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The hybrid method solves the modeled transport equation for the joint PDF of ve-
locity, turbulence frequency, and compositions for turbulent reactive flows. A finite-
volume (FV) method is used to solve the mean conservation equations for mass,
momentum, and energy and the mean equation of state; and a particle method is used
to solve the modeled PDF equation. The method is completely consistent at the level
of the governing equations solved by the FV and particle algorithms. In this work, the
conditions to be fulfilled for full consistency at the numerical solution level are exam-
ined and the independent consistency conditions are identified. Then correction algo-
rithms are developed to enforce these independent consistency conditions to achieve
full consistency at the numerical solution level. In addition, a new formulation of the
energy equation and the equation of state is developed which is both general and sim-
ple. The hybrid method is applied to a non-premixed piloted-jet flame. The numerical
results show that the correction algorithms are completely successful in achieving
consistency. The convergence of the method is demonstrated and, in particular, it is
shown that the bias error is dramatically reduced (compared to that in previous PDF
calculations). In addition, the results are shown to be in a good agreement with some
earlier PDF calculations and also with the available experimental data. Because of the
substantially reduced numerical error (for given grid size and number of particles),
the present hybrid method represents a significant advance in the computational effi-
ciency of particle/mesh method for the solution of PDF equations2001 Academic Press

Key Wordshybrid finite-volume/particle method; PDF method; consistency con-
ditions; correction algorithms.

1. INTRODUCTION

The main advantage of the joint PDF approach over conventional moment-clos
methods is its ability to represent the important processes of convection and finite-|
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non-linear reaction exactly [14, 15] without any modeling assumptions. In particular, t
exact treatment of the non-linear chemical reaction makes PDF methods very attractive
simulation of complex turbulent reactive flows of practical interest [15]. However, appl
cation of the PDF method to these flows requires the development of efficient numer;
solution algorithms [23]. Considerable progress has been recently made in this directior
the development of the consistent hybrid method [7, 12].

In PDF methods, turbulent closure is achieved through a modeled transport equa
for the one-point, one-time joint PDF of selected fluid properties in a turbulent flow [14, 2(
The resulting modeled PDF transport equation has a completely different structure fr
traditional moment-closure model equations, being a high dimensional scalar equat
Thus, traditional numerical techniques such as finite-volume and finite-difference meth
are not suitable to solve the PDF transport equation since the computational cost incre
exponentially with the number of dimensions in these methods. On the other hand, the Mc
Carlo method has proven to be a very useful tool to solve such high dimensional equati
as the computational cost increases only linearly with the number of dimensions. For
reason the Monte Carlo method traditionally has been used to solve the PDF equati
In this method, the PDF is represented by an ensemble of particles [13] whose prope
evolve according to model stochastic differential equations such that, ideally, the partic
exhibit the same PDF as occurs in the turbulent flows they are modeling.

Several mean fields are required to close the PDF model equations. In the stand-a
particle/mesh method (such as that implemented in the PDF2DV code [17]), these m
fields are extracted directly from the particle properties. The ability of the PDF2DV co
to solve the modeled PDF equations has been demonstrated, but it suffers from s
deficiencies mainly caused by the statistical fluctuations in the particle mean fields [19,
24]. To overcome these deficiencies, a consistent hybrid finite-volume (FV)/particle mett
has been developed and shown to be superior to the stand-alone particle/mesh meth
terms of numerical efficiency [7, 12]. The numerical properties of the loosely coupls
(present) hybrid algorithm have been extensively examined by Muragoglu12] in the
simpler setting of 1D reactive stochastic ideal flow and it also has been successfully app
to a non-reacting bluff-body flow [8]. Since the coupling of the finite-volume and particl
methods makes an important distinction between different hybrid algorithms, parallel we
has been carried out to examine a more tightly coupled hybrid algorithm which has a
been successfully applied to a reacting piloted-jet flame [7] and to a non-reacting bluff-bc
flow [8].

In the present hybrid method, several mean fields are represented as duplicate fields i
FV and particle algorithms, which raises questions of consistency. Itis emphasized here
in contrast to some earlier hybrid methods [2, 3], the present hybrid method is comple
consistent at the level of equations solved by the FV and particle algorithms; that is, if
equations are solved exactly, the duplicate fields are identical. However, inconsistencies
arise at the numerical solution level due to accumulation of numerical errors. Only two c
ditions are identified by Muradogkt al.[12] as the independent consistency conditions tc
be satisfied at the numerical solution level for full consistency. However, itis shown here t
in fact three independent consistency conditions are required, and correction algorithms
devised to enforce these conditions to make the hybrid method fully consistent at the nur
ical solution level. Itis found that the correction algorithms are robust and perform very we

A simple formulation is developed to implement the general ideal gas equation of st
and to evaluate the chemical source term in such a way that the mean conservation eque
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solved by the FV scheme correspond to those of an ideal gas with a fixed ratio of spe
heats. This leads to substantial simplification of the equations without loss of generalit

The method is implemented in the HYB2D code and tested for a non-premixed piloted
flame of methane [10]. The non-premixed piloted-jet flame is chosen as atest case since
been previously studied by using the same PDF model with the stand-alone particle/n
method (PDF2DV) and with the tightly coupled, consistent hybrid method (PDF-2D-F
as numerical solution algorithms. Furthermore there are comprehensive experimental
available for this flame [10]. Since a primary purpose of this study is to validate the pres
hybrid method for reacting turbulent flows in terms of numerical accuracy and efficien
compared to the other PDF solution algorithms, the same turbulence and combustion mc
are used in all the simulations as in Xu and Pope [23] and Jenhaly[7].

In the next section, the thermochemistry and the joint velocity—frequency-compositic
PDF model employed here are briefly reviewed and the governing equations solvec
the FV and particle algorithms are described. In Section 3, the consistency conditions
discussed and the independent consistency conditions are identified. Then the velc
position, and energy correction algorithms required to achieve the full consistency at
numerical solution level are presented in Section 4, and an analysis of the position correc
algorithm is presented separately in the Appendix. The numerical solution procedure
the time-averaging algorithm are described in Section 5. The test case of the non-prem
piloted-jet methane-air flame is briefly described, and the present results are compared
experimental data and with the earlier PDF calculations in Section 6, where the performe
of the correction algorithms is also evaluated and presented. Finally, conclusions are dr
in Section 7.

2. GOVERNING EQUATIONS

2.1. Thermochemistry

A crucial aspect of the hybrid approach is the treatment of the equation of state and of
thermochemical energy variable. A novel approach is presented here which is both sin
and general, and which involves several new energy variables.

We consider an ideal gas mixture consistinqigkpecies, the thermochemical state of
which is characterized by the pressyrand the set ofi; = ns + 1 composition variables

¢={Y.Y2 ..., Yo, h}, (1)

whereY are the mass fractions ahds the enthalpy. The temperatufecan be determined
from the compositiong.

The variableg (¢) (which has dimensions of energy and is independent of pressure)
defined by

Ya
E@=RTY )

whereR is the universal gas constant aw is the molecular weight of species The
variable&(¢) is thus defined so that the equation of state is simply

L @3)
0
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and its mean is
= E(p) = (4)

For a homogeneous, adiabatic system, in the absence of mixing, the compositions ev
by

des
dt

=8P, ¢), a=12...,ng (5)

and

dh 1dp £(¢)dp

bl el 6
dt  pdt p dt’ ©

where§, (p, ¢) is the net chemical reaction rate of speciesn applying these equations
to turbulent reactive flows we neglect pressure fluctuations, so that Egs. (5) and (6) bec

do
j’t —SUphd). a=12...n @

and

dh  &(¢) d(p)
at = (p dt ®)

In the PDF equations and particle method, the fundamental variablép)aaiad¢, and
the only thermochemical properties that are required are the reactiorStafes¢) and
the variable€ (¢). Given(p) and&(¢), the density is obtained from the equation of state
p=(pP)/E(P).

In the FV algorithm, the thermochemical variables are the mean pregsuaad density
{p), and mearequivalent energys.

To motivate and interpret the definition of the equivalent eneggwe consider a calor-
ically perfect, single component, diatomic ideal gas. The (mass-based) constant spe
heats are denoted 16, andC,,; their ratio isyp, = Cy,/C,, = 1.4, and their difference is
the gas constariRy = R/W = C,, — C,,. The sensible internal energy is defined by

€ = Cy T, 9)

and for this case the equation of state (Eq. (3)) becomes

E —&=RoT = (o — Deg,. (10)

Returning now to the general case, we define the equivalent eagbgy

E(P)
-1

(11

s =

It may be seen that this energy is equivalent to the sensible internal energy of a caloric
perfect diatomic gas at the same pressure and density. Using Eq. (3), the equivalent er
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can be alternatively expressed as

1 p

€5 = —. 12
T yp-1p (12)
Theequivalent enthalpis then defined as
hs = €5 + p = Yp€s = Yo . (13)
P vo—1

It is emphasized that although = 1.4 is used in these definitions, the treatment of the
ideal-gas thermochemistry is quite general: there is no assumption of constant specific h

2.2. Joint PDF Formulation

The one-point, one-time, mass-weighted joint PDF of velodity: (U1, U,, U3)™ and
compositionsp = (¢1, ¢, . .. ,¢n¢)T at locationx and timet is defined as

(0) F'(V, %, 1) = p(p)(8(V — U)s(xp — 9)), (14)

wherep is the density and = (V1, Vo, V3)" andeyp = (Y1, Y2, ..., ¥n,) " are the sample
space variables for velocity and the composition variables respectively. The delta
functions(V — U) represents the 3D delta function\at= U. The transport equation for
f'(V, 9; x, t) can be derived from the Navier—Stokes equations [14] and is given by

ap fr ot apyaf 9 -,
ot Vi T ax av, oy, IS

_ 0 (/) dm 9P 2\, 9 (/g -,
R << ax ax, 'V”"’>f ) o, << % 'V”/’>f > (15)

where ~ and() denote mass (Favre)-averaged and volume (Reynolds)-averaged me
respectively, and the angle brackets with vertical par| - - -) stands for the conditional
expectation. As can be seen in Eq. (14),evolves in(7 + ns)-dimensional space, i.e.,
velocity, compositions, and physical spaces plus time. All the terms on the left-hand sid
Eqg. (14) are in closed form and treated exactly. These terms represent the physical proc
of evolution in time, transport in the physical space, transport in the velocity space du
mean pressure gradie%g‘j—), and transport in the composition space due to reactpiis(
the net reaction rate for speciess in Eq. (5)). However, the conditional expectations or
the right-hand side of Eq. (14) appear in unclosed form and need to be modeled. Tt
unclosed terms represent the physical processes of transport in the velocity space d
the viscous stress tensgy and the fluctuating pressure gradi%%j'{, and transport in the
composition space by the molecular fluxis(of the scalaer in directionx;).

In the PDF method, taking a Lagrangian viewpoint, the flow is represented by a la
set of particles. Then the closure is achieved by constructing a set of stochastic differel
equations that govern the evolution of the particle properties in such a way that the parti
exhibit the same JPDF as the one obtained from the solution of the modeled JPDF tran:
equation. The models for particle velocity, turbulent frequency, scalar mixing, and react
are discussed in the following sections.
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TABLE |
Model Constants

Constant Value Used in
Co 21 SLM
Cq 0.6893 definition of2
C.1 0.65 turbulence frequency model
C.2 0.9 turbulence frequency model
Cs 1.0 turbulence frequency model
C, 0.25 turbulence frequency model
Cy 2.0 IEM mixing model

2.3. Velocity Model

Various Langevin models have been developed for the evolution of the particle veloc
to account for the acceleration due to mean pressure gradient and to provide a closur
the effects of viscous dissipation and fluctuating pressure gradient. We choose here
simplest velocity model, namely the simplified Langevin model (SLM), given by

dUs(t) = _%% dt — (% + Zc()) QU (t) — Uy dt 4 (Cok)Y2dW,  (16)

where
Ui Uy (17)

is the turbulent kinetic energy, and

Q=cyPele” = o) (18)
(p)
is the conditional Favre-averaged turbulent frequency witheing the turbulent frequency
to be defined in the following section. The model const@ysand C, are set to their
standard values as shown in Table I. The final inputin Eq. {4&)), represents an isotropic
vector-valued Wiener process. We note that SLM is equivalent to the Rotta model at
second-moment closure level [16].
The particle positiorX* then evolves by

ax*
dt

= U*(t). (19)

2.4. Turbulent Frequency Model

The particle property* provides the time scale needed to close Egs. (16) and (P42
stochastic model for the turbulent frequency is given by [22]

do*(t) = —Cs(w* — ®)Qdt — S,Qw" (1) dt + (2C3C4dQw*(1))Y2dW,  (20)

1 Note: The latter equation, which describes the evolution of the mixture fraction, is presented in the next sec
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whereW is an independent Wiener process, and the source$giimdefined as

P
S =Cu2—Cor (21)

k@’
whereP = —u;u; %—‘jj‘ is the turbulent production. The model constadyg, C,., C,3, and
C, are specified in Table I.

2.5. Chemistry and Mixing Models

A simple flamelet model is employed here for the treatment of chemical reactiol
The flamelet model is the same as that used in several earlier PDF simulations of
non-premixed piloted-jet flame [7, 23]. In this model, the particle thermochemical state
characterized solely by the mixture fraction defined as

_Zi—Zip
C Zn-Zip
where the subscripts 1 and 2 denote fuel and oxidizers, respectively;asdhe mass
fraction of the elemerit With this simple chemistry model, the thermochemical variables
are, by assumption, uniquely related to the mixture fractidhence in the particle method it
is sufficient to represent onfyexplicitly, and thenp and all other thermochemical variables

can be obtained from the flamelet properties (as functiog3.dh particular, the function
£ defined by Eq. (2) simplifies to be

§ (22)

_Po
p(&)’

wherepg is the flamelet pressure taken as Ba& andp (£) is the flamelet density.

In PDF methods, the effects of molecular diffusion are described by a mixing model. £
companying the simple chemistry model, the simplest mixing model—the interaction by
change with the mean (IEM) model [4]—is employed here. The IEM model can be written

do*

dt

where the model constafl}, is given in Table I. Mixing models are crucial in PDF sim-
ulations of turbulent non-premixed flames with finite-rate kinetics, and the IEM model
known to be problematic in this respect [21]. However, IEM gives reasonably accurate
sults when it is used in conjunction with equilibrium or flamelet models for non-premixe

flames near equilibrium [23] such as the non-premixed piloted-jet flame studied here.
This simplified thermochemistry can be represented in the general framework descri

in Section 2.1 by defining (for this case), = 1, ¢; = &, andS; = 0.

£@) = (23)

1 ~
= S(¢") — 5CsR" — ¢, (24)

2.6. Modeled JPDF Equations

With the models described above, the modeled density-weighted JPDF of velocity, |
bulent frequency, and compositions is given by

(P TV, 4,0, x,1) = F(V, 4,0, x, 1) (25)
= p()(8(U = V)8(h — $)8(6 — w)),

whereV, 0, anck) are the sample space variables correspondibigég ande, respectively.
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The transport equation fdr(V, 1, 6; x; t) can be derived from Egs. (16), (19), (20), and
(24) by using the standard procedure [14] and is given by

Moo e, L e af

IR N 2t
oy at D = T P D S

1 3 ~ 1 92 f

+ (é + ZCO) V. [f(\/l Uil + ECOkQHViaVi

2
+Q—(f9$0)+039—[f(9 60)]+C3C4Qa)a (fo)

[fS]+ C¢ [f (Ve — ¢a)]. (26)

81//0, 8%

As can be seenin Eq. (25 ,evolves in a high dimensional space. For example, it evolve
in (8 + ng)-dimensional space for an unsteady problem in 3D physical space. Theref
the conventional numerical techniques such as finite difference and finite volume meth
are not suitable to solve the modeled PDF transport equation since the computational
increases exponentially with the number of dimensions. This difficulty is overcome a
the PDF simulations are made feasible by the use of the Monte Carlo method in which
computational cost increases only linearly with the number of sample-space dimensior

2.7. Mean Conservation Equations

In the hybrid method, a FV scheme is used to solve the mean conservation equation:
mass, momentum, and equivalent energy, derived directly from the modeled PDF evolu
equation given by Eg. (25). Multiplying Eq. (25) by) and integrating over the entire
sample space yields the mean mass conservation equation given by

—(p)+ —(p)Up) =0. (27)

Similarly, the mean momentum conservation equation is obtained by multiplying Eq. (2
by (p)Vi, and integrating over the entire sample space, and is given by

0 J
praQl U ')+f(< p)UiU; (:@&j)—‘a(( PIUU}). (28)

The energy conservation equation is solved for the nteth equivalent energy
- P
eE<p>EsE<p><€s+§UiUi)’ (29)

wherees can be obtained by taking the mean of Eq. (12) and is given by

1 (P (30)

vo—1(p)

gsz

Referring to Eqg. (13), we define

hs(y) = (31



PDF EQUATIONS OF TURBULENT REACTIVE FLOW 849

Now multiplying Eqg. (25) byhs(1) and integrating yields

il ~ 0 &~ d — — 1 —
ﬁ(w)hs) + —{p)hsUi) = —%“P)(Ui h)) + (p)(hso &) — §C¢(p)9(¢g’hs,a),

0X%;
(32)

wherehg ., = 32;}‘1’), h! = hs — hs, ande!! = ¢y — ¢

It may be noted from Eq. (24) that the equivalent enthalpy following a particle evolves

dgy _

dh* 1 -
E e, 2% (s; - S —m). (33)

dt S dt

Hence the final two terms in Eqg. (31) can be conveniently written (and evaluated) as

(L) = (p) <dt)’ (34)
so that Eq. (31) can be rewritten as
O (o)) + ()0 = () — ~— ()0 (35)
ot (pYhs) + ax (pYhsUj) = (p)d — o (oyuihy).

In fact, Eq. (35) (withq is defined by Eq. (34)) is more general than Eq. (31), since
holds for any mixing model. As the notation impliggjs the heat release rate (or more
precisely, the rate of addition of equivalent enthalpy) due to reaction and mixing.

Finally the evolution equation fap) Es can be deduced from Egs. (27)—(29) and (35) tc
give

ol ~ 0 ~ ~
§(<p)Es) + a(ui“p)Es +(p))

B =N °1(- T e
= (p)q o ({p)uihy) Dt Ui ox] {e)uiuj), (36)
where we define
D 9 ~ @
a = ﬁ + Ui a_X| (37)

Relative to the convective terms in Eq. (35), the te?é?ﬁ is of order ofMa?, where
Ma is the local Mach number and is negligible in low Mach number flows. Furthermor
the last term in Eq. (35) represents the turbulence production and it is also negligibly sn
compared to the chemical source term and the scalar fluxes. Therefore, to an exce
approximation, for low Mach number flows, the mean energy equation reduces to

O B+ (G (o) E S
&“P)Es) + a*Xi(Ui ({P)Es+ (P)) = (p)d — afxi((/))ui hQ). (38)

Using Egs. (29) and (30), the mean equation of state can be alternatively written as

. 1o
(|0)=(V0—1)<p)<Es—2UiUi>. (39)
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In summary, the FV algorithm is employed to solve the conservation equations for me
mass (Eqg. (27)), the mean momentum (Eq. (28)), and the mean total equivalent en
(Eq. (35) or Eq. (38) for low Mach number flows), coupled with the mean equation of ste
(Eq. (39)).

It is emphasized here that all the terms appearing on the right-hand side of the m
conservation equations are supplied by the particle algorithm so that, as far as the
method is concerned, these equations may be regarded as the compressible Euler equ
with added source terms. Furthermore, these mean equations are completely consisten
the modeled PDF equation from which they are derived.

2.8. Particle System

In the context of the hybrid algorithm, the instantaneous particle velbkiig replaced
by the fluctuating velocity* = U* — U* since the Favre-averaged mean velod‘f'ﬁfyis
interpolated from the FV data. Therefore, the mean velocity evolution equation is subtrac
from the velocity model to obtain the evolution equation for the fluctuating part. The SL
model for the fluctuating part of the velocity is given by

1 ((p)uiu; aU; 1 3 -
durt) = = 20U 4 W95 g (L 3e) quid) di + (Coke) V2 dw.
(p)  9X; L ox; 2 4
(40)
The particle positiorX* then evolves by
ax* -
= U* 4+ u*. 41
at +u (41)

The particle algorithm is employed to solve the modeled PDF transport equation for
JPDF ofu, ¢, andw, denoted byj. The evolution equation fdj can be either derived from
Egs. (20), (24), (40), and (41) by the standard techniques [14] or directly deduced fr
Eq. (25) by using the relationship

Gv, 1, 0;x,t) = F(O+v,1,0;x1). (42)

As a result, all the equations solved by the FV and particle algorithms are complet
consistent since they are all derived from the same equation, namely the modeled |
transport equation given by Eq. (25).

3. CONSISTENCY CONDITIONS

As discussed above, the present hybrid algorithm is completely consistent at the leve
the governing equations. However, the solutions may not be consistent at the level of
numerical solutions due to the accumulation of numerical errors, and correction algorith
are required to enforce consistency of some variables.

Assuming that the FV fields are stored at cell centers representing cell averages,
simplestto consider ensemble averages of the particles within each cell to obtain consist
atthe numerical level. For cell, the independent mean fields represented inthe FV code a
(MEY, (pEV, OFY, andetY and we need to make sure that these quantities are consist

a !

with the corresponding particle fields.
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Each particle has a set of intrinsic properties, namely the mésthe positionX*, the
fluctuating velocityu*, the turbulence frequeney* and the compositiong*, and a set
of interpolated properties (interpolated from the corresponding FV fields onto particle
including the mean pressut@)* and the mean veIocitQ*. Note that the intrinsic parti-
cle properties are random and there are no underlying random fields. These intrinsic
interpolated particle properties are called the primary particle properties and contain
redundancy. However, various secondary particle properties may be derived from these
mary properties such as density; specific volume* = 1/p* and the equivalent energy.

In the cella, the indicator function,, (x) is defined such thdt, (x) = 1 if x is in the cell,
andl,(x) = 0 otherwise. Then the geometric volume of the cell is given by

V, = / lo (X) dx. (43)
The total particle mass” and the mean particle volumé&” in the cell are
ME = mila(X7), (44)
i
and
VP =) mirla (X, (45)
i

where the summation is over all the particles. Then the particle mass density for the ce
defined as

MP

qat = Va (46)

The Favre-averaged and Reynolds-averaged particle means of a particle pgdsaey
hence defined as

$F = mieila (X)) /ML, (47)

and

(@) =Y Miverla (X)) / V. (48)

Note that Egs. (47) and (48) are consistent in thatiffes 1, 1= (1) = 1. For¢ = v,
Eq. (47) yields

Uy =V, /Mg, (49)
and for¢ = p, EqQ. (48) gives
(p)g = Mg /Vy =1/0;. (50)
All of these mean particle properties are internally consistent if

VP =V, (51)

o



852 MURADOGLU, POPE, AND CAUGHEY

for then

v,
0 =1/ =a (35 ) = 52

Alternatively, we can take this consistency condition to be
<:0)¢5 = Oo- (53)

Now we are in a position to examine the consistency between the FV and particle m
fields. For the mean fields represented in the FV code, the consistency conditions
identified as

(0)e = (p)E". (54)
Py = (P, (55)
a° =0, (56)
P =¢etv. (57)

Since the pressure field is interpolated from the FV data onto particles, assuming th
second-order interpolation scheme is used, the condition given by Eq. (55) is satisfied \
second-order spatial accuracy; i.e.,

(p)y = (P)g" + O(AX?), (58)

whereAX is the grid spacing. That is, to within the truncation error of the method, Eq. (5!
is automatically satisfied and does not require further consideration.
The equations of the state used in the FV and particle algorithms are

(Pe’ = (o= Do)y e (59)
and
(P = (vo— Dpeg. (60)
Now from Egs. (60) and (48), we obtain
(Pl = > mivpla %)/ V]

= 3" M0 — D (X /VE

MP
= (o -Dypés
= (yo— e (61)

Thus, if Egs. (57) and (58) are satisfied, we obtain from Egs. (59) and (60) (tosrdr

G = (0} " (62)
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If the internal consistency condition Eq. (53) is also satisfied, then Eq. (62) legadte-

(p)EV (to orderAx?). Hence if Egs. (53), (57), and (58) are satisfied, then so also is E
(54). As a result, the independent consistency conditions to be satisfied at the leve
the numerical solutions are identified as those given by Egs. (53), (56), and (57). Tt
conditions are enforced by the correction algorithms as discussed in the following sect

Note that Muradoglet al. [12] identified the conditions given by Egs. (56) and (57)
as the only independent consistency conditions, and the condition given by Eq. (53
mistakingly claimed to be a dependent consistency condition implied by Eqgs. (56) and (*
The discussion above shows that claim to be incorrect.

In summary, the three independent consistency conditions that are not automatically
isfied are(p){ = Gu. U, =0, andef = €LV, Of the other consistency conditionig); =
(p)FV is automatically satisfied (to within the truncation error), whijge” = (o)FV and
VP =V, are dependent upon the three independent conditions. Thus satisfaction of
three independent conditions is sufficient to ensure the consistency of the method at
numerical level.

4. CORRECTION ALGORITHMS

In this section, we describe velocity, position, and energy correction algorithms whi
enforce the independent consistency conditions at the numerical solution level. The velc
correction algorithm corrects* to enforce the conditio” = 0, the position correction
algorithm corrects<* to enforce the conditioq = (p)P, and the energy correction algo-
rithm corrects:£V to enforceetV = €. (Henceforth we simplify the notation by omitting
the subscripte denoting the cell.)

It is stressed that only statistically stationary flows are considered and that all the ¢
rection algorithms are designed to impose the required conditions only at this statior
state.

4.1. Velocity Correction Algorithm

The consistency condition given by Eq. (56) states that the expectation of the fluctua
velocity remains zero. This condition is not automatically satisfied due to accumulation
numerical errors, so it is enforced using the simple correction algorithm proposed by Je
et al.[7]. In this method, before the correction, the mean fluctuating velocity is extract
from the particles by using the kernel estimation technique [5, 6], and the result is denc
by G It is then time-averaged (denoted @, 1 »), and the correction is performed (on
eachtime step) by subtractidig,  , from the particle fluctuating velocity*. The algorithm
may be summarized as

ut = u;c - GEC,TA’ (63)
where the valuéif; + , = Unc 1 A(X*) is interpolated from the time-averaged mean fluctu
ating velocity field stored at cell vertices.

Taking the Favre-average of both sides of Eq. (63) and time-averaging over a long t

scale yields

0%, = O(AX?), (64)
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showing that the required condition is satisfied to within the spatial truncation error ste
ming from the kernel estimation and interpolation operations. Note that the condition col
be satisfied exactly ifi* were evaluated by an ensemble average in each cell represent
the cell average.

4.2. Position Correction Algorithm

The position correction is performed to correct the particle posKioto enforce the con-
ditiongr a = (p)¥ o, wheregr aand(p)¥ , are the time-averaged mean particle mass densit
and the particle mean density, respectively. The condition is effected through a correc
velocity U°(x, t), so that particles move with the veIoclf;(X*, t) + US(X*, t) + u*(t).

The algorithm works by driving the normalized density difference (for each cell)

Q= q—(p) (65)

(P)TA
to zero in a time-averaged sense when a statistically steady state is reached. The algo
also involves the smoothed density differer@éx, t) which is obtained by solving the
equation
3Q 32Q

H = _(Q Q)Cf + on 3X|3Xi

(66)

by a FV method. Her&, andL are velocity and length scales, andnd f are nondimen-
sional parameters, all to be specified. Observe that Eq. (66) is a time-averaging opel
with an additional diffusive term, so that the quantﬁys Q smoothed both in time (over the
time-averaging time scakg , = u%c) and in space. The final quantity used in the algorithrr
is a correction potentiah that evolves by

g o
i bUs Q. (67)

whereb is a non-dimensional parameter to be specified. Then the correction velocity
specified as

¢ 0Q 9Q

Ui Z—afxl—auo §7+(1 C)* (68)
1 |f%z€;
¢ = ’ (69)

0 if@<65,

(p)
wherea is again a non-dimensional parameter to be specifiesda switching function that
replacesﬁwith Q to allow the algorithm to respond quickly when the mass density is to
small compared to the particle mean density, ani$ a free parameter to be specified.
The algorithm depends ap attaining a statistically stationary state. For then the time
average of Eq. (67) yields

Qra=0, (70)
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and hence

(1A= (p)TA (71)

Therefore, the consistency condition is satisfied exactly in a time-averaged sense wh
statistically stationary state is reached.

The questions remain: Dogdecome statistically stationary? How should the paramete
be chosento attain the statistically stationary state quickly and with small fluctuations? T
guestions are addressed in the Appendix. Based on the analysis presented in the App
and experience with the algorithm, the parameters are specified as

L= &% (72)
b4

Uo = |U |max (73)
1 1

== - 74

¢ 7 (CFL)pNE (74)

f =k¢c (75)

b= kbf S kbka (76)

b
a= <1+ c2) (77)

whereAx is the characteristic spatial grid size gt .« is the maximum mean velocity
in the computational domain. The parametersky, N 5, (CFL)p, ande, are typically
taken as 3, 8, 20, 0.4, and 0.25, respectively.

4.3. Energy Correction Algorithm

The consistency condition given by Eq. (57) states that the Favre-averaged mean FV
particle energy fields are equal, and it is again not automatically satisfied at the numet
solution level. Since the thermochemistry is provided by the particle algorithm, the parti
mean energy field is inherently more accurate than the corresponding FV field. Theref
a correction is performed on the FV field to require that it relax to the particle field.

The energy conservation equation can be written as

aeFV
at

=G, (78)
wheree™V is defined as
v lery -
eFV = (p)FV (ESFV 4 EUFV.UFV)’ (79)

andG represents all the remaining terms in the mean energy equation (Eqg. (35) or Eq. (3
The consistency condition can be also expressed alternatively as

=e”, (80)
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where
P p(p , L1opv eV

The correction algorithm is then specified as

aeFV
= G+ F 4+ 2fQp (e —efY), (82)
and
oF
o5 = Q2(e” —e™Y), (83)

whereF is a forcing term, andfe and Q¢ are positive real constants. In the statistically
stationary state, the consistency condition is satisfied since the long time average of Eq.
yields

€A = Era- (84)

These equations can be readily analyzed to determine appropriate choices of the paran
fe andQg. Differentiating Eq. (83) with respect to time and using Eq. (82) leads to
2

%—i—ZfeQF%—kQ%F = —Q2G, (85)
which is in the same form as the equation for a mass-spring-damper system with the nat
frequencyQ2r and damping coefficienfe. Therefore, a value of. around unity can be
expected to produce satisfactory behavior. In the calculations reported below, the paran
fe is taken to be 1.05 and the specification of the remaining parafetés discussed in
Section 6.2.3.

As the above analysis shows?V should relax smoothly to the particle fielf to
satisfy the required consistency condition if the equations are solved accurately. Howe
a numerical ill-conditioning arises in solving Egs. (82) and (83) since the total ea&Ygy
varies very little over the flow field evendf™ varies by factor of 7 or more. This difficulty
is easily circumvented by replacing the mean particle dengity in Eg. (81) with the
mean FV densityp)"V so that the final form of the correction algorithm becomes

e FV (2P _ ~FV
S =G+ F +2fQe ()Y (&7 - &), (86)
and
9F o
= = QR0 (€ &), (87)

It should be noted that Eq. (87) does not contain any spatial derivatives and it can
solved independently for each cell, separately from the rest of the equations solved by
FV scheme.

2Note: The correction algorithm is written in this form to facilitate a simple analysis. The final form of th
algorithm is given by Egs. (86) and (87).
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Itis also important to note that the specificatior®in Egs. (82) and (86) is immaterial
to the satisfaction of the consistency condition and to the resulting vallgs’ aindetV
(although it does affect the transient behavior). Hence it is unnecessary to implémer
in full as given by Eq. (35) or Eq. (38). Therefore, since the particle fields may conte
large statistical fluctuations that may lead to a stability problem in the FV algorithm, or
the chemical source term is retained and all the other terms are removed from the ri
hand side of Eq. (35). Even though the chemical source term is also extracted from
particles, it contains relatively small statistical fluctuations compared to the scalar flu;
so that it is retained to improve the convergence rate of the FV algorithm. As a result,
energy correction algorithm may be considered as a smoothing operator which reduce
statistical fluctuations inf”to be used in the FV algorithm.

5. NUMERICAL SOLUTION PROCEDURE

The loosely coupled consistent hybrid FV/particle method [12] is used here to solve
PDF equations. In this approach, a FV scheme is employed to solve the mean const
tion equations for the mass, momentum, and energy, coupled with the mean equatio
state, while a particle/mesh method is used to solve the modeled transport equation o
JPDF for the fluctuating velocity, turbulent frequency, and compositions. It is stressed f
again that, in contrast to some earlier hybrid algorithms [2, 3], the equations solved
the present hybrid method are fully consistent. The particle and FV codes are linkec
close the particle evolution and RANS equations as follows. The mean velocity and pt
sure fields are provided to the particle code by the FV code while the FV code gets
the Reynolds stresses, the chemical source termg Aritbi the particles. As shown by
Muradogluet al.[12] and Jennyet al.[7], the statistical error is substantially reduced in
the mean velocity and pressure fields in the hybrid method compared to the stand-a
particle/mesh method. It has also been shown that the use of these smooth fields ir
particle evolution equations leads to a dramatic reduction in the deterministic bias el
[7,12].

In the solution process, the FV and particle methods are periodically used to solve tl
respective equations. The form of coupling between the FV and particle algorithms c
tinguishes different hybrid methods. In this study a pseudo loosely coupled algorithm:
been adopted in which an outer iteration is completed by running the FV and particle co
each for a specified number of time steps. In the initial stages of the solution, both the
and particle codes are run for relatively few time steps in each outer iteration; typica
the FV and particle codes are run for 10 and 5 time steps, respectively. As the solu
approaches a statistically stationary state, the number of time steps taken in each FV
particle inner iteration is gradually increased and finally set to their specified maximt
value, typically 40 and 10 for the FV and particle codes, respectively. A similar strate
is also applied to the time-averaging scheme; i.e., the time-averaging time scale is initi
chosento be relatively small and is gradually increased up to its specified maximum valu
the solution approaches the statistically stationary state. In this way, global convergent
attained more quickly due to the increased interaction between the two codes and the u
less time-averaging in the transient regime; the desired smooth solutions are then reco\
by using a more loosely coupled strategy and longer time-averaging as the solution ne:
stationary state.
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U i+1/2

i+l

Ax

FIG.1. Asketch oftypical cells showing the evaluation of the correction velocity componentkiinection
used in the position correction algorithm.

Since the hybrid algorithm is designed to treat only steady flows, the time steps tal
in the FV and particle inner iterations need not be the same and are specified sepatr:
according to the stability and accuracy criteria of the respective algorithms.

Such a pseudo loosely coupled hybrid algorithm has been implemented in the HYB
code [8]. In this code, the particle algorithm is essentially based on the PDF2DV code [1
while the FV scheme is a slight modification of that developed by Caughey [1]. The dete
of the complete algorithm can be found in [8, 12].

For the position correction algorithm, the mean particle mass deqsitd the particle
mean density{p) are evaluated at cell centers as ensemble means. The position correc
potentialp, the smoothed density differen(i and the density differend® are also evalu-
ated and stored at cell centers. The spatial derivatives in Egs. (66) and (68) are approxirm
by second-order central differences. Equations (66) and (67) are advanced in time b
explicit Euler method for a single time step at each patrticle time step. The same time ¢
is used as that used to advance the particle equations. As sketched in Fig. 1, the corre
velocity for the position correction is evaluated at the cell faces and then interpolated
the particles using the same interpolation scheme as for the mean convective velocity.
spatial derivatives needed to calculate the correction velocity are also approximatec
second-order central differences.

As remarked before, Eq. (87) in the energy correction algorithm does not contain ¢
spatial derivatives. In the solution process, it is decoupled from the system of mean c
servation equations and advanced separately by using an explicit Euler method at eac
time step. Note that the particle fie&§ Used in the energy correction algorithm is also
evaluated at the cell centers as an ensemble mean.

5.1. Time-Averaging Method

Time-averaging is a powerful tool to reduce the statistical error in the particle mean fie
for a fixed number of particles [23]. The time-averaging method employed here is differ:
from that proposed by Muradoget al.[12] and is defined, for a particle mean figll] as

1 ~ 1
Q-krA=<l——N ) -krA1+—N QX (88)
TA TA
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whereQX , andQ¥ are the time-averaged and instantaneous values evalu&tidatticle
time step. The parameté@lr 4 is a time-averaging factor to be specified.

In the case of the Favre-averaged mean fields, the numerators and dominator are
averaged separately. For example, the time-averaged counterpart of the mean field de
by Eq. (47) is evaluated as

(30 Mg 1o (X)) 1 o
(0 M (X)) a

This way of time-averaging has the advantage of being very robust against the case
empty cells or cells with a small number of particles.

(Pa)TA= (89)

6. RESULTS AND DISCUSSION

6.1. Model Problem—Masri and Bilger’s Flame L

The test problem chosen is an axisymmetric, non-premixed piloted-jet flame stud
experimentally by Masrét al.[10]. The same flame has also been chosen as a test case
several earlier PDF simulations [7, 23]. The details of the burner used in the experime
are provided by Mastet al.[10]. An axisymmetric jet of methane fuel with radity =
3.6 mm is centered in an annular pilot with radigs = 9.0 mm. The pilot burns a mixture
of stoichiometric compositiorg(= & = 0.055) and provides a heat source which stabilize:
the main jet at the exit plane. The flame is surrounded by an unconfined coflow strear
air. The bulk velocities in the jet, in the pilot, and in the coflow are specified td jbe
41 m/sUp = 24 m/s,and). = 15 m/s, respectively. These conditions correspond to Flar
L of Masri and Bilger [11]. Measurements have been performed for temperature by
thermocouple method, velocity by LDA and compositions by sample probes. Experimet
data are published by Magi al.[10] and are also available at the Web site of the Universit
of Sydney [9].

6.2. Results

The primary purpose of the present work is to validate the consistent hybrid mett
for reacting turbulent flows in terms of numerical accuracy and efficiency compared to
other PDF solution algorithms [7, 23] and to evaluate the performance of the correct
algorithms in achieving consistency at the numerical level. Therefore, the same grids,
same initial and boundary conditions, and the same turbulence and chemistry model:
used here as were used by Xu and Pope [23] and by Jetraly[7]. The inlet boundary
conditions, which are also used as initial conditions, are shown in Fig. 2.

For the numerical simulation, a cylindrical coordinate system is adopted with the ori
of the radial coordinate | placed at the center of the fuel jet. Following Xu and Pope [23]
the computational domain is taken to beRgdong in the axial directionx) and extends
to 15R; in the radial direction. The domain is divided into a totalf non-uniform grid
cells, whereM is between 20 and 64. The details of the computational grid and the initi
and boundary conditions can be found in [23].

For the FV method, the mean velocity and density are fixed at the inlet boundary, wt
the pressure is extrapolated from the computational domain. At the outlet boundary,
mean velocity and density are extrapolated from the computational domain and pressu
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FIG. 2. Inlet profiles of the normalized mean axial velocity, the normalized rms axial fluctuating velocity, th
normalized turbulent frequency, and the mean density for flame L.

fixed to the pressure calculated as

P = po— (p)vv, (90)

where pg is the atmospheric pressum(= 10° Pa) and is the fluctuating velocity in the
radial direction evaluated at the outlet boundary. We note that Eq. (90) is exact for pl
flows but is only approximately correct for axisymmetric flows, involving the assumptic
that fluctuating velocities in the radial and circumferential directions are equal [20].

Results are now presented for the hybrid method implemented in the HYB2D code app
to simulate the non-premixed piloted-jet flame, flame L. The statistical stationarity of t
numerical solution is first inspected. Then the Favre-averaged mean velocity and mix
fraction profiles at 4&; downstream of the nozzle are compared with the experiment
data and with the earlier PDF simulations to verify the accuracy of the present algoritt
The internal consistency and performance of the correction algorithms are also investige
Finally the spatial discretization (grid convergence) and bias errors are studied and comp
with those of the other PDF solution algorithms.

In Fig. 3, the Favre-averaged mean axial velocity and mean mixture fraction profiles
shown at 4®; downstream of the nozzle and compared with the experimental data [1
and with the earlier results of PDF simulations by Xu and Pope [23] using the stand-alc
particle/mesh method and by Jengtyal. [7] using the tightly coupled consistent hybrid
method.

The results of all three simulations are obtained on the same4grid, 200 particles
per cell are used in PDF2DV, while 160 particles per cell are used in HYB2D (present) ant
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FIG. 3. Comparison of Favre-averaged mean axial velocity and mixture fractimpRyt = 40. Solid line:
HYB2D (present); dashed line: PDF-2D-FV; dotted line: PDF2DV; symbols: Experimental data. Grid: 40
40, Npc = 80, andNy , = 500.

PDF-2D-FV. As can be seen in these figures, the present results are in good agreemen
the other PDF simulations and also in remarkably good agreement with the experime
data considering the simple velocity, mixing, and chemistry models being used. Notice
the present result for the mean mixture fraction is in better agreement with the experime
data than results for the other PDF solution algorithms especially near the centerline.
is mainly due to the fact that the bias error is virtually eliminated in the present hybi
method as will be discussed in Section 6.4.

6.3. Statistical Stationarity

The HYB2D code is designed to treat only statistically stationary flows. To show tl
statistical stationarity of the numerical solutions, time series of Favre-averaged mean &
velocity and turbulent kinetic energy at four observation locations are depicted in Fig.
The results are obtained for a 4848 grid with the number of particles per cél},c = 40.

It can be seen that statistical stationarity is reached after about 5000 particle time steps.
initial fluctuations are mainly due to the relatively small time-averaging factor used in t
early stages of the computation.

00 7000 2000 3000 4060 5000 6000 7000 80O 9000 1000 0 61060 2000 3000 4000 500 6000 7000 8000 9000 10000
Number of particle time steps Number of particle time steps

FIG. 4. Time histories ofU /U, and ofk/U? at locations(x/R;, r/R;), (40, 0) (solid line), (72, 0) (dotted
line), (40, 2.5) (dashed line), and (72, 2.5) (dashdot line), showing that statistically stationary state is achi
after about 5000 particle time steps.
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6.4. Internal Consistency

In this section, the consistency conditions are investigated and the performance of
velocity, position, and energy correction algorithms is examined.

6.4.1. Velocity Correction

As discussed in Section 4.1, the consistency condition given by Eq. (56)i(ke0)
is enforced by the velocity correction algorithm. In all the results presented here, the
locity correction is performed at each particle time step but it is found that performing t
correction once every two or three particle time steps is sufficient for this test case. -
radial profiles of the time-averaged mean axi&l, and radialv® , fluctuating velocity
components without and with the velocity correction applied are shown in Fig. 5 at t
axial locationsx/R; = 40 andx/R; = 60 to demonstrate the performance of the velocity
correction algorithm. The figure clearly shows that, when the correction is turned off, t
condition is not fully satisfied especially near the centerline but when the correction
turned on it is successfully enforced leaving only the statistical fluctuations.

6.4.2. Position Correction

The position correction is performed to enforce the consistency betsyeeand(p)T a
at the numerical solution level. As discussed in Section 4.2, the correction algorithm

0.05 T 0.05) v
~= Not Corrected - Not Corrected
- - Corrected - - Corrected
[\ RO (] R PRl
X/Rj =40 x/F(j =60
-0 -0.2 4
[ 5 10 15 [ 5 10 15
/R 1/R.
i i
0. 0.03,
— Not Corrected —— Not Corrected
-~ Corected == Corrected

0.0z xR, = 40

-0.02) -0.02
-0.0% 5 10 15 003 5 10 15

/R /R,
i i
FIG. 5. Radial profiles of the time-averaged mean axial (upper plots) and radial (lower plots) fluctuati
velocity components without the velocity correction (solid lines) and with the velocity correction (dashed line
atx/R; = 40 (left) andx/R; = 60 (right). Grid: 48x 48, N,. = 40, andNy , = 500.
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FIG. 6. Time histories of the position correction potentfaand of the time-averaged normalized density
differenceQr  at location(x/R;,r/R;), (40, 0) (solid line), (72, 0) (dotted line), (40, 2.5) (dashed line), and
(72, 2.5) (dashdot line). Grid: 48 48, N, = 40, andN , = 500.

designed such that the condition is satisfied exactly by relaxing the mean particle
density smoothly to the particle mean density as a statistically stationary state is reachec
the results are obtained with the paramekgrs- 3.0, k, = 8.0, N{ , = 20,(CFL)p = 0.4,
ande, = 0.25.

The time histories of the position correction potengiaind the time-averaged normalized
density differenceQr 4 are plotted in Fig. 6 to show the convergence of the algorithm. A
can be seen from the comparison of this figure with the time historigsasfdk plotted in
Fig. 4, the position correction algorithm converges at about the same rate as the flow so
Furthermore, it is clearly seen th@ A relaxes to zero as required when the statistically
stationary state is reached.

The radial profiles ofQt 5 without and with the position correction applied are showr
in Fig. 7 at the axial locations/R; = 5, 20, 40, and 60 to demonstrate the effect of the
correction algorithm. As can be seen in this figure, the consistency betwaemd (o)t a
is not fully satisfied when the correction is turned off while it is successfully enforced by tl
correction algorithm everywhere in the computational domain leaving only the statisti
fluctuations.

The position correction is effected through a correction velocity so that the magnitude
the correction velocity is a good measure for how much correction is performed. Figur
depicts the axial and radial correction velocity profiles&#R; = 40 evaluated at 500, 5000,
and 10,000 particle time steps. It can be seen in this figure that the magnitudes of the :
and radial correction velocities are slightly larger in the transient regime and get smaller
statistically stationary state is approached. In the statistically stationary state, the maxin
magnitudes of the axial and radial correction velocities are about 8 and 10% of the cof
bulk velocityUc, respectively.

6.4.3. Energy Correction

The energy correction is performed to relax the FV mean equivalent energy field to
corresponding particle field as discussed in Section 4.3.

As shown earlier, a value df about unity is expected to lead to a smooth relaxation, an
it is specified here a$, = 1.05. The relaxation factoRg has dimensions of a frequency
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FIG. 7. Radial profiles of the time-averaged density differefZe, without the position correction (solid
lines) and with the position correction (dashed linesy/&R; = 5, 20, 40, and 60. Grid: 48« 48, N, = 40, and
N7 = 500.

and is defined as
QF = fcorr/":corrv (91)

where o is a relaxation time scale chosen as the residence time based on the jet
velocity; i.e.,

Tcorr = —U s (92)
j
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FIG. 8. The normalized axial (left plot) and radial (right plot) position correction velocity profiles evaluate
at 500, 5000, and 10,000 particle time steps. Gridx48, N, = 40, andNy , = 500.
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FIG. 9. Profiles of the mean FV and particle equivalent energy fields without the energy correction (I
plots) and with the energy correction (right plots)xtR; = 20 (top plots) and aR; = 40 (bottom plots).
Grid: 48 x 48, N, = 80, andNy » = 500.

where L is the length of the computational domain in the axial direction ldnds the
jet bulk velocity. The only remaining free parametgg, scales the relaxation time and it
should be chosen as small as possible for a fast relaxation. On the other hand, too <
values of f.o;r may introduce an instability in the FV scheme. It is found that = 1.0
makes the FV sensible internal energy field relax smoothly to the corresponding part
field, but the results seem not very sensitive to the choicé&.gf in the range between
feorr = 0.5 and feor = 5.0.

The profiles of the FV and particle mean equivalent eneggyré plotted in Fig. 9 at two
different axial locations without and with the correction being applied. For this test ca
the full energy equation (Eq. (38)) is implemented so that it is consistent with the parti
method (at the level of equations). The numerical simulations are performed orx a 4
48 grid with the number of particles per célf,c = 40 and the final time-averaging factor
Nt a = 500. These figures clearly show that consistency between the FV and particle m
energy fields is not achieved if the correction is not performed, but very good agreem
between the two fields is recovered when the correction is applied.

In this hybrid method, the mean density is also represented by duplicate fields in
FV and particle methods, raising again a question of consistency. However, as show
Section 3, consistency between the mean density fields is not independent and is guara
by the consistency of the mean energy fields. This is verified in Fig. 10. As can be s
in the figure, the agreement between FV and particle mean density fields is recove
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FIG. 10. Profiles of the mean FV and particle density fields without the energy correction (left plots) and wi
the energy correction (right plots)eftR; = 20 (top plots) and &®; = 40 (bottom plots). Grid: 4& 48, N, = 80,
andNr, = 500.

consistently as the FV energy field is relaxed to the the corresponding particle field by
energy correction algorithm.

6.5. Spatial Discretization Error

Spatial discretization error results from the spatial discretization in the FV method a
also from the kernel estimation and interpolation schemes in the particle algorithm ¢
to the finite size of the mesh cells. The spatial error in the present hybrid method |
been previously examined extensively by Muradogtial. [12] and it has been shown
that the method is second-order accurate in space. Therefore, an extensive study of s
discretization error is not repeated here but results intended to show grid converge
are presented. For this purpose, the time-averaged profiles of mean axial velocity,
turbulent kinetic energy, mean turbulent frequency, and mean mixture fraction are plot
in Fig. 11 at the axial locatior/R; = 40 for successively refined grids. In these figures
the profiles obtained by Richardson extrapolation assuming second-order accuracy in s
and using 48« 48 and 64x 64 grids are also plotted. All the simulations are performec
with the number of particles per céMl,c = 40 and the time-averaging factb » = 500.

It is clearly seen in these figures that the difference among the profiles is decreasing
cell refinement, indicating that grid convergence is achieved. To verify the second-or
spatial accuracy of the method, the mean quantitigs)., k/ UZ &R;/Uj, andg are also
plotted againsM —2 at the locatior(x/R;, r /R;) = (40, 1) in Fig. 12 in which the symbols
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FIG.11. Time-averaged mean profilesxgtR; = 40 with N, = 80 andNy , = 500 on various grids ranging
betweerM = 32 andM = 64. The solid lines represent the values obtained by Richardson extrapolation assurr

second-order spatial accuracy and using the solutionsMita 48 andM = 64.
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FIG. 12. Time-averaged mean quantities agaiist® at (x/R;, r/R;) = (40.0, 1.0) showing the exepected
second-order spatial accuracy of the method. Solid lines are linear least-squares fits to data.



868 MURADOGLU, POPE, AND CAUGHEY

represent the numerical data and the solid lines are the linear least-squares fits to the da
can be seen in the figure, the approximate linear relationship between the mean quan
andM—2 confirms the expected second-order spatial accuracy of the method. We also 1
that the 36x 36 grid (corresponding td—2 = 0.77 x 10~3) is sufficient for the spatial
error to be less than 5% in all the mean quantities at this location.

6.6. Bias Error

Bias error is the deterministic error caused by using a finite number of particles. Si
ulations with a 48x 48 grid but with various numbers of particles per cell are performe
to explore the bias error in various mean quantities. The bias error is expected to s
as N5C1~[18, 12]. Figure 13 shows the values of the normalized mean quantitigde,
k/UZ, €, andsR; /U; with N1 at the observation poirik/R;, r/R;) = (40.0, 1.0). The
symbols represent the values obtainedNgr = 20, 40, 80, and 160 and the solid lines are
the linear least-squares fits to the data points. The approximate linear relationship betv
the mean quantities arﬁsigcl confirms the expected scaling of the bias error. The slope
of the lines indicate the sensitivity of the solutions to bias error. It is clearly seen that t
bias error for a given value dfl,c in the present hybrid method is much smaller than ir
the stand-alone particle/mesh method, and still smaller than (but comparable to) the bic
the tightly coupled hybrid algorithm. For example, to obtain a solution with the bias err
less than 5% in all the mean quantities at the locatiotR;, r /R;) = (40, 1), the present

25 . . . . . . 0.15 v v T T —r
« HYB2D (data points) * HYB2D (data points)
245 — HYB2D (least squares fit) — HYB2D (least squares fit)
- -+ PDF2DV (Xu and Pope, 1999) -~ PDF2DV (Xu and Pope, 1999)
»»»»»» PDF~2D-FV (Jenny ef al., 1999)
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FIG. 13. Time-averaged mean quantities agaméf at(x/R;,r/R;j) = (40.0, 1.0). Symbols: HYB2D (data
points); solid lines: HYB2D (linear least squares); dotted lines: PDF2DV; dashed lines: PDF-2D-FV.
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e =20 e Exp. Data
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FIG. 14. Time-averaged mean profilesxtR; = 40 with M = 48 andN, range from 20 to 160, showing
the overall variations of the bias error in the mean quantiligtl,, k/U2, ®R;/U,, andk.

hybrid method requires only about 20 particles per cell while the stand-alone particle/m
method PDF2DV and the tightly coupled consistent hybrid method PDF-2D-FV requ
about 920 and 60 particles per cell, respectively.

The normalized profiles of mean axial velocity, mean turbulent kinetic energy, me
turbulence frequency, and mean mixture fraction are plotted in Fig. 4Rt = 40 for
Ny = 20, 40, 80, 160 to show the overall variations of the bias errors in these quantiti
It is seen that differences between profiles of all the quantities are quite small, indicat
that the bias error is virtually eliminated in the present hybrid algorithm.

A different position correction algorithm, referred to here as the “old position correctic
algorithm” is used in the PDF2DV code [17]. The old position correction algorithm |
designed to enforce the consistency between the geometric volume and the particle vo
as expressed by Eqg. (51). In this approach, particle positions are corrected to satisfy
condition (to within a given error tolerance) at each particle time step, which results
excessive jittering in the particle positions leading to large bias error.

To explore the reduction in the bias error by the present position correction algorithm,
old position correction algorithm is also implemented in the present hybrid code HYB2
The normalized mean quantitiey U, k/UZ, € and@R; / U, obtained with the old and new
position correction algorithms are plotted in Fig. 15 agawgg at(x/Rj,r/R;) = (40, 0).

Itis clearly seen that the present correction algorithm results in much smaller bias errort
the old algorithm especially in the turbulent kinetic energy and the mean mixture fractic
For instance, to obtain a solution with the bias error less than 5% in all the mean quantitie
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FIG.15. Time-averaged mean quantities agaMgLf at(x/Rj, r/R;) = (40.0, 0.0), showing the reduction in
the bias error by the present position correction algorithm. Gridk 48 andN,. x Nt =20,000. The symbols
are the numerical data and the lines are the linear least-squares fits to the data.

the location(x/R;, r/R;) = (40, 0), the present hybrid method requires about 20 particle
per cell with the present position correction algorithm while it requires about 170 particl
per cell with the old position correction algorithm.

7. CONCLUSIONS

The consistent hybrid algorithm implemented in the HYB2D code is developed to sol
the modeled transport equation for the joint PDF of velocity, turbulence frequency, a
compositions for turbulent reactive flows, and it is applied to a reacting piloted-jet flan
(Flame-L). Itis shown that the method is convergent and the bias and spatial errors conv
at the expected rates. The results are compared and found to be in good agreement wit
experimental data and with the results of earlier PDF simulations of Xu and Pope [23] ¢
Jennyet al.[7].

The present hybrid method is shown to be completely consistent at the level of
governing equations and its full consistency at the numerical solution level is carefully ¢
amined. Three conditions given by Egs. (53), (56), and (57) are identified as the indepen
consistency conditions and shown to be necessary and sufficient conditions to be fulfi
for the full consistency at the numerical solution level, correcting the earlier paper
Muradogluet al. [12], where only two of these conditions, i.e., those given by Eqs. (5¢
and (57), were mistakingly claimed to be sufficient conditions for full consistency.
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The independent consistency conditions are enforced by the use of velocity, position,
energy correction algorithms to make the method fully consistent at the numerical le
The velocity correction algorithm (Eq. (63)) is devised to correct the particle fluctuatir
velocity to enforce the condition given by Eq. (53). It is found that the algorithm is vel
robust and performs well. The main advantage of the velocity correction algorithm is i
it is very simple to implement and requires very little additional computational work.

The position correction algorithm (Eqgs. (66)—(69)) corrects the particle position to e
force the condition given by Eq. (56) by relaxing the mean particle mass depsitthe
particle mean densityp) as a statistically stationary state is reached. An analysis is pe
formed to determine an approximately optimal set of the parameters used in the posi
correction algorithm in order to attain the statistically stationary sate quickly and with sm
fluctuations. Even though the analysis is based on the modified version of the algori
and carried out only for a constant-density flow, it is found that the algorithm with this s
of parameters is very robust and performs very well for the test case studied here.

The final independent consistency condition (Eq. (57)) is enforced by the use of
energy correction algorithm given by Eqgs. (86) and (87). The energy correction algorit
is performed in the FV algorithm and used to relax the FV mean energyefieldd its
particle counterpart. The algorithm is analyzed based on a mass-spring-damper syster
the correction parameters are determined to achieve a smooth relaxation. It is found
the algorithm is very robust to small variations in the parameters and performs very w
It is emphasized here that the use of the energy correction algorithm greatly improves
robustness of the FV algorithm since it allows the removal of some noisy patrticle fiel
(such as the scalar fluxes) from the mean energy conservation equation.

A simple formulation is developed for the implementation of the general ideal gas eq
tion of state, which keeps the ratio of specific heats constant and greatly simplifies the ir
conservation equations for the implementation of the FV algorithm.

It is found that the present hybrid method is very effective at virtually eliminating tr
bias error in all the mean quantities. It is also found that the new position correction
gorithm substantially reduces the bias error especially in the turbulent kinetic energy
the mean mixture fraction compared to the alternative correction algorithm implemen
in PDF2DV [17] code. For a given grid size and number of particles, the numerical
rors in the present hybrid method are substantially less than in other methods—by a
tor of 46 compared to the much-used, stand-alone particle/mesh method implemente
PDF2DV [17]. Hence the present method represents a substantial advance in computat
efficiency.

While the present work is in the context of the velocity—frequency—compositions joi
PDF, most of the methodology developed is applicable to the compositions PDF; specific
the position and energy correction algorithms, and the treatment of the equation of st
The present hybrid method can be readily applied to the 3D flows and to different gr
(e.g., unstructured grids). However, because it relies on statistical stationarity and ti
averaging, it cannot be extended straightforwardly to unsteady flows.

8. APPENDIX:

The position correction algorithm presented in Section 4.2 is shown to guarantee
consistency between the mean particle mass density and the particle mean density in a
averaged sense if a statistically stationary state is reached. Here the algorithm is anal
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to address the the question of the statistical stationarity, and the parameters are optin
to attain the statistically stationary state quickly and with small fluctuations.

The algorithm given by Egs. (65)—(69) are slightly modified to facilitate a simple analys
of the algorithm. The modified algorithm is then given by

c__9 _ E _ e
QU = a% AL £ -+ (1 g)ax. (93)
¢
5, =buiQ (94)
9Q = Uo 92Q
G = Q- Qo+ fUsL oot (95)
Q=0q—(p) (96)
1 i@ >
(=4 0 97)
0 if % < €.

To analyze the algorithm, we consider a constant-density incompressible flow and ass
that the Favre-averaged mean velocity figlis steady. With these assumptions, the mea
continuity equations based @p) andq can be given by [14]

ap) d ~ L
and
Z—?Jri(qu +qUf) = 0. (99)

Subtracting Eq. (98) from Eq. (99) yields

9Q
EJFI(QU +qUf) =0. (100)

Considering the case = 1 first and substituting Eq. (93) into Eq. (100) then results in

90 92¢ 92Q
— 4 — — — =0. 101
at X (Q I 3% X; °T 9% % (101)
From Eqg. (95), we have
L 9Q =~ fL? 2°Q
_ Lo 102
Q Uoc at c A% 0%’ ( )

which can be substituted into Eq. (101) to give

L 82Q 4Q fL2 32 /3Q 32¢ 32Q
—_—— = - — —=) - UoL

UyC at2 ot c axiox \ ot X OX; X OX;
~ 8 [ L aQ — fL2 32Q ]_0

+Ui— +
3% | UoC at ¢ 0Xj0X;j

(103)
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where the constant-density assumption, |% =0, has been used. Diffierentiating
Eqg. (102) with respect to time and using Egs. (94) and (102) yields

33(§+32(§ fL2 92 (326) al? 92 <a§>

at3 a2 c 9xdx \ of2 c oaxiax \ ot
_bL? 92 a<§+ ~ fL? 3%Q
2 axdx | ot C 0Xj0X;
L ~ 8 [9°Q 9Q fLZ 82 (39
LI A i SCA L 9Q\] _ (104)
Uoc Jx | of? ot C 0XjdX; at
where the non-dimensional time variablis defined as
~ UeC
f= T°t. (105)

With an assumption of periodic boundary conditions, the spatial Fourier transform
Eqg. (103) is given by

336 f 2,2 . 826 a b 2] 2
f)f3+|:1+C(KL)+UI:| o +|:<C+(:2>(KL)

fos . 6 2 2
+(1+E(K L )) m} T to [1+—(:c L )] *?L)Q =0, (106)

where(s is the Fourier transform 06 k is the wave number vector, and= /—1. The
scalarx and the non-dimensional paramedeare defined as

K = KiKj, (107)

and

L -~
o = U—OC(UiKi). (108)

Now let the length scale be specified as
L= Kr;alxv (109)
wherexmax IS the maximum wavenumber (on the grid to be specified) and define
K= (k/kmad? = «k?L2 < 1. (110)
Then looking for a solution in the form
Q= Qoe™, (111)

where(s0 is a function of space only, and substituting Eq. (111) into Eq. (105) yields tt
following characteristic equation for ~

a3 + 1+ki+ai &+ |k E+E + 1+ki oi o}+kB 1+ki =
C c c2 c c? c

(112)
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Note that the real parts of all the roots of Eq. (112) must be strictly negative and as sr
as possible for good damping and convergence of the algorithm. The maximum of the |
parts of the characteristic equation determines the rate of convergence of the correc
algorithm, so this quantity is referred to as the “damping factor.” For the sake of simplici
we consider a uniform grid so that the maximum wavenumber is given by

T
L™ = kmax = ~— 113
Kmax AX ( )
whereAx is the grid spacing. Hence the time-averaging time scale is
L AX
C = _— — ) 114
A= U~ 7Uqc (114)

The time-averaging time scale is typically specified in terms of a number of particle tir
steps; i.e.,

5 a = Nf AL, (115)
whereAt is the time step taken in the particle algorithm ag, is a free parameter to be
specified. From Egs. (114) and (115), we get

1 Ax
c=————. 116
7 N§ A UoAt (116)

Inthe particle algorithm, the time step is determined according to a CFL condition definec

|U [maxAt
CFL)p = ——. 117
(CFL)p AX (117)
If we let U, be specified as
Uo = |U |max7 (118)
and then the parameteiis obtained from Eqs. (116)—(118) as
1 1
cC=————— (119)

m (CFL)pNE,’

To determine the other coefficients, we first consider the special case of zero mean con
tive velocity; i.e.,U = 0 so thatr = 0 for the maximum wavenumbée,= 1, in which case
Eqg. (112) reduces to

f f
PEN CTLA Py (LA PO PRI N (120)
c c c2 c? c

Since itis difficult to solve Eq. (120) explicitly, we pose it as an inverse problem and requ
the first root be given by

G = —1, (121)

for which we must have

a=t <1+§). (122)
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Using Eq. (122), Eq. (120) can be factored as

f f
@+ 1) <&2+—&+% (1+—)) 0
C C C

which can be solved to give

If we choose

f =ksc
b=k, f?,

875

(123)

(124)

(125)
(126)

where ks > 0 and k, > 0 are positive real numbers to be specified and requike 4

(14 k¢) > 1, the real parts of the roots are given by

Reala) = {—1, —k;, —k¢}

(127)

showing that the algorithm has good damping characteristics for this special case.

For the general case, Eq. (112) can be solved numerically over a range of convec
velocities and wavenumbers. Figure 16 shows a surface plot of the damping factor for
parameterk; = 3.0, kp = 8.0, andN{ , = 20. The figure clearly demonstrates that the
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FIG. 16. The surface plot of the damping factor over the full ranges of the wavenumbers and convec

velocity for¢ = 1.
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damping factor is strictly negative and the algorithm has good damping characteristics
high wavenumbers and smaller mean convective velocity, but the damping gets wors
the wavenumber decreases and the convective velocity increases.

Time-averaging introduces a time scale which prevents the correction algorithm fra
responding quickly to the inconsistencies if the correction velocity is based purely on
time-averaged quantities such¢gaand (5 This may cause a numerical difficulty of having
too many “empty cells” (i.e., cells devoid of particles), especially in a transient regime wh
a small number of particles per cell is used in a simulation. Therefore we consider replac
(5 in Eq. (93) with its instantaneous counterp@itwhich corresponds to the case= 0.
Following the same procedure as described above for thecasé, the characteristic
equation for the casg = 0 can be seen to be

&%+ (ka +ai>&+kb2 —0, (128)
C C

which can be solved to give

K2 il k+|24kb (129)
Q12 = % o > o 2

Notice that both roots are real and strictly negative in the absence of the convective ve
ity; i.e., o = 0. In general, the roots are complex and the damping factor for this case
plotted in Fig. 17, which indicates very good damping characteristics over wide ranges
wavenumbers and convective velocities.
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FIG. 17. The surface plot of the damping factor over the full ranges of the wavenumbers and convect
velocity for the case = 0.
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In spite of the fact that the cage= 0 has a better damping characteristic than the cax

¢ =1, the case& = 0 is not desirable since the use of the instantaneous patrticle field
Eqg. (93) results in too much statistical noise in the correction velocity, especially whel
small number of particles per cell is used. In addition to this, the instantaneous part
mass density used in Egs. (93) is also a large source of statistical noise in the correc
velocity. To avoid these deficiencies as much as possible, the best features of the
cases are combined and the final form of the position correction algorithm is given
Egs. (65)-(69).
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