stream variation of some of the components of r at t = 75 with Ma = 1.2 and s = 2. The
thick solid line denote LES predictions using PEVC-FMDF and circles show the DNS data.

the evolution of this FDF is derived. It is shown that the effect of SGS convection appears in closed
form. The unclosed terms are modeled in a fashion similar to that in probability density function
methods. The capability of the PEVC-FMDF is demonstrated by conducting LES of a temporally
developing mixing layer. The performance of the model as appraised by comparisons with DNS data
is encouraging.

Future work must consider other kernels of the SLM coupled with more comprehensive SGS
pressure-strain correlations, e.g., Refs. [88]. The same goes for developments of more sophisticated
models for the terms requiring multipoint statistical information: SGS dissipation, dilatation, and
frequency. Extension to LES of reactive flows is straightforward if reliable kinetics models are
provided. Future applications to a broader class of flows with escalated degrees of complexity
are also recommended. With these extension, LES of practical flows with this self-contained FDF
becomes possible, as is currently the case with scalar FDF [39].
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