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Local Time-Stepping Algorithm for Solving Probability Density
Function Turbulence Model Equations

M. Muradoglu¤ and S. B. Pope†

Cornell University, Ithaca, New York 14853

A local time-stepping algorithm has been developed to improve the numerical ef� ciency of Lagrangianparticle-
based Monte Carlo methods for obtaining the steady-state solutions of the modeled probability density function
equations of turbulent reacting � ows. On each step in the pseudo-time-marching algorithm, the properties of each
particle are advanced by a time step, the magnitude of which depends on the particle’s spatial location. This
algorithm has been incorporated into the consistent hybrid � nite volume/particle method. The performance of the
local time-steppingmethod is evaluated in terms of numerical ef� ciency and accuracy throughapplication to a non-
reacting bluff-body � ow. For this test case, it is found that local time stepping can accelerate the global convergence
of the hybrid method by as much as an order of magnitude, depending on the grid stretching. Additionally, local
time stepping is found to improve signi� cantly the robustness of the hybrid method mainly due to the accelerated
convection of error waves out of the computationaldomain.The method is very simple to implement, and the small
increase in CPU time per step (typically 3%%) is a negligible penalty compared to the substantial reduction in the
number of time steps required to reach convergence.

Nomenclature
Cu = Courant number based on particle velocity
CÄ = Courant number based on turbulent frequency
Db = bluff-body diameter
F = mass-density function for uniform time stepping
OF = mass-density function for the local time stepping
Qf = mass-weighted probability density function

M2 = total number of grid cells
m = particle mass
q = mean particle-mass density
R j = jet radius
r = radial distance
s = a global time variable
U = particle velocity
V = sample space variable for U
W = isotropic Wiener process
X = particle position
x = axial distance
x = sample space variable for X
± = Dirac delta function
¹ = numerical weight
»x = grid-stretchingfactor in x direction
»y = grid-stretchingfactor in y direction
Ä = conditional mean turbulent frequency
h i = mean � eld
0 = rms � uctuating quantity

Q = mass-weighted � eld

I. Introduction

T IME-MARCHING methods have become a popular technique
for the solution of steady problems in computational � uid

dynamics. The main advantage of the time-marching method is
that it offers the freedom of altering the time-dependent nature of
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the solution as long as the problem remains well posed and the
steady solution is not affected. This freedom forms the basis for
many convergenceacceleration techniqueswidely used in Eulerian
time-marching algorithms such as the preconditioning1 and local
time-stepping2 methods. Of these convergence acceleration meth-
ods, local time stepping has long been used as a standard technique
to improve the numerical ef� ciency of conventionalEulerian time-
marching schemes due to its conceptual simplicity and ease of im-
plementation.The basic idea of local time steppingis to advance the
solution in pseudotime using a spatially varying local time step de-
termined accordingto the stability considerationsat each grid point.
It is inherently straightforward and easy to implement the method
in Eulerian time-marching algorithms because the time derivative
terms in the Eulerian formulation of the � ow equations appear as
partial derivatives that vanish in a steady state. However, this is not
the case in a Lagrangian method. The difference is that the time
derivative terms in the Lagrangian formulation of the � ow equa-
tions appear as full derivatives representingboth the time evolution
and convection and (in general) do not vanish in the steady state.
Therefore, application of local time stepping in a Lagrangian time-
marching scheme is more dif� cult than in the Eulerian counterpart
and requires the development of a new algorithm.

The main purpose of the present study is to develop and demon-
strate the local time-stepping algorithm to accelerate the conver-
gence rate of the Lagrangianparticlemethod used to solve the prob-
ability density function(PDF) equationsof turbulent reacting � ows.
In the PDF methods consideredhere, turbulenceclosure is achieved
through construction of stochastic differential equations,3 and the
resulting modeled PDF transport equation is solved by either a self-
contained Lagrangian particle-based Monte Carlo method (such as
that implemented in the PDF2DV code‡ ) or by a hybrid Eulerian
� nite volume (FV)/Lagrangian particle-basedMonte Carlo method
(such as that implemented in the HYB2D code4;5). The consistent
hybrid FV/particle method has recently been developed and shown
to be superior to the self-contained particle/mesh method in terms
of numerical ef� ciency.4;5 Although the present local time-stepping
method is general and applicable to both PDF solution algorithms
mentioned, here the method is described in the context of the con-
sistent hybrid solution algorithm.

The consistent hybrid algorithmcombines the best features of an
Eulerian FV method and a Lagrangian particle-based Monte Carlo
method to solve ef� ciently the modeled PDF transport equations of

‡Pope, S. B., “PDF2DV: A FORTRAN Code for Solving Modeled Joint-
PDF Equations in Two-Dimensions,” Sibley School of Mechanical and
Aerospace Engineering,Cornell University, Ithaca, NY, 1994 (unpublished).
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turbulent reacting � ows. A FV scheme is used to solve the mean
mass, mean momentum, and mean energy conservation equations
coupledwith the mean equationof state; and a particle-basedMonte
Carlo method is used to solve the modeled transport equation of the
joint PDF for � uctuating velocity, turbulent frequency, and compo-
sitions. The details of the consistent hybrid method may be found
in Refs. 4 and 5.

The present time-stepping method is developed to accelerate the
convergencerate of the Lagrangianparticlemethodemployed in the
consistenthybridalgorithm,that is, to reach the steady-statein fewer
time steps thanare requiredin theconventionaluniform(or constant)
time-steppingmethod. The main idea is to alter the time-dependent
nature of the modeled PDF transport equation such that it allows a
variable time step to be used in the particle method while keeping
the steady-state solution unaffected. The method is very simple to
implement and requires negligible additional computational work.
A similar local time-stepping method has been recently presented
by Mobus et al.6 for convergence acceleration of Lagrangian PDF
methods but without giving any mathematical basis.

The local time-steppingmethodis incorporatedinto theconsistent
hybrid algorithm implemented in the code HYB2D,5 and its perfor-
mance is evaluated in terms of numerical accuracy and ef� ciency
using the standard test case of a nonreacting bluff-body � ow. This
� ow has been studiedpreviouslyexperimentallyby Dally et al.7 and
recently by Kalt and Masri§ and numerically using the same PDF
method by Jenny et al.8

In the next section, the PDF formulationand the consistenthybrid
algorithm are brie� y described, and then the local time-stepping
algorithm is presented. In Sec. III, the test problem is described,
and the results are presented to show the validity and bene� ts of
the local time-steppingalgorithm.Finally, conclusionsare drawn in
Sec. IV.

II. Development of the Local Time-Stepping Algorithm
A. PDF Formulation

The PDF formulation is based on the modeled transport equation
for the joint PDF of velocity, turbulence frequency and composi-
tions. Taking a Lagrangian viewpoint, the � ow is represented by
a large number of stochastic particles, and stochastic differential
equations are constructed to model the evolution of the particle
properties.9 The evolution of the particle velocity and turbulent
frequency are represented by the simpli� ed Langevin model (see
Ref. 3) and the modi� ed Jayesh–Pope model (see Van Slooten
et al.10), respectively.All of the model constants are set to the same
values as those used by Jenny et al.8 The evolution of particle com-
position due to molecular mixing is modeled by a mixing model,
but this is not an issue here because only a constant density � ow is
considered in the present study. A complete description of the PDF
formulation may be found in Refs. 9 and 11.

The modeled transport equation of the joint PDF is solved by the
consistent hybrid method implemented in the code HYB2D.4;5 The
hybrid method has been developed to overcome the de� ciencies of
the much-used stand-aloneparticle/mesh method, that is, to reduce
the deterministic bias error and to avoid the complicated pressure-
correction algorithm. In the hybrid approach, a FV method is used
to solve the conservation equations for mean mass, mean momen-
tum, and mean energy coupled with the mean equation of state; a
particle-basedMonte Carlo method is used to solve the PDF trans-
port equation for the � uctuating velocity, turbulent frequency, and
compositions.The FV and particle algorithms are loosely coupled,
that is, to complete one outer iteration, the FV code is run for a
speci� ed number of time steps and then the particle code is run for
a speci� ed number of time steps. Unlike some earlier hybrid meth-
ods, the present method is completelyconsistentat the level of gov-
erning equations.Furthermore, ef� cient correction algorithms have
recentlybeen developedto enforce full consistencyat the numerical
solution level.5 The consistenthybrid method has been shown to be
more ef� cient computationally than the stand-alone particle/mesh

§Combustion database, University of Sydney, Sydney, New South Wales,
Australia, and Combustion Research Facility, Sandia National Laboratories,
available online at http://www.aeromech.eng.usyd.edu.au/research/energy.

method by a factor of an order of magnitude or more. The details of
the hybrid method may be found in Refs. 4 and 5.

B. Outline of the Development
The present hybrid method implemented in the code HYB2D is

designed to treat only statistically steady turbulent � ows, and the
numerical solution procedure is based on a pseudo-time-marching
scheme. Therefore,we are free to alter the transient time-dependent
natureof the solutionprocedureto acceleratetheglobalconvergence
of the algorithm.A novel local time-steppingalgorithmis described
for statisticallysteady solutionsof PDF equationsin the Lagrangian
formulation.The development follows that of Pope.¶

In the next subsection, the standard particle equations using uni-
form time steppingare presentedandanalyzed.The one-pointstatis-
tics are characterized by the mass-density function F.V; x; t/, the
conservation equation for which is derived from the particle equa-
tions.Then the particleequationsappropriatefor local time stepping
are introducedand analyzed. In this case, the mass-density function
is denotedby OF .V; x; s/, where s is a global time variable.The basis
of the development is to construct the local time-steppingparticle
equations so that the conservation equations for F and OF become
identical in the steady state (@F=@t D 0 and @ OF=@s D 0).

C. Analysis of Uniform Time Stepping
We consider the standard uniform (or constant) time-stepping

approach.The generalparticlehas mass m , numericalweight ¹ D 1,
position X.t/, and velocity U.t/. The model equations are

d¹

dt
D 0 (1)

dm

dt
D 0 (2)

dX
dt

D U (3)

dU D A.U; X; t/ dt C [2B.U; X; t/]
1
2 dW (4)

The � rst three equationsexpress that the weight and mass of a parti-
cle are conserved and that the particle moves with its own velocity.
(Note that, in practical implementations, the particles are split and
clustered for the purpose of particle number control, but this has
no effects on mass conservation in detail at the particle level nor
on the analysis presented subsequently.) Equation (4) is a stochas-
tic differential equation with drift term coef� cient A and isotropic
diffusion term coef� cient B: This is of the same form as the gen-
eralized Langevin model, which is usually used in PDF methods.
The � nal quantity in Eq. (4), dW is the in� nitesimal increment of
an isotropic Wiener process.

The mass-density function

F .V; x; t/ D h¹m±.U ¡ V /±.X ¡ x/i (5)

provides a complete one-point statistical description of the particle
system. In Eq. (5), V and x are the sample space variables for the
particlevelocityandposition,respectively.The particlemassdensity
is

q.x; t/ ´
Z

F dV D h¹m±.X ¡ x/i (6)

which corresponds to the mean � uid density, and then the mass-
weighted PDF of velocity is

Qf .V; x; t/ D
F .V; x; t/

q.x; t/
(7)

¶Pope, S. B., “Variable Time Step Particle Method for Statiscally Sta-
tionary Flows,” Sibley School of Mechanical and Aerospace Engineering,
Cornell University, Ithaca, NY, 1995 (unpublished note).
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The evolution equation for the mass density function can be de-
rived from Eqs. (1–5) by standard techniques.11 The result is

@F
@t

D ¡ @

@Vi
[F Ai ] ¡ @

@xi
[F Vi ] C @2

@Vi @Vi
[F B] (8)

where Ai D Ai .V; x; t/ and B D B.V; x; t/. In a statisticallystation-
ary state, the left-handside, @F=@t , is zero [even though the particle
properties X.t/ and U.t/ continue to evolve in time].

D. Analysis of Local Time Stepping
To develop the local time-stepping method, we replace t by a

global time variable s, so that the particle properties are m, ¹.s/,
X.s/, and U.s/. A local time increment is then given by

dt D ° .x; s/ ds (9)

where ° .x; s/ is a speci� ed, strictly positive, nondimensional� eld.
The particle evolution equations are then speci� ed to be

dm

ds
D 0 (10)

d¹

ds
D °¯¹ (11)

dX
ds

D ° U (12)

dU D ° A ds C
p

2° B dW (13)

where the � eld ¯.U; x; s/ is determined subsequently.Note that for
° D 1 and ¯ D 0 these equations revert to their constant time-step
counterparts,Eqs. (1–4). For this system, the mass-density function
is de� ned by

OF.V; x; s/ D h¹m±.U ¡ V /±.X ¡ x/i (14)

When standard techniques11 are used, it follows from Eqs. (10–14)
that the mass-density function evolves by

@ OF
@s

D OF°¯ ¡
@

@Vi
[° Ai

OF ] ¡
@

@xi
[ OF Vi ° ] C

@2

@Vi @Vi
[ OF B° ] (15)

Dividing Eq. (15) by ° , we obtain

1

°

@ OF
@s

¡ OF
»

¯ ¡
Vi

°

@°

@xi

¼
D ¡

@

@Vi
[ OF Ai ] ¡ Vi

@ OF
@xi

C
@2

@Vi @Vi
[ OF B]

(16)

It may be observed that the right-handside of this equation is identi-
cal to that of the correspondingconstant time-stepequation,Eq. (6).
Hence, if ¯ can be speci� ed so that the left-hand side of Eq. (16)
vanishes in the steady state, then Eqs. (8) and (16) yield the same
steady-state solutions.

The � eld ¯.U; x; t/ determines how the numerical weight ¹.s/
evolves [Eq. (11)]. We show now that the appropriate behavior is
for ¹.s/ to remain in a � xed proportion to ° [X.s/; s] as the particle
moves. This speci� cation implies

d
ds

»
¹.s/

° [X.s/; s]

¼
D 0 (17)

from which we obtain

1

°

d¹

ds
D ¹

° 2

³
@°

@s
C dX

ds
¢ r°

´
(18)

or [making use of Eqs. (11) and (12)]

¯ ´ 1

° ¹

d¹

ds
D 1

° 2

³
@°

@s
C ° Vi

@°

@xi

´
(19)

Substituting this expression for ¯ into Eq. (16), we obtain

@

@s

³ OF
°

´
D ¡ @

@Vi
[ OF Ai ] ¡ @

@xi
[ OF Vi ] C @2

@Vi @Vi
[ OF B] (20)

Compare Eq. (8). In the steady state, the left-hand sides of Eqs. (8)
and (20) vanish, whereas their right-hand sides are identical. Thus,
the steady-state solution to the local time-step equations are statis-
tically identical to those of the standard uniform time-step system.

From the preceding development, we can draw the following
conclusions:

First, in the modi� ed particle equations[Eqs. (10–13)], the parti-
cle properties are indexed by the global time variable s. The incre-
ments in the properties X and U in the in� nitesimal time ds corre-
sponds to those in the uniform time-steppingequations [Eqs. (1–4)]
over a time intervaldt D ° ds. Thus, if 1s is the global time step, the
local time step is 1t D ° .x; s/1s. For example, a � nite difference
approximation to Eq. (13) is

1U ´ U.s C 1s/ ¡ U.s/ D A[° 1s] C
p

2B[° 1s]» (21)

where » is a standardizedGaussian random vector.
Second, for each particle, Eq. (17) can be integrated from s1 to s2

to yield

¹.s2/ D ¹.s1/
° [X.s2/; s2]

° [X.s1/; s1]
(22)

showing that the change in particle weight is simply determined by
the values of ° at the start and end of the particle trajectory.This is
exact even if ° is piecewise constant, for example, constant within
each spatial cell.

Third, the uniform time-steppingmethod is conservativein detail,
in that the effective particle mass ¹m is conserved. Consequently,
conservation of mass, momentum, species, etc., can be enforced in
detail at the particle level, not just in the mean. In the local time-
stepping method, this detailed conservationproperty is lost because
the effective particle mass ¹.s/m is not conserved. As the results
in the next section demonstrate, this lack of detailed conservation
does not appear to affect adversely the accuracy of the calculations.

Fourth, the particle equations considered [Eqs. (1–4)] are not the
most general of interest. In particular, if molecular viscosity is con-
sidered,theequationforX becomesa stochasticdifferentialequation
with a diffusion term related to the molecular viscosity.12 Similarly,
in the compositionPDF method, the SDE for X containsa diffusion
term related to the turbulent diffusivity.3;11 In these cases, the anal-
ysis is considerablymore involved, but the results are unchanged.

Fifth, during the transient phase of the computations, the local
time step can vary with time, that is, ° .x; s/ can depend on s. How-
ever, after this transient, to achieve the correct steady state, ° .x; s/
must be � xed (independentof s), so that the left-handside of Eq. (20)
implies @ OF=@s D 0:

E. Speci� cation of the Local Time Step
Given the global time step 1s, the local time step is given by

1t .x; s/ D ° .x; s/1s. In practice, this relation is inverted to deter-
mine ° .x; s/, that is, a suitable local time step 1t .x; s/ is deter-
mined, 1s is speci� ed (essentially arbitrarily), and then ° is speci-
� ed as 1t=1s.

The local time-stepping algorithm is incorporated into the con-
sistent hybrid method. In the implementation, the computational
domain is divided into a tensor-product rectangular mesh, and the
local time step is calculated, for instance, at the .i; j/ grid point, as
follows. The local upperbounds1txi; j , 1tyi; j , and 1tÄi; j are de� ned
implicitly by

Cu D
jU ji; j 1txi; j

1xi; j

(23)

Cu D
jV ji; j 1tyi; j

1yi; j

(24)
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CÄ D Äi; j 1tÄi; j (25)

where theCourantnumber is speci� ed as Cu D 0:4 and the turbulent-
frequencyparameterby CÄ D 0:2. Note that, unlikemany numerical
methods, the time step in the presentmethod is mainly restricted by
the accuracy considerationsrather than the stability constraints and
that the values of Cu and CÄ are essentially chosen based on the
work by Xu and Pope.13 The conditionalmean turbulent frequency
Äi; j is evaluated at the .i; j/ grid point, and the velocity scales jU j
and jV j are de� ned as

jU j D jhU ij C 2u0 (26)

jV j D jhV ij C 2v0 (27)

where hU i, hV i, u 0, and v0 are the axial mean velocity, the radial
mean velocity, the rms axial � uctuating velocity, and the rms radial
� uctuating velocity, respectively.The grid spacings 1xi; j and 1yi; j

are evaluated as

1xi; j D 1
2 .xi C 1; j ¡ xi ¡ 1; j / (28)

1yi; j D 1
2 .yi; j C 1 ¡ yi; j ¡ 1/ (29)

The local time step is then speci� ed by

1ti; j D min
£
1tlim ; 1txi; j ; 1tyi; j ; 1tÄi; j

¤
(30)

a)

b)

Fig. 1 Pro� les of mean axial velocity ( h h U i i ) computed on the most
stretched grid (»x = 160) at axial locations a) 0.6 Db and b) Db .

The parameter 1tlim sets an upper limit to the local time steps, and
it is typically taken as 1tlim D ·t 1tmin , where 1tmin is the minimum
value of 1txi; j ; 1tyi; j , and 1tÄi; j over the entire computational do-
main and the parameter is taken as ·t D 20.

After calculating the time steps at all grid points as described, the
time step is represented as a linear spline and interpolated onto
the particles. The local time step is stored as a particle property and
the numerical weight is updated as

¹n C 1 D ¹n.1t n C 1=1tn/ (31)

where superscriptn denotesthe valuesevaluatedat the nth time step.
This treatment is consistent with Eq. (22) because ¹=° D ¹1s=1t
is conserved following the particle.

III. Results and Discussion
The performance of the local time stepping method is evaluated

in terms of accuracy and ef� ciency. The test problem chosen is
the statistically axisymmetric nonreacting bluff-body � ow that has
been extensivelystudied before experimentallyby Dally et al.7 and
Kalt and Masri§ and numerically using the same PDF method as
employed here by Jenny et al.8 Besides its practical interest, the
bluff-body � ow is a challenging test case for turbulence models
and numerical algorithms because it involves a strong recirculation
zone with two vortex cores behind the bluff body. Both the central

Fig. 2 Mean axial velocity and rms axial � uctuating velocity against
M ¡¡ 2 at the selected locations (Table 1) showing the expected second-
order spatial accuracy of the method: ——, linear least-square � ts to
numerical data.
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jet and co� ow consist of cold air with bulk velocities61 and 20 m/s,
respectively. The jet diameter 2R j is 3.6 mm, and the bluff body
diameter Db is 50 mm. The Reynolds number based on the jet bulk
velocity and jet diameter is about Re j D 1:44 £ 104 . The complete
description of the bluff-body � ow is given by Dally et al.7 The
experimental data for the nonreacting bluff-body � ow were � rst
providedby Dally et al.,7 and this set of data is labeledhere as set 1.
The same experiment has been recently repeated twice by Kalt and
Masri,§ and these new sets of data are labeled as sets 2 and 3. It is
emphasized that the same experimental set up was used for sets 2
and 3. All of the experimental data and a detailed descriptionof the
bluff-body � ow are available on the Web.§

For the numerical simulations, a cylindrical coordinate system
is adopted with the origin of the radial coordinate r placed at the
center of the jet and the axial coordinate x aligned with the jet axis.
The computationaldomain extends in the axial direction from x D 0
to 6Db and in the radial direction from r D 0 to 3Db . The compu-
tational domain, the initial and boundary conditions, and all of the
model constants are the same as those used by Jenny et al.8 All
of the computations presented here are performed on a rectangular
orthogonalnonuniform Cartesian grid with a total of M 2 grid cells,
and the grid is successivelystretched in the axial direction to exam-
ine the performance of the local time-stepping algorithm on highly
stretched grids. Note that the grid topology employed here is also
the same as that of Jenny et al.8 except that the matching point in the
axial direction at x D Db is removed in the present computations to
facilitate the grid stretching.The grid stretching is quanti� ed by the

a) x/Db = 0.6

b) x/Db = 1.0

Fig. 3 Mean axial velocity pro� les computed on the moderately
stretched grid (»x = 10).

stretching rate de� ned as the ratio of the maximum and minimum
cell sizes in each coordinate direction. For example, the stretching
rate in the axial direction is de� ned as »x D 1xmax=1xmin , where
1xmax and 1xmin are the maximum and minimum cell sizes in the
axial direction, respectively.

All of the mean � elds are time averaged over a � xed timescale
of 20 particle time steps throughout the simulations. The statistical
error is reduced by using a large number of particles per cell, that
is, about 200 particles per cell are used in all of the results pre-
sented here. Note that the usual practice in the consistent hybrid
method is to use a larger time-averagingtimescale, that is, typically
over 500–1000 particle time steps and to use a smaller number of
particles per cell, that is, typically 20–50 particles per cell. Further-
more, the time-averaging timescale is not � xed in usual practice
but rather increased gradually from a small value to the � nal large
value as a steady state is approached. In the present calculations,
the time-averagingtimescale is chosen to be much smaller than the
usual value and is � xed throughout the simulations to minimize the
uncertaintiescausedby the adhocparametersused in the usual time-
averaging procedure and, thus, to better isolate the improvement in
the numerical ef� ciency by the local time-stepping algorithm. The
details of the consistent hybrid method and the time averagingpro-
cedure may be found in Refs. 4 and 5.

The grid convergence is shown in the next section. The accuracy
of the local time-stepping method is examined in Sec. III.B, and
then the improvement in the numerical ef� ciency is presented in
Sec. III.C.

a) x/Db = 0.6

b) x/Db = 1.0

Fig. 4 Mean axial velocity pro� les computed on the highly stretched
grid (»x = 160).
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A. Grid Convergence
The spatial discretization in the FV method together with the

mean � eld estimationand interpolationschemes used in the particle
algorithm result in spatial error in the hybrid method due to the
� nite size of the grid cells. The spatial error in the hybrid method
has been extensivelyexaminedbefore, and it has beendemonstrated
that the method is second-orderaccurate in space.4;5 Therefore, the
main purposehere is to show the grid convergenceof the numerical
resultspresentedin thepaperrather thanrepeatinganextensivestudy
of spatial error. For this purpose,pro� les of mean axial velocity are
plotted in Fig. 1 at the axial locations of x D 0:6Db and Db to show
overalldependenceof thecalculatedresultsongrid re� nement.Note
that the calculations are performed on an extremely stretched grid
for example, »x D 160, using the local time-stepping algorithm. As
can be seen in Fig. 1, the decreasingdifferencebetween the pro� les
as cell is re� ned indicates grid convergence.

To quantify the spatial error and to verify the second-order ac-
curacy, the mean axial velocity and rms axial � uctuating velocity
are plotted against the inverse of the total number of grid cells M¡2

in Fig. 2 at the selected locations speci� ed in Table 1. As can be
seen in Fig. 2, the approximate linear relationshipbetween the mean
quantities and M¡2 con� rms the expected second-order accuracy.
Also note from Fig. 2 that the spatial error is less than 15 and 7% on
64 £ 64 and 96 £ 96 grids, respectively. Although not shown here
due to space limitations, the mean axial velocity and the rms axial
� uctuatingvelocityare foundto begoodrepresentativesfor theother

a) x/Db = 0.6

b) x/Db = 1.0

Fig. 5 RMS � uctuating axial velocity pro� les computed on the mod-
erately stretched grid (»x = 10).

mean quatities such as mean radial velocity, rms radial � uctuating
velocity, turbulence shear stress, and mean turbulent frequency in
terms of spatial accuracy and grid convergence. Because the main
emphasis here is on the performance of the local time-stepping al-
gorithm in comparison with the uniform time-stepping method, a
64 £ 64 grid is used in all of the results presented in the rest of the
paper.

B. Accuracy
As discussed in Sec. II, the local time-stepping method alters

the time-dependent nature of the solutions but guarantees that the
steady-state solutions remain unaffected. The accuracy of the lo-
cal time-stepping method is evaluated through comparison of the

Table 1 Six selected locations in the computational
domain used to quantify spatial error

Location Axial distance x Radial distance r

1 0:6Db
a 0.0

2 0:6Db R j
b

3 0:6Db Mid bluff body (D13:4 mm)
4 Db 0.0
5 Db R j
6 Db Mid bluff body (D13:4 mm)

a Db D 50 mm is bluff-body diameter.
b R j D 1:8 mm is jet radius.

a) x/Db = 0.6

b) x/Db = 1.0

Fig. 6 RMS � uctuating axial velocity pro� les computed on the highly
stretched grid (»x = 160).
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mean axial velocity and the rms axial � uctuating velocity pro� les
calculatedusing the local and uniform time-steppingmethods.Such
comparisons are made for two sets of computationalgrids with dif-
ferent stretching rates to show the effects of the grid stretching on
the accuracy of the local time-stepping method. The � rst grid is
very similar to that used by Jenny et al.,8 and the stretching rates
in the axial and radial directions are »x D 10 and »y D 30, respec-
tively. The second grid is highly stretched in the axial direction
with the stretching rate »x D 160, whereas the stretching rate is kept
the same as the � rst grid in the radial direction. The � rst and the
second grids are referred to from now on as the least and the most
stretchedgrids, respectively.Althoughit is not emphasizedhere, the
experimentaldata are also plotted and comparedwith the numerical
results.

Figures 3 and 4 show the mean axial velocity pro� les calculated
using the least and the most stretchedgrids, respectively,at the axial
locations x D 0:6Db (Figs. 3a and 4a) and x D Db (Figs. 3b and
4b). In Figs. 3 and 4, the symbols denote the experimental data and
the solid and dashed lines represent the numerical results obtained
with the local and uniform time-steppingmethods, respectively.As
can be seen in Figs. 3 and 4, even on the highly stretched grid
(Fig. 4), the local time-stepping results compare very well with
the correspondinguniform time-steppingresults, demonstratingthe
accuracy of the local time-stepping algorithm.

The similar plots for the rms axial � uctuatingvelocitypro� les are
presented in Figs. 5 and 6 again for the least and the most stretched
grids, respectivelyat the same axial locationsof x D 0:6Db (Figs. 5a

a)

b)

c)

d)

Fig. 7 Moderately stretched grid (»x = 10) convergence history of a) mean axial velocity at (x/Db; r/Db ) = (2:0; 0:0); b) mean turbulent kinetic energy
at (x/Db; r/Db) = (2:0; 0:0); c) mean axial velocity at (x/Db; r/Db) = (3:0; 0:0) ; and d) mean turbulent kinetic energy at (x/Db; r/Db) = (3:0; 0:0).

and 6a) and x D Db (Figs. 5b and 6b). As for the mean axial veloc-
ity, the excellent agreement between the local and uniform time-
stepping results of the rms axial � uctuating velocity con� rms the
accuracy of the local time-stepping method.

The small discrepancy observed between the local and uniform
time-stepping results of the mean axial velocity and rms axial � uc-
tuating velocity pro� les especially near the centerline in the case
of the highly stretched grid are attributed to the statistical and spa-
tial discretizationerrors. We note that (not shown here due to space
limitations), similar good agreement between the local and uniform
time-steppingmethods is observedin all of the otherFV and particle
mean � elds such as the mean radial velocity, rms radial � uctuating
velocity,mean turbulent shear stress, and mean turbulent frequency
in the entire computational domain.

When it is considered that the simplest velocity model is used
in the present calculations, the reasonable agreement between the
numerical results and the experimental data clearly demonstrates
the performance of the PDF methods for this challenging test
case.

C. Convergence Acceleration
The primary purpose of local time stepping is to improve the nu-

merical ef� ciency by accelerating the global convergence rate, that
is, to converge to the steady state in fewer time steps. The global
convergence of PDF solution algorithms are usually measured by
monitoring the time histories of particle and FV mean � elds at se-
lected observation points in the computational domain.4 Here the
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mean axial velocity and mean turbulencekinetic energy are chosen
for this purpose, and their convergence histories are monitored at
locations.x=Db; r=Db/ D .2:0; 0:0/ and .x=Db; r=Db/ D .3:0; 0:0/:

Figure 7 shows the convergencehistoriesof the mean axial veloc-
ity (Figs. 7a and 7c) and the mean turbulentkinetic energy (Figs. 7b
and 7d) at the locations .x=Db; r=Db/ D .2:0; 0:0/ (Figs. 7a and 7b)
and .x=Db; r=Db/ D .3:0; 0:0/ (Figs. 7c and 7d) to demonstrate the
performance of the local time-stepping algorithm in accelerating
the global convergenceof the consistent hybrid method. The results
are obtained on the least stretched grid. As can be seen in Fig. 7,
evenon this moderately stretchedgrid, the local time-steppingalgo-
rithm considerablyaccelerates the global convergenceof the hybrid
method by about a factor of 3. For instance, whereas it takes about
3000 particle time steps with the uniform time stepping for the con-
vergence of the mean axial velocity at .x=Db; r=Db/ D .2:0; 0:0/,
it requires only about 1000 particle time steps with the local time
stepping for this case.

The convergence acceleration by the local time stepping is ex-
pectedto bemorepronouncedas the grid is more andmore stretched,
and this is con� rmed in Figs. 8 and 9. Figures 8 and 9 show the con-
vergence histories of the mean axial velocity (Fig. 8) and mean
turbulent kinetic energy (Fig. 9) calculated using the local time-
stepping (Figs. 8a, 8c, 9a, and 9c) and the uniform time-stepping
(Figs. 8b, 8d, 9b, and 9d) methods on grids successively stretched
in axial direction with the axial stretching rates »x D 10; 40, and
160. Observe that the convergence rate is essentially independent

a)

b)

c)

d)

Fig. 8 Convergence histories on successively stretched grids with the stretching rates from »x = 10 to 160 of mean axial velocity computed with a)
and c) local time stepping and b) and d) uniform time stepping.

of grid stretching when local time stepping is used, whereas, as ex-
pected, the convergence rate signi� cantly deteriorates in the case
of uniform time stepping as the grid is stretched. For example, on
the most stretched grid (with the axial stretching rate »x D 160), it
takes about 16,000 particle time steps to reach a steady state when
the uniform time stepping is used, whereas it requires only about
1500 particle time steps in the case of local time stepping. In other
words, local time stepping can accelerate the convergence rate of
the consistent hybrid method by a factor of an order of magni-
tude depending on the grid stretching. This is clearly a signi� cant
improvement in the numerical ef� ciency of the consistent hybrid
method.

Note that the present local time-steppingalgorithmis very simple
to implement, and it requires a negligibleamount of additionalcom-
putational work per step, that is the additional computational work
per step measured in CPU time due to the local time stepping is less
than 3% in the all of the results presented here. This is a negligible
penalty compared to the substantial saving in the number of time
steps required to reach the steady state.

Also note that the mean � elds calculated using the local time-
stepping method are smoother than the corresponding � elds calcu-
lated with the uniform time-steppingmethod mainly because of the
accelerated convectionof error waves out of the computational do-
main by the local time stepping.This is an important result, not only
becauseof the smoothermean � elds,but also becauseit signi� cantly
improves the robustness of the consistent hybrid method.
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a)

b)

c)

d)

Fig. 9 Convergence histories on successively stretched grids with the stretching rates from »x = 10 to 160 of mean turbulent kinetic energy computed
with a) and c) local time stepping and b) and d) uniform time stepping.

IV. Conclusions
A novel local time-stepping method is developed and imple-

mented in the consistenthybrid FV/particlemethod to obtain statis-
tically steady solutions of the PDF equations of turbulent reacting
� ows. The local time-steppingmethod changes the time-dependent
nature of the PDF equations to allow local time steps to be used
in the integration of the particle evolution equations but guarantees
that the steady solutions remain unaffected.The method is tested for
the challengingnonreacting bluff-body � ow and is shown to accel-
erate signi� cantly the global convergence of the consistent hybrid
method by as much as a factor of an order of magnitude, depending
on grid stretching. The accuracy of the local time-stepping method
is demonstrated by comparing the mean � elds calculated using the
localand uniformtime-steppingmethods. It is found that theconver-
gencerateof theconsistenthybridmethod is essentiallyindependent
of the grid stretching when local time stepping is used, whereas it
signi� cantly deteriorates in the case of uniform time steppingas the
grid is stretched. It is also found that the local time stepping sig-
ni� cantly improves the robustness of the hybrid method and gives
smoother mean � elds compared to the uniform time-stepping case.
The present local time-steppingmethod is very simple to implement
and requires less than 3% additionalCPU time per time step for the
nonreacting bluff-body calculations, which is a negligible penalty
compared to the substantial reduction in the number of time steps
required to reach the steady state.
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