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Probability density function (PDF) methods are now well established and can be used
to accurately simulate flames with strong turbulence chemistry interactions. A pre-
partitioned adaptive chemistry (PPAC) methodology (Liang et al., Combustion and
Flame, 2015) has been proposed recently for the efficient implementation of combus-
tion chemistry in particle PDF methods. PPAC generates a library of reduced kinetic
models in an offline preprocessing stage. At runtime, PDF particles are dynamically
assigned one reduced model and its corresponding reduced representation, leading to a
significant decrease in both storage requirements and CPU time required for the inte-
gration of chemical source terms. In this work, we augment PPAC by combining it with
storage retrieval and dimension reduction techniques. Specifically, this work combines
PPAC with in-situ adaptive tabulation (ISAT) and rate-constrained chemical equilib-
rium (RCCE). Implementations for PPAC-ISAT, PPAC-RCCE, and PPAC-RCCE-ISAT
are described and their performance is examined for a partially stirred reactor (PaSR)
test case. The combined PPAC-RCCE-ISAT methodology shows a significant improve-
ment over the stand-alone PPAC methodology by reducing the number of redundant
direct integrations of similar compositions and reducing the number of variables that
need to be retained at runtime.
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Nomenclature

General
S chemical source term
�t simulation time step
τmix mixing timescale specification in PaSR
np number of particles in PaSR
nt total number of time steps in a PaSR simulation
ns number of species in the detailed mechanism
T (n) temperature of particle n
X (n)

k value of quantity X for particle n on time step k before the mixing fractional
step of a PaSR simulation

X (n)

k+ value of quantity X for particle n on time step k after the reaction fractional step
of a PaSR simulation
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X (n),D
k value of quantity X for particle n on time step k of a PaSR simulation with the

detailed mechanism
X (n),A

k value of quantity X for particle n on time step k of a PaSR simulation with
adaptive chemistry

n(n),A
s,k number of species in the reduced model used for particle n on time step k

nrel relative number of species
εX incurred error in quantity X
ε̂X conservation error in quantity X

ISAT
ε error in the linear approximation to the reaction mapping
A(n) mapping gradient matrix for particle n
f (l,n) linear approximation to reaction mapping for particle n
f (n) reaction mapping for particle n
x(n) initial composition of particle n
xq query composition

PPAC and combined techniques
F full composition space
FJ reduced composition space for model MJ

D database of compositions
MD detailed kinetic model
MJ reduced kinetic model for region FJ

φ(n) detailed representation of composition of particle n
φ(n),m detailed representation of composition of particle n after mixing fractional step
φ(n),r detailed representation of composition of particle n after reaction fractional step
φ

(n)
J reduced (skeletal) representation of composition of particle n based on MJ

φ
(n)
J ,r reduced (RCCE) representation of composition of particle n based on MJ

RCCE
� vector of species specific moles and temperature
�DR reaction mapping for a reconstructed composition
εr error in reaction mapping due to dimension reduction
{φrep} set of represented species
B constraint matrix for RCCE reduction
N number of compositions in database
r specific moles of represented species and elements
z species specific moles

1. Introduction

Turbulent combustion models can be broadly classified as topology-free and topology-
based [1,2]. Topology-free models do not make any assumptions on the underlying flame
structure, and are consequently more broadly applicable to a variety of reacting flows.
However, this general applicability comes at the cost of added computational expense.
Probability density function (PDF) methods [3,4] fall in the topology-free category and
have been shown to accurately capture flames with strong turbulence-chemistry interac-
tions in non-premixed [5], premixed [6], and partially premixed [7] modes of combustion.
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PDF methods are known to be computationally more demanding than simpler topology-
based approaches such as steady laminar flamelet models [8] in terms of CPU time and
memory requirements [2,9]. The magnitude of difference between these turbulent com-
bustion models for both CPU time and memory requirements is strongly dependent on the
size of the chemical mechanism used in the computation.

Recent efforts towards reducing the computational expense of PDF methods have
involved dimension reduction, storage retrieval, adaptive chemistry techniques, and their
combinations. Dimension reduction techniques function by identifying low-dimensional
manifolds in the high-dimensional composition space, thereby reducing the number of
variables that need to be retained. A non-exhaustive list of dimension reduction techniques
includes rate-constrained chemical equilibrium (RCCE) [10,11], computational singular
perturbation (CSP) [12], intrinsic low-dimensional manifolds (ILDM) [13], and invariant
constrained-equilibrium edge pre-image curve (ICE-PIC) [14]. On the other hand, storage
retrieval techniques selectively store combustion chemistry computations. These stored
values are used, where appropriate, to create accurate and efficient approximations for solu-
tions to subsequent combustion chemistry computations. The suitable use of inexpensive
approximations in lieu of directly performing combustion chemistry computations leads
to a reduction in the overall cost of performing a simulation. Artificial neural networks
(ANN) [15], in-situ adaptive tabulation (ISAT) [16], and piece-wise reusable implementa-
tion of solution mapping (PRISM) [17] are some examples of storage retrieval techniques
explored in the context of reacting flows.

Adaptive chemistry approaches exploit the variety of compositions encountered in a
turbulent combustion simulation by tailoring the chemistry representation for individual
compositions. This leads to significant savings by avoiding the use of unnecessarily com-
plicated chemical kinetic models for compositions that can be accurately described using
only a few species. The corresponding reduced models can either be identified on-the-fly
[18–20] or in an offline preprocessing stage [21–23]. The pre-partitioned adaptive chem-
istry (PPAC) approach proposed by Liang et al. [23] takes the latter approach: a set of
reduced models is first automatically generated based on the expected behaviour of the
LES/PDF simulation of interest. At runtime of the adaptive simulation, this set of reduced
models is dynamically utilised to perform the chemistry integration. The use of reduced
models instead of the detailed mechanism leads to a reduction in CPU cost. This approach
also provides memory savings by reducing the number of variables that need to be retained
at runtime. The reduction in memory requirement is a particularly important feature for par-
ticle PDF methods, which are known to have a significantly higher memory requirement
compared to topology-based combustion models [2].

The aforementioned techniques are complementary to each other as they pertain to
distinct aspects of chemistry modelling in a LES/PDF framework. Hence, they can be com-
bined to provide added advantages compared to their standalone counterparts. This insight
has recently led to a significant volume of work focused on combining a subset of these
techniques. These efforts, classified according to the specific combination of techniques
explored, are discussed below:

• Coupled dimension reduction and storage retrieval: Tang and Pope [24] developed
a combined RCCE-ISAT method, which uses ISAT with compositions in their RCCE
representation. Hiremath et al. [25] augmented RCCE-ISAT by combining it with the
Greedy algorithm with local improvement (GALI) for automatic selection of near-
optimal set of represented species for RCCE. Hiremath et al. [26] demonstrated the
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use of RCCE-ISAT in a large scale LES/PDF computation of Sandia flame D [27]. The
combined methodology was shown to reduce the wall clock time by 40% over stan-
dalone ISAT. Chatzopoulos and Rigopoulos [28] developed a combined RCCE-artificial
neural network (ANN) approach. Compositions from laminar flamelet calculations in
their RCCE representation were utilised to train an ANN. The methodology was tested
for RANS/PDF simulations of DLR-A and DLR-B [29,30] and a speedup of the order of
100 was reported over a standalone RCCE computation. A subsequent work by Franke
et al. [31] utilised this method in a LES/PDF simulation of Sydney flame L [32] with a
similar speedup compared to standalone RCCE.

• Coupled adaptive chemistry and storage retrieval: Contino et al. [33] first pro-
posed the use of dynamic adaptive chemistry (DAC) to perform the reaction integration
required by ISAT. The proposed method was shown to outperform standalone ISAT and
DAC for a simplified 2D homogeneous charge compression ignition simulations. Ren
et al. [19] augmented DAC-ISAT by using a modified mapping gradient matrix and
an improved version of ISAT. Recently, Xie et al. [34] proposed a dynamic adaptive
acceleration method where either DAC or ISAT are utilised for chemistry integration
based on a metric for composition inhomogeneity. The combined methodology showed
a performance improvement of up to 50% compared to standalone ISAT for an internal
combustion engine model simulations.

To the best of our knowledge, there is no existing work on a coupled dimension reduc-
tion and adaptive chemistry technique, or a coupled dimension reduction, storage-retrieval,
and adaptive chemistry technique. Motivated by this review of the literature, the aim of
the current work is to develop such an algorithm, which combines all three classes of
techniques to attain their combined advantages in a single simulation tool. We systemat-
ically build toward this combination, by first developing a combined adaptive chemistry
and storage retrieval technique, followed by a combined adaptive chemistry and dimen-
sion reduction technique. We use the PPAC methodology for adaptive chemistry, ISAT for
storage-retrieval, and RCCE for dimension reduction. The performance of the combined
methodologies is tested in a partially stirred reactor (PaSR) context. The subsequent sec-
tions of the paper include details of the PaSR implementation, a brief overview of ISAT,
RCCE, PPAC, details of PPAC-ISAT, PPAC-RCCE, and the combined PPAC-RCCE-ISAT
algorithms. An assessment of the performance of each combination is then provided in the
same order.

2. Partially stirred reactor (PaSR)

A partially stirred reactor (PaSR) represents a particle PDF computation for an idealised
statistically spatially homogeneous flow-field. PaSR is a computationally cheaper test case
representative of PDF computations of turbulent flames [25]. Hence, the testing of various
techniques described in subsequent sections is done using PaSR [16]. The PaSR imple-
mentation used in this work is described in detail in Liang et al. [23]. A summary of the
PaSR features relevant to subsequent developments is provided below for reference.

The PaSR contains a constant, even number of particles, whose compositions evolve in
time by increments of size �t according to inflow/outflow events, and mixing and reaction
fractional steps. In the inflow/outflow events, a certain number of particles are selected
at random with equal probability, and their compositions are replaced by inflow stream
compositions. The number of particles concerned and the inflow compositions are chosen
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according to the user-specified mean residence time τres and streams mass flow rates,
respectively. The mixing fractional step is performed using the pairwise mixing model
[16], where particle compositions (φ(n)) evolve as follows (for odd values of n):

dφ(n)

dt
= − (φ(n) − φ(n+1))

τmix
,

dφ(n+1)

dt
= − (φ(n+1) − φ(n))

τmix
,

(1)

where τmix is the user-defined mixing timescale. The particle composition during the
reaction fractional step evolves as:

dφ(n)

dt
= S(φ(n)), (2)

where S represents the rate of change of φ(n) due to chemical reactions. PaSRs initially go
through a short transient before reaching a statistically stationary state.

3. Overview of individual techniques

This section reviews important details of ISAT, RCCE, and PPAC, which aid in under-
standing the subsequent development of combined techniques.

3.1. In-situ adaptive tabulation (ISAT)

ISAT [16,35] is a storage retrieval technique that provides efficient and accurate approxi-
mations of a function using previously tabulated function values. In the context of reacting
flows, given an input composition (x), ISAT provides to within a user-specified error tol-
erance the reaction mapping (f ) for that composition, that is, the solution, after �t, of the
chemical kinetic equations corresponding to the reaction fractional step (Equation (2)).
ISAT uses a linear approximation to the reaction mapping (f l,n), which is computed as
follows:

f l,n(xq) = f (n) + A(n)(xq − x(n)), where A(n)
ij =

(
∂fi
∂xj

)(n)

, (3)

where xq is the input, or query composition, and f (n) and A(n) are the stored reaction
mapping and mapping gradient matrix for a previously resolved input composition x(n),
respectively. The error in the linear approximation to the reaction mapping is defined as
follows:

ε ≡ ∣∣∣∣f l,n(x) − f (x)
∣∣∣∣

2. (4)

Given an input composition, ISAT returns the linear approximation to its reaction mapping
if the approximation error ε is within the user-specified error tolerance, with a high prob-
ability. The region of the composition space around x(n) where the approximation error
is within the user-defined error tolerance is referred to as the region of accuracy (ROA).
ISAT approximates the ROA using ellipsoids of accuracy (EOAs), which usually provide
a conservative estimate to the ROA. At runtime, the EOAs can be modified or grown to
more closely approximate the ROA as further information becomes available.
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The following list briefly describes the sequence of operations ISAT follows to resolve
a given input composition:

(1) Retrieve: If the input composition is covered by a stored EOA, the linear approxima-
tion to the reaction mapping is returned.

(2) Grow: If the composition is not part of any existing EOA, it is directly integrated and
EOAs in close proximity of the input compositions are examined for grow attempts.
If the linear approximation to the reaction mapping obtained using one of the EOAs
in close proximity is within the user-specified error tolerance of the exact reaction
mapping, the EOA is grown to include the new composition.

(3) Add: If all attempts at a grow fail and the table is not full, then a new entry
corresponding to the input composition is added to the ISAT table.

(4) Direct evaluation: If the specified limit for the size of the table is reached and a
retrieve or grow cannot be performed, the composition is integrated directly without
saving the reaction mapping for subsequent use.

A more comprehensive description of ISAT can be found in Ref. [16]. The improved
algorithm described by Lu and Pope [35] and implemented in ISAT5 is used in the current
work.

3.2. Rate-constrained chemical equilibrium (RCCE)

RCCE [10,11] assumes that a non-equilibrium composition relaxes to chemical equilibrium
through a series of states that lie on a low-dimensional constrained-equilibrium manifold.
The constrained-equilibrium manifold provides a mapping between the specific moles of
represented species and the elements in unrepresented species, and the specific moles of all
the species. Hence at runtime, the variables that need to be retained include only the spe-
cific moles of represented species and the elements in unrepresented species. The number
of represented species and elements are usually significantly fewer than the total number
of species, which leads to dimension reduction.

To facilitate the coupling of RCCE and ISAT, the reaction integration in the current
work is done in the full composition space. This corresponds to the RCCE-Trajectory in
Full Space (TIFS) approach detailed in Hiremath and Pope [36]. This approach has been
shown to be more accurate, efficient, and robust than other available approaches [36].
The choice of performing the reaction integration in the full space leads to the need for
operators to switch from the full composition space to the RCCE space, and vice versa.
The reconstruction from specific moles of the represented species and elements in the
RCCE space to a representation in the full composition space, for a given pressure and
enthalpy, is done using CEQ [37]. At any time t, the representation of a composition in the
full space, z(t), can be converted to its representation in the RCCE space, r(t), as follows:

r(t) = BT z(t), (5)

where B is a constant matrix that can be determined from the elemental makeup of the
unrepresented species [38]. As discussed previously, the representation of a composition
in the RCCE space (r) is a vector of specific moles of represented species and elements in
unrepresented species. The representation of a composition in the full space (z) is a vector
of the specific moles of all species.

A critical step in using RCCE is the identification of the represented species. In the
current work, the Greedy algorithm of Hiremath et al. [39] is used. The Greedy algorithm
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sequentially adds to a set of represented species by making the locally optimal choice for a
well-chosen database of N representative compositions. The local optimality is gauged by
evaluating a reaction mapping error, εr, after a time step �t:

εr(�t, {φrep}) = [�DR(n)(�t, {φrep}) − �(n)(�t)]rms

[�(n)(�t)]rms
. (6)

Here, � is defined to be a vector of the species specific moles and temperature: � ≡ {z, T}.
Specifically, �DR(n)(�t, {φrep}) is the reaction mapping for a reconstructed composition, for
a chosen set of represented species ({φrep}), obtained from its RCCE representation r(n)(0).
�(n)(�t) is the reaction mapping for a full composition, z(n)(0), corresponding to the com-
position r(n)(0) in the RCCE space. z(n)(0) can be thought of as the exact reconstruction of
r(n)(0). An example of the [·]rms operator for �(n)(�t) is shown below:

[�(n)(�t)]rms =
√√√√ 1

N

N∑
n=1

‖�(n)(�t)‖2
2. (7)

The reaction mapping error shown in (6) is computed using both species specific moles
and temperature. We note that this is slightly different from the definition used in [39],
where the reaction mapping error is computed using only species specific moles. This
choice ensures a consistent error specification between PPAC and RCCE, and consequently
facilitates their coupling. Further details on this coupling are provided in Section 4.2.

3.3. Pre-partitioned adaptive chemistry methodology (PPAC)

The last individual technique we detail that will subsequently be combined with the tech-
niques discussed in the previous two sections is the pre-partitioned adaptive chemistry
(PPAC) methodology [23]. As mentioned previously, the PPAC approach consists of an
initial preprocessing stage, followed by a run time dynamic procedure. The offline pre-
processing stage of PPAC entails the generation of a set of reduced kinetic models. Those
reduced kinetic models are then selectively utilised at runtime to efficiently perform the
reaction fractional step.

Figure 1 shows a schematic detailing both these stages. More specifically, the prepro-
cessing stage consists of the following steps:

(1) Database creation: A database (D) of compositions is generated using the detailed
kinetic mechanism (MD). These compositions are assumed to be representative of those
encountered at runtime.

(2) Partitioning: The full composition space F is partitioned into a user-specified num-
ber of regions ({FJ }). The partition of the composition space is determined such
that compositions belonging to each region are kinetically homogeneous. The kinetic
homogeneity of a region is defined as the ability to generate a reduced mechanism
of minimal size that can accurately describe the short time reaction mapping for any
compositions belonging to it [23].

(3) Reduced modelling: Specialized reduced representations ({φJ }) and reduced kinetic
models ({MJ }) are derived for each region identified in the previous step using the
directed relation graph with error propagation (DRGEP, [40]) method according to
user-specified targets.
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Figure 1. PPAC offline preprocessing stage and runtime adaptive algorithm, shown here for a PaSR
simulation.

At the start of each time step in the online stage of PPAC, the particles carry a reduced
skeletal representation (φ(n)

J ) for a known region (J). The key steps through which a particle
composition evolves in a time step are as follows:

(1) Reconstruction: At the start of the mixing fractional time step, the detailed repre-
sentation of particle compositions (φ(n)) are reconstructed from their reduced skeletal
representations.

(2) Mixing: The reconstructed composition are mixed (according to Equation (1)),
yielding mixed compositions (φ(n),m) in the full composition space.

(3) Classification: The mixed compositions are classified into appropriate regions. After
mixing, φ(n),m has moved to region J ′.

(4) Reduction: Particle compositions in the full composition space are then converted to
the reduced skeletal representation corresponding to their respective regions (φ(n),m

J ′ ).
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(5) Reaction mapping using direct integration: The particles carrying the reduced skele-
tal representation are directly integrated using the reduced chemical kinetic models
derived in the preprocessing stage corresponding to their respective regions.

The integrated values of particle composition, φ
(n),m
J ′ (t + �t), are then used at the start of

the next time step. For a comprehensive description of the PPAC methodology, we refer
the reader to Liang et al. [23].

4. Development of combined techniques

We now develop coupled approaches based on the techniques discussed in the previous
section. Specifically, we focus on coupled PPAC-ISAT, PPAC-RCCE, and PPAC-RCCE-
ISAT. We start by investigating PPAC coupled with ISAT only, then PPAC coupled with
RCCE only, to first assess the behaviour of each pair of techniques independently to one
another. We then move on to the full PPAC-RCCE-ISAT combination.

4.1. PPAC-ISAT

The coupled PPAC-ISAT approach is examined first in this section, and a schematic for
it is shown in Figure 2. The preprocessing stage of PPAC-ISAT being identical to that of
PPAC, we do not include it in the schematic. A comparison between Figures 1 and 2 shows
that the only difference in the online stage of PPAC and PPAC-ISAT is in the reaction frac-
tional step: the reaction mapping is obtained using ISAT in PPAC-ISAT, whereas direct
integration is systematically used in PPAC. The use of ISAT for resolving incoming com-
positions in their reduced skeletal representations implies that a distinct table is required
for each individual region. The work required to retrieve from the table and storage needed
per table entry scale as the square of the number of species. Additionally, the performance
of ISAT has been shown to degrade beyond 50 species [25]. Hence, there is a significant
benefit to building a distinct ISAT table for each reduced model with relatively few species,
compared to a single table using a detailed mechanism with hundreds of species.

For brevity’s sake, we do not repeat the steps in the online stage of PPAC-ISAT that are
identical to that of PPAC, and focus instead on the reaction mapping using ISAT, which
replaces item (5) in the PPAC procedure:

(5�) Reaction mapping using ISAT: The particles carrying the reduced skeletal repre-
sentation are resolved by using the ISAT table corresponding to that specific region.
If ISAT cannot resolve the input composition using a retrieve, this composition is
integrated using the reduced model specific to that region as part of all other operations.

4.2. PPAC-RCCE

While PPAC-ISAT is expected to improve CPU time compared to standalone PPAC,
PPAC-RCCE, developed in this section, is expected to improve upon memory require-
ments. Figure 3 shows a schematic for the PPAC-RCCE method. Compared to PPAC, an
additional step in the preprocessing stage is required for PPAC-RCCE to determine the
represented species for each region and its corresponding reduced model. The represented
species for each reduced model are determined with the Greedy algorithm [39] using com-
positions in the database D. The detailed compositions in D are classified and converted
to their region-specific reduced skeletal representations. The Greedy algorithm is run for
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Figure 2. Coupled PPAC-ISAT methodology, online adaptive part only.

each region and its corresponding reduced model and compositions. The Greedy algorithm
provides near-optimal sets of represented species with increasing cardinality that lead to
non-increasing reaction mapping errors. The final choice of the represented species is made
by the user based on the maximum reaction mapping error that is deemed acceptable. In
the current work, this cutoff for determining the set of represented species is specified to
be 10% of the DRGEP error cutoff. As noted previously (section 3.2), the reaction map-
ping error is computed using both specific moles of all species and temperature to ensure
consistency with the DRGEP error specification.
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Figure 3. Offline preprocessing stage and online adaptive algorithm for the combined PPAC-R-
CCE methodology.

At the start of each time step in the PPAC-RCCE simulation, the particles carry a reduced
RCCE representation (φ(n)

J ,r ) for their known region (J). The particle compositions evolve
in time through the following key steps:

(1) Reconstruction: At the start of the mixing fractional time step, detailed representation
of particle compositions are reconstructed from their reduced RCCE representations.

(2) Mixing: The reconstructed compositions are mixed in the full composition space.
(3) Classification: The mixed compositions are classified into appropriate regions.
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(4) Reduction (skeletal): The particle compositions in the full composition space are
converted to the reduced skeletal representation corresponding to their respective
regions.

(5) Reaction mapping using direct integration: The particles carrying the reduced
skeletal representation are then integrated using the reduced chemical kinetic models
corresponding to their respective regions.

(6) Reduction (RCCE): The integrated compositions in reduced skeletal representation
are finally converted to their reduced RCCE representation.

The particles, now carrying the region-specific, reduced RCCE representation φ
(n)
J ,r (t + �t),

are ready to be used at the start of the next time step.

4.3. PPAC-RCCE-ISAT

Building on the algorithms now available for both PPAC-ISAT and PPAC-RCCE, we pro-
vide next a detailed description of the fully coupled PPAC-RCCE-ISAT methodology.
The algorithm must satisfy a number of practical constraints, in particular: the particle
compositions at the beginning and end of the time step must carry region-specific RCCE
representations, mixing has to be done using the full representation, and ISAT must per-
form direct integrations (whenever necessary) using the region-specific reduced kinetic
mechanisms. Due to these constraints, the order in which mixing and reaction proceed
now does matter. We consider two different implementations, differentiated by the order in
which the mixing and reaction fractional steps are performed: (MR) when mixing is done
prior to reaction, and (RM) when the reaction fractional step is done first.

A visualisation of the PPAC-RCCE-ISAT (MR) algorithm is available in Figure 4, while
the (RM) variant, with reaction fractional step coming first, is shown in Figure 5. The pre-
processing stage for both options is identical to that of the PPAC-RCCE methodology, and
is therefore omitted here. Figure 4 shows that for PPAC-RCCE-ISAT (MR), the conversion
from the reduced RCCE space to the reduced skeletal composition space is performed prior
to every mixing fractional step and during the reaction fractional step, whenever ISAT does
not resolve the input composition as a retrieve. In contrast, PPAC-RCCE-ISAT (RM) only
involves reconstructing the composition in the reduced skeletal space during the reaction
fractional step if the input composition is not resolved as a retrieve. Reconstruction from
the reduced RCCE space to the reduced skeletal space is a much more expensive opera-
tion than a reconstruction from the reduced skeletal space to the full composition space.
Hence, we deem PPAC-RCCE-ISAT (RM) to be a superior option as it obviates the need
for a reconstruction from the reduced RCCE space to reduced skeletal space in the mixing
fractional step, and only consider the (RM) option in the remainder of this paper.

At the beginning of the time step, the particles carry the reduced RCCE representation
of their composition (φ(n)

J ,r (t)) corresponding to the region they belong to (J). The particle
compositions then evolve in time through the following key steps:

(1) Reaction mapping using ISAT: The particle compositions are advanced in time
according to their region-specific reduced kinetic model. Specifically, the table corre-
sponding to the region the particle belongs to is used. If the input composition cannot
be retrieved from the table, direct integration is required, which proceeds through the
following sub-steps:
(a) The input composition is reconstructed to its reduced skeletal representation
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Figure 4. Adaptive algorithm for the PPAC-RCCE-ISAT (MR) methodology.

(b) The reconstructed composition is then integrated using the reduced model corre-
sponding to the region, resulting in the composition after reaction, φ

(n),r
J , still in its

reduced skeletal representation.
(2) Reconstruction (skeletal): Prior to the mixing fractional time step, detailed rep-

resentation of particle compositions are reconstructed from their reduced skeletal
representations.
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Figure 5. Adaptive algorithm for the PPAC-RCCE-ISAT (RM) methodology.

(3) Mixing: The reconstructed compositions are mixed, leading to mixed compositions in
the full composition space.

(4) Classification: The mixed compositions are classified into appropriate regions.
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(5) Reduction (complete): The particle compositions in the full composition space are
then converted to the reduced RCCE representation corresponding to their respective
regions.

The compositions at the end of the mixing fractional step are now ready to be used for the
next time step.

5. Results and discussion

5.1. PaSR configuration

A PaSR is used for testing the techniques and their combinations described in previous
sections. The key parameters for the PaSR configuration used in the current work are listed
in Table 1.

We use a non-premixed piloted PaSR as our test case and the composition of the three
streams in terms of mass fractions is specified in Table 2. A detailed propane mechanism
consisting of 115 species and 1308 reactions developed by Curran et al. [41] is used in
this work. The current PaSR configuration is identical to the one used by Liang et al.
[23] barring the number of particles: a higher number of particles is used here to reach

Table 1. PaSR parameters.

Parameter Value

Pressure 1 bar
Number of particles 10,000
Time step 0.1 ms
Mixing time scale 1 ms
Pairing time scale 1 ms
Residence time 10 ms

Table 2. Stream specification for PaSR.

Stream mass fraction

Species Pilot Fuel Oxidizer

C3H8 0.0 1.0 0.0
N2 7.2085 × 10−1 0.0 0.767
O2 7.6607 × 10−3 0.0 0.233
CO2 1.6146 × 10−1 0.0 0.0
H2O 9.5159 × 10−2 0.0 0.0
CO 1.2162 × 10−2 0.0 0.0
OH 2.2616 × 10−3 0.0 0.0
H2 2.2880 × 10−4 0.0 0.0
O 1.9634 × 10−4 0.0 0.0
H 1.6928 × 10−5 0.0 0.0
HO2 8.0954 × 10−7 0.0 0.0
H2O2 6.1000 × 10−8 0.0 0.0
HCO 1.2371 × 10−9 0.0 0.0
CH2O 1.6891 × 10−11 0.0 0.0



1036 A. S. Newale et al.

a larger number of queries for testing the performance of PPAC-ISAT and PPAC-RCCE-
ISAT. The current configuration for PaSR is run for a physical time of 0.425 s, leading to a
total of 4.25 × 107 input compositions, enough to gather proper statistics and assess ISAT
performance for both PPAC-ISAT and PPAC-RCCE-ISAT methodologies.

5.2. PPAC

This section details the results for PPAC in the PaSR configuration described above. The
results for standalone PPAC serve as a reference to assess the performance of the combined
techniques. The initial composition database required for the preprocessing stage is gener-
ated using the same PaSR configuration, with a different random seed [23]. This ensures
a justifiable test by avoiding identical particle evolution in time for the preprocessing and
runtime stages. The number of regions used is 10. A larger number of regions is not used,
as they lead to only minor improvements for the current configuration [23]. Additionally,
this choice simplifies the presentation of subsequent analysis of the coupled techniques.
The heat release rate, C3H8, O2, OH, CO, and CO2 are used as targets for reduction.

5.2.1. Computational accuracy and memory requirements

A metric to quantify the gain in terms of memory requirement is the relative number of
species used in the simulation, defined as:

nrel ≡ 1

ntnpns

nt∑
k=1

np∑
n=1

n(n),A
s,k , (8)

where n(n),A
s,k is the number of species in the reduced model used for particle n on time step

k, nt is the total number of time steps in the simulation, np is the number of particles in
PaSR, and ns is number of species in the detailed mechanism. The incurred error for a
quantity X is defined as follows:

εX ≡
∑nt

k=1

∑np

n=1

∣∣X (n),A
k − X (n),D

k

∣∣∑nt
k=1

∑np

n=1

∣∣X (n),D
k

∣∣ , (9)

where X (n),A
k and X (n),D

k are the values of the quantity X for particle n, at time step k, in the
PaSR simulation using adaptive and detailed chemistry respectively. The PaSR test is per-
formed several times, each with a different value of the specified DRGEP error tolerance,
leading to different incurred errors, as defined by Equation (9).

Figure 6 shows the relative number of species as a function of the incurred error in
temperature for PPAC. The performance of the degenerate, that is, non-adaptive, case is
also shown in Figure 6. The degenerate case refers to the use of PPAC with a single region
and is similar to the use of a conventional reduced mechanism obtained using DRGEP in a
non-adaptive simulation. We observe that for approximately the same incurred error, PPAC
leads to a much smaller relative number of species used in the chemical kinetics compared
to the degenerate case. The reduction in the relative number of species shows the benefit
of using specialised reduced models for different regions of the composition space.

The subsequent testing of PPAC-ISAT, PPAC-RCCE, and PPAC-RCCE-ISAT is not per-
formed on the entire range of adaptive PaSR simulations used to gauge the performance
of PPAC. We instead select a subset of four specified reduction error tolerances showing
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Figure 6. Relative number of species as a function of incurred error in temperature for the
degenerate (non-adaptive) case (NR = 1) and for PPAC(NR = 10).

the right balance between the relative number of species and the incurred error in tempera-
ture. We note that each of the four specified reduction error tolerances corresponds to a set
of reduced kinetic models and this terminology is used interchangeably. For the purposes
of the upcoming discussion, these cases are labelled as A1, A2, A3 and A4 as shown in
Figure 6. The labels are chosen simply by indexing the adaptive PaSR runs used for testing
PPAC in decreasing order of the relative number of species.

5.2.2. Conservation errors

PPAC entails a conversion from the full composition space to the reduced skeletal space
which does not conserve elements or enthalpy. Hence, element and enthalpy conservation
errors are an important check on the performance of PPAC. The conservation error for a
quantity X is defined as follows:

ε̂X ≡ 1

np

1

nt

nt∑
n=1

∣∣∣∣
∑np

n=1

(
X (n)

k+ − X (n)

k

)
∑np

n=1 X (n)

k

∣∣∣∣, (10)

where X (n)

k and X (n)

k+ are the values of quantity X for particle n, at time step k, before and
after the mixing and reaction fractional steps respectively. Figure 7 shows the conservation
errors as a function of the incurred error in temperature. The conservation errors generally
increase with increasing incurred error in temperature, and with decreasing relative num-
ber of species. Overall, the conservation errors remain bounded below 2 × 10−5 and are
deemed acceptable.

5.3. PPAC-ISAT

We now examine the performance of PPAC-ISAT for the PaSR configuration discussed
in 5.1, for the set of reduced models A1–A4. The performance of PPAC-ISAT is explored
for ISAT error tolerance specifications of 10−4, 5 × 10−5, and 10−5. We reiterate that ISAT
is used to resolve incoming compositions in their reduced skeletal representations. Con-
sequently, at runtime, multiple ISAT tables are simultaneously built corresponding to the
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Figure 7. Element and enthalpy conservation errors as a function of incurred error in temperature
for PPAC.

user-specified number of regions. The maximum size for each ISAT table is specified to be
500 MB.

5.3.1. Computational accuracy and memory requirements

Figure 8 shows the relative number of species as a function of the incurred error in tem-
perature for PPAC-ISAT with different ISAT error tolerance specifications. The curves for
PPAC and the degenerate case are included as reference.The curves for PPAC-ISAT con-
nect four adaptive PaSR runs using the sets of reduced models A1–A4 and a common ISAT
error tolerance specification. We recall that ISAT is a storage retrieval technique designed
for reducing CPU time, and does not lead to dimension reduction. Hence, the relative
number of species for PPAC-ISAT runs are essentially identical to PPAC runs.

Figure 8. Relative number of species as a function of incurred error in temperature for the degen-
erate case, PPAC, and PPAC-ISAT, showing that the choice of error tolerance in ISAT, if not tight
enough, can affect the performance of the PPAC-ISAT methodology.
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PPAC-ISAT incurs errors due to reduction and tabulation. Here, reduction error refers to
the errors incurred due to the use of reduced chemical kinetic models at runtime. Con-
sequently, PPAC and PPAC-ISAT runs that use the same set of reduced models incur
approximately the same reduction error. Hence, the relative contribution of the reduc-
tion and tabulation errors can be inferred by comparing the overall incurred error for
adaptive PaSR runs for PPAC and PPAC-ISAT using the same set of reduced models.
Cases A3 and A4, associated with larger reduction ratios, and therefore larger incurred
error, are not affected by the introduction of ISAT: we infer that for those cases, the
reduction error dominates the tabulation error for all ISAT error tolerance specifica-
tions. However, for the lower reduction error tolerance cases A1 and A2, there exists a
cutoff for the ISAT error tolerance above which the PPAC-ISAT errors are dominated
by the tabulation error. From Figure 8, we can conclude that the ISAT error tolerance
should be set to a value at least an order of magnitude smaller than the desired incurred
error.

5.3.2. Conservation errors

PPAC-ISAT, in a similar fashion as PPAC, incurs errors in element and enthalpy conser-
vation due to the conversion operation from the full space to the skeletal space. Figure 9
shows the conservation errors for the three different ISAT error tolerance specifications as
a function of the incurred error in temperature. The conservation errors similar to PPAC
remain bounded below 2 × 10−5 and are deemed to be satisfactory.

Figure 9. Element and enthalpy conservation errors as a function of incurred error in temperature
for PPAC-ISAT runs with three different ISAT error tolerance specification. (a) ISAT error tolerance:
1 × 10−4, (b) ISAT error tolerance: 5 × 10−5 and (c) ISAT error tolerance: 1 × 10−5.
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5.3.3. Computational efficiency

An important metric to gauge the performance of ISAT is the fraction of queries that
are resolved by ISAT as a retrieve. For these queries, ISAT returns the computationally
efficient linear approximation to the reaction mapping as opposed to directly solving an
expensive set of stiff ODEs. Table 3 shows the percent of total queries resolved as a retrieve
for the various PPAC-ISAT runs. Overall, we observe that a large (≈ 70−90%) fraction of
the queries are resolved as a retrieve, with an expected trend of decreasing fraction of
retrieves with increasingly stringent error tolerance specification for ISAT.

The total CPU time of an adaptive simulation divided by the total CPU time of a non-
adaptive simulation with the same configuration using a detailed mechanism is defined as
the relative time [23]. Table 4 reports the relative time for both PPAC and PPAC-ISAT
runs. We note that the relative time for PPAC-ISAT is closely related to the retrieve per-
centage reported in Table 3. A higher retrieve percentage leads to a lower relative time, as
it involves a more frequent use of the computationally efficient linear approximation. For
the same set of reduced models, we observe an increasing relative time as the ISAT error
tolerance specification is decreased due to the decreasing retrieve percentage. For the set
of reduced models A3, with an ISAT error tolerance specification of 10−4, we observe that
for an incurred error in temperature of 1.1 × 10−3, about 94% of the queries are resolved
as a retrieve leading to a relative time of 0.075.

5.3.4. Performance analysis

This section details a more in-depth investigation into the performance of PPAC-ISAT.
We recall that PPAC-ISAT resolves queries using multiple tables, each one corresponding
to one of the regions in the partitioned composition space. On the other hand, standalone
ISAT resolves queries with a single table using the detailed mechanism. The performance
of PPAC-ISAT is expected to improve upon the performance of standalone ISAT due to
the following:

Table 3. Total retrieve percentage for various PPAC-ISAT runs.

ISAT error tolerance specification

Run number 10−4 5 × 10−5 10−5

A1 91.628 85.608 73.103
A2 92.707 86.914 74.572
A3 94.392 89.205 74.859
A4 94.662 90.145 75.059

Table 4. Relative time for various PPAC and PPAC-ISAT runs.

ISAT error tolerance specification

Run number PPAC 10−4 5 × 10−5 10−5

A1 0.399 0.154 0.219 0.303
A2 0.299 0.119 0.170 0.232
A3 0.189 0.075 0.109 0.159
A4 0.116 0.048 0.068 0.105
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• Partitioning, which leads to individual ISAT tables resolving queries that are kinetically
homogeneous, and therefore, more likely to be retrieved.

• The use of reduced kinetic models, which reduces the dimension of the composition
space where lookup is performed and the CPU time required for reaction integration.

To quantitatively compare the performance of ISAT and PPAC-ISAT and specifically
determine the advantages of partitioning and the use of reduced models, we examine the
three variants shown in Figure 10 and described in detail below.

(a) A single ISAT table is used with the detailed mechanism to resolve all queries. This
variant corresponds to standalone ISAT.

(b) Multiple ISAT tables corresponding to the user-specified number of regions are used
with the detailed mechanism to resolve the queries.

(c) Multiple ISAT tables corresponding to the user-specified number of regions are
used with the corresponding reduced mechanisms to resolve all queries. This variant
corresponds to PPAC-ISAT.

To test the aforementioned three variants, a database of detailed compositions is used.
The database is obtained from a non-adaptive PaSR run using the same configuration as
before, with the detailed mechanism. An ISAT error tolerance specification of 10−4 is used
for all variants. The maximum table size is specified to be 5 GB for variant (a) and for each
table in variant (b). The variant (c) is tested using a maximum size specification of 500
MB for each table. The detailed compositions are classified and converted to their reduced
skeletal representation for variant (c) before calling ISAT. Variant (c) is tested using the
sets of reduced models A2 and A3.

The metrics used to characterise the performance of ISAT are the retrieve percentage,
relative build time, and relative query time. The build time is defined to be the total time
spent on queries resolved as add or grows [25]. The query time is defined to be the average
time spent on resolving a query once the table is built. The build time for individual tables
is estimated using the method detailed in Hiremath et al. [25]. For variants (b) and (c),
which maintain multiple ISAT tables, we use the mean build time and a weighted mean
for the query time. The weighing factor utilised is simply the number of queries used for
determining the query time of individual reduced models. The build and query times are
reported relative to the standalone ISAT variant.

Table 5 shows the relative build time, relative query time, and retrieve percentage for
the three variants. A significant reduction in the relative build time is observed for variant
(b) compared to variant (a). This reduction is attributed to the partitioning, which leads to
individual ISAT tables resolving queries more likely to be similar from the kinetics point
of view. The resolution of kinetically homogeneous queries implies that a smaller subset
of the accessed region is tabulated, reducing the number of queries required for building
the table and consequently reducing the build time. An additional reduction in the build
time is observed for variant (c) compared to (b), explained by computationally cheaper
adds and grows due to the use of reduced kinetic models in variant (c). Additionally, the
use of reduced models causes a reduction in the relative query time, since the table lookup
is performed in a smaller number of dimensions.

To explore the performance of variant (c) in more depth, we show the relative build
and query time of individual reduced models in Figure 11. The fraction of species for the
region-specific reduced model (skeletal nrel), i.e. the number of species in a reduced model
divided by the number of species in the detailed mechanism, is also shown in Figure 11.
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Figure 10. Three variants of query resolution with ISAT used to examine the benefits of partition-
ing and the use of reduced models for reaction integration.

The final bar in Figure 11 shows the fraction of queries classified as belonging to a spe-
cific region (FQCR). The partitioning of the composition space is the same for both A2
and A3. Hence, the fraction of classified compositions is identical for A2 and A3 and is
reported only once. We observe that more than 50% of the queries are resolved by mod-
els M1–M3, which contain between 20% and 27%, and 9% and 15% of the species in
the detailed mechanism for A2 and A3, respectively. The regions corresponding to these
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Table 5. ISAT performance metrics for the three PPAC-ISAT variants under investigation.

Variant Relative build time Relative query time Retrieve percentage

(a) 1 1 93.2
(b) 0.181 0.84 96.5
(c) (∼ A2) 0.029 0.59 93.0
(c) (∼ A3) 0.027 0.36 94.5

reduced models have relative query times of about 10−3. The resolution of more than half
the queries at a fraction of the query time of standalone ISAT shows the advantages of using
PPAC-ISAT. The compositions belonging to these regions are essentially non-reactive and
consequently can be described effectively by reduced models with such a small number
of species. The fraction of non-reactive compositions in a turbulent combustion computa-
tion is expected to be significantly higher than that of a PaSR computation. For instance,
a significant fraction of the domain used for the LES/PDF computation of Sandia flame
D reported by Hiremath et al. [9] is filled with particles having the unmixed coflow com-
position. Due to the expected increase in the fraction of non-reactive compositions, we
expect further improvement in the performance of PPAC-ISAT over standalone ISAT in a
turbulent combustion simulation.

5.4. PPAC-RCCE

This next section explores the performance of RCCE coupled with PPAC. The methodol-
ogy is the one described in Section 4.2, and as above, we utilise the set of reduced models
A1 − A4 and the PaSR configuration detailed in 5.1.

5.4.1. Computational accuracy and memory requirements

A key differentiator between PPAC-RCCE and PPAC is that particles in PPAC-RCCE
carry reduced RCCE representations, whereas they carry reduced skeletal representations
in PPAC. Consequently, we expect PPAC-RCCE to lead to a significant reduction in the
average number of species carried by the particles. This hypothesis can be tested by looking
at the relative number of species nrel, defined in Equation (8), as a function of the incurred
error in temperature, as shown in Figure 12. A dimension reduction of ≈ 30−40% over
standalone PPAC is indeed observed for PPAC-RCCE runs in the current study. Despite
this dimension reduction, the incurred error in temperature is approximately the same as
that for the corresponding PPAC runs. We recall that the represented species for each
reduced model are chosen such that the error in reaction mapping due to dimension reduc-
tion is at most 10% of the DRGEP error cutoff. Additionally, PPAC-RCCE uses the same
sets of reduced models as PPAC, and PPAC incurs only reduction errors. Hence, compar-
ing PPAC and PPAC-RCCE, we can conclude that the selection criteria discussed above
ensures that the incurred error is dictated by the reduction error.

5.4.2. Conservation errors

PPAC-RCCE does not conserve elements or enthalpy due to the conversion from the full
space to the reduced skeletal space. Figure 13 shows the element and enthalpy conservation
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Figure 11. Relative build time (RBT) and relative query time (RQT) of individual reduced models
for variant (c) using A2 and A3. The fraction of species for each region-specific reduced model
(Skeletal nrel) are also reported for reference. The final bar shows the fraction of queries classified as
belonging to a specific region (FQCR). (a) Relative build time and (b) Relative query time.

errors for PPAC-RCCE as a function of the incurred error in temperature. The conservation
errors for PPAC-RCCE are bounded below 2 × 10−5 and are deemed to be acceptable.

5.5. PPAC-RCCE-ISAT

The last two sections showed results for PPAC coupled with a storage-retrieval (ISAT)
and a dimension reduction (RCCE) technique. A natural extension to PPAC-ISAT and
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Figure 12. Relative number of species as a function of incurred error in temperature for the
degenerate case, PPAC and PPAC-RCCE.

Figure 13. Element and enthalpy conservation errors as a function of incurred error in temperature
for PPAC-RCCE.

PPAC-RCCE is the combined PPAC-RCCE-ISAT. The results for its performance in the
previously described PaSR configuration, using the set of reduced models A1 − A4 are pre-
sented in this section. We test PPAC-RCCE-ISAT for ISAT error tolerance specifications of
10−4, 5 × 10−5, and 10−5. PPAC-RCCE-ISAT resolves queries which are in the reduced
RCCE space. Hence, PPAC-RCCE-ISAT, akin to PPAC-ISAT, builds multiple tables at
runtime, one for each of the regions in the PPAC composition space partition. The maxi-
mum ISAT table size is specified as 500 MB for each table. We recall that the preprocessing
stage for PPAC-RCCE-ISAT is identical to that of PPAC-RCCE. Hence, we use the same
sets of represented species for PPAC-RCCE-ISAT as for PPAC-RCCE.

5.5.1. Computational accuracy and memory requirements

The relative number of species as a function of the incurred error in temperature is shown
in Figure 14. The PPAC-RCCE-ISAT curves, similar to PPAC-ISAT, connect four adaptive
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Figure 14. Relative number of species as a function of incurred in temperature for the degenerate
case, PPAC, PPAC-RCCE, and PPAC-RCCE-ISAT with various ISAT error tolerances.

PaSR runs using the sets of reduced models A1–A4 and a common ISAT error tolerance
specification. RCCE-ISAT is used to resolve queries in the reduced RCCE representation.
Hence, we expect and observe the relative number of species for PPAC-RCCE-ISAT to be
approximately equal to that of PPAC-RCCE for points that share the same set of reduced
models. PPAC-RCCE-ISAT incurs reduction, dimension reduction, and tabulation errors.

As has been discussed previously, the represented species are chosen such that the reac-
tion mapping error due to dimension reduction is 10% of the DRGEP error cutoff. In the
previous section, we concluded that this leads to reduction errors dominating the dimension
reduction errors for PPAC-RCCE. We expect this relation between errors to hold for PPAC-
RCCE-ISAT, since PPAC-RCCE and PPAC-RCCE-ISAT utilise the same set of reduced
models and represented species. Consequently, the behaviour of the incurred error in tem-
perature for the various PPAC-RCCE-ISAT runs can be understood in terms of varying
contributions from the reduction and tabulation errors.

We reiterate that PPAC-RCCE uses approximately the same relative number of species
and incurs approximately the same reduction and dimension reduction errors as PPAC-
RCCE-ISAT. Additionally, PPAC-RCCE does not incur any tabulation errors. Hence, we
can determine the relative contribution of the reduction and tabulation errors for PPAC-
RCCE-ISAT by directly comparing its performance with that of PPAC-RCCE for cases
using the same sets of reduced models. For A3 and A4, we infer that reduction error domi-
nates for the all three ISAT error tolerance specification. For A1 and A2, we observe that the
tabulation error dominates for error tolerance specification of 10−4. At more stringent error
tolerance specifications, we infer that the reduction error dominates for run A2 whereas the
tabulation error is higher for run A1.

5.5.2. Conservation errors

PPAC-RCCE-ISAT similar to previously discussed coupled techniques does not conserve
elements or enthalpy. Figure 15 shows the variation of the conservation errors for PPAC-
RCCE-ISAT for the three different ISAT error tolerance specifications. The conservation
errors are bounded below 2 × 10−5. Hence, they are deemed to be acceptable.
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Figure 15. Element and enthalpy conservation errors as a function of incurred error in temperature
for PPAC-RCCE-ISAT runs with three different ISAT error tolerance specification. (a) ISAT error
tolerance: 1 × 10−4, (b) ISAT error tolerance: 5 × 10−5 and (c) ISAT error tolerance: 1 × 10−5.

5.5.3. Computational efficiency

Table 6 shows the percent of total queries resolved by RCCE-ISAT as a retrieve for the
various PPAC-RCCE-ISAT runs. We observe the expected trend of decreasing retrieve
fraction for increasingly stringent ISAT error tolerance specification. Table 7 shows the
variation of relative time for PPAC and PPAC-RCCE-ISAT for different ISAT error toler-
ance specifications. For the same set of reduced models, we observe an increasing relative
time for decreasing ISAT error tolerance specification. This can be directly attributed to
the decreasing fraction of queries resolved as retrieves. For the same ISAT error tolerance
specification, we observe a decreasing relative time, with a decreasing relative number of
species.

Table 6. Total retrieve percentage for various PPAC-RCCE-ISAT runs.

ISAT error tolerance specification

Run number 10−4 5 × 10−5 10−5

A1 93.273 87.959 75.894
A1 93.273 87.959 75.894
A2 95.452 91.286 77.411
A3 95.970 92.747 80.870
A4 96.498 93.419 78.408
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Table 7. Relative time for various PPAC and PPAC-RCCE-ISAT runs.

ISAT error tolerance specification

Run number PPAC 10−4 5 × 10−5 10−5

A1 0.390 0.135 0.194 0.288
A2 0.289 0.083 0.132 0.231
A3 0.188 0.063 0.087 0.155
A4 0.115 0.042 0.059 0.111

Finally, we consider A3 with PPAC-RCCE-ISAT and an ISAT error tolerance specifica-
tion of 10−4. For this point, an incurred error in temperature of 2 × 10−3 is obtained while
retaining only a 0.2 fraction of species in the detailed mechanism and with ≈ 96% retrieves
leading to a relative time of 0.063. These results show the combined benefits attained
by coupling PPAC, RCCE and ISAT techniques. They additionally illustrate the potential
of the combined PPAC-RCCE-ISAT to handle detailed mechanisms very efficiently for
particle PDF methods.

5.5.4. Performance analysis

We analyse the performance of a variant corresponding to PPAC-RCCE-ISAT in compar-
ison to variants (a)–(c) discussed in the PPAC-ISAT section. Specifically, we examine the
following variant:

(d) Multiple ISAT tables corresponding to the user-specified number of regions are used
with the corresponding reduced mechanisms with incoming queries in their reduced
RCCE representations.

We utilise the same database of compositions used for testing the variants (a)–(c). The
detailed compositions are converted to their reduced RCCE representations before call-
ing ISAT. As before, we use an ISAT error tolerance specification of 10−4, an individual
maximum table size specification of 500 MB, and consider the set of reduced models A2
and A3.

The relative build and query times, and the retrieve percentage are shown in Table 8.
The values for the variants (a)–(c) are repeated for reference. Comparing variants (c) and
(d), we observe approximately the same relative build time and a reduction in the relative
query time of ≈ 21% and ≈ 9% respectively. The reduction in query time can be attributed
to the use of ISAT to resolve queries in their reduced RCCE representation for variant (d)

Table 8. Performance metrics for three variants for query resolution using ISAT.

Variant Relative build time Relative query time Retrieve percentage

(a) 1 1 93.2
(b) 0.181 0.84 96.5
(c) (∼ A2) 0.029 0.59 93.0
(c) (∼ A3) 0.027 0.36 94.5
(d) (∼ A2) 0.036 0.38 95.7
(d) (∼ A3) 0.034 0.27 96.3
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as opposed to their reduced skeletal representation for variant (c). We also observe a slight
increase in the retrieve % for variant (d) compared variant (c), which can also be attributed
to the tabulation being performed in a lesser number of dimensions for variant (d).

For a further examination of the performance of variant (d), we show the relative build
and query time of individual reduced models in Figure 16. Additionally, we show the
fraction of represented species (RCCE nrel) for each region-specific reduced model and

Figure 16. Relative build time (RBT) and relative query time (RQT) of individual reduced mod-
els for variant (d) using A2 and A3. The fraction of represented species for each region-specific
reduced model (RCCE nrel) are also reported for reference. The final bar shows the fraction of queries
classified as belonging to a specific region (FQCR). (a) Relative build time and (b) Relative query
time.
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the fraction of queries classified as belonging to the region for reference. The fraction
of represented species is computed as the number of represented species corresponding
to a reduced model divided by the number of species in the detailed mechanism. We
observe that 58% of the queries for A2 and 61% of the queries for A3 are resolved with
reduced models represented by 5% or less of the species in the detailed mechanism. These
queries are resolved at approximately a 10−3 fraction of the query time for standalone
ISAT, demonstrating the advantage of using PPAC-RCCE-ISAT. As noted previously, for
a turbulent combustion computation, a significantly larger fraction of non-reactive com-
positions will be encountered compared to the current PaSR test case. Hence, we expect
a further improvement in performance of the combined PPAC-RCCE-ISAT technique in a
turbulent combustion computation.

6. Conclusions

We have augmented the recently proposed PPAC methodology, by combining it with stor-
age retrieval (ISAT) and dimension reduction (RCCE) techniques. Specifically, we have
developed coupled implementations for PPAC-ISAT, PPAC-RCCE, and PPAC-RCCE-
ISAT. The techniques examined in this work constitute a hierarchy as shown in Figure 17.
Each coupled technique provides a performance improvement over the methodology below
it in the hierarchy. Quantitative values of these improvements for a representative test case
in a PaSR context are reported on the connecting arrows in the Figure 17. PPAC-RCCE-
ISAT for this representative test case, with an ISAT error tolerance specification of 10−4,
leads to an incurred error in temperature of 2 × 10−3 by retaining only 20% of the species
in the detailed mechanism and resolving approximately 96% of the queries as retrieves. The

Figure 17. Hierarchy of methods considered in this work. The advantages are reported on the
connecting arrows for the representative test case A3. The combinations that include ISAT utilised
an error tolerance specification of 10−4. MR refers to memory requirement.
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high percentage of queries resolved as retrieves produces a timing fraction of 0.063 relative
to the use of the detailed mechanism with direct integration, i.e. a speedup of a factor of
15. The coupled PPAC-RCCE-ISAT approach leads to a reduction in the CPU cost of 67%
and a reduction in the memory requirement of 38% over a standalone PPAC simulation
using the same set of reduced models. Thus, PPAC-RCCE-ISAT provides promising gains
in performance over standalone PPAC. We anticipate that the coupled PPAC-RCCE-ISAT
approach will provide improved gains in a LES/PDF context.
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