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The hybrid method solves the modeled transport equation for the joint PDF of ve-
locity, turbulence frequency, and compositions for turbulent reactive flows. A finite-
volume (FV) method is used to solve the mean conservation equations for mass,
momentum, and energy and the mean equation of state; and a particle method is used
to solve the modeled PDF equation. The method is completely consistent at the level
of the governing equations solved by the FV and particle algorithms. In this work, the
conditions to be fulfilled for full consistency at the numerical solution level are exam-
ined and the independent consistency conditions are identified. Then correction algo-
rithms are developed to enforce these independent consistency conditions to achieve
full consistency at the numerical solution level. In addition, a new formulation of the
energy equation and the equation of state is developed which is both general and sim-
ple. The hybrid method is applied to a non-premixed piloted-jet flame. The numerical
results show that the correction algorithms are completely successful in achieving
consistency. The convergence of the method is demonstrated and, in particular, it is
shown that the bias error is dramatically reduced (compared to that in previous PDF
calculations). In addition, the results are shown to be in a good agreement with some
earlier PDF calculations and also with the available experimental data. Because of the
substantially reduced numerical error (for given grid size and number of particles),
the present hybrid method represents a significant advance in the computational effi-
ciency of particle/mesh method for the solution of PDF equations.c© 2001 Academic Press
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1. INTRODUCTION

The main advantage of the joint PDF approach over conventional moment-closure
methods is its ability to represent the important processes of convection and finite-rate
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non-linear reaction exactly [14, 15] without any modeling assumptions. In particular, the
exact treatment of the non-linear chemical reaction makes PDF methods very attractive for
simulation of complex turbulent reactive flows of practical interest [15]. However, appli-
cation of the PDF method to these flows requires the development of efficient numerical
solution algorithms [23]. Considerable progress has been recently made in this direction by
the development of the consistent hybrid method [7, 12].

In PDF methods, turbulent closure is achieved through a modeled transport equation
for the one-point, one-time joint PDF of selected fluid properties in a turbulent flow [14, 20].
The resulting modeled PDF transport equation has a completely different structure from
traditional moment-closure model equations, being a high dimensional scalar equation.
Thus, traditional numerical techniques such as finite-volume and finite-difference methods
are not suitable to solve the PDF transport equation since the computational cost increases
exponentially with the number of dimensions in these methods. On the other hand, the Monte
Carlo method has proven to be a very useful tool to solve such high dimensional equations
as the computational cost increases only linearly with the number of dimensions. For this
reason the Monte Carlo method traditionally has been used to solve the PDF equations.
In this method, the PDF is represented by an ensemble of particles [13] whose properties
evolve according to model stochastic differential equations such that, ideally, the particles
exhibit the same PDF as occurs in the turbulent flows they are modeling.

Several mean fields are required to close the PDF model equations. In the stand-alone
particle/mesh method (such as that implemented in the PDF2DV code [17]), these mean
fields are extracted directly from the particle properties. The ability of the PDF2DV code
to solve the modeled PDF equations has been demonstrated, but it suffers from some
deficiencies mainly caused by the statistical fluctuations in the particle mean fields [19, 23,
24]. To overcome these deficiencies, a consistent hybrid finite-volume (FV)/particle method
has been developed and shown to be superior to the stand-alone particle/mesh method in
terms of numerical efficiency [7, 12]. The numerical properties of the loosely coupled
(present) hybrid algorithm have been extensively examined by Muradogluet al. [12] in the
simpler setting of 1D reactive stochastic ideal flow and it also has been successfully applied
to a non-reacting bluff-body flow [8]. Since the coupling of the finite-volume and particle
methods makes an important distinction between different hybrid algorithms, parallel work
has been carried out to examine a more tightly coupled hybrid algorithm which has also
been successfully applied to a reacting piloted-jet flame [7] and to a non-reacting bluff-body
flow [8].

In the present hybrid method, several mean fields are represented as duplicate fields in the
FV and particle algorithms, which raises questions of consistency. It is emphasized here that,
in contrast to some earlier hybrid methods [2, 3], the present hybrid method is completely
consistent at the level of equations solved by the FV and particle algorithms; that is, if the
equations are solved exactly, the duplicate fields are identical. However, inconsistencies may
arise at the numerical solution level due to accumulation of numerical errors. Only two con-
ditions are identified by Muradogluet al.[12] as the independent consistency conditions to
be satisfied at the numerical solution level for full consistency. However, it is shown here that
in fact three independent consistency conditions are required, and correction algorithms are
devised to enforce these conditions to make the hybrid method fully consistent at the numer-
ical solution level. It is found that the correction algorithms are robust and perform very well.

A simple formulation is developed to implement the general ideal gas equation of state
and to evaluate the chemical source term in such a way that the mean conservation equations
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solved by the FV scheme correspond to those of an ideal gas with a fixed ratio of specific
heats. This leads to substantial simplification of the equations without loss of generality.

The method is implemented in the HYB2D code and tested for a non-premixed piloted-jet
flame of methane [10]. The non-premixed piloted-jet flame is chosen as a test case since it has
been previously studied by using the same PDF model with the stand-alone particle/mesh
method (PDF2DV) and with the tightly coupled, consistent hybrid method (PDF-2D-FV)
as numerical solution algorithms. Furthermore there are comprehensive experimental data
available for this flame [10]. Since a primary purpose of this study is to validate the present
hybrid method for reacting turbulent flows in terms of numerical accuracy and efficiency
compared to the other PDF solution algorithms, the same turbulence and combustion models
are used in all the simulations as in Xu and Pope [23] and Jennyet al. [7].

In the next section, the thermochemistry and the joint velocity–frequency-compositions
PDF model employed here are briefly reviewed and the governing equations solved by
the FV and particle algorithms are described. In Section 3, the consistency conditions are
discussed and the independent consistency conditions are identified. Then the velocity,
position, and energy correction algorithms required to achieve the full consistency at the
numerical solution level are presented in Section 4, and an analysis of the position correction
algorithm is presented separately in the Appendix. The numerical solution procedure and
the time-averaging algorithm are described in Section 5. The test case of the non-premixed
piloted-jet methane-air flame is briefly described, and the present results are compared with
experimental data and with the earlier PDF calculations in Section 6, where the performance
of the correction algorithms is also evaluated and presented. Finally, conclusions are drawn
in Section 7.

2. GOVERNING EQUATIONS

2.1. Thermochemistry

A crucial aspect of the hybrid approach is the treatment of the equation of state and of the
thermochemical energy variable. A novel approach is presented here which is both simple
and general, and which involves several new energy variables.

We consider an ideal gas mixture consisting ofns species, the thermochemical state of
which is characterized by the pressurep and the set ofnφ = ns + 1 composition variables

φ ≡ {Y1,Y2, . . . ,Yns, h
}
, (1)

whereY are the mass fractions andh is the enthalpy. The temperatureT can be determined
from the compositionsφ.

The variableE(φ) (which has dimensions of energy and is independent of pressure) is
defined by

E(φ) = RT
∑
α

Yα
Wα

, (2)

whereR is the universal gas constant andWα is the molecular weight of speciesα. The
variableE(φ) is thus defined so that the equation of state is simply

p

ρ
= E(φ), (3)
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and its mean is

〈p〉
〈ρ〉 = Ẽ(φ) ≡

〈ρE(φ)〉
〈ρ〉 . (4)

For a homogeneous, adiabatic system, in the absence of mixing, the compositions evolve
by

dφα
dt
= Sα(p,φ), α = 1, 2, . . . ,ns (5)

and

dh

dt
= 1

ρ

dp

dt
= E(φ)

p

dp

dt
, (6)

whereSα(p,φ) is the net chemical reaction rate of speciesα. In applying these equations
to turbulent reactive flows we neglect pressure fluctuations, so that Eqs. (5) and (6) become

dφα
dt
= Sα(〈p〉,φ), α = 1, 2, . . . ,ns (7)

and

dh

dt
= E(φ)〈p〉

d〈p〉
dt

. (8)

In the PDF equations and particle method, the fundamental variables are〈p〉 andφ, and
the only thermochemical properties that are required are the reaction ratesS(〈p〉,φ) and
the variableE(φ). Given〈p〉 andE(φ), the density is obtained from the equation of state:
ρ = 〈p〉/E(φ).

In the FV algorithm, the thermochemical variables are the mean pressure〈p〉 and density
〈ρ〉, and meanequivalent energy,̃εs.

To motivate and interpret the definition of the equivalent energyεs, we consider a calor-
ically perfect, single component, diatomic ideal gas. The (mass-based) constant specific
heats are denoted byCv0 andCp0; their ratio isγ0 ≡ Cp0/Cv0 = 1.4, and their difference is
the gas constantR0 = R/W = Cp0 − Cv0. The sensible internal energy is defined by

εs0 ≡ Cv0T, (9)

and for this case the equation of state (Eq. (3)) becomes

p

ρ
= E = R0T = (γ0− 1)εs0. (10)

Returning now to the general case, we define the equivalent energyεs by

εs ≡ E(φ)
γ0− 1

. (11)

It may be seen that this energy is equivalent to the sensible internal energy of a calorically
perfect diatomic gas at the same pressure and density. Using Eq. (3), the equivalent energy
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can be alternatively expressed as

εs = 1

γ0− 1

p

ρ
. (12)

Theequivalent enthalpyis then defined as

hs ≡ εs + p

ρ
= γ0εs = γ0

γ0− 1
E . (13)

It is emphasized that althoughγ0 = 1.4 is used in these definitions, the treatment of the
ideal-gas thermochemistry is quite general: there is no assumption of constant specific heats.

2.2. Joint PDF Formulation

The one-point, one-time, mass-weighted joint PDF of velocityU = (U1,U2,U3)
T and

compositionsφ = (φ1, φ2, . . . , φnφ )
T at locationx and timet is defined as

〈ρ〉 f̃ ′(V,ψ; x, t) ≡ ρ(ψ)〈δ(V − U)δ(ψ − φ)〉, (14)

whereρ is the density andV = (V1,V2,V3)
T andψ = (ψ1, ψ2, . . . , ψnφ )

T are the sample
space variables for velocityU and the composition variablesφ, respectively. The delta
function δ(V − U) represents the 3D delta function atV=U. The transport equation for
f̃ ′(V,ψ; x, t) can be derived from the Navier–Stokes equations [14] and is given by

∂〈p〉 f̃ ′
∂t

+ Vj
∂〈ρ〉 f̃ ′
∂xj

− ∂〈p〉
∂xj

∂ f̃ ′

∂Vj
+ ∂

∂ψα
(〈ρ〉Sα f̃ ′)

= ∂

∂Vj

(〈
−∂τi j

∂xi
+ ∂p′

∂xj
|V,ψ

〉
f̃ ′
)
+ ∂

∂ψα

(〈
∂ Jαi
∂xi
|V,ψ

〉
f̃ ′
)
, (15)

where ˜ and〈〉 denote mass (Favre)-averaged and volume (Reynolds)-averaged means,
respectively, and the angle brackets with vertical bar〈· · · | · · ·〉 stands for the conditional
expectation. As can be seen in Eq. (14),f̃ ′ evolves in(7+ ns)-dimensional space, i.e.,
velocity, compositions, and physical spaces plus time. All the terms on the left-hand side of
Eq. (14) are in closed form and treated exactly. These terms represent the physical processes
of evolution in time, transport in the physical space, transport in the velocity space due to
mean pressure gradient∂〈p〉

∂xj
, and transport in the composition space due to reaction (Sα is

the net reaction rate for speciesα as in Eq. (5)). However, the conditional expectations on
the right-hand side of Eq. (14) appear in unclosed form and need to be modeled. These
unclosed terms represent the physical processes of transport in the velocity space due to
the viscous stress tensorτi j and the fluctuating pressure gradient∂p′

∂xj
, and transport in the

composition space by the molecular fluxesJαi (of the scalarα in directionxi ).
In the PDF method, taking a Lagrangian viewpoint, the flow is represented by a large

set of particles. Then the closure is achieved by constructing a set of stochastic differential
equations that govern the evolution of the particle properties in such a way that the particles
exhibit the same JPDF as the one obtained from the solution of the modeled JPDF transport
equation. The models for particle velocity, turbulent frequency, scalar mixing, and reaction
are discussed in the following sections.
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TABLE I

Model Constants

Constant Value Used in

C0 2.1 SLM
CÄ 0.6893 definition ofÄ
Cω1 0.65 turbulence frequency model
Cω2 0.9 turbulence frequency model
C3 1.0 turbulence frequency model
C4 0.25 turbulence frequency model
Cφ 2.0 IEM mixing model

2.3. Velocity Model

Various Langevin models have been developed for the evolution of the particle velocity
to account for the acceleration due to mean pressure gradient and to provide a closure for
the effects of viscous dissipation and fluctuating pressure gradient. We choose here the
simplest velocity model, namely the simplified Langevin model (SLM), given by

dU∗i (t) = −
1

〈ρ〉
∂〈p〉
∂xi

dt −
(

1

2
+ 3

4
C0

)
Ä(U ∗i (t)− Ũ i ) dt + (C0k̃Ä)1/2 dWi , (16)

where

k̃ = 1

2
ũi ui (17)

is the turbulent kinetic energy, and

Ä ≡ CÄ

〈ρ∗ω∗|ω∗ ≥ ω̃〉
〈ρ〉 (18)

is the conditional Favre-averaged turbulent frequency withω∗ being the turbulent frequency
to be defined in the following section. The model constantsC0 andCÄ are set to their
standard values as shown in Table I. The final input in Eq. (16),W(t), represents an isotropic
vector-valued Wiener process. We note that SLM is equivalent to the Rotta model at the
second-moment closure level [16].

The particle positionX∗ then evolves by

dX∗

dt
= U∗(t). (19)

2.4. Turbulent Frequency Model

The particle propertyω∗ provides the time scale needed to close Eqs. (16) and (24).1 The
stochastic model for the turbulent frequency is given by [22]

dω∗(t) = −C3(ω
∗ − ω̃)Ä dt − SωÄω

∗(t) dt + (2C3C4ω̃Äω
∗(t))1/2 dW, (20)

1 Note: The latter equation, which describes the evolution of the mixture fraction, is presented in the next section.
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whereW is an independent Wiener process, and the source termSω is defined as

Sω = Cω2− Cω1
P

kÄ
, (21)

whereP = −ũi u j
∂Ũ i
∂xj

is the turbulent production. The model constantsCω1,Cω2,Cω3, and
C4 are specified in Table I.

2.5. Chemistry and Mixing Models

A simple flamelet model is employed here for the treatment of chemical reactions.
The flamelet model is the same as that used in several earlier PDF simulations of the
non-premixed piloted-jet flame [7, 23]. In this model, the particle thermochemical state is
characterized solely by the mixture fraction defined as

ξ = Zi − Zi 2

Zi 1− Zi 2
, (22)

where the subscripts 1 and 2 denote fuel and oxidizers, respectively, andZi is the mass
fraction of the elementi . With this simple chemistry model, the thermochemical variablesφ

are, by assumption, uniquely related to the mixture fractionξ . Hence in the particle method it
is sufficient to represent onlyξ explicitly, and thenφ and all other thermochemical variables
can be obtained from the flamelet properties (as functions ofξ ). In particular, the function
E defined by Eq. (2) simplifies to be

E(ξ) = p0

ρ(ξ)
, (23)

wherep0 is the flamelet pressure taken as 105 Pa andρ(ξ) is the flamelet density.
In PDF methods, the effects of molecular diffusion are described by a mixing model. Ac-

companying the simple chemistry model, the simplest mixing model—the interaction by ex-
change with the mean (IEM) model [4]—is employed here. The IEM model can be written as

dφ∗

dt
= S(φ∗)− 1

2
CφÄ(φ

∗ − φ̃∗), (24)

where the model constantCφ is given in Table I. Mixing models are crucial in PDF sim-
ulations of turbulent non-premixed flames with finite-rate kinetics, and the IEM model is
known to be problematic in this respect [21]. However, IEM gives reasonably accurate re-
sults when it is used in conjunction with equilibrium or flamelet models for non-premixed
flames near equilibrium [23] such as the non-premixed piloted-jet flame studied here.

This simplified thermochemistry can be represented in the general framework described
in Section 2.1 by defining (for this case):nφ = 1, φ1 = ξ , andS1 = 0.

2.6. Modeled JPDF Equations

With the models described above, the modeled density-weighted JPDF of velocity, tur-
bulent frequency, and compositions is given by

〈ρ〉 f̃ (V,ψ, θ; x, t) = F(V,ψ, θ; x, t) (25)

≡ ρ(ψ)〈δ(U− V)δ(ψ − φ)δ(θ − ω)〉,

whereV, θ , andψ are the sample space variables corresponding toU,ω, andφ, respectively.
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The transport equation for̃f (V,ψ, θ; x; t) can be derived from Eqs. (16), (19), (20), and
(24) by using the standard procedure [14] and is given by

1

〈ρ〉
∂

∂t
(〈ρ〉 f̃ ) = − Vi

〈ρ〉
∂

∂xi
(〈ρ〉 f̃ )+ 1

〈ρ〉 +
∂〈ρ〉
∂xi

∂ f̃

∂Vi

+
(

1

2
+ 3

4
C0

)
Ä
∂

∂Vi
[ f̃ (Vi − Ũ i )] + 1

2
C0kÄ

∂2 f̃

∂Vi ∂Vi

+ Ä ∂

∂θ
( f̃ θSω)+ C3Ä

∂

∂θ
[ f̃ (θ − ω̃)] + C3C4Äω̃

∂2

∂θ2
( f̃ θ)

− ∂

∂ψα
[ f̃ Sα] + 1

2
CφÄ

∂

∂ψα
[ f̃ (ψα − φ̃α)]. (26)

As can be seen in Eq. (25),f̃ evolves in a high dimensional space. For example, it evolves
in (8+ ns)-dimensional space for an unsteady problem in 3D physical space. Therefore
the conventional numerical techniques such as finite difference and finite volume methods
are not suitable to solve the modeled PDF transport equation since the computational cost
increases exponentially with the number of dimensions. This difficulty is overcome and
the PDF simulations are made feasible by the use of the Monte Carlo method in which the
computational cost increases only linearly with the number of sample-space dimensions.

2.7. Mean Conservation Equations

In the hybrid method, a FV scheme is used to solve the mean conservation equations for
mass, momentum, and equivalent energy, derived directly from the modeled PDF evolution
equation given by Eq. (25). Multiplying Eq. (25) by〈ρ〉 and integrating over the entire
sample space yields the mean mass conservation equation given by

∂

∂t
〈ρ〉 + ∂

∂xi
(〈ρ〉Ũ i ) = 0. (27)

Similarly, the mean momentum conservation equation is obtained by multiplying Eq. (25)
by 〈ρ〉Vi , and integrating over the entire sample space, and is given by

∂

∂t
(〈ρ〉Ũ i )+ ∂

∂xj
(〈ρ〉Ũ i Ũ j + 〈ρ〉δi j ) = − ∂

∂xj
(〈ρ〉ũi u j ). (28)

The energy conservation equation is solved for the meantotal equivalent energy

e≡ 〈ρ〉Ẽs ≡ 〈ρ〉
(
ε̃s + 1

2
Ũ i Ũ i

)
, (29)

where ˜εs can be obtained by taking the mean of Eq. (12) and is given by

ε̃s = 1

γ0− 1

〈p〉
〈ρ〉 . (30)

Referring to Eq. (13), we define

hs(ψ) = γ0

γ0− 1
E(ψ). (31)
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Now multiplying Eq. (25) byhs(ψ) and integrating yields

∂

∂t
(〈ρ〉h̃s)+ ∂

∂xi
(〈ρ〉h̃sŨ i ) = − ∂

∂xi
(〈ρ〉 ˜(ui h′′s))+ 〈ρ〉( ˜hs,αSα)− 1

2
Cφ〈ρ〉Ä ˜(φ′′αhs,α),

(32)

wherehs,α ≡ ∂hs(φ)

∂φα
, h′′s ≡ hs − h̃s, andφ′′α ≡ φα − φ̃α.

It may be noted from Eq. (24) that the equivalent enthalpy following a particle evolves by

dh∗s
dt
= hs,α

dφ∗α
dt
= hs,α

(
Sα − 1

2
CφÄ(φ

∗
α − φ̃α)

)
. (33)

Hence the final two terms in Eq. (31) can be conveniently written (and evaluated) as

〈ρ〉 ˜̇q = 〈ρ〉
(

d̃hs

dt

)
, (34)

so that Eq. (31) can be rewritten as

∂

∂t
(〈ρ〉h̃s)+ ∂

∂xi
(〈ρ〉h̃sŨ i ) = 〈ρ〉 ˜̇q − ∂

∂xi
(〈ρ〉ũi h′′s). (35)

In fact, Eq. (35) (with˜̇q is defined by Eq. (34)) is more general than Eq. (31), since it
holds for any mixing model. As the notation implies,˜̇q is the heat release rate (or more
precisely, the rate of addition of equivalent enthalpy) due to reaction and mixing.

Finally the evolution equation for〈ρ〉Ẽs can be deduced from Eqs. (27)–(29) and (35) to
give

∂

∂t
(〈ρ〉Ẽs)+ ∂

∂xi
(Ũ i (〈ρ〉Ẽs + 〈p〉))

= 〈ρ〉 ˜̇q − ∂

∂xi
(〈ρ〉ũi h′′s)−

D̄〈p〉
D̄t
− Ũ i

∂

∂xj
(〈ρ〉ũi u j ), (36)

where we define

D̄

D̄t
≡ ∂

∂t
+ Ũ i

∂

∂xi
. (37)

Relative to the convective terms in Eq. (35), the termD̄〈p〉
D̄t

is of order ofMa2, where
Ma is the local Mach number and is negligible in low Mach number flows. Furthermore,
the last term in Eq. (35) represents the turbulence production and it is also negligibly small
compared to the chemical source term and the scalar fluxes. Therefore, to an excellent
approximation, for low Mach number flows, the mean energy equation reduces to

∂

∂t
(〈ρ〉Ẽs)+ ∂

∂xi
(Ũ i (〈ρ〉Ẽs + 〈p〉)) = 〈ρ〉 ˜̇q − ∂

∂xi
(〈ρ〉ũi h′′s). (38)

Using Eqs. (29) and (30), the mean equation of state can be alternatively written as

〈p〉 = (γ0− 1)〈ρ〉
(

Ẽs − 1

2
Ũ i Ũ i

)
. (39)
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In summary, the FV algorithm is employed to solve the conservation equations for mean
mass (Eq. (27)), the mean momentum (Eq. (28)), and the mean total equivalent energy
(Eq. (35) or Eq. (38) for low Mach number flows), coupled with the mean equation of state
(Eq. (39)).

It is emphasized here that all the terms appearing on the right-hand side of the mean
conservation equations are supplied by the particle algorithm so that, as far as the FV
method is concerned, these equations may be regarded as the compressible Euler equations
with added source terms. Furthermore, these mean equations are completely consistent with
the modeled PDF equation from which they are derived.

2.8. Particle System

In the context of the hybrid algorithm, the instantaneous particle velocityU∗ is replaced
by the fluctuating velocityu∗ = U∗ − Ũ∗ since the Favre-averaged mean velocityŨ∗ is
interpolated from the FV data. Therefore, the mean velocity evolution equation is subtracted
from the velocity model to obtain the evolution equation for the fluctuating part. The SLM
model for the fluctuating part of the velocity is given by

du∗i (t) =
1

〈ρ〉
∂(〈ρ〉ũi u j )

∂xj
dt − u∗j

∂Ũ i

∂xj
dt −

(
1

2
+ 3

4
C0

)
Äu∗i (t) dt + (C0k̃Ä)1/2 dWi .

(40)
The particle positionX∗ then evolves by

dX∗

dt
= Ũ∗ + u∗. (41)

The particle algorithm is employed to solve the modeled PDF transport equation for the
JPDF ofu,φ, andω, denoted bỹg. The evolution equation for̃g can be either derived from
Eqs. (20), (24), (40), and (41) by the standard techniques [14] or directly deduced from
Eq. (25) by using the relationship

g̃(v,ψ, θ; x, t) = f̃ (Ũ+ v,ψ, θ; x, t). (42)

As a result, all the equations solved by the FV and particle algorithms are completely
consistent since they are all derived from the same equation, namely the modeled PDF
transport equation given by Eq. (25).

3. CONSISTENCY CONDITIONS

As discussed above, the present hybrid algorithm is completely consistent at the level of
the governing equations. However, the solutions may not be consistent at the level of the
numerical solutions due to the accumulation of numerical errors, and correction algorithms
are required to enforce consistency of some variables.

Assuming that the FV fields are stored at cell centers representing cell averages, it is
simplest to consider ensemble averages of the particles within each cell to obtain consistency
at the numerical level. For cellα, the independent mean fields represented in the FV code are
〈ρ〉FV

α , 〈p〉FV
α , ŨFV

α , and ˜εFV
sα and we need to make sure that these quantities are consistent

with the corresponding particle fields.
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Each particle has a set of intrinsic properties, namely the massm∗, the positionX∗, the
fluctuating velocityu∗, the turbulence frequencyω∗ and the compositionsφ∗, and a set
of interpolated properties (interpolated from the corresponding FV fields onto particles)
including the mean pressure〈p〉∗ and the mean velocitỹU∗. Note that the intrinsic parti-
cle properties are random and there are no underlying random fields. These intrinsic and
interpolated particle properties are called the primary particle properties and contain no
redundancy. However, various secondary particle properties may be derived from these pri-
mary properties such as densityρ∗, specific volumev∗ ≡ 1/ρ∗ and the equivalent energyε∗s .

In the cellα, the indicator functionIα(x) is defined such thatIα(x) = 1 if x is in the cell,
and Iα(x) = 0 otherwise. Then the geometric volume of the cell is given by

Vα ≡
∫

Iα(x) dx. (43)

The total particle massM P
α and the mean particle volumeV P

α in the cell are

M P
α ≡

∑
i

m∗i Iα(X∗i ), (44)

and

V P
α ≡

∑
i

m∗i v
∗
i Iα(X∗i ), (45)

where the summation is over all the particles. Then the particle mass density for the cell is
defined as

qα ≡ M P
α

Vα
. (46)

The Favre-averaged and Reynolds-averaged particle means of a particle propertyφ∗ are
hence defined as

φ̃P
α ≡

∑
i

m∗i φ
∗
i Iα(X∗i )

/
M P
α , (47)

and

〈φ〉Pα ≡
∑

i

m∗i v
∗
i φ
∗
i Iα(X∗i )

/
V P
α . (48)

Note that Eqs. (47) and (48) are consistent in that: forφ = 1, 1̃= 〈1〉 = 1. Forφ = v,
Eq. (47) yields

ṽP
α ≡ V P

α

/
M P
α , (49)

and forφ = ρ, Eq. (48) gives

〈ρ〉Pα ≡ M P
α

/
V P
α = 1

/
ṽP
α . (50)

All of these mean particle properties are internally consistent if

V P
α = Vα, (51)
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for then

〈ρ〉Pα = 1
/
ṽP
α = qα

(
Vα
V P
α

)
= qα. (52)

Alternatively, we can take this consistency condition to be

〈ρ〉Pα = qα. (53)

Now we are in a position to examine the consistency between the FV and particle mean
fields. For the mean fields represented in the FV code, the consistency conditions are
identified as

〈ρ〉Pα = 〈ρ〉FV
α , (54)

〈p〉Pα = 〈p〉FV
α , (55)

ũP
α = 0, (56)

ε̃P
α = ε̃FV

α . (57)

Since the pressure field is interpolated from the FV data onto particles, assuming that a
second-order interpolation scheme is used, the condition given by Eq. (55) is satisfied with
second-order spatial accuracy; i.e.,

〈p〉Pα = 〈p〉FV
α +O(1x2), (58)

where1x is the grid spacing. That is, to within the truncation error of the method, Eq. (55)
is automatically satisfied and does not require further consideration.

The equations of the state used in the FV and particle algorithms are

〈p〉FV
α = (γ0− 1)〈ρ〉FV

α ε̃FV
sα (59)

and

〈p〉∗i = (γ0− 1)ρ∗i ε
∗
si
. (60)

Now from Eqs. (60) and (48), we obtain

〈p〉Pα =
∑

i

m∗i v
∗
i p∗i Iα(X i )

/
V P
α

=
∑

i

m∗i (γ0− 1)ε∗si
Iα(X i )

/
V P
α

= (γ0− 1)
M P
α

V P
α

ε̃P
sα

= (γ0− 1)qαε̃
P
sα . (61)

Thus, if Eqs. (57) and (58) are satisfied, we obtain from Eqs. (59) and (60) (to order1x2)

qα = 〈ρ〉FV
α . (62)
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If the internal consistency condition Eq. (53) is also satisfied, then Eq. (62) leads to〈ρ〉Pα =
〈ρ〉FV

α (to order1x2). Hence if Eqs. (53), (57), and (58) are satisfied, then so also is Eq.
(54). As a result, the independent consistency conditions to be satisfied at the level of
the numerical solutions are identified as those given by Eqs. (53), (56), and (57). These
conditions are enforced by the correction algorithms as discussed in the following section.

Note that Muradogluet al. [12] identified the conditions given by Eqs. (56) and (57)
as the only independent consistency conditions, and the condition given by Eq. (53) is
mistakingly claimed to be a dependent consistency condition implied by Eqs. (56) and (57).
The discussion above shows that claim to be incorrect.

In summary, the three independent consistency conditions that are not automatically sat-
isfied are〈ρ〉Pα = qα, ũα = 0, and ˜εP

sα = ε̃FV
sα . Of the other consistency conditions,〈p〉Pα =

〈p〉FV
α is automatically satisfied (to within the truncation error), while〈ρ〉Pα = 〈ρ〉FV

α and
V P
α = Vα are dependent upon the three independent conditions. Thus satisfaction of the

three independent conditions is sufficient to ensure the consistency of the method at the
numerical level.

4. CORRECTION ALGORITHMS

In this section, we describe velocity, position, and energy correction algorithms which
enforce the independent consistency conditions at the numerical solution level. The velocity
correction algorithm correctsu∗ to enforce the conditioñuP = 0, the position correction
algorithm correctsX∗ to enforce the conditionq = 〈ρ〉P, and the energy correction algo-
rithm corrects ˜εFV

s to enforce ˜εFV
s = ε̃P

s . (Henceforth we simplify the notation by omitting
the subscriptα denoting the cell.)

It is stressed that only statistically stationary flows are considered and that all the cor-
rection algorithms are designed to impose the required conditions only at this stationary
state.

4.1. Velocity Correction Algorithm

The consistency condition given by Eq. (56) states that the expectation of the fluctuating
velocity remains zero. This condition is not automatically satisfied due to accumulation of
numerical errors, so it is enforced using the simple correction algorithm proposed by Jenny
et al. [7]. In this method, before the correction, the mean fluctuating velocity is extracted
from the particles by using the kernel estimation technique [5, 6], and the result is denoted
by ũ∗bc. It is then time-averaged (denoted byũ∗bc,T A), and the correction is performed (on
each time step) by subtractingũ∗bc,T A from the particle fluctuating velocityu∗. The algorithm
may be summarized as

u∗ = u∗bc− ũ∗bc,T A, (63)

where the valuẽu∗bc,T A = ũbc,T A(X∗) is interpolated from the time-averaged mean fluctu-
ating velocity field stored at cell vertices.

Taking the Favre-average of both sides of Eq. (63) and time-averaging over a long time
scale yields

ũ∗T A = O(1x2), (64)
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showing that the required condition is satisfied to within the spatial truncation error stem-
ming from the kernel estimation and interpolation operations. Note that the condition could
be satisfied exactly if̃u∗ were evaluated by an ensemble average in each cell representing
the cell average.

4.2. Position Correction Algorithm

The position correction is performed to correct the particle positionX∗ to enforce the con-
ditionqT A = 〈ρ〉PT A, whereqT A and〈ρ〉PT A are the time-averaged mean particle mass density
and the particle mean density, respectively. The condition is effected through a correction
velocityUc(x, t), so that particles move with the velocitỹU(X∗, t)+ Uc(X∗, t)+ u∗(t).

The algorithm works by driving the normalized density difference (for each cell)

Q ≡ q − 〈ρ〉
〈ρ〉T A

(65)

to zero in a time-averaged sense when a statistically steady state is reached. The algorithm
also involves the smoothed density differencēQ(x, t) which is obtained by solving the
equation

∂ Q̄

∂t
= −(Q̄− Q)c

Uo

L
+ f UoL

∂2Q̄

∂xi ∂xi
, (66)

by a FV method. HereUo andL are velocity and length scales, andc and f are nondimen-
sional parameters, all to be specified. Observe that Eq. (66) is a time-averaging operator
with an additional diffusive term, so that the quantitȳQ is Q smoothed both in time (over the
time-averaging time scaleτ c

T A = L
Uoc) and in space. The final quantity used in the algorithm

is a correction potentialφ that evolves by

∂φ

∂t
= bU2

o Q, (67)

whereb is a non-dimensional parameter to be specified. Then the correction velocity is
specified as

Uc
i = −

∂φ

∂xi
− aUoL

[
ζ
∂ Q̄

∂xi
+ (1− ζ )∂Q

∂xi

]
(68)

ζ =


1 if

〈q〉
〈ρ〉 ≥ εζ

0 if
〈q〉
〈ρ〉 < εζ ,

(69)

wherea is again a non-dimensional parameter to be specified,ζ is a switching function that
replacesQ̄ with Q to allow the algorithm to respond quickly when the mass density is too
small compared to the particle mean density, andεζ is a free parameter to be specified.

The algorithm depends onφ attaining a statistically stationary state. For then the time
average of Eq. (67) yields

QT A = 0, (70)
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and hence

〈q〉T A = 〈ρ〉T A. (71)

Therefore, the consistency condition is satisfied exactly in a time-averaged sense when a
statistically stationary state is reached.

The questions remain: Doesφ become statistically stationary? How should the parameters
be chosen to attain the statistically stationary state quickly and with small fluctuations? These
questions are addressed in the Appendix. Based on the analysis presented in the Appendix
and experience with the algorithm, the parameters are specified as

L = 1x

π
(72)

Uo = |U |max (73)

c = 1

π

1

(CFL)P Nc
T A

(74)

f = k f c (75)

b = kb f = kbk f c (76)

a =
(

1+ b

c2

)
, (77)

where1x is the characteristic spatial grid size and|U |max is the maximum mean velocity
in the computational domain. The parametersk f , kb, Nc

T A, (CFL)P, andεζ are typically
taken as 3, 8, 20, 0.4, and 0.25, respectively.

4.3. Energy Correction Algorithm

The consistency condition given by Eq. (57) states that the Favre-averaged mean FV and
particle energy fields are equal, and it is again not automatically satisfied at the numerical
solution level. Since the thermochemistry is provided by the particle algorithm, the particle
mean energy field is inherently more accurate than the corresponding FV field. Therefore,
a correction is performed on the FV field to require that it relax to the particle field.

The energy conservation equation can be written as

∂eFV

∂t
= G, (78)

whereeFV is defined as

eFV = 〈ρ〉FV

(
ε̃FV

s +
1

2
ŨFV · ŨFV

)
, (79)

andG represents all the remaining terms in the mean energy equation (Eq. (35) or Eq. (38)).
The consistency condition can be also expressed alternatively as

eFV = eP, (80)
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where

eP = 〈ρ〉P
(
ε̃P

s +
1

2
ŨFV · ŨFV

)
. (81)

The correction algorithm is then specified as2

∂eFV

∂t
= G+ F + 2 feÄF (e

P − eFV ), (82)

and

∂F

∂t
= Ä2

F (e
P − eFV ), (83)

whereF is a forcing term, andfe andÄF are positive real constants. In the statistically
stationary state, the consistency condition is satisfied since the long time average of Eq. (83)
yields

eP
T A = eFV

T A. (84)

These equations can be readily analyzed to determine appropriate choices of the parameters
fe andÄF . Differentiating Eq. (83) with respect to time and using Eq. (82) leads to

∂2F

∂t2
+ 2 feÄF

∂F

∂t
+Ä2

F F = −Ä2
F G, (85)

which is in the same form as the equation for a mass-spring-damper system with the natural
frequencyÄF and damping coefficientfe. Therefore, a value offe around unity can be
expected to produce satisfactory behavior. In the calculations reported below, the parameter
fe is taken to be 1.05 and the specification of the remaining parameterÄF is discussed in
Section 6.2.3.

As the above analysis shows,eFV should relax smoothly to the particle fieldeP to
satisfy the required consistency condition if the equations are solved accurately. However,
a numerical ill-conditioning arises in solving Eqs. (82) and (83) since the total energyeFV

varies very little over the flow field even if ˜εFV
s varies by factor of 7 or more. This difficulty

is easily circumvented by replacing the mean particle density〈ρ〉P in Eq. (81) with the
mean FV density〈ρ〉FV so that the final form of the correction algorithm becomes

∂eFV

∂t
= G+ F + 2 feÄF 〈ρ〉FV

(
ε̃P

s − ε̃FV
s

)
, (86)

and

∂F

∂t
= Ä2

F 〈ρ〉FV
(
ε̃P

s − ε̃FV
s

)
. (87)

It should be noted that Eq. (87) does not contain any spatial derivatives and it can be
solved independently for each cell, separately from the rest of the equations solved by the
FV scheme.

2 Note: The correction algorithm is written in this form to facilitate a simple analysis. The final form of the
algorithm is given by Eqs. (86) and (87).
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It is also important to note that the specification ofG in Eqs. (82) and (86) is immaterial
to the satisfaction of the consistency condition and to the resulting values ofeFV andε̃FV

s

(although it does affect the transient behavior). Hence it is unnecessary to implementG
in full as given by Eq. (35) or Eq. (38). Therefore, since the particle fields may contain
large statistical fluctuations that may lead to a stability problem in the FV algorithm, only
the chemical source term is retained and all the other terms are removed from the right-
hand side of Eq. (35). Even though the chemical source term is also extracted from the
particles, it contains relatively small statistical fluctuations compared to the scalar fluxes
so that it is retained to improve the convergence rate of the FV algorithm. As a result, the
energy correction algorithm may be considered as a smoothing operator which reduces the
statistical fluctuations in ˜εP

s to be used in the FV algorithm.

5. NUMERICAL SOLUTION PROCEDURE

The loosely coupled consistent hybrid FV/particle method [12] is used here to solve the
PDF equations. In this approach, a FV scheme is employed to solve the mean conserva-
tion equations for the mass, momentum, and energy, coupled with the mean equation of
state, while a particle/mesh method is used to solve the modeled transport equation of the
JPDF for the fluctuating velocity, turbulent frequency, and compositions. It is stressed here
again that, in contrast to some earlier hybrid algorithms [2, 3], the equations solved by
the present hybrid method are fully consistent. The particle and FV codes are linked to
close the particle evolution and RANS equations as follows. The mean velocity and pres-
sure fields are provided to the particle code by the FV code while the FV code gets all
the Reynolds stresses, the chemical source term, and ˜εP

s from the particles. As shown by
Muradogluet al. [12] and Jennyet al. [7], the statistical error is substantially reduced in
the mean velocity and pressure fields in the hybrid method compared to the stand-alone
particle/mesh method. It has also been shown that the use of these smooth fields in the
particle evolution equations leads to a dramatic reduction in the deterministic bias error
[7, 12].

In the solution process, the FV and particle methods are periodically used to solve their
respective equations. The form of coupling between the FV and particle algorithms dis-
tinguishes different hybrid methods. In this study a pseudo loosely coupled algorithm has
been adopted in which an outer iteration is completed by running the FV and particle codes
each for a specified number of time steps. In the initial stages of the solution, both the FV
and particle codes are run for relatively few time steps in each outer iteration; typically,
the FV and particle codes are run for 10 and 5 time steps, respectively. As the solution
approaches a statistically stationary state, the number of time steps taken in each FV and
particle inner iteration is gradually increased and finally set to their specified maximum
value, typically 40 and 10 for the FV and particle codes, respectively. A similar strategy
is also applied to the time-averaging scheme; i.e., the time-averaging time scale is initially
chosen to be relatively small and is gradually increased up to its specified maximum value as
the solution approaches the statistically stationary state. In this way, global convergence is
attained more quickly due to the increased interaction between the two codes and the use of
less time-averaging in the transient regime; the desired smooth solutions are then recovered
by using a more loosely coupled strategy and longer time-averaging as the solution nears a
stationary state.
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FIG. 1. A sketch of typical cells showing the evaluation of the correction velocity component in thex direction
used in the position correction algorithm.

Since the hybrid algorithm is designed to treat only steady flows, the time steps taken
in the FV and particle inner iterations need not be the same and are specified separately
according to the stability and accuracy criteria of the respective algorithms.

Such a pseudo loosely coupled hybrid algorithm has been implemented in the HYB2D
code [8]. In this code, the particle algorithm is essentially based on the PDF2DV code [17],
while the FV scheme is a slight modification of that developed by Caughey [1]. The details
of the complete algorithm can be found in [8, 12].

For the position correction algorithm, the mean particle mass densityq and the particle
mean density〈ρ〉 are evaluated at cell centers as ensemble means. The position correction
potentialφ, the smoothed density differencēQ, and the density differenceQ are also evalu-
ated and stored at cell centers. The spatial derivatives in Eqs. (66) and (68) are approximated
by second-order central differences. Equations (66) and (67) are advanced in time by an
explicit Euler method for a single time step at each particle time step. The same time step
is used as that used to advance the particle equations. As sketched in Fig. 1, the correction
velocity for the position correction is evaluated at the cell faces and then interpolated on
the particles using the same interpolation scheme as for the mean convective velocity. The
spatial derivatives needed to calculate the correction velocity are also approximated by
second-order central differences.

As remarked before, Eq. (87) in the energy correction algorithm does not contain any
spatial derivatives. In the solution process, it is decoupled from the system of mean con-
servation equations and advanced separately by using an explicit Euler method at each FV
time step. Note that the particle field ˜εP

s used in the energy correction algorithm is also
evaluated at the cell centers as an ensemble mean.

5.1. Time-Averaging Method

Time-averaging is a powerful tool to reduce the statistical error in the particle mean fields
for a fixed number of particles [23]. The time-averaging method employed here is different
from that proposed by Muradogluet al. [12] and is defined, for a particle mean fieldQ, as

Qk
T A =

(
1− 1

NT A

)
Qk−1

T A +
1

NT A
Qk, (88)
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whereQk
T A andQk are the time-averaged and instantaneous values evaluated atkth particle

time step. The parameterNT A is a time-averaging factor to be specified.
In the case of the Favre-averaged mean fields, the numerators and dominator are time-

averaged separately. For example, the time-averaged counterpart of the mean field defined
by Eq. (47) is evaluated as

(φ̃α)T A =
(∑

i m∗i φ
∗
i Iα(X∗i )

)
T A(∑

i m∗i Iα(X∗i )
)

T A

. (89)

This way of time-averaging has the advantage of being very robust against the cases of
empty cells or cells with a small number of particles.

6. RESULTS AND DISCUSSION

6.1. Model Problem—Masri and Bilger’s Flame L

The test problem chosen is an axisymmetric, non-premixed piloted-jet flame studied
experimentally by Masriet al. [10]. The same flame has also been chosen as a test case in
several earlier PDF simulations [7, 23]. The details of the burner used in the experiments
are provided by Masriet al. [10]. An axisymmetric jet of methane fuel with radiusRj =
3.6 mm is centered in an annular pilot with radiusRp = 9.0 mm. The pilot burns a mixture
of stoichiometric composition (ξ = ξs = 0.055) and provides a heat source which stabilizes
the main jet at the exit plane. The flame is surrounded by an unconfined coflow stream of
air. The bulk velocities in the jet, in the pilot, and in the coflow are specified to beUj =
41 m/s,Up = 24 m/s, andUc = 15 m/s, respectively. These conditions correspond to Flame
L of Masri and Bilger [11]. Measurements have been performed for temperature by the
thermocouple method, velocity by LDA and compositions by sample probes. Experimental
data are published by Masriet al.[10] and are also available at the Web site of the University
of Sydney [9].

6.2. Results

The primary purpose of the present work is to validate the consistent hybrid method
for reacting turbulent flows in terms of numerical accuracy and efficiency compared to the
other PDF solution algorithms [7, 23] and to evaluate the performance of the correction
algorithms in achieving consistency at the numerical level. Therefore, the same grids, the
same initial and boundary conditions, and the same turbulence and chemistry models are
used here as were used by Xu and Pope [23] and by Jennyet al. [7]. The inlet boundary
conditions, which are also used as initial conditions, are shown in Fig. 2.

For the numerical simulation, a cylindrical coordinate system is adopted with the origin
of the radial coordinate (r ) placed at the center of the fuel jet. Following Xu and Pope [23],
the computational domain is taken to be 80Rj long in the axial direction (x) and extends
to 15Rj in the radial direction. The domain is divided into a total ofM2 non-uniform grid
cells, whereM is between 20 and 64. The details of the computational grid and the initial
and boundary conditions can be found in [23].

For the FV method, the mean velocity and density are fixed at the inlet boundary, while
the pressure is extrapolated from the computational domain. At the outlet boundary, the
mean velocity and density are extrapolated from the computational domain and pressure is
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FIG. 2. Inlet profiles of the normalized mean axial velocity, the normalized rms axial fluctuating velocity, the
normalized turbulent frequency, and the mean density for flame L.

fixed to the pressure calculated as

p = p0− 〈ρ〉ṽv, (90)

wherep0 is the atmospheric pressure (p0 = 105 Pa) andv is the fluctuating velocity in the
radial direction evaluated at the outlet boundary. We note that Eq. (90) is exact for plane
flows but is only approximately correct for axisymmetric flows, involving the assumption
that fluctuating velocities in the radial and circumferential directions are equal [20].

Results are now presented for the hybrid method implemented in the HYB2D code applied
to simulate the non-premixed piloted-jet flame, flame L. The statistical stationarity of the
numerical solution is first inspected. Then the Favre-averaged mean velocity and mixture
fraction profiles at 40Rj downstream of the nozzle are compared with the experimental
data and with the earlier PDF simulations to verify the accuracy of the present algorithm.
The internal consistency and performance of the correction algorithms are also investigated.
Finally the spatial discretization (grid convergence) and bias errors are studied and compared
with those of the other PDF solution algorithms.

In Fig. 3, the Favre-averaged mean axial velocity and mean mixture fraction profiles are
shown at 40Rj downstream of the nozzle and compared with the experimental data [10]
and with the earlier results of PDF simulations by Xu and Pope [23] using the stand-alone
particle/mesh method and by Jennyet al. [7] using the tightly coupled consistent hybrid
method.

The results of all three simulations are obtained on the same 40× 40 grid, 200 particles
per cell are used in PDF2DV, while 160 particles per cell are used in HYB2D (present) and in
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FIG. 3. Comparison of Favre-averaged mean axial velocity and mixture fraction atx/Rj = 40. Solid line:
HYB2D (present); dashed line: PDF-2D-FV; dotted line: PDF2DV; symbols: Experimental data. Grid: 40×
40, Npc = 80, andNT A = 500.

PDF-2D-FV. As can be seen in these figures, the present results are in good agreement with
the other PDF simulations and also in remarkably good agreement with the experimental
data considering the simple velocity, mixing, and chemistry models being used. Notice that
the present result for the mean mixture fraction is in better agreement with the experimental
data than results for the other PDF solution algorithms especially near the centerline. This
is mainly due to the fact that the bias error is virtually eliminated in the present hybrid
method as will be discussed in Section 6.4.

6.3. Statistical Stationarity

The HYB2D code is designed to treat only statistically stationary flows. To show the
statistical stationarity of the numerical solutions, time series of Favre-averaged mean axial
velocity and turbulent kinetic energy at four observation locations are depicted in Fig. 4.
The results are obtained for a 48× 48 grid with the number of particles per cellNpc = 40.
It can be seen that statistical stationarity is reached after about 5000 particle time steps. The
initial fluctuations are mainly due to the relatively small time-averaging factor used in the
early stages of the computation.

FIG. 4. Time histories ofŨ/Uc and ofk̃/U 2
c at locations(x/Rj , r/Rj ), (40, 0) (solid line), (72, 0) (dotted

line), (40, 2.5) (dashed line), and (72, 2.5) (dashdot line), showing that statistically stationary state is achieved
after about 5000 particle time steps.
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6.4. Internal Consistency

In this section, the consistency conditions are investigated and the performance of the
velocity, position, and energy correction algorithms is examined.

6.4.1. Velocity Correction

As discussed in Section 4.1, the consistency condition given by Eq. (56) (i.e.,ũ = 0)
is enforced by the velocity correction algorithm. In all the results presented here, the ve-
locity correction is performed at each particle time step but it is found that performing the
correction once every two or three particle time steps is sufficient for this test case. The
radial profiles of the time-averaged mean axialũP

T A and radial ˜vP
T A fluctuating velocity

components without and with the velocity correction applied are shown in Fig. 5 at the
axial locationsx/Rj = 40 andx/Rj = 60 to demonstrate the performance of the velocity
correction algorithm. The figure clearly shows that, when the correction is turned off, the
condition is not fully satisfied especially near the centerline but when the correction is
turned on it is successfully enforced leaving only the statistical fluctuations.

6.4.2. Position Correction

The position correction is performed to enforce the consistency betweenqT A and〈ρ〉T A

at the numerical solution level. As discussed in Section 4.2, the correction algorithm is

FIG. 5. Radial profiles of the time-averaged mean axial (upper plots) and radial (lower plots) fluctuating
velocity components without the velocity correction (solid lines) and with the velocity correction (dashed lines)
at x/Rj = 40 (left) andx/Rj = 60 (right). Grid: 48× 48, Npc = 40, andNT A = 500.
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FIG. 6. Time histories of the position correction potentialφ and of the time-averaged normalized density
differenceQT A at location(x/Rj , r/Rj ), (40, 0) (solid line), (72, 0) (dotted line), (40, 2.5) (dashed line), and
(72, 2.5) (dashdot line). Grid: 48× 48, Npc = 40, andNT A = 500.

designed such that the condition is satisfied exactly by relaxing the mean particle mass
density smoothly to the particle mean density as a statistically stationary state is reached. All
the results are obtained with the parametersk f = 3.0,kb = 8.0, Nc

T A = 20,(CFL)P = 0.4,
andεζ = 0.25.

The time histories of the position correction potentialφ and the time-averaged normalized
density differenceQT A are plotted in Fig. 6 to show the convergence of the algorithm. As
can be seen from the comparison of this figure with the time histories ofŨ andk̃ plotted in
Fig. 4, the position correction algorithm converges at about the same rate as the flow solver.
Furthermore, it is clearly seen thatQT A relaxes to zero as required when the statistically
stationary state is reached.

The radial profiles ofQT A without and with the position correction applied are shown
in Fig. 7 at the axial locationsx/Rj = 5, 20, 40, and 60 to demonstrate the effect of the
correction algorithm. As can be seen in this figure, the consistency betweenqT A and〈ρ〉T A

is not fully satisfied when the correction is turned off while it is successfully enforced by the
correction algorithm everywhere in the computational domain leaving only the statistical
fluctuations.

The position correction is effected through a correction velocity so that the magnitude of
the correction velocity is a good measure for how much correction is performed. Figure 8
depicts the axial and radial correction velocity profiles atx/Rj = 40 evaluated at 500, 5000,
and 10,000 particle time steps. It can be seen in this figure that the magnitudes of the axial
and radial correction velocities are slightly larger in the transient regime and get smaller as a
statistically stationary state is approached. In the statistically stationary state, the maximum
magnitudes of the axial and radial correction velocities are about 8 and 10% of the coflow
bulk velocityUc, respectively.

6.4.3. Energy Correction

The energy correction is performed to relax the FV mean equivalent energy field to the
corresponding particle field as discussed in Section 4.3.

As shown earlier, a value offe about unity is expected to lead to a smooth relaxation, and
it is specified here asfe = 1.05. The relaxation factorÄF has dimensions of a frequency
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FIG. 7. Radial profiles of the time-averaged density differenceQT A without the position correction (solid
lines) and with the position correction (dashed lines) atx/Rj = 5, 20, 40, and 60. Grid: 48× 48, Npc = 40, and
NT A = 500.

and is defined as

ÄF = fcorr/τcorr, (91)

whereτcorr is a relaxation time scale chosen as the residence time based on the jet bulk
velocity; i.e.,

τcorr = L
U j
, (92)

FIG. 8. The normalized axial (left plot) and radial (right plot) position correction velocity profiles evaluated
at 500, 5000, and 10,000 particle time steps. Grid: 48× 48, Npc = 40, andNT A = 500.
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FIG. 9. Profiles of the mean FV and particle equivalent energy fields without the energy correction (left
plots) and with the energy correction (right plots) atx/Rj = 20 (top plots) and atRj = 40 (bottom plots).
Grid: 48× 48, Npc = 80, andNT A = 500.

whereL is the length of the computational domain in the axial direction andUj is the
jet bulk velocity. The only remaining free parameterfcorr scales the relaxation time and it
should be chosen as small as possible for a fast relaxation. On the other hand, too small
values of fcorr may introduce an instability in the FV scheme. It is found thatfcorr = 1.0
makes the FV sensible internal energy field relax smoothly to the corresponding particle
field, but the results seem not very sensitive to the choice offcorr in the range between
fcorr = 0.5 and fcorr = 5.0.

The profiles of the FV and particle mean equivalent energy ˜εs are plotted in Fig. 9 at two
different axial locations without and with the correction being applied. For this test case,
the full energy equation (Eq. (38)) is implemented so that it is consistent with the particle
method (at the level of equations). The numerical simulations are performed on a 48×
48 grid with the number of particles per cellNpc = 40 and the final time-averaging factor
NT A = 500. These figures clearly show that consistency between the FV and particle mean
energy fields is not achieved if the correction is not performed, but very good agreement
between the two fields is recovered when the correction is applied.

In this hybrid method, the mean density is also represented by duplicate fields in the
FV and particle methods, raising again a question of consistency. However, as shown in
Section 3, consistency between the mean density fields is not independent and is guaranteed
by the consistency of the mean energy fields. This is verified in Fig. 10. As can be seen
in the figure, the agreement between FV and particle mean density fields is recovered
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FIG. 10. Profiles of the mean FV and particle density fields without the energy correction (left plots) and with
the energy correction (right plots) atx/Rj = 20 (top plots) and atRj = 40 (bottom plots). Grid: 48× 48, Npc = 80,
andNT A = 500.

consistently as the FV energy field is relaxed to the the corresponding particle field by the
energy correction algorithm.

6.5. Spatial Discretization Error

Spatial discretization error results from the spatial discretization in the FV method and
also from the kernel estimation and interpolation schemes in the particle algorithm due
to the finite size of the mesh cells. The spatial error in the present hybrid method has
been previously examined extensively by Muradogluet al. [12] and it has been shown
that the method is second-order accurate in space. Therefore, an extensive study of spatial
discretization error is not repeated here but results intended to show grid convergence
are presented. For this purpose, the time-averaged profiles of mean axial velocity, mean
turbulent kinetic energy, mean turbulent frequency, and mean mixture fraction are plotted
in Fig. 11 at the axial locationx/Rj = 40 for successively refined grids. In these figures,
the profiles obtained by Richardson extrapolation assuming second-order accuracy in space
and using 48× 48 and 64× 64 grids are also plotted. All the simulations are performed
with the number of particles per cellNpc = 40 and the time-averaging factorNT A = 500.
It is clearly seen in these figures that the difference among the profiles is decreasing with
cell refinement, indicating that grid convergence is achieved. To verify the second-order
spatial accuracy of the method, the mean quantities,Ũ/Uc, k̃/U2

c , ω̃Rj /U j , andξ̃ are also
plotted againstM−2 at the location(x/Rj , r/Rj ) = (40, 1) in Fig. 12 in which the symbols
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FIG. 11. Time-averaged mean profiles atx/Rj = 40 with Npc = 80 andNT A = 500 on various grids ranging
betweenM = 32 andM = 64. The solid lines represent the values obtained by Richardson extrapolation assuming
second-order spatial accuracy and using the solutions withM = 48 andM = 64.

FIG. 12. Time-averaged mean quantities againstM−2 at (x/Rj , r/Rj ) = (40.0, 1.0) showing the exepected
second-order spatial accuracy of the method. Solid lines are linear least-squares fits to data.
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represent the numerical data and the solid lines are the linear least-squares fits to the data. As
can be seen in the figure, the approximate linear relationship between the mean quantities
andM−2 confirms the expected second-order spatial accuracy of the method. We also note
that the 36× 36 grid (corresponding toM−2 = 0.77× 10−3) is sufficient for the spatial
error to be less than 5% in all the mean quantities at this location.

6.6. Bias Error

Bias error is the deterministic error caused by using a finite number of particles. Sim-
ulations with a 48× 48 grid but with various numbers of particles per cell are performed
to explore the bias error in various mean quantities. The bias error is expected to scale
as N−1

pc [18, 12]. Figure 13 shows the values of the normalized mean quantities,Ũ/Uc,
k̃/U2

c , ξ̃ , andω̃Rj /U j with N−1
pc at the observation point(x/Rj , r/Rj ) = (40.0, 1.0). The

symbols represent the values obtained forNpc = 20, 40, 80, and 160 and the solid lines are
the linear least-squares fits to the data points. The approximate linear relationship between
the mean quantities andN−1

pc confirms the expected scaling of the bias error. The slopes
of the lines indicate the sensitivity of the solutions to bias error. It is clearly seen that the
bias error for a given value ofNpc in the present hybrid method is much smaller than in
the stand-alone particle/mesh method, and still smaller than (but comparable to) the bias in
the tightly coupled hybrid algorithm. For example, to obtain a solution with the bias error
less than 5% in all the mean quantities at the location(x/Rj , r/Rj ) = (40, 1), the present

FIG. 13. Time-averaged mean quantities againstN−1
pc at(x/Rj , r/Rj ) = (40.0, 1.0). Symbols: HYB2D (data

points); solid lines: HYB2D (linear least squares); dotted lines: PDF2DV; dashed lines: PDF-2D-FV.
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FIG. 14. Time-averaged mean profiles atx/Rj = 40 with M = 48 andNpc range from 20 to 160, showing
the overall variations of the bias error in the mean quantitiesŨ/Uc, k̃/U 2

c , ω̃Rj /Uc, andξ̃ .

hybrid method requires only about 20 particles per cell while the stand-alone particle/mesh
method PDF2DV and the tightly coupled consistent hybrid method PDF-2D-FV require
about 920 and 60 particles per cell, respectively.

The normalized profiles of mean axial velocity, mean turbulent kinetic energy, mean
turbulence frequency, and mean mixture fraction are plotted in Fig. 14 atx/Rj = 40 for
Npc = 20, 40, 80, 160 to show the overall variations of the bias errors in these quantities.
It is seen that differences between profiles of all the quantities are quite small, indicating
that the bias error is virtually eliminated in the present hybrid algorithm.

A different position correction algorithm, referred to here as the “old position correction
algorithm” is used in the PDF2DV code [17]. The old position correction algorithm is
designed to enforce the consistency between the geometric volume and the particle volume
as expressed by Eq. (51). In this approach, particle positions are corrected to satisfy the
condition (to within a given error tolerance) at each particle time step, which results in
excessive jittering in the particle positions leading to large bias error.

To explore the reduction in the bias error by the present position correction algorithm, the
old position correction algorithm is also implemented in the present hybrid code HYB2D.
The normalized mean quantitiesŨ/Uc, k̃/U2

c , ξ̃ andω̃Rj /Uc obtained with the old and new
position correction algorithms are plotted in Fig. 15 againstN−1

pc at(x/Rj , r/Rj ) = (40, 0).
It is clearly seen that the present correction algorithm results in much smaller bias error than
the old algorithm especially in the turbulent kinetic energy and the mean mixture fraction.
For instance, to obtain a solution with the bias error less than 5% in all the mean quantities at
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FIG. 15. Time-averaged mean quantities againstN−1
pc at(x/Rj , r/Rj ) = (40.0, 0.0), showing the reduction in

the bias error by the present position correction algorithm. Grid: 48× 48 andNpc× NT A = 20,000. The symbols
are the numerical data and the lines are the linear least-squares fits to the data.

the location(x/Rj , r/Rj ) = (40, 0), the present hybrid method requires about 20 particles
per cell with the present position correction algorithm while it requires about 170 particles
per cell with the old position correction algorithm.

7. CONCLUSIONS

The consistent hybrid algorithm implemented in the HYB2D code is developed to solve
the modeled transport equation for the joint PDF of velocity, turbulence frequency, and
compositions for turbulent reactive flows, and it is applied to a reacting piloted-jet flame
(Flame-L). It is shown that the method is convergent and the bias and spatial errors converge
at the expected rates. The results are compared and found to be in good agreement with the
experimental data and with the results of earlier PDF simulations of Xu and Pope [23] and
Jennyet al. [7].

The present hybrid method is shown to be completely consistent at the level of the
governing equations and its full consistency at the numerical solution level is carefully ex-
amined. Three conditions given by Eqs. (53), (56), and (57) are identified as the independent
consistency conditions and shown to be necessary and sufficient conditions to be fulfilled
for the full consistency at the numerical solution level, correcting the earlier paper by
Muradogluet al. [12], where only two of these conditions, i.e., those given by Eqs. (56)
and (57), were mistakingly claimed to be sufficient conditions for full consistency.
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The independent consistency conditions are enforced by the use of velocity, position, and
energy correction algorithms to make the method fully consistent at the numerical level.
The velocity correction algorithm (Eq. (63)) is devised to correct the particle fluctuating
velocity to enforce the condition given by Eq. (53). It is found that the algorithm is very
robust and performs well. The main advantage of the velocity correction algorithm is that
it is very simple to implement and requires very little additional computational work.

The position correction algorithm (Eqs. (66)–(69)) corrects the particle position to en-
force the condition given by Eq. (56) by relaxing the mean particle mass densityq to the
particle mean density〈ρ〉 as a statistically stationary state is reached. An analysis is per-
formed to determine an approximately optimal set of the parameters used in the position
correction algorithm in order to attain the statistically stationary sate quickly and with small
fluctuations. Even though the analysis is based on the modified version of the algorithm
and carried out only for a constant-density flow, it is found that the algorithm with this set
of parameters is very robust and performs very well for the test case studied here.

The final independent consistency condition (Eq. (57)) is enforced by the use of the
energy correction algorithm given by Eqs. (86) and (87). The energy correction algorithm
is performed in the FV algorithm and used to relax the FV mean energy field ˜εFV

s to its
particle counterpart. The algorithm is analyzed based on a mass-spring-damper system and
the correction parameters are determined to achieve a smooth relaxation. It is found that
the algorithm is very robust to small variations in the parameters and performs very well.
It is emphasized here that the use of the energy correction algorithm greatly improves the
robustness of the FV algorithm since it allows the removal of some noisy particle fields
(such as the scalar fluxes) from the mean energy conservation equation.

A simple formulation is developed for the implementation of the general ideal gas equa-
tion of state, which keeps the ratio of specific heats constant and greatly simplifies the mean
conservation equations for the implementation of the FV algorithm.

It is found that the present hybrid method is very effective at virtually eliminating the
bias error in all the mean quantities. It is also found that the new position correction al-
gorithm substantially reduces the bias error especially in the turbulent kinetic energy and
the mean mixture fraction compared to the alternative correction algorithm implemented
in PDF2DV [17] code. For a given grid size and number of particles, the numerical er-
rors in the present hybrid method are substantially less than in other methods—by a fac-
tor of 46 compared to the much-used, stand-alone particle/mesh method implemented in
PDF2DV [17]. Hence the present method represents a substantial advance in computational
efficiency.

While the present work is in the context of the velocity–frequency–compositions joint
PDF, most of the methodology developed is applicable to the compositions PDF; specifically
the position and energy correction algorithms, and the treatment of the equation of state.
The present hybrid method can be readily applied to the 3D flows and to different grids
(e.g., unstructured grids). However, because it relies on statistical stationarity and time-
averaging, it cannot be extended straightforwardly to unsteady flows.

8. APPENDIX:

The position correction algorithm presented in Section 4.2 is shown to guarantee the
consistency between the mean particle mass density and the particle mean density in a time-
averaged sense if a statistically stationary state is reached. Here the algorithm is analyzed
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to address the the question of the statistical stationarity, and the parameters are optimized
to attain the statistically stationary state quickly and with small fluctuations.

The algorithm given by Eqs. (65)–(69) are slightly modified to facilitate a simple analysis
of the algorithm. The modified algorithm is then given by

qUc
i = −

∂φ

∂xi
− aUoL

[
ζ
∂ Q̄

∂xi
+ (1− ζ )∂Q

∂xi

]
(93)

∂φ

∂t
= bU2

o Q (94)

∂ Q̄

∂t
= −(Q̄− Q)c

Uo

L
+ f UoL

∂2Q̄

∂xi ∂xi
(95)

Q = q − 〈ρ〉 (96)

ζ =
1 if 〈q〉〈ρ〉 ≥ εζ

0 if 〈q〉〈ρ〉 < εζ .
(97)

To analyze the algorithm, we consider a constant-density incompressible flow and assume
that the Favre-averaged mean velocity fieldŨ is steady. With these assumptions, the mean
continuity equations based on〈ρ〉 andq can be given by [14]

∂〈ρ〉
∂t
+ ∂

∂xi
(〈ρ〉Ũ i ) = 0 (98)

and

∂q

∂t
+ ∂

∂xi

(
qŨ i + qUc

i

) = 0. (99)

Subtracting Eq. (98) from Eq. (99) yields

∂Q

∂t
+ ∂

∂xi

(
QŨ i + qUc

i

) = 0. (100)

Considering the caseζ = 1 first and substituting Eq. (93) into Eq. (100) then results in

∂Q

∂t
+ ∂

∂xi
(QŨ i )− ∂2φ

∂xi ∂xi
− aUoL

∂2Q̄

∂xi ∂xi
= 0. (101)

From Eq. (95), we have

Q = L

Uoc

∂ Q̄

∂t
+ Q̄− f L2

c

∂2Q̄

∂xi ∂xi
, (102)

which can be substituted into Eq. (101) to give

L

Uoc

∂2Q̄

∂t2
+ ∂ Q̄

∂t
− f L2

c

∂2

∂xi ∂xi

(
∂ Q̄

∂t

)
− ∂2φ

∂xi ∂xi
− aUoL

∂2Q̄

∂xi ∂xi

+ Ũ i
∂

∂xi

[
L

Uoc

∂ Q̄

∂t
+ Q̄− f L2

c

∂2Q̄

∂xj ∂xj

]
= 0, (103)
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where the constant-density assumption, i.e.,∂Ũ i
∂xi
= 0, has been used. Diffierentiating

Eq. (102) with respect to time and using Eqs. (94) and (102) yields

∂3Q̄

∂ t̂3
+ ∂

2Q̄

∂ t̂2
− f L2

c

∂2

∂xi ∂xi

(
∂2Q̄

∂ t̂2

)
− aL2

c

∂2

∂xi ∂xi

(
∂ Q̄

∂ t̂

)
− bL2

c2

∂2

∂xi ∂xi

[
∂ Q̄

∂ t̂
+ Q̄− f L2

c

∂2Q̄

∂xj ∂xj

]
+ L

Uoc
Ũ i

∂

∂xi

[
∂2Q̄

∂ t̂2
+ ∂ Q̄

∂ t̂
− f L2

c

∂2

∂xj ∂xj

(
∂ Q̄

∂ t̂

)]
= 0, (104)

where the non-dimensional time variablet̂ is defined as

t̂ ≡ Uoc

L
t. (105)

With an assumption of periodic boundary conditions, the spatial Fourier transform of
Eq. (103) is given by

∂3 ˆ̄Q

∂ t̂3
+
[
1+ f

c
(κ2L2)+ σ i

]
∂2 ˆ̄Q

∂ t̂
+
[(

a

c
+ b

c2

)
(κ2L2)

+
(

1+ f

c
(κ2L2)

)
σ i

]
∂ ˆ̄Q

∂ t̂
+ b

c2

[
1+ f

c
(κ2L2)

]
(κ2L2) ˆ̄Q = 0, (106)

where ˆ̄Q is the Fourier transform of̄Q, κ is the wave number vector, andi = √−1. The
scalarκ and the non-dimensional parameterσ are defined as

κ = √κi κi , (107)

and

σ = L

Uoc
(Ũ i κi ). (108)

Now let the length scaleL be specified as

L = κ−1
max, (109)

whereκmax is the maximum wavenumber (on the grid to be specified) and define

k = (κ/κmax)
2 = κ2L2 ≤ 1. (110)

Then looking for a solution in the form

ˆ̄Q = ˆ̄Qoeα̂t̂ , (111)

where ˆ̄Qo is a function of space only, and substituting Eq. (111) into Eq. (105) yields the
following characteristic equation for ˆα

α̂3+
(

1+ k
f

c
+ σ i

)
α̂2+

[
k

(
a

c
+ b

c2

)
+
(

1+ k
f

c

)
σ i

]
α̂ + k

b

c2

(
1+ k

f

c

)
= 0.

(112)
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Note that the real parts of all the roots of Eq. (112) must be strictly negative and as small
as possible for good damping and convergence of the algorithm. The maximum of the real
parts of the characteristic equation determines the rate of convergence of the correction
algorithm, so this quantity is referred to as the “damping factor.” For the sake of simplicity,
we consider a uniform grid so that the maximum wavenumber is given by

L−1 = κmax= π

1x
, (113)

where1x is the grid spacing. Hence the time-averaging time scale is

τ c
T A ≡

L

Uoc
= 1x

πUoc
. (114)

The time-averaging time scale is typically specified in terms of a number of particle time
steps; i.e.,

τ c
T A = Nc

T A1t, (115)

where1t is the time step taken in the particle algorithm andNc
T A is a free parameter to be

specified. From Eqs. (114) and (115), we get

c = 1

πNc
T A

1x

Uo1t
. (116)

In the particle algorithm, the time step is determined according to a CFL condition defined as

(CFL)P = |U |max1t

1x
. (117)

If we let Uo be specified as

Uo = |U |max, (118)

and then the parameterc is obtained from Eqs. (116)–(118) as

c = 1

π

1

(CFL)P Nc
T A

. (119)

To determine the other coefficients, we first consider the special case of zero mean convec-
tive velocity; i.e.,Ũ ≡ 0 so thatσ ≡ 0 for the maximum wavenumber,k = 1, in which case
Eq. (112) reduces to

α̂3+
(

1+ f

c

)
α̂2+

(
a

c
+ b

c2

)
α̂ + b

c2

(
1+ f

c

)
= 0. (120)

Since it is difficult to solve Eq. (120) explicitly, we pose it as an inverse problem and require
the first root be given by

α̂1 = −1, (121)

for which we must have

a = f

(
1+ b

c2

)
. (122)
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Using Eq. (122), Eq. (120) can be factored as

(α̂ + 1)

(
α̂2+ f

c
α̂ + b

c2

(
1+ f

c

))
= 0, (123)

which can be solved to give

α̂2,3 = f

c

(
−1±

√
1− 4

b

f 2

(
1+ f

c

))
. (124)

If we choose

f = k f c (125)

b = kb f 2, (126)

where k f ≥ 0 and kb ≥ 0 are positive real numbers to be specified and require 4kb

(1+ k f ) > 1, the real parts of the roots are given by

Real(α̂) = {−1,−k f ,−k f } (127)

showing that the algorithm has good damping characteristics for this special case.
For the general case, Eq. (112) can be solved numerically over a range of convective

velocities and wavenumbers. Figure 16 shows a surface plot of the damping factor for the
parametersk f = 3.0, kb = 8.0, andNc

T A = 20. The figure clearly demonstrates that the

FIG. 16. The surface plot of the damping factor over the full ranges of the wavenumbers and convective
velocity for ζ = 1.
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damping factor is strictly negative and the algorithm has good damping characteristics for
high wavenumbers and smaller mean convective velocity, but the damping gets worse as
the wavenumber decreases and the convective velocity increases.

Time-averaging introduces a time scale which prevents the correction algorithm from
responding quickly to the inconsistencies if the correction velocity is based purely on the
time-averaged quantities such asφ andQ̄. This may cause a numerical difficulty of having
too many “empty cells” (i.e., cells devoid of particles), especially in a transient regime when
a small number of particles per cell is used in a simulation. Therefore we consider replacing
Q̄ in Eq. (93) with its instantaneous counterpartQ, which corresponds to the caseζ = 0.
Following the same procedure as described above for the caseζ = 1, the characteristic
equation for the caseζ = 0 can be seen to be

α̂2+
(

k
a

c
+ σ i

)
α̂ + k

b

c2
= 0, (128)

which can be solved to give

α̂1,2 = −k
a

2c
− σ i ± 1

2

√(
k

a

c
+ σ i

)2

− 4k
b

c2
. (129)

Notice that both roots are real and strictly negative in the absence of the convective veloc-
ity; i.e., σ = 0. In general, the roots are complex and the damping factor for this case is
plotted in Fig. 17, which indicates very good damping characteristics over wide ranges of
wavenumbers and convective velocities.

FIG. 17. The surface plot of the damping factor over the full ranges of the wavenumbers and convective
velocity for the caseζ = 0.
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In spite of the fact that the caseζ = 0 has a better damping characteristic than the case
ζ = 1, the caseζ = 0 is not desirable since the use of the instantaneous particle field in
Eq. (93) results in too much statistical noise in the correction velocity, especially when a
small number of particles per cell is used. In addition to this, the instantaneous particle
mass density used in Eqs. (93) is also a large source of statistical noise in the correction
velocity. To avoid these deficiencies as much as possible, the best features of the both
cases are combined and the final form of the position correction algorithm is given by
Eqs. (65)–(69).
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