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Turbulent Mixing Model Based on Ordered Pairing

A.T. NORRIS and S. B. POPE

Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853

In Turbulent reactive flows the fluid composition at a point changes due to convection, reaction, and mixing (i.e.,
molecular transport). Modeling approaches based on the transport equation for the joint probability density function
(jpdf) of velocity and composition have proved successful, largely because convection and reaction can be treated
exactly, without modeling assumptions. Mixing has to be modeled, however, and current mixing models are
deficient in several respects. The first contribution of this article is to define a model problem pertaining to
turbulent diffusion flames in the flamelet regime. When applied to this problem, existing models incorrectly yield
composition jpdfs corresponding to distributed combustion. The second contribution is to develop and demonstrate
a new class of mixing models that performs satisfactorily for the model problem, and also for the case of the

decaying field of a conserved scalar.

1. INTRODUCTION

The success of probability density function (pdf)
methods [1] in the modeling of turbulent combus-
tion is largely due to their ability to treat the
nonlinear, coupled reactions between different
chemical species. The complexity of the systems
that are modeled varies from the simple, one-step
irreversible, fast-chemistry problems considered
by Dopazo and O’Brien [2], Janicka et al. [3],
Nguyen and Pope [4], Pope and Anand [5] and
Anand and Pope [6], to the multispecies, finite-
rate systems employed by Pope [7], Pope and
Correa [8], and Chen, et al. [9].

Although pdf methods offer several advantages
over other methods, a weaknesses is the mod-
elling of the mixing process.

The first mixing model, developed by Curl
[10], had several defects, including an inability to
develop a continuous pdf from a discontinuous
initial distribution [11]. Modifications to Curl’s
model by Janicka et al. [12] overcame this defect,
but problems concerning the shape of the pre-
dicted pdf remained.

For the turbulent mixing of a conserved pas-
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sive scalar £, with pdf Z,(¢; ¢), the mean (£),

+ o
©= [t 0 ar, (1)
and the variance o7,

+ o0 2\‘
o = / (£ = (&) 2.(¢; 1) at, )
can be used to define the standarized fluctuation,
~ (8- (8)
f= (3)

The experimental evidence of Tavoularis and
Corrsin [13], and the direct numerical simulations
of turbulent mixing by Eswaran and Pope [14],
show that asymptotically the pdf of £, g’g(f),
adopts the Gaussian distribution,

2e(f) = —= p(—%) @

For the case of mixing in isotropic turbulence,
it is found [11] that Curl’s model (and its modifi-
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cation [12]) yields asymptotic pdfs that differ
greatly from the Gaussian density (Eq. 4). In
particular the flatness factor (g“ %) is infinite, rather
than having the Gaussian value of 3. To address
this problem a class of mixing models incorporat-
ing ‘‘age biasing’’ was developed by Pope [11]
that yield asymptotic pdfs that are approximately
Gaussian (e.g. flatness factors of 3.7). (In spite of
the incorrect asymptotic pdf in isotropic turbu-
lence, Curl’s model (and its modifications) pro-
duce flatness factors of about 3 when applied to
turbulent diffusion flames [4, 15].)

Preliminary application of these mixing models
to hydrocarbon-air turbulent diffusion flames
[16-19] revealed a separate defect reported by
Pope et al. [20]. Subsequently Chen and col-
leagues [9, 15] have confirmed the problem en-
countered. Simply stated, the problem is that
when applied to diffusion flames in the flamelet
regime, current models can mix cold fuel with
cold air to produce a cold, nonreactive, near-
stoichiometric mixture. This is clearly physically
incorrect (in the flamelet regime in the absence of
local extinction).

In this article, a new class of mixing models is
developed that substantially reduces the probabil-
ity of nonreacting mixing of fuel and air in
diffusion flames. First a test problem is developed
that enables the performance of different mixing
models in the flamelet region to be evaluated.
This test problem is applied to the existing mod-
els, and their deficiencies are revealed and dis-
cussed. Then a new class of mixing models is
described that offers improved performance over
the existing models in the flamelet region. In
order to improve the versatility of the new mod-
els, the scalar decay test used by Pope [11] is
used to check on the shape of the asymptotic pdf
of scalar fluctuations, and a compromise mixing
scheme is proposed that performs well in both
tests.

2. MODEL PROBLEM

In this section a model problem is constructed to
test the performance of mixing models applied to
turbulent non-premixed combustion in the flamelet
regime. Bilger [21, 22] and Peters [23] provide
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reviews on the nature and theories of turbulent
diffusion flames.

2.1. Combustion Regimes

To a first approximation, the qualitative nature of
turbulent combustion is determined by the
Damkohler number Da based on the Kolmogorov
time scale Ty

Da =r1,/7,, (5)

where 7. is a characteristic reaction time [24].
For Da < 1, there is distributed combustion: re-
action has little effect on the microscale structure
of the composition field, and current mixing mod-
els are satisfactory. For Da > 1 there is flamelet
combustion (but see Bilger [25]), and standard
flamelet models [23] (or a flamelet -model com-
bined with a pdf method [26]) can be used. But
for Da of order unity, the simple structure as-
sumed in flamelet models breaks down. This is a
regime of much current interest [9, 16-19], and
our aim is to extend the validity of mixing models
to it. In this context, therefore, a severe test of
mixing models is to apply them in the flamelet
regime (Da > 1).

2.2. Thermochemistry

We consider the simplest possible thermochem-
istry. Fuel and oxidant react rapidly in a one-step
irreversible reaction to form the product. The
mass fraction of the three species are denoted by
Ya(x, 1), Yo(x, t) and Yp(x, £). In the limit of
infinite Da (and with other standard assumptions)
these mass fractions are uniquely related to the
mixture fraction £(x, t) by, for example,

Yp(x, 1) = Y{(£(x, 1)), (6)

where the superscript f stands for ‘‘fully
burned,”” and the functions Y7, Y7, and Y are
sketched in Fig. 1.

The well-established [24] picture of turbulent
nonpremixed combustion with this thermochem-
istry and Da > 1 is that reaction is confined to
the stoichiometric surface defined by £(x, ) =
£,. Fuel and oxidant diffuse toward this reaction
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«oxidant fuel-»

«<product-
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Mixture Fraction ¢

Fig. 1. Schwab-Zeldovich functions YZ(£), (fuel), Y4(§),
(oxidant), and Y4(%), (products).

sheet from opposite sides, and are there com-
pletely converted to product. Consequently fuel
and oxidant never coexist.

In general (for finite or infinite Da) we define
S(%¢, Yp) to be the creation rate of Y, due to
chemical reaction. Note that S(¢, Yp) is defined
for 0 < Y, < YJ(£), and that S(¢, YZ(§)) is
zero. For the infinite Da flame-sheet limit to
exist, it is sufficient for S(£, Yp) to be infinite in
an arbitrarily small region of the ¢ — Y}, plane at
(], Y& s)). However, such a small region im-
poses an unnecessarily severe test on the mixing
model. Instead we specify S to be infinite in the
region R shown on Fig. 2. The stoichiometric
mixture fraction £, = 0.05, and the lean and rich
limits of the reaction zone £, = 0.03, £, = 0.07,
are chosen to correspond, approximately, to hy-
drogen-air or methane-air flames [25]. The lower
limit of the reactive region R is chosen, some-
what arbitrarily, to be Y2 = 0.6.

This thermochemical model was originally pro-
posed by Pope et al. [20]; a similar model has
been used by Chen and Kollmann [15].

(Referring to Fig. 2, as the boundary of the
reaction zone is crossed, the reaction rate S jumps
discontinuously from zero to infinity. It may be
preferred to regard S as increasing continuously

B
T
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° & & & .3

Mixture Fraction ¢

Fig. 2. Sketch showing the rich (¢ ,) and the lean (£,) limits
of the reaction zone R, which is bounded from below by Y.

to a large but finite value in a very small interval.
Then the resulting fields £(x, #), Yp(x, t) are
smoother and possible technical difficulties are
avoided.)

2.3. Flow Specification

The thermochemical model presented in the pre-
vious section can be applied to any turbulent
nonpremixed flow. For simplicity, however, we
consider constant-density, statistically stationary,
homogeneous isotropic turbulence with zero mean
velocity. The turbulent kinetic energy and its
dissipation rate are taken to be unity.

The thermochemical variables £(x, ¢) and
Yp(x, t) are statistically homogeneous. We intro-
duce { and y as sample-space variables corre-
sponding to £ and Y. Thus, the joint pdf of &
and Y, (i.e., the probability density of £(x,
t) = g‘9 YP(X’ t) = y) is ‘WSYP(K-9 Y t) (indepen'
dent of x). Initially (¢ = 0), the composition field
is specified to correspond to flamelet combustion
li.e., Yp(x, 0) = YZ(£(x, 0))], implying

Pevp(8: 950) = 2,(550)8(y — YH(2)).
(7)
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The initial pdf of £, 9’5, is specified to be a
B-function distribution with a mean (£) = 0.1
and variance 0.01. These values are obtained
from the experimental work of Masri et al. [17]
in a piloted methane-air flame and can be consid-
ered typical of hydrocarbon-air flames.

2.4. Correct Behavior

Applied to the test problem, an ideal mixing
model has the following behavior:

1. The mean (£) is constant.

2. The variance of ¢ decreases with time.

3. The product Y, is confined to the fully
burned line Y7(£).

4. Asymptotically (for large ¢) the pdf of £
decays as a Gaussian (as suggested by exper-
imental and numerical evidence [13, 14]).

There is no difficulty in constructing models
that satisfy conditions (1) and (2) exactly. We are
not concerned here with the rate of decay of the
variance: rather we concentrate on the shape
adopted by the joint pdf.

The third condition implies that the joint pdf is

%Yp(f, y;t) = QE(C t)B(y - YI{(())’ (8)
and also

(Ypl&=2¢)=Y{(5), ©)

that is, the mean of Y., conditional on ¢ is
Y{().

The requirement that the asymptotic pdf of £ is
Gaussian is evaluated by calculating the evolution
with time of the moments of £

m) == [ (- @2 ()t (10)

n
GE — o0

where o, is the standard deviation of ¢ evaluated
at time . In order for the distribution to decay to
a Gaussian, the odd moments n = 3, 5,... are
required to decay to zero, while the even mo-
ments asymptote to their Gaussian values of 3 for
n =4, 15 for n = 6, etc. Whether the moments
reach an asymptotic value, and how close they
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are to the Gaussian quantities, is a measure of
how well the mixing model performs with respect
to condition 4. (This condition is a form of the
scalar decay test used by Pope [11], but with a
different initial distribution of the scalar.)

3. EXISTING MODELS

The first stochastic mixing model was proposed
by Curl [10] in 1963 and has formed the basis of
many subsequent schemes, such as those by Jan-
icka et al. [12] and Pope [11]. In this section, the
mixing mechanism of Curl’s model and the Mod-
ified Curl’s model developed by Janicka et al. are
described in the context of the diffusion flame test
developed in Sec. 2. These two models are found
to perform poorly in the diffusion flame test and
the reasons for the deficient performance are
discussed and possible methods of improving the
models proposed.

3.1. Mixing Mechanism

At time ¢ = 0, the initial jpdf of ¢ and Yy,
WEYP(g‘, y; 0) (Eq. 7) is approximated by a
discrete distribution of N Dirac delta functions,

Zeyp(§5 73 0)
z%éMpﬁﬁU—ﬁ%» (11)

The error in the discrete approximation of
Zevp($, ¥5 0) (Eq. 11) is inversely proportional
to VN , [1]; thus for accuracy the value of N
should tend to infinity. However, an increase in
the value of N results in a corresponding in-
crease in the number of calculations that must be
performed in implementing the model. A com-
promise must therefore be struck between an
acceptable level of accuracy in the discrete ap-
proximation, and the computational resources
available. (For all calculations described in this
article, the value of N = 25 = 32, 768 is used.)

Each Dirac delta function in the approximation
of g’EYP( ¢, ¥; 0) (Eq. 11) can be considered as a
stochastic particle with a mixture fraction of £;
and product mass fraction of Yp,. The evolution
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of the joint pdf 2, yp(§, ¥; 1) with time is
achieved by the interaction and movement of
these stochastic particles in (£, Yp) space by the
mechanism described below.

During a small time interval 6¢, two particles i
and j with properties (£;, Yp,) and (¢ j» Yp)) are
selected, by choosing i and j at random from (1,
N), without replacement. The values of these two
particles are then changed by the mixing scheme
to (¢}, Y2) and (&§F, Y#), and the two particles,
with their new values are substituted back into the
ensemble. The process then repeats for the next
time interval.

The time interval 8¢ governs the rate at which
the joint pdf evolves and is calculated from

5t = 1/8wN, (12)

where w is the rate at which the standard devia-
tion of £ decays and B is a constant, determined
by the mechanism of mixing [1, 11].

The new values of the two particles i and j are
given by '

(&%, ¥3) = (1 - &) (&, Yp)
+5 (&0 V) + (8, T2),
(£, ¥8) = (1 - o)(§), Yp))
+5 (60 Ya) + (£, Y))-
(13)

For Curl’s model, o = 1, which gives the new
values of the two particles as the midpoint be-
tween the particles / and j in (£, Yp) space. For
the Modified Curl’s model, « is a random vari-
able, 0 < o < 1 with distribution A(a). In order
to minimize the occurrence of particles mixing
across R without reaction taking place, A(«) is
chosen as a uniform distribution between zero
and 0.05.

Should the new value of a particles lie within
the reaction zone R, then due to reaction that
particle is raised up to the fully burned line, i.e.,
Y% is replaced by YJ(£,), and/or Yg is re-
placed by YZ(¢ 7)- (A similar form of ‘‘Reaction
Zone Conditioning”’ has been used by Chen and
Kollmann [15], but with finite reaction rates.)

Product Mass Fraction Y,

.25

Mixture Fraction ¢

Fig. 3. Scatter plot of particle position at time = 0.4,
produced by the diffusion flame test with Curl’s mixing
model. (For clarity, only 8096 out of 32 768 particle positions
are shown.)

3.2. Curl’s Model

For Curl’s model (with a decay rate w = 1 and
B = 4.0) a scatter plot of particle position after
an elapsed time of ¢ = 0.4 (Fig. 3) shows that a
significant number of particles have moved away
from the fully burned line. This joint pdf suggests
that distributed combustion (Da < 1) is occur-
ring, rather than the prescribed flamelet combus-
tion. The evolution of the quantity (Y, |£) is
shown in Fig. 4, which shows the drift of ex-
pected particle position away from the fully
burned line, indicating that the deviation from the
correct position is not a transient effect. The
evolution of the normalised moments of § is
shown in Fig. 5. The mean is seen to remain
constant, and the variance decays exponentially to
zero—the correct results. However, the higher
order moments do not exhibit Gaussian behavior.
The odd moments pu, and pg do not decay toward
zero, indicating that the distribution is not asymp-
toting toward a symmetric pdf. The even mo-
ments p, and pg do not asymptote to their re-
spective Gaussian values of 3 and 15, but rather
show a steady increase (and also an increase in
their statistical error) as time progresses.
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Fig. 4. Evolution of (Y, |£) with time, produced by the
diffusion flame test with Curl’s mixing model.

3.3. Modified Curl’s Model

The performance of the Modified Curl’s model
(w =1 and B = 82.8) in the diffusion flame test
is similar to that of Curl’s model, despite the
difference in the selection of «. The scatter plot
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Fig. 5. Evolution of the moments p, of £ produced by the
diffusion flame test with Curl’s mixing model. O, mean; [J,
variance X 10%; A, skewness; ®, flatness; M, fifthness; A,
superskewness.

A.T.NORRIS ET AL.

Product Mass Fraction Y,
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Fig. 6. Scatter plot of particle position at time ¢ = 0.4,
produced by the diffusion flame test with the Modified Curl’s
mixing model. (For clarity, only 8096 out of 32768 particle
positions are shown.)

at time ¢ = 0.4 (Fig. 6) shows an improvement
over Curl’s model (Fig. 3), with the particle
positions lying in a band, close to Y7(£). How-
ever, the evolution of (Y, | £) (Fig. 7) shows an
increasing departure of the expected particle posi-
tion from YZ(£) with time, suggesting that the
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Fig. 7. Evolution of (Yp|£) with time, produced by the
diffusion flame test with the Modified Curl’s mixing model.
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Fig. 8. Evolution of the moments u, of ¢ produced by the
diffusion flame test with the Modified Curl’s mixing model.
O, mean; [J, variance X 10°; A, skewness; ®, flatness; M,
fifthness; A, superskewness.

Modified Curl’s model will yield results less and
less representative of high Da reaction as time
progresses. The evolution of the normalized mo-
ments of ¢ (Fig. 8) shows the same trends as
observed for Curl’s model: the mean and vari-
ance behaving correctly while the higher mo-
ments show no evidence of relaxing to Gaussian
values. - Chen and Kollmann [6] have produced
somewhat similar results to those shown in Fig. 6
with the Modified Curl’s mixing model, though
with different reaction zone size and reaction
rate.

3.4. Discussion

The performance of the two models in the diffu-
sion flame test shows that they are unable to
produce the correct joint pdf of £ and Y, for a
high Da flame, and that the pdf of the conserved
scalar ¢ does not asymptote to a Gaussain distri-
bution. For the present, we address only the
former defect.

The less-than-satisfactory jpdf obtained for
these two models can be explained by the mixing
process. Starting with a pair of particles residing
on the fully burned line, there are five possible

outcome (iv)

Product Mass Fraction Y,
\

outcome (v)

Mixture Fraction ¢

Fig. 9. Mixing outcomes (4) and (5) that result in particles
being moved away from YZ(£).

outcomes of the mixing process:

1. Both mixed particles stay on YZ(£) because
§;>& and &> &,

2. Both mixed particles stay on YZ(£) because
§i<ésand §; <&,

3. The two particles are removed from YZ(§)
by mixing, but the final particle values are
both in R, and so both particles return to
YZ(¢) due to reaction.

4. The two particles are removed from YZ(£)
by mixing; one of the final particle values is
in R, and so that particle returns to YZ(£),
while the other remains in a non-fully burned
state.

5. The two particles are removed from YZ(§)
by mixing; neither of the final particle values
is in R, and so both particles remain in a
non-fully burned state.

Clearly the last two mixing outcomes—sketched
in Fig. 9—are the mechanism responsible for the
drift of the jpdf away from YZ(£). Both out-
somes (4) and (5) are characterized by the selec-
tion of pairs of particles with values of ¢ that lie
on either side of £, and whose difference is large
compared to the width of the reaction zone R,
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ie.,
(ss - Ea)(ss - Eb) <0
&, &, > £, - & (14)

Thus for a mixing scheme to perform well in the
diffusion flame test, the selection of particle pairs
must be biased against selecting partners with the
two properties described above.

4. ORDERED PAIRING MODEL

In this section, a new class of mixing models is
developed based on the technique of ordered se-
lection of particle pairs. These models are shown
to give superior performance over existing mod-
els in the diffusion flame test, as well as provid-
ing an asymptotic pdf of ¢ with finite normalized
moments.

4.1. Motivation

In the previous section it was shown that the drift
of &, Yp( ¢, y) away from the fully burned line
Y,{(g‘) is caused by the selection of pairs of
particles that possess the properties given in Eq.
14. In existing models mixing occurs between
particles with a mixture fraction difference of
order one standard deviation of £, ¢;. Clearly, if
the selection of particle pairs is biased to ensure
that the partners have similar values of £, i.e.,
| £, — £5| < o, then the incidence of mixing
across &, is reduced, giving a closer fit to the
desired jpdf [20].

This requirement also appeals to the physical
aspects of mixing. The equation governing mix-
ing is
D—E =T'VZ,

Dt (15)
where T' is the molecular diffusivity. This shows
that £(x) is affected by the £ field within an
infinitesimal neighborhood of x, where ¢ differs
infinitesimally from £(x).

In order to achieve this selection bias, the
technique of ordered selection is introduced.
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4.2. Ordered Pairing Scheme

During a small time interval ¢, (Eq. 12), a
group of n particles with indices =, 7, ..., 7,
and properties (E,,, Ypr) (&4,
Ypry)so s (&4 Ypm,), are selected without
replacement from the ensemble of N stochastic
particles. The value of n is governed by the
requirement that it should be even to allow the
particles to be paired with each other, with no
unpaired particle left. We also require that 4 < n
< N, where the upper limit is to limit the chances
of selecting the same group of particles in the
next time step. Four is chosen as the lower limit,
since with n = 2 the existing models are recov-
ered. Throughout this paper a value of n = 8 is
used. We now define a reordering, p,,
P2, ..., P,, of the indices of the n particles so
that

£, <§,=< - s, (16)
These particles are known as a group of order
particles.

The pairing of the order particles is accom-
plished by the use of a selection matrix S,;. The
elements of S;; are composed of ones and zeros,
a one signifying that the ith order particle is to be
paired with the jth order particle, and a zero
represents no pairing between the ith and jth
order particles. There are m of these selection
matrices, S{Y’ (k =1, 2,..., m), with P, be-
ing the probability of S{;’. The expectation of S;;
is P;;, the mixing matrix, i.e.,

m

P, =(S;) = k‘élPkS},’-‘). (17)
The elements of P;; give the probability that the
ith order particle has the jth order particle as its
partner. The order particle pairs are now mixed
by the same means as the Modified Curl’s model
(Eq. 13), with the same distribution of «, and the
new values substituted back into the ensemble.

Certain restrictions on the selections of the
elements of S{}” (and thus P;;) can be developed
in response to certain assumptions made about the
mixing model. First we disallow self-selection,
and consequently the diagonal elements of S{¥
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and hence P;; are all zero. In addition we require
that the expectation of £ does not change with
time. This is accomplished by the selection of
S,?J’-" such that the sums of the columns equal one,
ie.,

n

_Zl P;=1. (18)
i

For this condition to be satisfied, it is sufficient
that S;; = S;; (see Appendix A). (A physical
interpretation of this condition is that no two or
more order particles may select the same partner
at the same time.)

By suitable choice of P;; it is possible to
recover the existing models. In order to negate
the effects of ordering, the requirement is that
each order particle should have equal likelihood
of selecting any other order particle as its partner.
This results in

P, = 1/(n-1),
0,

i #]J,
i=],

(19)

which recovers the Modified Curl’s model. By
selecting o« in Eq. 13 equal to unity, Curl’s
model is recovered.

4.3. Adjacent Pairing

The requirement that the difference in the value
of £ between particle pairs be minimized is best
met by the selection of adjacent order particles as

partners, i.e., particle p, pairs with particle P2y

particle p, pairs with particle P4, etc. This is
achieved through the choices m =1, P, =1,
and

n _ =

J

QOO OO O =0
COOOOOO
CSCOCOoOO—=OOO
COOOO~=OO
SCOm~ROOOOOC
COoOO~ROOOO
—O OO0 O0O0OO0

GOHOOOOOO
=) .

)

The performance of this mixing model (w = 1

1.1

1.0 -

Product Mass Fraction Y,
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0 .05 .10 .15 .20 .25

Mixture Fraction ¢
Fig. 10. Scatter plot of particle position at time f = 0.4,
produced by the diffusion flame test with the Adjacent Pairing
Scheme. (For clarity, only 8096 out of 32768 particle posi-
tions are shown.)

and 8 = 620.0) in the diffusion flame test is now
discussed.

The scatter plot of particle position in (£, Y,)
space at time ¢ = 0.4 is shown in Fig. 10. The
clustering of particles about YZ(£) shows that
this mixing model closely predicts the occurrence
of high Da or flamelet combustion, as opposed to
the incorrect predictions of the existing models
(Figs. 3 and 6). This result is reinforced by Fig.
11, which shows the evolution of (Y, | £). The
deviations of expected particle position from Y/
are seen to reach a maximum by time ¢ = 0.4
and then become smaller, the value at time ¢ =
2.0 being positioned almost on Y. The evolution
of the normalized moments of ¢ are shown in
Fig. 12. The mean and variance evolve in the
same manner as existing models; however, the
odd higher-order moments (n = 3, 5) decay ex-
ponentially to zero, indicating that the pdf of &
asymptotes to a symmetric distribution. Also the
higher-order even moments (n = 4, 6) asymptote
toward constant values of 1.5 and 2.9, respec-
tively, suggesting that a stationary pdf of ¢ has
been achieved. However, these values of flatness
and superskewness are much lower than the
Gaussian values of 3.0 and 15.0, which suggests
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that the stationary pdf has significantly smaller
tails than a Gaussian.

The adjacent pairing scheme’s performance in
the scalar decay test [11] is now evaluated. This
test takes an initial pdf of a scalar £, 2,({), with
a distribution composed of two delta functions of
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Fig. 12. Evolution of the moments u, of ¢ produced by the
diffusion flame test with the Adjacent Pairing Scheme. O,
mean; [J, variance X 105; A, skewness; ®, flatness; W
fifthness; A, superskewness.
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Fig. 13. Asymptotic pdf of ¢ produced by the Scalar Decay

Test, using the Adjacent Pairing Scheme. Gaussian distribu-
tion shown by dashed line.

equal size at £ = =+ 1. The mixing model is then
used to predict the evolution of Z,({) with time.
Experimental evidence shows that the pdf should
asymptote to a Gaussian; thus the performance of
the mixing model is judged by how close the
asymptotic pdf of & comes to a Gaussian. The
shape of the asymptotic pdf produced by the
adjacent pairing scheme in this test is shown in
Fig. 13. Clearly this model produces a very poor
representation of a Gaussian.

Thus the adjacent pairing scheme gives excel-
lent results in the diffusion flame test, and al-
though the pdf of ¢ does not decay to a Gaussian,
a symmetric pdf with finite moments is achieved.

4.4. Compromise Pairing

In the previous section it was shown that the
adjacent pairing scheme gives excellent perfor-
mance in yielding the correct jpdf in the diffusion
flame test. However, the asymptotic pdf of £ is
far from Gaussian. In order to improve the versa-
tility of the mixing scheme, a compromise pairing
scheme is suggested, which performs well in the
diffusion flame test, but also gives a pdf of £ that
is closer to Gaussian. In order to assist in the
selection of a new particle pairing scheme, a
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Gaussian decay test is developed (see Appendix
B). This test evaluates the change of an initially
Gaussian pdf of a scalar £, Z:({), due to the
influence of the particle pairing scheme. This
change is illustrated by the plotting of the func-
tion Q({), defined in Appendix B, against the
sample space variable {. For Gaussian decay, the
plot is a straight line of gradient —1 passing
through the origin. Any deviation from this line
indicates that the pdf does not evolve as a Gauss-
ian. For the case of adjacent pairing described in
the previous section, the plot of { against Q({) is
shown in Fig. 14. The deviation from the correct
result is most severe at the origin, where a posi-
tive gradient is present, while at { = +3 the plot
has a gradient of — 1. The pdf of £ shown in Fig.
13 confirms the non-Gaussian result.

By trying different combinations of order-par-
ticle pairing, a compromise pairing scheme has
been developed, with P;; given by

0 128000 0 0

2 000 8 0 0 0

8 006 3 3 0 0
p-Lt]lo 06033 8 o0
““20)10 8 3306 0 0
0 033 6 0 0 8

0 00 8 00 0 12

0 0000 8 12 0

(21)

The Gaussian "decay test gives the plot of {
against Q({) shown in Fig. 15. This shows a
closer fit to the straight line than for the adjacent
pairing scheme, and the gradient of the plot is
positive everywhere, indicating that the pdf of &
can be expected to be closer to Gaussian than the
adjacent pairing scheme.

Applying the compromise scheme (w = 1 and
B = 215.2) to the diffusion flame test reveals a
slightly inferior result to that of the adjacent
pairing scheme. The scatter plot of particle posi-
tion (Fig. 16) shows a larger spread of values
away from the fully burned line than in Fig. 10.
This deviation is a result of the pairing of nonad-
jacent order particles; thus raising the expected
difference of £ between particle pairs compared
to the adjacent pairing scheme. This result, how-

3

Q)

-3 1 1 n 1 1 1 . 4 1 1 1 1 \
-3 -2 -1 ° 1 2 3

¢
Fig. 14. Gaussian decay test. Solid line represents perfor-

mance of the Adjacent Pairing Scheme; dashed line represents
Gaussian decay.

ever, is still superior to that of the existing
schemes shown in Figs. -3 and 6 in that the
particles are still concentrated near Y,,f(é). The
evolution of the expected conditional particle po-
sition (Y, | £) (Fig. 17) shows a small deviation

Fig. 15. Gaussian decay test. Solid line represents perfor-
mance of the Compromise Pairing Scheme; dashed line repre-
sents Gaussian decay.
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Fig. 16. Scatter plot of particle position at time ¢ = 0.4,
produced by the diffusion flame test with the Compromise
Pairing Scheme. (For clarity, only 8096 out of 32 768 particle
positions are shown.)

from YI{ (£); however, as in the adjacent pairing
scheme the value of (Y, | £) at time ¢ = 2.0 has
moved back toward the fully burned line.

The evolution of the normalized moments of &,
shown in Fig. 18, demonstrates the same trends
as those of the adjacent pairing scheme. The only
significant difference is in the asymptotic values
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Fig. 17. Evolution of (Y| £) with time, produced by the
diffusion flame test with the Compromise Pairing Scheme.
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Fig. 18. Evolution of the moments p, of £ produced by the
diffusion flame test with the Compromise Pairing Scheme. O,
mean; [, variance X 105; A, skewness; ®, flatness; M,
fifthness; A, superskewness.

of the flatness and superskewness (n = 4, 6),
which have values of 2.1 and 6.5, respectively.
These are closer to the Gaussian values of 3.0
and 15.0 than those of the adjacent pairing
scheme.

The performance of the model in the scalar
decay test reflects this improvement. Figure 19
shows the asymptotic pdf produced by this test,
and, although non-Gaussian, it does not display
the bimodal shape exhibited by Fig. 13.

5. DISCUSSION

In the previous section two examples of the or-
dered pairing class of mixing models were de-
scribed and tested. We now offer some comments
on the class of models that has been developed.

This class of model is restricted in application
to problems in which there is an unambiguously
defined scalar £. This requirement is to ensure
that the linearity and independence principles [27]
are not violated.

Ther performance of these models in the diffu-
sion flame test is improved by the selection of a
high value of 7, as this lowers the expected
difference in ¢ between particle pairs. However,
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Fig. 19. Asymptotic pdf of ¢ produced by the Scalar Decay
Test, using the Compromise Pairing Scheme. Gaussian distri-
bution shown by dashed line.

the increase in computer time required to order
and mix the increased number of order particles
is a reason against the selection of an overly large
value of n. The choice of small values of n
should also be avoided, as the difference in £
between particle pairs increases, resulting in more
particles drifting away from the fully burned line.
Also the lower values of n limit the number of
permutations of particle pairing that are possible.

In addition to the mechanism of mixing, the
nature of the reaction zone R in the diffusion
flame test affects the performance of the mixing
models. The somewhat crude approximation of
chemical reaction occurring infinitely fast in a
finite area R, with no reaction outside this zone,
yields a measure of distortion in the results.
Particles whose postmixing value lies just outside
R differ greatly in distribution compared to those
whose final position is just inside R. The effects
of this are seen in the Figs. 3, 6, 10, and 16 at
the boundary of the reaction zone. By adoption of
a more physically correct reaction zone, with the
rate of chemical reaction S(&, Yp) given by a
continuous function, infinite at (£, 1) and decay-
ing to zero at (¢, 0), these discontinuities in
particle position would be reduced.

However, the reaction zone used in the diffu-

sion flame test has the advantage of simplicity,
and is satisfactorily in its role as a tool to com-
pare the merits of different mixing models.

Similar joint pdfs to those of Fig. 6 have been
obtained by Chen and Kollman [9], using the
Modified Curl’s model and with the reaction zone
proposed by Pope et al. [20]. However, some
results of Chen and Kollmann differ significantly
from the work presented in this paper. (i.e., Fig.
8 of Chen and Kollmann). Two possible reasons
for these differences are as follows.

Firstly, the reaction zone used in the last sec-
tion of Chen and Kollmann’s work consists of an
infinitesimally thick region, centered at &, and
extending down to a temperature of 300 K (the
equivalent of Y, = O in this article). Clearly this
zone is not representative of physical reactions,
and so results derived from this model can be
expected to differ from those described in this
paper.

Secondly, Chen and Kollmann’s results were
obtained for the case of an inhomogeneous flow
field, rather than the homogeneous case used in
this paper. Previous work [4, 15] has shown that
mixing calculations performed by Curl’s model
and the Modified Curl’s model for the case of a
passive scalar in an inhomogeneous flow yield a
nearly Gaussian distribution of scalar fluctuation,
despite non-Gaussian results in homogeneous
flow. Therefore it is not unreasonable to suggest
that the joint pdf #;y, will be affected by the
difference in flow field.

6. CONCLUSIONS

It has been shown that Curl’s model and the
Modified Curl’s model incorrectly produce joint
pdf’s characteristic of distributed combustion
when used to model fast or high Da diffusion
flames. In addition, the pdf of the mixture frac-
tion #,({) is seen to asymptote to a non-Gaus-
sian distribution with infinite flatness p, and su-
perskewness pq. In application to inhomogeneous
flows though, the pdfs of ¢ are closer to Gaussian
[4, 15].

A new class of models is presented based on
the concept of ordered particle pairing. Two ex-
amples of this type of model are described, the
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adjacent pairing scheme and the compromise
scheme. The adjacent pairing scheme yields ex-
cellent results in the diffusion flame test, giving a
joint pdf Z;y,({, y) that resides very close to
the fully burned line YZ({). However, the pdf of
the mixture fraction is seen not to asymptote to
the desired Gaussian distribution, but to give a
bimodal distribution with flatness and superskew-
ness of 1.5 and 2.9, respectively. The compro-
mise scheme yields a slightly inferior perfor-
mance in the diffusion flame test compared to the
adjacent pairing scheme, with %, yp(§, ») show-
ing a greater spread away from YZ({). The pdf
of the mixture fraction however, is seen to adopt
a better approximation to a Gaussian with flatness
and superskewness of 2.1 and 6.5, respectively.
It can be expected that in application to inhomo-
geneous flows both ordered-pairing schemes will
yield pdfs closer to Gaussian than in present tests.
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APPENDIX A: MIXING
AFFECTING THE MEAN'

WITHOUT

At time ¢, the ensemble of N stochastic particles
has the ensemble average of the scalar £, (&),
given by

1

(1) = = 3 £0).

™M=

I
—_

(A1)

1
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A short time interval 6¢, later, a group of n
particles from the ensemble is given new values
of £, and the new values of (£) is

1 N

()(z + 8t) = ~ > E(t+01). (A2)
i=1

For (£) not to change with time, we require

(€)(z + 8t) — (E)(2)

(&2 +8t) — £(1)) = 0.
(A3)

i=

z| -

As only n particles have been changed due to
mixing in the interval 6¢ (see Sec. 4.2), the
condition for no change in (£) can be written as
n
> (8- &) =0, (a4)
i=
where £% is the new value of the ith particle and
£,; is the old value.
From Eq. 13 £} can be expressed in terms of

£,; and its partner £,; (given by the selection
matrix S;;). Thus Eq. A4 becomes

> ((1 - O‘)Epi + %(Epi + > Sijspj)
i=1 Jj=1

_Epi) = 0’ (AS)
which can be simplified to
n n . n
Z Z Sijfpj = Z fpi- (A6)
i=1j=1 i=1

Since £,; are random, the above equation is
satisfied only if the columns of S;; sum to unity,
ie.,

n

ZSij':l’ j=1’2’-"’n' (A7)
i=1

(A sufficient condition for the satisfaction of Eq.
A7 is that S;; = S, as the event of one particle
having two or more partners has been excluded,
resulting in the sums of the rows of S;; being

equal to unity.) For the expectation of £ not to
change with time, the weaker condition,

n
ZPij=1’ j=1’2)“"n’ (A8)
i=1

is sufficient.

APPENDIX B: GAUSSIAN DECAY OF
MIXING MODEL

An approximate analysis is performed to examine
the influence of the probability matrix P;; on the
shape of the pdf produced by the ordered-pairing
model.

In the ordered-pairing model, in the time inter-
val 6¢ (Eq. 12) the mixture fraction of n particles
,i=12,...,n) changes by

Epi(t + 6t) = Epi(t) + %[Epj(t) - £pi(t)] 4
(B1)

where p; and p ; are partners, while there is no
change in the remaining (N — n) particles. Be-
cause o is chosen to be small compared to unity
(o = 0.05), the discontinuous process given by
Eq. 30 can be approximated by the continuous
process

ad
—E— = —‘yw(s - E*)’

Y (B2)

where v is a constant and £ * denotes the partners
mixture fraction.

Let Z.(¢; t) be the pdf of £(¢). Then from
Eq. B2 (by standard methods [1]) we obtain

22,

ry (B3)

’ [Z(e* - £19)]
- Yw a g. £ g- ’
where (£*| ¢) denotes the expectation of £* con-
ditioned on £ = ¢.
We now deduce the form of (£*|¢{) for the
case of Z,({; t) decaying as a Gaussian,

P, (45 1) = (B4)

1 ¢?
\/27ra£ xp 2022 ’

where 0,(?) is the standard deviation at time 7.



42

The evolution of this distribution with time is
given by

9% _ [(i)z - 1]9@5‘““ %
at o; dt
d d]noE
= _a—g(%f)T' (BS)

Now dIn o; /dt is a negative constant, —w, and
so equating Eq. B3 and Eq. BS yields

yo(f* — £]§) = wf (B6)
or
0(f) = (¢*|¢8) — ¢ = ¢/v. (B7)

We conclude then, that a mixing model that can
be approximated by Eq. B2 yields Gaussian de-
cay if and only if (£*| {)—or equivalently, Q(¢)
—is linearly proportional to ¢.

We now deduce an expression for (£*| {) given
by the ordered-pairing model. Let &; (i =1,
2,..., n) denote the mixture fraction for the n
samples, ordered so that §, < ¢, < .-+ <§,.
Given the pdf of £, P,({), the probability of a
sample £ = ¢ being the ith order statistic (i.e.,
¢ = £;) is known [28, p. 9]. So also the joint pdf
of two order statistics £; and £; is known [28, p.
10], and hence the conditional expectation (£; | £;
= {) can be obtained. In terms of these statistics
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we have
(E*If) = X:l leijqi<gj|£i = {).
i=1 j=

where P;; is the probability of the ith order
particle having the jth order particle as its part-
ner.

The above results are used as follows. For a
given pairing scheme (i.e., a given choice of
P;j), Q(f) is determined from Egs. B6 and B7
with the assumption that P,({) is Gaussian. Plots
of Q({) are shown in Figs. 14 and 15 for the
Adjacent-Pairing Scheme and the Compromise-
Pairing Scheme, respectively. The closer Q(¢) is
to a straight line, the more closely the pdf is
expected to evolve as a Gaussian.

It is evident that choosing partners that are
close in mixture fraction space is incompatible
with exactly Gaussian decay. Consider the case of
very small £, (i.e., £,/0, < —1). For this case
(¢;1£, = ¢) becomes independent of { as { tends
to —oo. Consequently Q({) has slope —1 as
{— —oo. And if partners are chosen to be close
in mixture fraction space, then (£*| ¢) tends to a
negative constant — C, say, as { tends to — oo,
Thus as { tends to infinity, Q(¢) tends asymptoti-
cally to the straight line Q_(¢) = —(C - 9).

This behavior is evident in figs. 14 and 15. The
same considerations for large values of { show
that Q({) asymptotes to the straight line Q_ ({)
= C — {. Clearly, for C > 0, there is no straight
line that is consistent with both asymptotes.

(B8)



