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In this paper, we establish a set of criteria which are applied to discuss various
formulations under which Lagrangian stochastic models can be found. These models
are used for the simulation of fluid particles in single-phase turbulence as well as for
the fluid seen by discrete particles in dispersed turbulent two-phase flows. The purpose
of the present work is to provide guidelines, useful for experts and non-experts alike,
which are shown to be helpful to clarify issues related to the form of Lagrangian
stochastic models. A central issue is to put forward reliable requirements which must
be met by Lagrangian stochastic models and a new element brought by the present
analysis is to address the single- and two-phase flow situations from a unified point of
view. For that purpose, we consider first the single-phase flow case and check whether
models are fully consistent with the structure of the Reynolds-stress models. In the
two-phase flow situation, coming up with clear-cut criteria is more difficult and the
present choice is to require that the single-phase situation be well-retrieved in the fluid-
limit case, elementary predictive abilities be respected and that some simple statistical
features of homogeneous fluid turbulence be correctly reproduced. This analysis does
not address the question of the relative predictive capacities of different models but
concentrates on their formulation since advantages and disadvantages of different
formulations are not always clear. Indeed, hidden in the changes from one structure
to another are some possible pitfalls which can lead to flaws in the construction of
practical models and to physically unsound numerical calculations. A first interest
of the present approach is illustrated by considering some models proposed in the
literature and by showing that these criteria help to assess whether these Lagrangian
stochastic models can be regarded as acceptable descriptions. A second interest is
to indicate how future developments can be safely built, which is also relevant for
stochastic subgrid models for particle-laden flows in the context of Large Eddy
Simulations. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4901315]

I. INTRODUCTION

Over the last decades, Lagrangian stochastic models have become increasingly used for both
single-phase reactive flows and dispersed two-phase turbulent flows (with one phase being present
as discrete elements such as solid particles, droplets, or bubbles). These approaches are referred to
as PDF (Probability Density Function) methods1–8 which indicates that they are simulating the PDF
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of the relevant variables which have been retained for the statistical description of either single- or
two-phase flows. PDF methods have strong advantages as they treat important phenomena without
approximation:in single-phase reactive flows, this corresponds to convective and reactive source
terms1, 9 while, for dispersed two-phase flows (even for inert particles), this corresponds to transport
and polydispersity effects (related to the existence of a range of particle diameters).4, 10 This interplay
of modeling issues explains the common interest of PDF descriptions in both situations.

In the single-phase flow situation, the governing equations are the transport equations for the
fluid velocity field U(t, x) and for a set of scalars which gathers the relevant species mass fractions
φ(t, x) = (φβ)β=1,...,Ns to which an equation for the fluid enthalphy is added, along with an equation
of state, for compressible flows. For constant-property flows, these equations are

∂Uk

∂xk
= 0, (1a)

∂Ui

∂t
+ Uk

∂Ui

∂xk
= − 1

ρ

∂ P

∂xi
+ ν

∂2Ui

∂xk∂xk
, (1b)

∂φβ

∂t
+ Uk

∂φβ

∂xk
= �

∂2φβ

∂xk∂xk
+ Sβ, (1c)

where ν is the fluid dynamical viscosity, � the scalar diffusivity, and P(t, x) the fluid pressure. In
Eq. (1c), the last term on the rhs (right-hand side) is the reactive source term Sβ = Ŝβ(φ(t, x)) which,
along with convection, appears in a closed form in a one-point PDF approach.

In the disperse two-phase flow case, the basic physical situation is made up by a continuous
fluid phase (a gas or a liquid) in which a set of discrete “particles” (solid particles, droplets, bubbles,
etc.), having a range of diameters, are embedded. The fluid phase is described by the continuity
and Navier-Stokes equations, Eqs. (1a) and (1b), to which source terms can be added to account for
momentum exchange between the fluid and the discrete particles when two-way coupling (whereby
particles influence the fluid phase) is deemed important. For the discrete particles, we limit ourselves
to the case of point-like particles or droplets. This approximation is not severe for most industrial
applications but usually leaves out bubbles.11 For particle diameters of the same order of magnitude
as the Kolmogorov length scale, the particle momentum equation involves the well-known pressure-
gradient, drag, added-mass, and Basset forces.12, 13 In the case of particles heavier than the fluid
(droplets in a gas, solid particles in a gas or liquid), the particle momentum equation can be
simplified to the following form to describe the evolution of particle location xp(t) and velocity
Up(t):

dxp

dt
= Up, (2a)

dUp

dt
= 1

τp
(Us − Up) + g, (2b)

where, apart from gravity, only the drag force has been retained (other forces can be added but the
drag force is sufficient for the present discussion). In Eq. (2b), g is the gravity acceleration and τ p

the particle relaxation time defined as

τp = ρp

ρ f

4dp

3CD|Ur| , (3)

where the local instantaneous relative velocity between the fluid and the particle velocity is
Ur = Us − Up. The drag coefficient CD is usually expressed as a nonlinear function of the particle-
based Reynolds number, Rep = dp|Ur|/ν (where dp is the particle diameter) based on empirical
formulas14 (apart from the Stokes regime). In Eq. (2b) and in the expression of the particle relax-
ation time scale, the important variable is Us(t) = U(t, xp(t)) which is the “fluid velocity seen,” i.e.,
the fluid velocity sampled along the particle trajectory xp(t) as it moves across a turbulent flow.
In the limit of the assumptions made above, it is possible to solve the governing equations in the
spirit of DNS (Direct Numerical Simulation) for disperse flows with accurate Lagrangian tracking
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methods,15–18 as the continuation of what is done for the DNS of single-phase flows. This approach
is possible in simple geometries and at moderate Reynolds numbers. When such DNS are not avail-
able and for practical purposes where only one-point statistics are known, a stochastic model for the
velocity of the fluid seen is needed. In the general context of stochastic models and PDF descriptions,
we are thus concerned with a one-particle PDF model for Us(t) from which one-point statistics can
be derived.4 Note that when the velocity of the fluid seen is included in the state-vector along with
the particle velocity and diameter, the drag force appears in a closed form in the PDF description4

(it can be seen as the counterpart of the reactive source term in the single-phase flow case).
In the present analysis, we leave out the specific issues related to reactive aspects (gas chemical

reactions in single-phase flows; burning particles, evaporating droplets, etc., in two-phase flows)
and concentrate on dynamical aspects in the PDF approach to both situations. Thus, at the core of
the PDF method lies the specific stochastic model which is used to simulate fluid particle velocities
in single-phase flows and the fluid velocity “seen” by particles in two-phase flows. In the latter
situation, this notion was introduced as a Lagrangian property attached to each discrete particle,19

then included in the particle state-vector10 which led to the standard PDF description for two-phase
flows.4 Furthermore, the PDF approach was given a complete framework, first in single-phase
flows1 and later in two-phase flows,4 ensuring a continuous link between the choice of the particle
state-vector, the formulation of stochastic models as proper stochastic differential equations, the
corresponding PDF equation in sample space, and the resulting mean-field equations.1, 20, 21

At this stage, a first modeling question arises: how should these stochastic models be formulated?
In single-phase flows, most of the stochastic models have been developed in terms of instantaneous
fluid particle velocities.2, 20, 22 In two-phase flows, some proposals followed the same road and were
made in terms of the instantaneous fluid velocity seen to build so-called Langevin models.4, 23

However, the modeling situation is unclear since existing models can be expressed with different
formulations, for instance, in terms of either instantaneous, fluctuating, or normalized fluctuating
fluid-particle velocities. When particle inertia becomes negligible, the stochastic model for the
velocity of the fluid seen becomes a stochastic model for fluid particles and, consequently, this issue
overlaps with similar concerns in single-phase flows. This means that both situations are impacted
by the issue of the formulation of stochastic models. A second modeling question is: what are the
basic properties that such models must respect?

These questions are particularly relevant when the stochastic models used to simulate dynamical
variables are complemented with additional models to address complex-physics problems. For
instance, in single-phase flows, one could be interested in applying a velocity-composition PDF
method but having only specifically developed the modeling parts concerned with scalars and reactive
terms. In two-phase flows, Lagrangian stochastic models can be used to analyze additional effects
such as thermophoresis, electrophoresis, or chemical forces24–26 (due to interface chemistry in liquid
medium). Other typical examples include droplets or coal/fuel particles where models are added to
simulate complex combustion or evaporation processes.7, 8, 27, 28 Yet, these practical developments
can be ruined by a poor formulation of the model retained for the velocity of fluid particles or the
velocity of the fluid seen. It appears therefore important to assess whether stochastic models used for
dynamical variables have a sound basis. By this assessment step, we do not mean here the (necessary)
task of outlining the predictive abilities of modeling proposals but the “upstream step” that consists
in assessing whether the structure of these models respect key properties, regardless of the details
of specific closures. Going directly to a comparison of computational outcomes between different
model formulations29 is interesting but may confuse the status of different classes of Lagrangian
stochastic models whereas a theoretical analysis can already reveal flaws or bring out differences
that make these models difficult to compare even-handedly.

Given the subtleties of stochastic calculus30, 31 and the particle-based nature of Lagrangian
PDF approaches, consistency issues have accompanied the construction of stochastic models. For
example, the issue of so-called spurious drifts and its relation to fluid mass conservation was
addressed a few years ago for models developed for single-phase turbulent flows.32–35 Relations with
Reynolds-stress modeling were also put forward20 with a view towards the interest of stochastic
models for realizable closures. Similar efforts have been made in the two-phase flow situation,4

though more sparingly. However, there has been no previous attempt at gathering knowledge and
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addressing the validity and the structure of stochastic models by resorting to a systematic list of
requirements, especially when the single- and two-phase situations need to be jointly considered.

With respect to this context, the first purpose of this article is to propose a clear set of require-
ments, for single-phase as well as for two-phase flows, which must be met by Lagrangian stochastic
models in order to be regarded as acceptable descriptions. The second purpose is to discuss the
relations between different formulations of a stochastic model for the velocity of fluid particles and
to reveal the interests as well as the limitations of some of these formulations. The third purpose
is to establish guidelines for future developments, valid for stochastic models developed in classi-
cal Reynolds-averaging approaches but also of interest for models considered for subgrid-effects
in particle-laden flows where the fluid phase is simulated with a LES (Large Eddy Simulation)
approach. In that sense, the present considerations represent an effort to address issues related to
single-phase and two-phase flows from a unified perspective.

The paper is organized as follows. The PDF theoretical framework is first recalled in Sec. II,
where the simplifying assumptions which define the precise context of this study are stated at the
end of Sec. II B. Then, the criteria selected in the present analysis are detailed in Sec. III, first for
the single-phase flow case in Sec. III A and, second, for the two-phase flow case in Sec. III B.
The analysis is first developed for single-phase turbulent flows: different formulations for fluid
particle velocities are addressed in Sec. IV and analyzed in detail in Sec. IV A, while classical
scalar modeling (which plays an important role in one criterion for two-phase flows) is recalled in
Sec. IV B. Drawing on the analysis carried out for the single-phase flow case, an analysis of different
modeling proposals for two-phase flows is developed in Sec. V. In particular, new relations for
models expressed in terms of fluctuating components, as well as discussions on two-way coupling,
are developed in Sec. V A 3. Present findings are summarized in Table I for single-phase models
and in Table II for two-phase models. Finally, guidelines for future developments are proposed in
the Conclusion.

II. THE PDF THEORETICAL FRAMEWORK

This framework was first established for single-phase turbulent flows1–3, 20 and was later used
as a foundation for the extension to dispersed two-phase turbulent flows.4, 21, 36 However, for the
sake of a simpler and more compact presentation, we introduce the key aspects of the theoretical
framework directly from the standpoint of the two-phase flow situation since the fluid-particle case
can be retrieved as an asymptotic limit.

A. Probabilistic descriptions and stochastic equations

The PDF machinery for fluid mechanics starts by the choice of the PDF description (in terms
of either one-particle pdf, or two-particle pdf, etc.). In the present context, we consider only one-
particle PDF approaches and, thus, the starting point is the selection of the mechanical description
retained for each particle or, in other words, the choice of the relevant particle state-vector which
gathers the variables of interest attached to each particle. Following the presentation of standard
Lagrangian models for dispersed two-phase flows in the Introduction, the particle state-vector is
made up by the particle location and velocity as well as the velocity of the fluid seen by the particle,
Z = (xp, Up, Us), with evolution equations written as

dxp = Up dt, (4a)

dUp = Dp(t, Z) dt, (4b)

dUs = Ds(t, Z,F[〈Z〉], 〈	〉) dt + Bs(t, Z,F[〈Z〉], 〈	〉) dW. (4c)

In these equations, Dp typically represents the drag and gravity forces, Dp = (
Us − Up

)
/τp + g

(other forces can also be considered), while the vector Ds and the matrix Bs are the drift and diffusion
coefficients of a stochastic diffusion process which is a typical model for the velocity of the fluid
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seen. In the drift and diffusion coefficients in Eq. (4c), a general notation has been used to indicate
that these coefficients can depend on the value of the state-vector Z but also on functionals of the
mean fields which are calculated from the simulation of that state-vector, written as F[〈Z〉], as
well as on some external fields represented by 〈	〉. A typical example of F[〈Z〉] is the particle
mean-velocity field while the fluid mean-pressure is another example of what 〈	〉 can stand for. For
detailed discussions of the modeling issues from a physical point of view, we refer to the relevant
literature.2, 4

The single-phase flow framework is retrieved by considering the particle-tracer limit when
particle inertia goes to zero (τ p → 0). In that case, the particle velocity tends towards the fluid
velocity and, for example, the model system of equations, Eqs. (4), becomes

dx = U dt, (5a)

dU = D(t, Z,F[〈Z〉], 〈	〉) dt + B(t, Z,F[〈Z〉], 〈	〉) dW, (5b)

where the same notation has been retained to indicate a possible dependence on mean-fields calcu-
lated from the solution (such as the fluid mean velocity field) or on external mean fields. A typical
example of such an external mean field is the fluid mean dissipation field, 〈ε〉. It must be noted that
the notion of external fields is, of course, directly dependent upon the choice of the variables entering
the state-vector. For instance, for Z = (x, U) which corresponds to a velocity-PDF description,22

the mean dissipation is an external field. Yet, if the state-vector is extended to include the instanta-
neous dissipation, whereby Z becomes Z = (x, U, ε) and corresponds to a velocity-dissipation PDF
description,9, 37 then the dependence of the drift and diffusion coefficients on the mean dissipation
field would appear through the functional form F[〈Z〉].

For both the single- and two-phase situations, using a general equation written

dZ = DZ dt + BZ dW (6)

as a reference model, the key points of the PDF theoretical framework can be unraveled.
The governing equation, Eq. (6), is to be understood as the evolution equation for a large number

of “stochastic particles” (whose behavior mimic the evolution of real particles in a statistical sense)
and, in a weak sense,1, 4, 31, 38, 39 a stochastic particle-tracking model is equivalent to a PDF approach.
However, it is worth emphasizing that the present case is an extension of the well-established
connection between classical Langevin equations, where the drift and diffusion coefficients depend
only the chosen state-vector Z, and the corresponding Fokker-Planck equation in sample space. In
that sense, there is an essential difference between the Langevin equations used, for example, in
PDF methods and in dispersion studies.3 The difference is that, in PDF methods, the coefficients
involve statistics obtained from the particles as indicated by the general notation in Eqs. (4) and (5).
In the mathematical literature, these processes are referred to as “McKean diffusion processes”40

and in detailed physical presentations31 they are defined as “processes with mean-field interactions.”
Compared to classical Monte Carlo methods, numerical implementations lead to handling so-called
“weakly interacting processes” but, basically, the classical connection between these generalized
Langevin and Fokker-Planck equations remains valid.31, 36 In other words, a particle-tracking method
amounts to a dynamical Monte Carlo simulation of the corresponding pdf pL (t ; z), where the index L
indicates that we are dealing with a Lagrangian pdf and where z stands for the state-vector variables
in the corresponding sample space.

B. From Lagrangian stochastic models to mean-field equations

In order to go from the (Lagrangian) stochastic equations written for each notional particle to
the resulting (Eulerian) mean-field equations, a straightforward approach is obtained by introducing
MDFs (Mass Density Function)1 and by defining the Eulerian MDF from the Lagrangian one.
This is translated in the following definition where the Eulerian MDF is basically identified with
the Lagrangian one at the same location (the identity is for MDFs and not necessarily in terms
of pdf’s) as detailed elsewhere4 and where Mp is the total mass of the physical particles in the

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.253.227.198 On: Fri, 14 Nov 2014 21:26:06



113303-6 Minier, Chibbaro, and Pope Phys. Fluids 26, 113303 (2014)

domain:

F L
p (t ; yp, zc) = Mp pL (t ; yp, zc), (7)

F E
p (t, x; zc) = F L

p (t ; yp = x, zc) =
∫

F L
p (t ; yp, zc)δ(yp − x) dy. (8)

Since it is useful to distinguish between the particle location and other variables, we have introduced
the notation Z = (xp, Zc) for the particle state-vector where the particle location is always present
and where Zc stands for the complementary part of the chosen state-vector. For example, for the
Lagrangian description mentioned above for dispersed two-phase flows, we have Zc = (Up, Us),
while for the single-phase flows we would have Zc = (U). In sample-space, the corresponding
variables of the state-vector are noted z = (yp, zc).

For a particle variable written as Hp(t ; Zc), its average 〈Hp〉m (which is a field variable), is
defined as

αp(t, x) ρp〈Hp〉m(t, x) =
∫

Hp(t ; zc)F E
p (t, x; zc) dzc, (9)

where ρp is the particle density and αp(t, x) is the mean particle volumetric fraction. The fluctuating
component is then expressed as hp = Hp − 〈Hp〉m. The definition of these quantities for the single-
phase case are given below, after Eq. (14). It is worth emphasizing that αp is a rigorously defined
probabilistic quantity that represents the average presence of one phase at a given location and should
not be confused, in the present framework, with volumetric averages. In a discrete sense, when we
handle N stochastic particles, the definitions of Lagrangian and Eulerian MDFs are directly carried
out to yield

F L
p,N (t ; yp, zc) =

N∑
i=1

m(i)
p δ(yp − x(i)

p ) δ(zc − Z(i)
c ), (10)

F E
p,N (t, x ; zc) = F L

p,N (t ; yp = x, zc), (11)

where m(i)
p is the mass of the particle labeled (i). This shows that in a small volume around location x

where averages are estimated as the ensemble averages over the N p
x particles present in that volume,

we get the equivalent of Favre, or mass-weighted, averages

〈Hp〉m(t, x) � 〈Hp〉m,N =
∑N p

x
i=1 m(i)

p Hp(t ; z(i)
c (t))∑N p

x
i=1 m(i)

p

, (12)

which explains the notation 〈Hp〉m used to indicate mass-weighted averaging for particle variables.
One of the key points is that the Eulerian MDF satisfies the same evolution equation as the

Lagrangian MDF. For the general stochastic diffusion model considered in Eq. (6), this equation is
a Fokker-Planck equation

∂ F E
p

∂t
= − ∂

∂zk

[
DZ ,k F E

p

] + 1

2

∂2

∂zk∂zl

[
(BZ BT

Z )kl F E
p

]
. (13)

For the standard state-vector for dispersed two-phase flows, Z = (xp, Up, Us), and for the evolu-
tion equations considered in Eqs. (4), the Fokker-Planck equation has the following form where
convection appears in closed form:

∂ F E
p

∂t
+ Vp,k

∂ F E
p

∂yk
= − ∂

∂Vp,k
(Dp,k F E

p )

− ∂

∂Vs,k
(Ds,k F E

p ) + 1

2

∂2

∂Vs,k∂Vs,l

(
(Bs BT

s )kl F E
p

)
,

(14)
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where the variables in sample-space are denoted (y, Vp, Vs). It is instructive to consider the first
particle-velocity moments obtained from the PDF methodology

∂αpρp

∂t
+ ∂

(
αpρp〈Up,k〉m

)
∂xk

= 0, (15)

∂〈Up,i 〉m

∂t
+ 〈Up,k〉m

∂〈Up,i 〉m

∂xk
= 1

αpρp

∂
(
αpρp〈u p,i u p,k〉m

)
∂xk

+
〈

Us,i − Up,i

τp

〉
m

+ gi , (16)

where 〈up, iup, k〉m is the particle kinetic tensor. In the rhs of the average particle momentum equation,
Eq. (16), the drag and gravity force terms have been directly introduced instead of the more general
notation Dp. This helps to reveal that in two-phase flows the closure of the drag force term is
akin to the closure of the chemical source term in single-phase reactive flows. Indeed, even for inert
particles, τ p is a complex function of the particle diameter and of the particle and fluid seen velocities
(cf. Eq. (3)). Thus, for a polydisperse set of particles, the last term on the rhs of Eq. (16) cannot
be closed directly whereas it is handled without approximation with the PDF approach. It is also
interesting to consider the second-order equations for the particle kinetic tensor components which
correspond to the Reynolds-stress equations in single-phase flows. The exact forms of these equations
are detailed elsewhere4, 21 and have an intricate structure which implies further closure issues, such
as 〈Dp, iup, j〉m, apart from classical third-order correlation terms. Even when the set of polydisperse
particles is separated into classes of monodisperse ones within which τ p can be regarded as a (nearly)
constant parameter, it is readily seen that, for each class, the equations for 〈up, iup, k〉m involve the
(non-symmetrical) fluid-particle velocities correlation tensor 〈us, iup, j〉m whose equations, in turn,
rely on the tensor 〈us, ius, j〉m derived from the velocity of the fluid seen. The important points are that
these complete second-order equations (which represents typically 25 coupled partial differential
equations (PDEs) for each particle class) are actually derived from the stochastic description and
involve both the drift and diffusion coefficients of the model used for the velocity of the fluid seen in
Eq. (4c). This indicates that safe guidelines are needed both to assess existing models and to suggest
proper formulations.

In the single-phase flow situation, all the relations presented above remain valid. In that case, ρp

is equal to ρ the fluid density, Mp is replaced by Mf the total fluid mass in the domain, m(i)
p becomes

the mass associated to each notional fluid particles m(i), and αp(t, x) = 1 at any point x. Some
comments may be added for the last two points. In dispersed two-phase flows, the particles handled
in the numerical simulations represents stochastic particles but since they mimic the “real” particles
carried by the fluid turbulent flow, their diameter and their mass can correspond to the real-particle
properties (provided no statistical weights are used whereby stochastic particles represent so-called
parcels or groups of particles). In that sense, the notion of a stochastic particle may be less surprising
at first sight in the two-phase case than in the single-phase one, although the notions are basically
the same. In the single-phase case, the mass associated to each stochastic particle appears more
as a parameter representing a fraction of the total mass, for example, equal mass can be assigned
to each particle as often done for incompressible flows. Furthermore, when the flow occupies the
whole domain, the natural limit is to have αp(t, x) = 1. Actually, it will be seen in Sec. III that this
corresponds to the absence of spurious drifts. With these definitions, the above formalism reverts to
the developed for single-phase reactive flows.1, 3

In the following, a number of simplifying assumptions are made. First of all, we consider
incompressible fluid flows, where the fluid density ρ is constant. In correspondence, particle densities
are also taken as constant and, furthermore, we assume that all particles have the same constant
density (the case of particle-dependent densities is naturally included since the formalism already
accounts for particle-dependent masses). However, it must be noted that, in two-phase flows, variable
particle volumetric fractions αp(t, x) always induce variable-density effects, which justifies the
introduction of MDFs as done in this section. In the present analysis, we limit ourselves to high
Reynolds-number flows where viscous effects can be neglected (apart from the non-zero dissipation
rate of the fluid turbulent kinetic energy) and, similarly, Brownian effects are not considered for
particle motion. In the context of this first analysis, this is done to limit the complexity of the stochastic
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models and to concentrate on the important convective and dissipative issues. Furthermore, few
models have been devised for low-Reynolds particle-laden flows. Note, however, that formulations
in the case of low Re-number flows were proposed for near-wall fluid flow simulations41–43 and
that extensions of the present analysis can be made. For the two-phase flow situations, two-way
coupling is not explicitly accounted for, although related aspects are discussed when the form of the
equations for the fluctuating velocity components are considered (see Sec. V A 3) while the effects
of particle-particle collisions are left out.

III. CRITERIA FOR THE ANALYSIS OF STOCHASTIC MODELS

We consider Lagrangian stochastic models for fluid particles, such as those characterized by
Eqs. (5). The criteria put forward here arise from the following question: in what sense can we regard
these models as acceptable probabilistic descriptions of turbulent flows?

A. Choice of criteria for single-phase flow models

This issue was addressed by Pope1, 33 who showed that, for such models to be true PDF
descriptions (that is, for the corresponding pdf to be normalized to one), it is necessary and sufficient
that the mean-pressure gradient be properly introduced and that the mean continuity condition be
respected. This is tantamount to saying that Lagrangian stochastic models are free from spurious drifts
when the mean pressure gradient is properly taken into account.4, 33, 35 The correspondence between
Lagrangian stochastic models and Reynolds-stress closures was then brought forth.2, 20, 22 Drawing
on these relations, we propose to regard a Lagrangian stochastic formulation as an acceptable model
if three criteria are met:

(F-1) the model should be capable of being written in correct Cartesian tensor notation and should
satisfy the relevant invariance principles (such as Galilean and extended Galilean invariance);

(F-2) the stochastic model should be such that the mean-continuity equation is respected and, thus,
the model must be free of spurious drifts;

(F-3) all convective terms in the mean Navier-Stokes and in the second-order equations must be
exactly reproduced (as well as dissipative terms).

The first criterion amounts to asking that the basic transformation and invariance properties of the
Navier-Stokes equations be reflected in the model.3 The last two criteria mean that the first two
moments of the velocity fields extracted from the simulated pdf are such that, using Reynolds
decomposition written as Ui = 〈Ui〉 + ui, we have the following structure:

∂〈Uk〉
∂xk

= 0, (17a)

∂〈Ui 〉
∂t

+ 〈Uk〉∂〈Ui 〉
∂xk

+ ∂〈ui uk〉
∂xk

= − 1

ρ

∂〈P〉
∂xi

, (17b)

∂〈ui u j 〉
∂t

+ 〈Uk〉∂〈ui u j 〉
∂xk

+ ∂〈ui u j uk〉
∂xk

+ 〈ui uk〉∂〈U j 〉
∂xk

+ 〈u j uk〉∂〈Ui 〉
∂xk

= i j . (17c)

The first equation is the mass-continuity equation when the fluid density is constant. The second
equation corresponds to the mean Navier-Stokes equation (i.e., the Reynolds equation) and it is
seen that the mean viscous term, ν�Ui, has been neglected, for the sake of simplicity in the present
analysis, by assuming sufficiently high Reynolds-number flows. This indicates that we are not
considering near-wall regions. In Eq. (17c), the rhs (right-hand side)  ij is usually decomposed as
 ij = 	ij − εij where 	ij and εij stand for models expressing the correlation between the pressure-
gradient and fluctuating velocities and the dissipation sink term, respectively. These models are
subject to classical requirements, for instance, that 	ii = ∂〈p ui〉/∂xi or, when the divergence of
the pressure-velocity correlation is neglected, to 	ii = 0 and usual model simplifications, such
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as isotropic dissipative terms, which means that we can write εij = −2/3〈ε〉δij with 〈ε〉 the mean
turbulent kinetic energy dissipation. In the following, we only require that half the trace of the rhs
has the form 1/2  ii = ∇.I − ε with ε ≥ 0 and where I stands for an expression that represents the
pressure-fluctuation correlation. As a practical matter, pressure transport is often ignored, and so,
for simplicity, we take the requirement to be 1/2  ii = −ε.

It is worth noting the difference with the previous works that established the correspondence
between Lagrangian stochastic models and Reynolds-stress equations.20, 22 In these works, the aim
was mostly to obtain detailed forms of Reynolds-stress models from the Lagrangian stochastic
approach and, in that sense, the emphasis was put on developing detailed closure proposals for 	ij

and εij. In the present work, the emphasis is put on a different point. Indeed, by the criterion (F-3)
listed above, it is meant that all the terms appearing on the lhs (left-hand side) of Eqs. (17) should be
exactly reproduced. This is a rather natural requirement to set forth: indeed, all the terms gathered
on the lhs of Eqs. (17) are convective terms which arise from the transport term in the Navier-Stokes
equations. Since Lagrangian approaches are precisely attractive as they treat convective transport
without approximation, it is therefore natural to expect that the structure of the transport equations
for the first two moments of the velocity field will be exactly reproduced. In other words, failure
to do so by a Lagrangian model means that transport is poorly described and this is regarded as an
unacceptable shortcoming. The criteria proposed here are basic physical requirements but represent
a step forward with regard to former proposals.34

B. Choice of criteria for two-phase flow models

We now consider Lagrangian stochastic models for the velocity of the fluid seen by discrete
particles, as expressed by Eqs. (4), and the issue is to come up with relevant criteria to assess whether
these modeling proposals can be retained as acceptable descriptions. However, selecting such a list
of criteria for two-phase flows is not straightforward. Indeed, the analysis of single-phase stochastic
models can rely on the sound basis provided by given Reynolds-stress models. This is not so in
the two-phase situation as it is actually the stochastic model which is used to derive corresponding
mean-field or so-called continuum descriptions of two-phase flows.4, 19, 44 This lack of a sound
reference continuum theory puts a stronger emphasis on the need to have reliable criteria to assess
stochastic models for disperse two-phase flows. In spite of this limitation, it is still possible to use
the single-phase flow case as a sound basis. More specifically, to analyze stochastic models used for
the simulation of the fluid velocity seen Us , we propose the following list of criteria:

(P-1) the model should be capable of being written in correct Cartesian tensor notation and should
satisfy the relevant invariance principles (such as Galilean and extended Galilean invariance);

(P-2) the stochastic model must be complete in the sense that the expressions for both the drift
vector and the diffusion matrix in Eq. (4c) must be explicitly given. Furthermore, the
stochastic model must have predictive capacities in the sense that it should be applicable
to general non-homogeneous situations where fluid or particle statistics are not necessarily
known in advance;

(P-3) the stochastic model used for the fluid velocity seen should revert to an acceptable stochastic
model for single-phase flow (thus respecting the criteria (F-1)-(F-3)) when particle inertia
goes to zero, that is in the particle-tracer limit;

(P-4) the complete stochastic model should be such that the predicted mean kinetic energy of the
fluid seen respects the same statistical evolution laws as the mean fluid kinetic energy in
dilute flows, both in stationary and decaying homogeneous turbulence;

(P-5) the resulting model for the so-called drift velocity, say Vd (which represents the difference
between the mean velocity of the fluid seen and the mean fluid velocity at the same particle
location, or Vd,i = 〈Us,i 〉m − 〈Ui 〉), should be consistent with known scalar dynamics and
related modeling;

(P-6) the model for the velocity of the fluid seen should be consistent with the Equilibrium Eulerian
approach formulated in the limit of small particle Stokes numbers.18, 45 More precisely, the
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model should be such that the mean conditional increments of the drift vector Ds yield the
correct behavior for discrete particle velocities for small τ p.

The criterion (P-1) is the same criteria as for the fluid case (see (F-1)) carried to the two-phase
flow situation. Indeed, since the velocity of the fluid seen is extracted from the velocity field of
the fluid carrier phase, the same invariance principles hold. At first sight, the criterion (P-2) seems
obvious as it simply express what a “model” stands for. Unfortunately, it will be indicated in Sec. V
that there can be some confusion as to which proposals can be truly referred to as a stochastic model
or, in other words, as a true PDF description of two-phase flows. Thus, this criterion will be shown
to be useful to clarify the status of some proposals. To be self-consistent, it is useful to clarify the
definition retained here for a predictive model: a model is said to be predictive if it is able to provide
information on the future state of a system (which means on the statistics of the variables retained
to describe the two-phase flow), given all necessary initial and boundary conditions.

In the list above, the criterion (P-3) is an important one: it translates what is meant when it is said
that satisfactory models for two-phase flows should be extensions of satisfactory ones for single-
phase flows. From a physical point of view, this is a sound requirement to make: indeed, small-inertia
particles tend to follow closely the surrounding fluid and it appears consistent to expect that statistics
derived from the fluid and from the discrete particle set become identical and both acceptable
descriptions. Furthermore, from a numerical point of view when so-called Eulerian/Lagrangian
hybrid simulations are used, this will help to ensure that consistent predictions are obtained.46

The last criteria involve specific aspects of two-phase flows. The criterion (P-4) states for a sta-
tistically homogeneous decaying turbulence, we expect that, for particles which are homogeneously
distributed (still in a statistical sense), the fluid seen is such that

1

2

d〈us · us〉m

dt
= −〈ε〉. (18)

This expresses that the mean fluid kinetic energy seen by particles is decaying at the same rate as
for the fluid. In the context of the present study, this criterion is meant as a functional requirement
and it will be seen in Sec. V that it is particularly useful to lead to correct closure expressions for
the diffusion term in Eqs. (4). From a more physical point of view, it can be argued that, even in
a homogeneous turbulent fluid flow, particles are not necessarily homogeneously distributed in the
whole flow domain but tend to concentrate in some flow regions (this is the particle preferential-
concentration effect15–18). As we are addressing model expressed in the framework of Reynolds-
averaging approaches, the issue of whether this effect is specifically well-reproduced in present
formulations is not directly addressed. However, it is worth pointing out that particle preferential
concentration effects can still be accounted for in the criterion (P-4). This can be achieved by
considering that the same requirement be valid, provided that the mean value of the fluid dissipation
rate is replaced by the local value, say 〈εs〉, “seen” by particles in the specific flow regions where
particle tend to be located. In that sense, the form of the criterion (P-4) is general enough and is
relevant for the statistical models considered in the present analysis.

The criterion (P-5) refers to the situation when particle inertia can be neglected (thus when the
particle relaxation time scale becomes negligible with respect to the fluid turbulence characteristic
timescales introduced in Sec. IV) but keeping a non-zero volumetric fraction αp. In that case, it is
expected that particles behave as a passive (but non-vanishing) scalar and the meaning of the criterion
(P-5) is to require that the resulting model be consistent with classical scalar modeling which will be
recalled in Sec. IV B. This criterion complements the issue of no-spurious drift effects, or well-mixed
condition, (which will be shown to form one of the basis of the criteria (P-3)) and corresponds to the
physical situation where particle-tracers are injected so as to create a non-homogeneous distribution.
It will be demonstrated in Sec. V that this criterion is helpful to point to acceptable forms of the
return-to-equilibrium term which typically enters the closure of the drift vector in Eqs. (4).

The criterion (P-6) is directly related to the Equilibrium Eulerian Model (EEM) proposed for
small Stokes numbers18, 45 (to be defined below), which is also relevant in the present Lagrangian
point of view. The formulation expressed by (P-6) can be worked out as follows. We consider the
case of a constant particle relaxation timescale τ p. Then, starting from an initial condition at t = 0,
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the particle momentum equation, Eq. (2b), can be integrated to give

Up(t) = Up(0)e−t/τp + gτp
(
1 − e−t/τp

) + 1

τp
e−t/τp

∫ t

0
et ′/τp Us(t ′) dt ′ (19)

= Us(t) + (
Up(0) − Us(0)

)
e−t/τp + gτp

(
1 − e−t/τp

) − e−t/τp

∫ t

0
et ′/τp

dUs(t ′)
dt ′ dt ′, (20)

where the second line follows from a simple integration by parts. The EEM is obtained by considering
small τ p so that the memory of initial conditions can be neglected and the derivative in the integral
can be approximated by its value at time t (in other words, dUs(t ′)/dt ′ � dUs(t)/dt since the
integrand is a highly peaked function when τ p 	 1). This yields that

Up(t) � Us(t) + Wg − τp

(
dUs(t)

dt

)
, (21)

where Wg = τpg is the particle settling (or terminal) velocity. It is important to realize that the
derivative dUs(t)/dt is the time derivative of the fluid seen along discrete particle trajectories and
not the fluid derivative along the fluid particle trajectory located at the same position as the discrete
one at time t written as DU/Dt (which is the Eulerian notation for the fluid particle accelera-
tion DU/Dt = ∂U/∂t + U · ∇U). By comparing with the classical formulation of the EEM (see
Eq. (1) in Balachandar and Eaton18), it is seen that this is equivalent to stating that, for small particle
relaxation timescale τ p, we have

dUs(t)

dt
� DU

Dt
+ Wg · ∇U. (22)

While the EEM is mostly expressed as a relation for discrete particle velocities, it is actually a model
for the underlying velocity of the fluid seen in the limit of small τ p. At this stage, three remarks
can be made to connect this relation to a workable criterion in our context. First, as we do not
consider the added-mass force in the particle momentum equation, the parameter β appearing in the
EEM18, 45 is here zero. Second, the expression of the EEM in Eq. (21) is usually written in terms
of non-dimensional quantities based on Kolmogorov scales (i.e., the Kolmogorov velocity and time
scales, uη and τ η, respectively), which gives

U(n)
p (t) � U(n)

s (t) + W(n)
g − Stη

(
dU(n)

s (t)

dt (n)

)
(23)

with U(n)
p = Up/uη (the same scaling is used for U(n)

s and W(n)
g ), t(n) = t/τ η, and where Stη = τ p/τ η

is the Kolmogorov-based Stokes number, which is a measure of particle inertia. The choice of the
Kolmogorov scales is indeed relevant in DNS studies.18, 45 However, this scaling is not appropriate in
the present context where we are considering stochastic models for high-Reynolds number turbulent
flows in which a part of fluid particle acceleration is replaced by a white-noise term. For our purpose,
it is best to introduce the timescale TL of fluid velocities (the integral timescale), which will be defined
in Sec. IV A, and to refer to the Stokes number defined by St = τ p/TL instead of Stη. Then, the
loose statement of “small particle relaxation timescale” can now be properly expressed as meaning
that St 	 1 or τ p 	 TL. Third, the above formulas have been obtained by considering that the
derivative of the velocity of the fluid seen is a sufficiently smooth function. This is not so when
stochastic diffusion processes are used and when dUs(t)/dt is white-noise. Using the general form
of the stochastic model given in Eq. (4c), the correct expression of the discrete particle velocity in
the limit of small St number can be properly expressed as

Up(t) � Us(t) + Wg − e−t/τp

∫ t

0
et ′/τp Ds(t ′) dt ′ − e−t/τp

∫ t

0
et ′/τp Bs(t ′) dW(t ′) (24)

from which, using the same approximation, we have

Up(t) � Us(t) + Wg − τpDs(t) − e−t/τp

∫ t

0
et ′/τp Bs(t ′) dW(t ′). (25)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.253.227.198 On: Fri, 14 Nov 2014 21:26:06



113303-12 Minier, Chibbaro, and Pope Phys. Fluids 26, 113303 (2014)

If the coefficients Bs,kl of the diffusion matrix can be frozen at their value at time t, then the random
term in this equation can be simulated (in a weak sense) as a sum of Gaussian random variables of
zero mean and variance equal to B2

s,klτp/2
[
1 − e−2t/τp

]
. Yet, in order to complement the criterion

(P-4) which corresponds to the diffusion coefficient, we concentrate here on the drift vector. By
comparing with Eq. (22), we obtain the resulting form of the criterion by taking the conditional
average (conditioned on a given value of Z = (xp, Up, Us)), which gives

〈Ds | Z〉 � 〈 DU
Dt

| Z〉 + Wg · ∇〈U〉, (26)

where we have assumed that, for high Reynolds-number turbulent flows, fluid velocity gradients are
not strongly correlated with the (large-scale) fluid velocities so that their mean conditional values
can be taken as being equal to the average ones. By using the Lagrangian formulation of DU/Dt
expressed by Eqs. (5), we get therefore that, for St 	 1, the drift vector for the velocity of the fluid
seen should be such that we have

〈Ds | Z〉 � 〈D | Z〉 + Wg · ∇〈U〉, (27)

where D is the drift vector used for the increments of fluid particle velocities. This is the basic form
retained for the criterion (P-6). A weaker form can also be considered by taking the unconditional
average, in which case we have that, for small St number,

〈Ds〉 � 〈D〉 + Wg · ∇〈U〉. (28)

The interest of this weaker form, which is referred to as (P-6bis) from now on, is that, for high
Reynolds-number turbulent flows, the mean value of the drift for fluid particle velocities is an exact
result and is equal to the fluid mean pressure-gradient (as recalled in Sec. IV A). Thus, the criterion
(P-6bis) implies that, for small St number, we should have that

〈Ds〉 � − 1

ρ
∇〈P〉 + Wg · ∇〈U〉. (29)

Although, Eq. (27) truly embodies the criterion (P-6) in the list of requirements, both forms will be
considered and discussed in Sec. V.

IV. ANALYSIS OF STOCHASTIC MODELS FOR SINGLE-PHASE FLOWS

In this section, different formulations in terms of instantaneous, fluctuating, or normalized
fluctuating velocities are considered to demonstrate the interest of the criteria selected in Sec. III A.

A. Different formulations of single-phase flow stochastic models

As Lagrangian stochastic models for fluid particle velocities attempt at reproducing some key
(one-point) statistical properties of turbulent flows, the starting point is naturally provided by the
Navier-Stokes equations. Following the classical notations that use a superscript + to indicate that
we are dealing with the exact equation for a fluid particle1 and using Reynolds decomposition into
mean and fluctuating parts (leaving out the mean viscous term ν�〈Ui〉 at high Reynolds-number
numbers), the Navier-Stokes equations write

dx+
i

dt
= U+

i , (30a)

dU+
i

dt
= −

(
1

ρ

∂〈P〉
∂xi

)+
−

(
1

ρ

∂p

∂xi

)+
+ (ν�ui )

+︸ ︷︷ ︸
to model

, (30b)

where the fluctuating pressure-gradient and viscous terms are to be modeled.
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A reference stochastic model is the GLM (Generalized Langevin Model)2, 3, 22 which represents
fluid particle velocities by a stochastic diffusion process whose general form is

dxi = Ui dt, (31a)

dUi = − 1

ρ

∂〈P〉
∂xi

dt + Di dt +
√

C0〈ε〉dWi . (31b)

The drift coefficient Di is usually a function of the difference between instantaneous and mean
velocities at the particle location and is modeled as

Di = Gi j
(
U j − 〈U j 〉

) = −
(

1

2
+ 3

4
C0

) 〈ε〉
k

(Ui − 〈Ui 〉) + Ga
i j

(
U j − 〈U j 〉

)
, (32)

where the matrix Ga
i j represents anisotropic effects and is subject to the condition that Tr(GaR)

= 0, with Rij = 〈ui uj〉 the Reynolds-stress tensor. The drift vector can also be expressed so as to
bring forward the timescale TL, which is a measure of the integral timescale of large-scale velocity
fluctuations,

Di = −Ui − 〈Ui 〉
TL

+ Ga
i j

(
U j − 〈U j 〉

)
with TL = 1(

1

2
+ 3

4
C0

) k

〈ε〉 . (33)

In these equations, the mean terms are to be understood as being the values of the corresponding
mean fields at the particle location, for instance, 〈Ui 〉 = 〈Ui 〉(t ; x) and, in the context of the present
study an important point is that the GLM is formulated in terms of instantaneous fluid velocities.

So far, the GLM has been used as a reference but the present discussion is not limited to
this model. Indeed, the GLM is one example of models written in terms of particle instantaneous
velocities and which can be formulated as

dxi = Ui dt, (34a)

dUi = − 1

ρ

∂〈P〉
∂xi

dt + d Mi (t ; x, U), (34b)

where M stands for a stochastic model expressed in terms of the state-vector Z = (x, U) based on
instantaneous velocities and dMi its increment over a small time interval dt. The general model M,
whose precise form is irrelevant for the present concern, is a model accounting for the fluctuating
pressure-gradient and viscous term, as expressed in Eq. (30), and is simply assumed to satisfy the
requirements that 〈d Mi 〉(t, x) = 0 and 〈ui◦dMi〉/dt = −2 ε. These two constraints translate the fact
that the mean “force” dMi is zero while the mean value of the work performed by this force is the
mean dissipation sink term. In the typical case where dMi involves a stochastic process, the last
expression has been written using Statonovich stochastic calculus for the sake of simplicity. In most
modeling proposals, dMi is represented by one diffusion stochastic process which can also depend
on statistics derived from the set of particles as well as on external fields. However, other models
with different structures can be considered:47, 48 for instance, dMi can represent stochastic models
which rely on a two-level stochastic description where a random succession of elementary diffusion
processes are governed by a parent Poisson process.49 From the standard methodology recalled in
Sec. II B, it is clear that all models belonging to the class represented by Eqs. (34) meet the criteria
listed in Sec. III A and, therefore, can be regarded as satisfactory stochastic models for single-phase
flows.

In the passage from homogeneous turbulence to general non-homogeneous flows, other mod-
eling roads have been followed. In particular, several attempts50–52 have been made at formulating
a general model by stating that the model developed in homogeneous situations corresponds, in the
inhomogeneous case, to the model for the fluctuating velocity, ui, and that the full model for the
instantaneous velocities is simply obtained by writing Ui = 〈Ui〉 + ui. Other attempts53–57 have
been made by considering that the model developed in homogeneous flows retains a similar form
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in inhomogeneous cases when it is expressed for the normalized fluctuating velocities, ui/σ (i) where
σ (i) is the standard deviation for the corresponding velocity component, and saying again that instan-
taneous velocities are retrieved by adding the mean value at particle location (suffixes in brackets
are excluded from the summation convention). Therefore, these formulations differ by the choice of
the variable on which they act (instantaneous or fluctuating velocities) and by the structure of the
model. The differences induced by these choices are now discussed.

1. Fluctuating velocity

To work out the relations between formulations in terms of the instantaneous velocities and
fluctuating parts, it is convenient to start from the general form introduced in Eqs. (34). The
Lagrangian derivative is equivalent to the material derivative and for a quantity φ(t) sampled from a
field (t, x) along a particle trajectory, φ(t) = (t, x(t)), we have

dφ(t)

dt
= ∂

∂t
+ Uk

∂

∂xk
. (35)

Then, by writing

ui = Ui − 〈Ui 〉, (36)

the evolution equation for the fluctuating velocity along the same particle trajectory can be obtained
from Eq. (34b)

dui

dt
= dUi

dt
− d〈Ui 〉

dt
, (37a)

dui

dt
= dUi

dt
−

(
∂〈Ui 〉

∂t
+ 〈Uk〉∂〈Ui 〉

∂xk
+ uk

∂〈Ui 〉
∂xk

)
, (37b)

dui

dt
= dUi

dt
+ 1

ρ

∂〈P〉
∂xi

+ ∂〈ui uk〉
∂xk

− uk
∂〈Ui 〉
∂xk

. (37c)

The final form is obtained by using the increments of the instantaneous fluid velocities in Eqs. (34)
and this shows that any stochastic model formulated in terms of U as

dxi = Ui dt, (38a)

dUi = − 1

ρ

∂〈P〉
∂xi

dt︸ ︷︷ ︸
no spurious dri f t

+ d Mi (t ; x, U)︸ ︷︷ ︸
model

, (38b)

is equivalent to a stochastic model in terms of u formulated as35, 58

dxi = (〈Ui 〉 + ui ) dt, (39a)

dui = ∂〈ui uk〉
∂xk

dt︸ ︷︷ ︸
(a) no spurious dri f t

− uk
∂〈Ui 〉
∂xk

dt︸ ︷︷ ︸
(b) production term

+ d Mi (t ; x, u)︸ ︷︷ ︸
model

. (39b)

In the formulation in Eq. (38b), the first term on the rhs is the mean pressure-gradient and,
when this mean pressure is such that the mean velocity field satisfies the divergence-free condition
for incompressible flows, this ensures that an initially uniform (fluid) particle concentration remains
uniform.1, 33 In the literature devoted to Lagrangian models, failure to maintain such a uniform
concentration has been referred to as the “spurious drift effect” or even “the well-mixed condition
problem” in some works.34 In models formulated in terms of instantaneous velocities, the presence
of the mean pressure-gradient term is evident and the issue of spurious drifts is thus trivially
avoided. However, the situation is somewhat more involved in the formulation in terms of fluctuating
velocities, Eqs. (39). The first term on the rhs of Eq. (39b), which involves the spatial derivatives of
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the Reynolds-stress tensor, must be present if spurious drifts are to be avoided. This was not the case
in the first modeling attempts50, 51 and, although the situation was analyzed from a theoretical point
of view33 and demonstrated from a numerical point of view,35 this fact remains sometimes missed
in dispersed two-phase flow applications.59–61 This has led to a blurred vision of the rather simple
issue of the spurious drift effect and to the notion that flawed formulations should be saved by the
addition of “corrected mean terms,” yielding so-called drift-corrected models.29 These analyses are
limited to checking that the correct form of the Reynolds equation is satisfied whereas, in the context
of the present study, the consistency of model proposals with the full structure of Reynolds-stress
equations has been explicitly raised in the criterion (F-3). This implies that all the terms appearing
on the rhs of Eq. (39b) must be addressed.

Indeed, even if the gradient of the Reynolds stress tensor is properly introduced, the second term
on the rhs of Eq. (39b) is just as compulsory. This is seen by deriving the corresponding transport
equations for the Reynolds stress components 〈ui uj〉 which reads

∂〈ui u j 〉
∂t

+ 〈Uk〉∂〈ui u j 〉
∂xk

+ ∂〈ui u j uk〉
∂xk︸ ︷︷ ︸

〈d(ui u j )〉

= −〈ui uk〉∂〈U j 〉
∂xk

− 〈u j uk〉∂〈Ui 〉
∂xk︸ ︷︷ ︸

correct production term

+ 1

dt
〈ui ◦ d M j 〉 + 1

dt
〈u j ◦ d Mi 〉. (40)

With the two constraints satisfied by dMi (see Sec. IV A), it is seen that the second term, labeled (b) in
Eq. (39b), is essential to obtain the correct production term in the Reynolds-stress equations. Failure
to account for this fluctuating term means that the important production term in the Reynolds-stress
equations is either missing or badly calculated. Such a formulation would then be inconsistent with
the correct form of the Rij − ε equations and, following the set of requirements given in Sec. III A,
would not be acceptable.

Finally, once all terms are correctly handled, it is useful to compare the corresponding effort
which is required in Eqs. (38) and (39). A stochastic model for U requires 3 gradients (for ∇〈P〉)
while the same stochastic model, written for u, requires 27 gradients (for ∇〈U〉 and ∇〈uiuj〉). This
represents a considerable amount of additional complexity and computational effort in practical
calculations. For all the reasons put forward above, it appears therefore that formulations made in
terms of the instantaneous velocity are both the easiest and the safest road for the construction of
practical models.

2. Normalized velocity

Other attempts62 at going from the homogeneous situations to non-homogeneous ones were
made through so-called normalized Langevin models. Recent versions of the normalized Langevin
approach can be written as53, 54, 63

d

(
ui

σ(i)

)
= − ui

τL σ(i)
dt +

√
2

τL
dWi + ∂

∂xk

( 〈ui uk〉
σ(i)

)
dt. (41)

In the following, bracketed indexes are used for the standard deviation σ (i) of the fluctuating velocity
component ui to indicate that such indexes are excluded from the summation convention.

Before going into the analysis of this formulation in general inhomogeneous situations, we first
consider homogeneous turbulence where the model becomes

d

(
ui

σ(i)

)
= − ui

τL σ(i)
dt +

√
2

τL
dWi . (42)

We can derive the equations for the fluctuating velocities ui = σ(i)

(
ui

σ(i)

)
by writing

dui = ui

σ(i)
(dσ(i)) + σ(i)d

(
ui

σ(i)

)
(43a)
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= ui

σ(i)

(
∂σ(i)

∂t
+ Uk

∂σ(i)

∂xk

)
dt + σ(i)d

(
ui

σ(i)

)
. (43b)

Since ∂σ (i)/∂xk = 0 for homogeneous flows, this first proposal of the normalized Langevin model
corresponds to the following equation for the fluctuating velocities:

dui =
(

1

σ(i)

∂σ(i)

∂t
− 1

τL

)
ui dt + σ(i)

√
2

τL
dW. (44)

For stationary isotropic turbulence (where σ 2
i = 2/3 k is a constant), the normalized Langevin model

yields that

dui = − ui

τL
dt +

√
2σ 2

i

τL
dWi . (45)

The timescale τ L represents the timescale of velocity fluctuations in the stationary case and can be
expressed as a function of k and ε by introducing a constant C0,

τL = 4

3 C0

k

〈ε〉 , (46)

from which it results that the equation can also be written as

dui = − ui

τL
dt +

√
C0 〈ε〉 dWi (47)

and since τL = T st
L in the stationary case,2, 4 it is seen that the present normalized Langevin is

identical to the SLM. Second, for the case of homogeneous isotropic but decaying turbulence (such
as grid turbulence), the normalized Langevin model can be written

dui = −
(

1

τL
− 1

2σ 2
(i)

dσ 2
(i)

dt

)
ui dt +

√
C0 〈ε〉 dWi , (48)

where the diffusion coefficient has been re-expressed with the constant C0, as just shown. For
decaying isotropic turbulence, we have that

1

2σ 2
(i)

dσ 2
(i)

dt
= 1

2 k

dk

dt
= −〈ε〉

2 k
(49)

and the equation for the instantaneous velocities (which, in that case, are identical to the fluctuating
ones) becomes

dUi = −
(

1

2
+ 3 C0

4

) 〈ε〉
k

dt +
√

C0 〈ε〉 dWi . (50)

By adding a possible term involving a matrix Ga
i j as in Sec. IV A, it is seen that, for the two special

cases considered here of stationary and decaying isotropic turbulence, the normalized Langevin
model retrieves the form of the GLM given in Eqs. (31)–(33).

However, the situation is quite different as soon as we move out of these two simple cases. First
of all, the formulation in Eq. (42) is inconsistent when it is applied to homogeneous anisotropic
turbulence since results depend on whether the axis of the reference system are aligned with the
principal axis of 〈ui uj〉 or not. This can be traced to the fact that the model in Eq. (42) does not
respect the criterion (F-1) (actually, the correct way to define normalized velocities should have been
ûi = (R−1/2)i j u j where R−1/2 is the matrix that stands for the Reynolds stress inverse square root
(R−1/2)2 R = 1 in matrix notation). Second, for general inhomogeneous flows, it appears from the

form expressed in Eq. (44), that 〈dui 〉 �= ∂〈ui uk〉
∂xk

dt , which shows that such a formulation suffers

from spurious drifts. This was recognized in earlier versions62 but attempts to correct the model
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formulation have been made mainly through the addition of ad hoc mean terms,53–57 such as the last
term on the rhs of Eq. (41).

We can now consider the complete version given in Eq. (41) in non-homogeneous turbulent
flows. By following the same derivations as in Eqs. (43), this normalized Langevin model is equiv-
alent to the following equation for the fluctuating velocities:

dui = ∂〈ui uk〉
∂xk

dt−〈ui uk〉 1

σ(i)

∂σ(i)

∂xk
dt+uiUk

1

σ(i)

∂σ(i)

∂xk
dt︸ ︷︷ ︸

“production term”

+ 1

σ(i)

∂σ(i)

∂t
ui dt − ui

τL
dt+σi

√
2

τL
dW︸ ︷︷ ︸

Langevin term

.

(51)

Since the constraint that 〈dui 〉 = ∂〈ui uk〉
∂xk

dt is now enforced, there is no spurious drifts and the

model is consistent with the Reynolds equation, indicating that the first criterion put forward in
Sec. III A is met. However, as seen by comparing Eq. (51) with the exact equation for fluctuating

velocities in Eq. (39b), it is evident that the exact term −uk
∂〈Ui 〉
∂xk

is not retrieved. This means that

the essential production terms in the corresponding Reynolds-stress equations are mishandled and,
therefore, that this model is inconsistent with the correct structure of Rij − ε equations, as presented
in Eqs. (17). In other words, present normalized Langevin models do not satisfy the criteria (F-3)
and the failure to reproduce the correct structure of Reynolds-stress equations is a severe limitation.

It is also worth noting that, if the previous equations have been developed using the simplest
form of the Langevin model, these results do not depend on the special form of the normalized
model. Indeed, if we consider a similar model written as

d

(
ui

σ(i)

)
= ∂

∂xk

( 〈ui uk〉
σ(i)

)
dt + d M̂i (t, x, û), (52)

where d M̂i is expressed as a function of the normalized fluctuating velocities û which, in present
formulations are (wrongly) defined as ûi = ui/σ(i), and is such that 〈dMi〉 = 0 and 〈ui dMi〉 = 0 to
respect stationary isotropic turbulence conditions, we have for the fluctuating velocity an equation
similar to Eq. (51), namely,

dui = ∂〈ui uk〉
∂xk

dt − 〈ui uk〉 1

σ(i)

∂σ(i)

∂xk
dt + uiUk

1

σ(i)

∂σ(i)

∂xk
dt + 1

σ(i)

∂σ(i)

∂t
ui dt + σ(i) d M̂i . (53)

Thus, whatever the chosen form of the stochastic model d M̂i and regardless of variants in the
expression of the diffusion matrix,55–57 the same conclusions about the lack of consistency and the
failure to respect the criteria (F-3) still hold, making these models unacceptable descriptions of
turbulent flows.

B. Consistency with scalar modeling

Similar issues exist for the formulation of scalar models and, furthermore, consistency with
classical scalar modeling is explicitly used in the criteria (P-5) retained in the list of requirements
set forth in Sec. III B for two-phase flow models. It is thus worth discussing the relevant points of
classical scalar modeling.

For this purpose, we consider a passive scalar φ(t, x) transported by the flow and which is the
solution of the exact advection-diffusion equation:

∂φ

∂t
+ Uk

∂φ

∂xk
= �

∂2φ

∂x2
k

, (54)

where � is the scalar diffusivity. Assuming, still for the sake of simplicity, that we are dealing with
high Peclet-number flows, the mean diffusion term can be neglected and the mean scalar equation
(using φ = 〈φ〉 + φ′) has the form

∂〈φ〉
∂t

+ 〈Uk〉∂〈φ〉
∂xk

+ ∂〈uk φ′〉
∂xk

= 0, (55)
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where 〈uk φ′〉 the scalar flux which must be modeled. In second-order turbulence modeling, non-local
closures for the scalar flux are obtained by considering the transport equation for the scalar fluxes
which write

∂〈uiφ
′〉

∂t
+ 〈Uk〉∂〈ui φ′〉

∂xk
+ ∂〈ui ukφ

′〉
∂xk

= −〈ui uk〉∂〈φ〉
∂xk

− 〈ukφ
′〉∂〈Ui 〉

∂xk
+ i , (56)

where  i represents the correlation 〈φ′
(
− 1

ρ

∂p′
∂xi

+ ν�ui

)
〉 + 〈ui �φ′〉 which is usually modeled as

a function of the scalar fluxes, for example,  i = −Bik〈ukφ
′〉.

A classical approach is to consider the algebraic relations which result from the second-order
transport equations when convective terms are neglected.64 This approach was developed to show
that, in that case, one should obtain expressions consistent with the general diffusivity concept.
Indeed, neglecting transport terms in the above equation for the scalar fluxes gives(

Bik + ∂〈Ui 〉
∂xk

)
〈uk φ′〉 = −〈ui uk〉∂〈φ〉

∂xk
(57)

which yields that

〈ui φ′〉 = − (
O−1

ik Rk j
) ∂〈φ〉

∂x j
(58)

with Rij = 〈ui uj〉 and Oi j = Bi j + ∂〈Ui 〉
∂x j

.
This behavior has been found to be realistic both in numerical and experimental

investigations.64, 65 It is thus important to check that various formulations can yield similar ex-
pressions when the same hypothesis are made. For example, starting with the formulation in terms
of instantaneous variables that was already used at the beginning of Sec. IV A, this consists in adding
the instantaneous scalar value attached to a particle trajectory in the state-vector Z = (x, U, φ) and in
replacing the exact equations by modeled ones. Using, for instance, the GLM already introduced in
Sec. IV A for the dynamical variables and adding a model for φ, we obtain a typical model structure
as

dxi = Ui dt, (59)

dUi = − 1

ρ

∂〈P〉
∂xi

dt + Di dt +
√

C0〈ε〉dWi , (60)

dφ = Aφ dt. (61)

In the last equation, Aφ stands for a model for � �φ′ and is subject to the constraint that 〈Aφ | U〉 = 0.
This is referred to as the micro-mixing modeling issue2, 3, 5 which has been the subject of ongoing
research efforts. For the sake of our present discussion, it is sufficient to use the simple IECM
(Interaction by Exchange with the Conditional Mean) model5, 66 which reads

Aφ = −φ − 〈φ | U〉
τφ

, (62)

where τφ is the scalar mixing time scale. Then, using either a proper PDF derivation3 or a short-cut
method as in Sec. IV A, it is straightforward to show that the scalar fluxes are the solutions of the
transport equations

∂〈ui φ〉
∂t

+ 〈Uk〉∂〈ui φ〉
∂xk

+ ∂〈ui uk φ〉
∂xk

= −〈ui uk〉∂〈φ〉
∂xk

− 〈uk φ〉∂〈Ui 〉
∂xk

−
(

Gik − 1

2
Cφ

〈ε〉
k

δik

)
〈uk φ〉. (63)

In this equation, the last term on the rhs represents a model for  i resulting from the specific
choice of the GLM for particle velocities and the IECM model for φ. Other closures would result
in different expressions but with a similar form. The important point in the present context is that
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the formulation in terms of instantaneous variables gives the correct structure and is, thus, quite
consistent with the asymptotic analysis developed above to derive algebraic relations when transport
terms are neglected.

Should alternative formulations be considered, for example, in terms of fluctuating scalar, the
developments presented in Sec. IV A indicate that the evolution equation for φ′ is

dφ′ = ∂〈uk φ′〉
∂xk

dt︸ ︷︷ ︸
(a) no spurious f luxes

−uk
∂〈φ〉
∂xk

dt︸ ︷︷ ︸
(b) production term

+Aφ′ dt, (64)

where Aφ′ corresponds to the micro-mixing model retained and expressed now in terms of the
fluctuating components. For instance, for the IECM this fluctuating term is given by Aφ′ = −φ′/τφ +
(〈φ | U〉 − 〈φ〉)/τφ . The first term, labeled (a) in Eq. (64), means that the correct form of the mean
scalar equation, Eq. (55), is retrieved and is necessary to avoid spurious scalar fluxes. The second

term, labeled (b) in Eq. (64) leads to the correct production term, −〈ui uk〉∂〈φ〉
∂xk

, in the transport

equation for the scalar fluxes in Eq. (63) and, without this term, the asymptotic analysis that retrieves
the scalar turbulent diffusivity, as in Eq. (58), breaks down.

V. ANALYSIS OF STOCHASTIC MODELS FOR TWO-PHASE FLOWS

In this section, we turn to stochastic models used for the simulation of fluid velocities seen
by discrete particles. The discussion is developed by considering some specific models which have
been proposed in the literature. However, it is worth repeating that the aim is to help clarifying
how formulations can be assessed, what issues are misleadingly taken as important and which ones
should be carefully addressed when building new ideas.

A. Different formulations of two-phase flow stochastic models

1. First Langevin proposals

One of the first proposals to introduce a Langevin model for the velocity of the fluid seen relied
on a formulation based on the instantaneous velocity along particle trajectory.19 We discuss this first
proposition since it is interesting to illustrate the stochastic modeling procedure, in spite of some
limitations outlined below. The equation was written in a discrete form but, using present notations
for the sake of consistency with the other formulations, this model for Us can easily be expressed as

dUs,i = − 1

ρ

∂〈P〉
∂xi

dt + ν �〈Ui 〉 dt + (
Up,k − Us,k

) ∂〈Ui 〉
∂xk

dt + G∗
ik

(
Us,k − 〈Uk〉

)
dt + B dWi .

(65)
In this equation, the matrix G∗

ik is defined by the two timescales T ∗
L ,|| and T ∗

L ,⊥, which correspond to
Csanady’s expressions (though the precise form of these Csanady’s formulas were not given in the
original work) for the timescales of the fluid seen in the directions parallel and perpendicular to the
direction of the mean slip velocity 〈Ur 〉m = 〈Up〉m − 〈U〉 respectively, and is given by19

G∗
ik = − 1

T ∗
L ,⊥

δik −
[

1

T ∗
L ,||

− 1

T ∗
L ,⊥

]
ri rk (66)

with ri = Ur,i/| 〈Ur 〉m | the normalized vector aligned with the mean slip velocity. The Csanady’s
formulas for the timescales T ∗

L ,|| and T ∗
L ,⊥ are4

T ∗
L ,|| = TL√

1 + β2
|〈Ur 〉m |2

2k/3

, T ∗
L ,⊥ = TL√

1 + 4β2
|〈Ur 〉m |2

2k/3

, (67)

where the expression of TL is given in Eq. (33) and where β = TL/TE is the ratio of the Lagrangian
integral time scale TL to the Eulerian one TE.
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For two-phase flow modeling, Ref. 19 was interesting in that it was one of the first attempts to
build bridges between the single- and two-phase flow situations. Another interest is that it introduced
the notion of the consistency between the resulting model for the drift velocity Vd and classical
scalar modeling as detailed in Sec. IV B. This consistency issue has been retained in the present list
as criteria (P-5). It is seen that in Eq. (65) the second term on the rhs of the equation stands for the
mean viscous term. In the limit of vanishing particle inertia, this model gives an expression similar
to the SLM to which the mean viscous term has been added. Such a formulation is indeed consistent
with the low Reynolds-number form of the Reynolds equation but it must be noted that it would
not give the correct low Reynolds-number form of the second-order equations.42, 43 However, in the
present context, we have limited ourselves to high Reynolds-number flows and, therefore, the mean
viscous term can be neglected.

This first proposal has often been cited as a “stochastic model”29, 67, 68 to be compared on an
equal footing with the more complete formulations that will be discussed below. However, for all
the interests of the form expressed by Eq. (65), this is a misleading presentation and an incorrect
statement with regard to its actual status. Indeed, the diffusion coefficient, written as B in Eq. (65),
is never specified!19 In the context of the original study, this is not surprising since, as it transpires
from the very title of Ref. 19, its purpose was to derive a set of mean-field equations from this
stochastic description. As the set of mean-field equations was chosen to be limited to the particle
mean velocity and the fluid-particle correlations, the expression of the diffusion coefficient is not
required. If such a proposal leads to as a realizable Eulerian model, it must be stressed that, in no
way, can it be called a Lagrangian stochastic model. From the list of criteria in Sec. III B, it is indeed
obvious that the criterion (P-2) is not met. In the particle-tracer limit, the form given in Eq. (65)
reverts to the form of the SLM and, in that sense, all the terms appearing on the lhs of Eqs. (17)
are obtained. However, since the diffusion coefficient is unknown, it cannot be assessed whether the
corresponding terms  ij on the rhs of Eq. (17c) is such that 1/2 ii = −ε with the constraint that
ε ≥ 0. Therefore, the criterion (P-3) cannot be checked. This is also true for the criterion (P-4) which
is directly related to the diffusion coefficient and is therefore not met, whereas the criterion (P-5) is
satisfied. In order to assess criterion (P-6), we consider the limit of non-vanishing but small Stokes
numbers. In that case, we can assume that the mean relative velocity 〈Ur 〉m is equal to the particle
settling velocity Wg introduced in Sec. III B, that is, 〈Ur 〉m � Wg . Then, given the expression of
the Csanady’s timescales in Eqs. (67), which can be re-written under the form T ∗

L ,|| = TL/
√

1 + x2

with x = St × (g TL )/
√

2/3k, we have to first order in St that T ∗
L ,|| � TL as well as T ∗

L ,⊥ � TL . This
means that the mean conditional average of the drift vector 〈Ds | Z〉 which appears in the criterion
(P-6) is such that

〈Ds,i | Z〉 = − 1

ρ

∂〈P〉
∂xi

− Us,i − 〈Ui 〉
TL

+ Ur,k
∂〈Ui 〉
∂xk

. (68)

The first two terms on the rhs correspond to the mean conditional increments for fluid particle
velocities modeled with the SLM. We can thus re-express this equation as

〈Ds,i | Z〉 = 〈Di | Z〉 + Ur,k
∂〈Ui 〉
∂xk

, (69)

where D is an acceptable model for the drift vector for fluid velocities, as demonstrated by the
analysis carried out in Sec. IV A. By comparing with the formulation of the criterion (P-6) in
Eq. (27), we can see that the second term is not exactly retrieved since the instantaneous relative
velocity appears instead of the mean one. Thus, strictly speaking, the criterion (P-6) is not satisfied,
though it is also readily seen that the weak form (P-6bis) is respected.

In summary, the proposal in Eq. (65) must be regarded as an incomplete Langevin model and
cannot be retained as a proper PDF description. At this stage, it is an often-seen temptation to close
the diffusion coefficient by retaining the closure used in the GLM approach for single-phase flows,
that is, B = √

C0 〈ε〉. Yet, it can be seen from Eq. (65) that the return-to-equilibrium term is not
based on a scalar timescale (as in the SLM with TL) but has a non-isotropic form. In other words,
using the fluid-limit value of the diffusion coefficient would clearly lead to a violation of the criterion
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(P-4). This central point in the formulation of stochastic models for the two-phase flow situation was
only recognized afterward.4

2. Complete Langevin models

The velocity along particle trajectory was later called the velocity of the fluid seen10 and models
were written as proper stochastic differential equations. The general PDF framework was set up4

and a new Langevin model was developed as one example of the general methodology. For the sake
of a simpler presentation, we assume here that the mean slip velocity 〈Ur 〉m is aligned with the first
coordinate axis and, based on this assumption, the first complete Langevin model is given by

dUs,i = − 1

ρ

∂〈P〉
∂xi

dt + (〈Up,k〉m − 〈Us,k〉m
) ∂〈Ui 〉

∂xk
dt

− Us,i − 〈Us,i 〉m

T ∗
L ,(i)

dt +
√

〈ε〉
(

C0b(i)k̃/k + 2

3
(b(i)k̃/k − 1)

)
dWi . (70)

In this equation, k̃ is a new kinetic energy which stands for the fluid normal kinetic energies weighted
by the Csanady’s factors and is expressed by

k̃ = 3

2

∑3
i=1 bi 〈u2

i 〉∑3
i=1 bi

, bi = TL

T ∗
L ,i

. (71)

With the assumption on the coordinate system, the time scales T ∗
L ,(i) are equal to

T ∗
L ,1 = T ∗

L ,||, T ∗
L ,2 = T ∗

L ,3 = T ∗
L ,⊥, (72)

where T ∗
L ,|| and T ∗

L ,⊥ are given in Eqs. (67). The form given in Eq. (70) in the reference system
aligned with the mean relative velocity is best to bring out the characteristic features of the model
and the forms of the drift and diffusion coefficients. Yet, in a general coordinate system, this form
of the complete Langevin model is expressed by

dUs,i = − 1

ρ

∂〈P〉
∂xi

dt + (〈Up,k〉m − 〈Us,k〉m
) ∂〈Ui 〉

∂xk
dt + G∗

ik

(
Us,k − 〈Us,k〉m

)
dt + Bi j dW j ,

(73)
where G∗

ik is the same as in Eq. (66) and where the explicit expression of the diffusion matrix Bij is
detailed elsewhere.4

It is seen that the closure of the drift vector in Eq. (70) differs slightly from the one chosen in
Eq. (65). However, the key point is that the diffusion coefficient (actually, the diffusion matrix) is
explicitly formulated. Therefore, the first part of the criterion (P-2) is now met, which explains why
this model has been referred to as a “complete Langevin model.” It is also clear that such a model
allows practical numerical predictions to be carried out4 and, consequently, the criterion (P-2) is
fully satisfied. In that sense, this Langevin model can be truly referred to as a PDF description for
two-phase flows. It is also straightforward to show that, when particle inertia becomes negligible,
the model given in Eq. (70) reduces exactly to the SLM for fluid particles which is one of the models
that meet the lists of requirements set for single-phase flows. Thus, the criterion (P-3) is satisfied.
The specific closure of the diffusion matrix is such that, for a homogeneous turbulent fluid flow laden
with discrete particles, the kinetic energy of the fluid seen follows the same statistical law as for the
fluid kinetic energy, d(1/2 〈u2

s 〉m)/dt = −〈ε〉. As discussed in Sec. III B when the criterion (P-4)
was introduced, this is indeed what can be expected from a physical point of view. This apparently
trivial constraint is actually an important issue in the construction of complete stochastic models
for two-phase flows and was stressed accordingly.4 For our present concern, this means that the
criterion (P-4) is also met. However, in the form chosen for the drift vector in Eq. (70), it is seen that
the return-to-equilibrium term was written as a return of the instantaneous fluid velocity seen to its
mean value at the same location. This results in a zero-contribution term in the corresponding mean
equation for the drift velocity and, therefore, the criterion (P-5) is not respected by the model given
in Eq. (70).69
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This limitation was later overcome by expressing the return-to-equilibrium term as a return of
the instantaneous value of the fluid velocity seen to the local mean fluid velocity. This led to the
final formulation of this complete Langevin model23 which, using the same simplifying assumption
as in Eq. (70) that 〈Ur 〉 is aligned with the first coordinate axis, is expressed by

dUs,i = − 1

ρ

∂〈P〉
∂xi

dt + (〈Up,k〉m − 〈Uk〉
) ∂〈Ui 〉

∂xk
dt

− Us,i − 〈Ui 〉
T ∗

L ,(i)

dt +
√

〈ε〉
(

C0b(i)k̃/k + 2

3
(b(i)k̃/k − 1)

)
dWi , (74)

whereas the complete formula in a general coordinate system is

dUs,i = − 1

ρ

∂〈P〉
∂xi

dt + (〈Up,k〉m − 〈Uk〉
) ∂〈Ui 〉

∂xk
dt + G∗

ik

(
Us,k − 〈Uk〉

)
dt + Bi j dW j (75)

with the explicit formulation of the diffusion matrix detailed elsewhere.23

Like its preceding version, this formulation fulfills the criteria (P-1)-(P-4). However, with the
new form for the return-to-equilibrium term in the drift vector, the corresponding equation for the
drift velocity is now

∂Vd,i

∂t
+ 〈Up,k〉m

∂Vd,i

∂xk
= 1

α f

∂

∂xk

[
α f 〈ui uk〉

] − 1

αp

∂

∂xk

[
αp〈u′

s,i u p,k〉m
] + G∗

ik Vd,k, (76)

where αf and αp are the fluid and particle volumetric fractions (with αf + αp = 1). In Eq. (76), the
fluctuations of Us, i are defined as u′

s,i = Us,i − 〈Ui 〉. (Note that a specific notation is used for the
“fluctuation” of the velocity of the fluid seen while usual notations are kept for particle velocities
and for the fluid velocities within the fluid phase, see the discussion on the definition of fluctuating
velocities in Sec. V A 3.) It is important to stress that, in the scalar limit case (when the particle
relaxation time τ p is negligible with respect to the fluid turbulence time scale TL but with a non-
vanishing volumetric fraction), Vd,i reduces to the ordinary turbulent correlation between the particle
concentration and the fluid velocity, which is the case discussed in Sec. IV B. By making the same
assumptions as in Sec. IV B, this equation yields that

Vd,i = (G∗)−1
ik

{
1

αp

∂

∂xl

[
αp〈u′

s,k u p,l〉m
] − 1

α f

∂

∂xl

[
α f 〈uk ul〉

]}
(77)

which is in line with classical scalar modeling as recalled in Sec. IV B. Indeed, for the case of
constant correlations, we have that

Vd,i = (G∗)−1
ik

{
1

αp
〈u′

s,k u p,l〉m + 1

α f
〈uk ul〉

}
∂αp

∂xl
(78)

which is similar to the result given in Eq. (58), showing that the criterion (P-5) is fulfilled. For the
analysis of the criterion (P-6), we can draw on the developments obtained in Sec. V A 1 in the limit
of small Stokes numbers. Thus, to first order in St, we have that T ∗

L ,|| � TL , T ∗
L ,⊥ � TL , as well as

bi � 1. Using the general expression of the drift vector in the complete model in Eq. (75), we obtain
now that the mean conditional average of the drift vector 〈Ds | Z〉 is

〈Ds,i | Z〉 = − 1

ρ

∂〈P〉
∂xi

− Us,i − 〈Ui 〉
TL

+ 〈Ur,k〉m
∂〈Ui 〉
∂xk

. (79)

Using again the drift vector of the SLM for fluid particle velocities and the fact that, for St 	 1,
〈Ur 〉m � Wg , this is equivalent to

〈Ds,i | Z〉 = 〈Di | Z〉 + Wg,k
∂〈Ui 〉
∂xk

. (80)

This is indeed the form stated for this criterion, as expressed in Eq. (27), showing that (P-6) is
satisfied, from which (P-6bis) is obviously also met.
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Consequently, the complete list of criteria of Sec. III B is satisfied by the Langevin model given
in Eq. (74) or in Eq. (75) and, as such, this model can be assessed as being a satisfactory description
of two-phase flows.

3. Fluctuating or instantaneous fluid velocity seen

So far, the models considered in Secs. V A 1 and V A 2 for two-phase flows have been presented
in terms of the instantaneous fluid velocity seen. Formulations in terms of the fluctuating component
of this fluid velocity seen are, of course, possible but reveal themselves to be not only cumbersome
but also trickier than in the single-phase case. One reason is rooted in the fact that “fluctuations”
must be carefully defined since averages should be first properly defined as meaningful quantities
over the respective fluid and particle phases. For example, two “fluctuations” can be defined from
the instantaneous value of the fluid velocity seen: as in Sec. V A 2, one can introduce fluctuations as
the difference with the local mean fluid velocity (properly defined as an average over the fluid phase
only), u′

s,i = Us,i − 〈Ui 〉, whose mean value (over the particle phase) is not zero but the drift velocity
Vd,i ; or the “real” fluctuation, us, i = Us, i − 〈Us, i〉m, whose mean value is indeed zero (obviously,
these two fluctuations are related through us,i = u′

s,i − Vd,i . Note that 〈u′
s,i u p,k〉m = 〈us,i u p,k〉m in

Eqs. (76)–(78)). These distinctions were made clear in Eulerian descriptions19, 44 and, in the complete
PDF approach to two-phase flows, this means that the complete theoretical framework4, 21 outlined
in Sec. II must be carefully followed.

To illustrate this point, if we consider a stochastic formulation for the instantaneous fluid velocity
seen which has the following form:

dUs,i = − 1

ρ

∂〈P〉
∂xi

dt + Ai dt + G∗
ik

(
Us,k − 〈Uk〉

)
dt + Bik dWk (81)

then, the corresponding equation for the fluctuating component u′
s,i as defined above is

du′
s,i = 1

α f

∂
[
α f 〈ui uk〉

]
∂xk

dt − [
Up,k − 〈Uk〉

] ∂〈Ui 〉
∂xk

dt + Ai dt + G∗
iku′

s,k dt + BikdWk . (82)

Handling directly this form of a model raises questions as to the exact formulation of the first term
on the rhs of Eq. (82). Indeed, an alternative formulation can be expressed as

du′
s,i = ∂ [ 〈ui uk〉 ]

∂xk
dt − [

Up,k − 〈Uk〉
] ∂〈Ui 〉

∂xk
dt + Ai dt + G∗

iku′
s,k dt + BikdWk . (83)

This dual form of the equation for the fluctuating part of the velocity of the fluid seen is not related
to a particular choice of the drift and diffusion terms. For example, in recent articles,67, 68 it is said
that for the value of the term Ai in the drift vector which corresponds to Eq. (65), the equation for
this fluctuating component is

du′
s,i = ∂ [ 〈ui uk〉 ]

∂xk
dt +

(
G∗

ik − ∂〈Ui 〉
∂xk

)
u′

s,k dt + BikdWk (84)

whereas the corresponding first form given above would be

du′
s,i = 1

α f

∂
[
α f 〈ui uk〉

]
∂xk

dt +
(

G∗
ik − ∂〈Ui 〉

∂xk

)
u′

s,k dt + BikdWk . (85)

The difference between Eqs. (82) and (83) (or between Eqs. (84) and (85)) is related to whether
two-way coupling effects are accounted or not. The form in Eq. (82) (and in Eq. (85)) is obtained
when the mean fluid velocity is given by

∂〈Ui 〉
∂t

+ 〈Uk〉∂〈Ui 〉
∂xk

= − 1

ρ

∂〈P〉
∂xi

− 1

α f

∂
[
α f 〈ui uk〉

]
∂xk

, (86)

which contains the correct expression of the Reynolds stress for the fluid momentum equation in the
two-phase flow situation.4, 21 On the other hand, the form in Eq. (83) (and in Eq. (84)) is obtained
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by considering that the equation for the mean fluid velocity follows:

∂〈Ui 〉
∂t

+ 〈Uk〉∂〈Ui 〉
∂xk

= − 1

ρ

∂〈P〉
∂xi

− ∂ [ 〈ui uk〉 ]

∂xk
. (87)

Equation (87) is, of course, the Reynolds equation for the fluid phase treated as an incompressible
single-phase turbulent flow (in the high Reynolds-number limit). On the other hand, in Eq. (86), it
is seen that a two-way coupling effect is present since the reduced volumetric fraction occupied by
the fluid is accounted for through α f (t, x). Note, however, that Eq. (86) represents only a partial
account of two-way coupling in the sense that only the volume effect is included. In order to properly
account for two-way coupling, momentum exchange terms should be added for the stochastic model
for the velocity of the fluid seen and into the Reynolds equation for the fluid phase. To the authors’
knowledge, this has been properly proposed only for the complete Langevin model (see detailed
presentations in Refs. 4, 6, and 23) by considering that the term

Ap→ f,i = −αp ρp

α f ρ

(
Us,i − Up,i

τp

)
(88)

which represents the effect of the particle phase on the fluid velocity seen is added to the rhs of
Eq. (74). In that case, volumetric and momentum two-way coupling are taken into account and the
corresponding equation for the fluctuating part of the velocity of the fluid seen is

du′
s,i = 1

α f

∂
[
α f 〈ui uk〉

]
∂xk

dt − [
Up,k − 〈Uk〉

] ∂〈Ui 〉
∂xk

dt + Ai dt + G∗
iku′

s,k dt + BikdWk

− αp ρp

α f ρ

[(
Us,i − Up,i

τp

)
−

〈
Us,i − Up,i

τp

〉
m

]
dt. (89)

Note that, in the usual case of a polydisperse two-phase flow, the last two terms on the rhs of Eq. (89)
cannot be expressed only in terms of the mean and fluctuating fluid and particle velocities (which is
a further argument to suggest that formulations in terms of fluctuations are more cumbersome than
the ones in terms of instantaneous values).

Though the purpose of our analysis is not directly about two-way coupling effects, the above
discussion is interesting to reveal that, for a given stochastic model, the form of the corresponding
equation for the fluctuating velocity components is not immediately determined. Indeed, if we
consider, for example, the complete Langevin model, its formulation depends on whether one wants:
(a) to disregard all two-way coupling effects (both volumetric and momentum), which leads to
Eq. (83); (b) to account for the volumetric effect for the fluid phase, which leads to Eq. (82); (c) to
include two-way coupling effects, in which case the model for the instantaneous fluid velocity seen,
Eq. (74)+Eq. (88), corresponds to Eq. (89) for the fluctuating component of the velocity of the fluid
seen.

Going back to the difference between Eqs. (82) and (83) (or between Eqs. (84) and (85)), this
means that an additional term, equal to 〈ui uk〉1/αf∇αp and proportional to the gradients of the
volumetric fractions ∇αp, is introduced in Eq. (83). Depending on the choice made for two-way
coupling effects (see (a) or (b) above), this (potentially) spurious term may not be negligible as particle
distribution is rarely homogeneous. Consequently, numerical simulations which are performed from
the stochastic differential equations for the fluctuating parts of the velocity of the fluid seen can be
potentially flawed.

Clearly, formulations in terms of so-called “fluctuations” can easily become intricate with many
terms, making their manipulation slippery while they do not necessarily clarify the physical picture.
Thus, contrary to some statements,67, 68 a more practical way to account for the velocity of the fluid
seen is to retain formulations in terms of the instantaneous velocity.

4. Normalized Langevin models

Another category of models consists in proposing Langevin-type of models developed in terms
of the normalized fluctuating fluid velocity seen. To give one example, this normalized fluctuating
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velocity (using the notations introduced in Sec. V A 3) is sometimes modeled as53, 63, 70

d

(
u′

i

σ(i)

)
= − u′

i

τL σ(i)
dt +

√
2

τL
dWi + ∂

∂xk

( 〈u′
i u′

k〉
σ(i)

)(
1

1 + St

)
dt. (90)

Such formulations have been mostly used for boundary-layer simulations often in relation with
particle deposition issues.53, 54 It is seen that these propositions include terms written as functions
of the particle Stokes number, which with present notation is St = τ p/τ L. Such models are clearly
able to predict particle statistics and, in that sense, they satisfy the criterion (P-2). However, when
the Stokes number goes to zero (that is, when particle inertia becomes negligible), these models
revert to the normalized models which have been discussed in Sec. IV A 1. As analyzed there, these
normalized Langevin models do not have the correct transformation and invariance properties and
are inconsistent with the structure of Reynolds-stress equations: they are, therefore, unsatisfactory
descriptions for single-phase turbulent flows. This means that the criteria (P-3) and (P-1), as well
as the two forms of the criterion (P-6), are not respected. Consequently, these models cannot be
regarded as acceptable descriptions for two-phase flows.

5. Hybrid DNS-stochastic approach

As already mentioned above, a recent proposal introduced a new formulation for the velocity of
the fluid seen.68 Using the present notations, this proposal consists in simulating Us as the solution
of the following stochastic differential equation:

dUs,i = − 1

ρ

∂〈P〉
∂xi

dt + ν �〈Ui 〉 dt + (
Up,k − Us,k

) ∂〈Ui 〉
∂xk

dt + A′
i dt

+ G∗
ik

(
Us,k − 〈Uk〉

)
dt + Bik dWk, (91)

where a new term A′
i is added to the drift vector in Eq. (65) and is given by

A′
i = ∂〈u′

s,i u p,k〉m

∂xk
− ∂〈ui uk〉

∂xk
. (92)

This model is expressed in terms of the fluctuating components of the velocity of the fluid seen and
the discussions in Sec. V A 3 are thus relevant. In particular, the formulation put forward68 is along
the one expressed in Eq. (84) to which the extra term A′

i is added, which results in

du′
s,i = ∂〈u′

s,i u p,k〉m

∂xk
dt +

(
G∗

ik − ∂〈Ui 〉
∂xk

)
u′

s,k dt + BikdWk . (93)

In this formulation, the matrix G∗
ik is expressed as the inverse of the matrix Tik which is the matrix

of the decorrelation time scales of the fluid seen and given by68

G∗
ik = G̃∗

ik + ∂〈Ui 〉
∂xk

, G̃∗
ik = − (T )−1

ki , Tik =
∫ ∞

0
〈u′

s,i u
′
s,l〉−1

m 〈u′
s,l (0)u′

s,k(t)〉m dt, (94)

where the values of the matrix Tki are obtained as statistics extracted from a DNS of the same
particle-laden flow that is considered. Then, the diffusion matrix is determined by the following
equality:68

B2
ik = Bil Bkl = −G̃∗

il〈u′
s,lu

′
s,k〉m − G̃∗

kl〈u′
s,lu

′
s,i 〉m . (95)

Note that the notation B2
ik which was used68 should in fact refer to (BBT)ik. This proposal introduces

new elements and, since DNS results are built-in, it is referred to as an “hybrid DNS-stochastic”
approach. Some more comments are in order about the role of DNS in this hybrid approach. In this
formulation, the matrices Tik and G∗

ik are not obtained first on some simple test cases (thus from
some sample DNS) and then used as a predictive model in any geometry. Actually, for each geometry
and for each flow considered, a DNS must be run beforehand in order to obtain the correlation matrix
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which is used to extract the matrix G∗
ik fed into the governing equation for the velocity of the fluid

seen, Eq. (91). This means that a concurrent run of a DNS and of the PDF model must be carried
out.

Compared to the propositions addressed in Subsections V A 1–V A 4, the additional term A′
i

in the drift vector is also a new element. This term is motivated by an analysis of the form of the
exact equation satisfied by the drift velocity in the limit of high-inertia particles (St � 1 or τ p →
∞), while the two expressions that yield the matrix G∗

ik as well as the diffusion matrix Bik in Eqs.
(94) and (95), respectively, are based on a so-called “local homogeneity assumption.” In Eq. (91),
it is seen that the mean viscous term is present as in the proposal in Eq. (65). However, as already
indicated in Sec. V A 1, this is inconsistent with the proper low Reynolds-number form of the
Reynolds-stress equations and should be avoided, though it seems to be systematically presented.29

Since we are only considering high Reynolds-number flows, this term is disregarded in the present
analysis.

From a physical point of view, some of these assumptions raise questions. The local homogeneity
assumption means that the underlying fluid turbulence is assumed to remain homogeneous and
stationary so that the turbulent characteristics seen by particles (which are functions of the elapsed
time) can be taken as stationary processes during a “long-enough” period (at least of the order of the
particle relaxation timescale τ p) for these statistics to reach their local “equilibrium values.” For high-
inertia particles which can typically cover large distances during a time of the order of their relaxation
timescale, this amounts to assuming that the fluid turbulence remains homogeneous and stationary
over considerable length and time scales, for the hypothesis to apply. This hybrid-DNS approach
bears some similarities with one development proposed by Pope.71 However, that study71 was for
homogeneous shear fluid flows where, once correctly rescaled, fluid particle velocities constitute truly
statistically stationary processes. Furthermore, its purpose was mainly to demonstrate the potential of
properly defined Langevin models, suggesting that there is still room for considerable improvement
in the development of particle stochastic models,71 rather than as a general methodology to apply
in any flows. On the other hand, the issue of whether consistency results are to be expected in the
high-inertia limit is worth noting and will be taken up in Subsection V B. In the context of the present
analysis, we now concentrate on how this new proposal stands with respect to the criteria retained
in Sec. III B.

Since the drift vector and diffusion matrix are explicit in Eqs. (91)–(95), the stochastic model is
complete. From the choice of the drift term, it is also seen that this proposal is such that the criterion
(P-5) is satisfied and that the fluid limit yields a model whose form is acceptable. In the limit of
small St, the additional term A′

i in Eq. (92) does not contribute to the first-order development in St
and, in that limit, the form of the drift vector is identical to the one given in the incomplete Langevin
proposal in Eq. (65). Consequently, the analysis performed in Sec. V A 1 applies here, showing that
(P-6) is not satisfied but that (P-6bis) is. However, the main characteristic of this proposal is that
the matrix entering the return-to-equilibrium term in the drift vector is provided by the solution of
a DNS for the same flow which is modeled by the proposal in Eq. (91). As such, it is clear that
the criterion (P-2) is violated and that this proposal cannot be referred to as a “model.” Indeed, as
indicated above, the formulation requires that a DNS solution be performed beforehand for each flow
to feed the drift term of a model which is supposed to provide predictions on this very flow. If such
formulations can indeed be considered as making interesting consistency checks for specific closure
propositions, it cannot be accepted as a proper stochastic model for two-phase flow simulations.
Furthermore, it appears that the present formulation suffers from some inconsistencies that limit its
applicability. Indeed, if we consider one of the simplest situations, namely, of homogeneous isotropic
decaying turbulence, the present hybrid DNS-stochastic approach would consist in running first a
DNS to obtain the timescales necessary to define the matrix G̃∗

ik in Eq. (94), from which the diffusion
matrix is derived through Eq. (95). The latter equation is the expression of the classical fluctuation-
dissipation theorem for stationary processes,30, 31 which means that we have d〈u2

s 〉m/dt = 0 instead
of the natural decaying law for the turbulent kinetic energy. Thus, the criterion (P-4) is also violated.
It is also evident that the proper fluid limit is not retrieved as the decay law for single-phase
turbulent homogeneous flows is not correctly retrieved, showing that (P-3) is also violated. For an
approach based on DNS results, this is a severe shortcoming. Furthermore, it can be noted that the
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procedure of coupling DNS and Langevin models raises consistency questions, especially in the fluid
limit.46

B. Discussion on additional criteria for two-phase flow modeling

In the list of criteria set forth in Sec. III B, it is seen that the fluid, or particle-tracer (St 	 1),
limit has been particularly emphasized (in the criterion (P-3)). It can be wondered whether sim-
ilar consistency limits are to be selected in the other limit, when particle inertia is very high
(St � 1). However, three remarks can be made. First, it must be remembered that the present form of
Langevin models (i.e., modeling the velocity of the fluid seen by a diffusion stochastic process) has
less justifications than in the fluid case. For high-inertia particles, the well-known frozen-turbulence
hypothesis can be applied and it is easy to show that the increments of the velocity of the fluid
seen should then be governed by spatial correlations. In that case, 〈(dUs)2〉 scales as (〈ε〉|Ur |�t)2/3

over a time interval �t, provided that the relative mean distance covered by particles �r = |Ur |�t
remains in the inertial range length �r 	 L. It remains to be seen whether such limits are encoun-
tered as they imply the existence of a regime where |Ur | is high enough so that Lagrangian fluid
correlations can be neglected while we still have that �r = |Ur |�t 	 L . If present, such limits are
indeed not reproduced by present Langevin formulations as discussed at length in the construction
of the complete Langevin model.4 This suggests that, in the high-inertia limit, the issue would be
to devise altogether new stochastic model formulations rather than imposing requirements on the
present ones. On the other hand, when dealing with high-inertia particles, a second remark is that
the detailed form of a Langevin-type of model is less an issue if macroscopic particle statistical
properties, such as diffusion coefficients, kinetic energies, etc., are sought. For these properties, the
important element is mainly to retrieve the correct limit of the integral time scale of the velocity of
the fluid seen in this limit. This is indeed what expressions such as Csanady’s formulas in Eqs. (67)
are doing without having to change the form of the Langevin equation itself. Finally, with respect
to the particle relaxation timescale τ p and since St � 1 means that T ∗

L 	 τp, the fluid velocity
seen becomes a fast-variable and can be safely taken as acting as a white-noise on discrete particle
trajectories. In that case, the form of the diffusion matrix in Langevin formulations is more important
than details of the drift vector (apart from the return-to-equilibrium term and the integral time scale).
Among other asymptotic cases, a comprehensive discussion of this high-inertia limit was proposed6

along with the corresponding consequences on the development of suitable numerical schemes.6

Thus, the development of new stochastic models that would capture both Lagrangian statistics
(time-spectrum) as well as Eulerian ones (space-spectrum) is still an open issue. Yet, this question
must be weighted against what would be gained from such developments.

C. Open issues on stochastic models for the velocity of the fluid seen

At the end of the analysis of stochastic models for polydisperse two-phase flows, it is worth
emphasizing that modeling the velocity of the fluid seen remains an open issue. Coming up with
tractable models that still represent proper descriptions of the physics of turbulent flows is not an
easy task. Indeed, it must be remembered that the velocity of the fluid seen is Us(t) = U(t, xp(t))
which means that, though Us(t) is a particle-attached variable, it nevertheless involves time and
space correlations of the carrier turbulent fluid flow. Thus, the crossing-trajectory effect (CTE),4

which is related to particle and fluid velocity slips, induces several challenges for the formulation of
a model for Us(t).

With respect to this situation, the standpoint chosen in the present work is to consider jointly a
set of criteria that points to acceptable forms of the different terms entering a stochastic diffusion
model retained for the velocity of the fluid seen. As the complexity of the physics involved can,
unfortunately, lead to overlooking the basic properties of a model, the criteria (P-1) and (P-2) have
been useful to clarify some situations. Then, based on proper formulations of the fluid limit and
on the GLM (which is the essence of (P-3)), (P-4) is important for the closure of the diffusion
coefficient, (P-5) helps to bring out a correct form of the return-to-equilibrium term of a Langevin
model, while (P-6) indicates possible expressions for the additional term of the drift vector related

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.253.227.198 On: Fri, 14 Nov 2014 21:26:06



113303-28 Minier, Chibbaro, and Pope Phys. Fluids 26, 113303 (2014)

to the slip velocity between the fluid and the particles. Yet, they remain suggestions and indications.
It must not be forgotten that present models still contain assumptions. More precisely, the timescales
of the velocity of the fluid seen are inputs (relying on the Csanady’s expressions) and, to the best
of the authors’ knowledge, these expressions have not been worked out from first principles (see
detailed discussions in Secs. 7.4 and 9.3.4 in Minier and Peirano4 or first attempts in Ref. 72). This
has consequences. For example, (P-6) is helpful to reveal the existence of a supplementary drift
term, which basically comes from a first-order development of the fluid velocity seen in the limit
of small St. However, an important point is that it may not be relevant to push the analysis too
far concentrating on that sole issue, when other aspects are disregarded. For example, arguing on
whether the mean or instantaneous slip velocities should enter the additional drift term becomes
secondary if the diffusion coefficient is not correctly closed and while it remains unclear whether the
difference is accounted for (or not) by the Csanady’s formulas. The main messages are therefore:
first, it is essential to address together the different terms entering a stochastic model and, second,
that new ideas based on more fundamental derivations would be of value.

VI. CONCLUSION

In this paper, a new approach which consists in selecting a set of criteria has been described for
Lagrangian stochastic models. Gathering present knowledge into a comprehensive set of guidelines
has been shown to be useful both to assess whether existing models satisfy basic properties and
also to help future developments. For that purpose, criteria have been put forward for Lagrangian
stochastic models in single-phase (see (F-1)-(F-3) in Sec. III A) and in two-phase flows (see (P-1)-
(P-6) in Sec. III B). In the single-phase flow situation, the emphasis is basically put on requiring that
stochastic models be fully consistent with the high Reynolds-number structure of the Reynolds-stress
equations. In the two-phase flow situation, as the available information is different, the criteria insist
on respecting the particle-tracer limit, as well as basic properties of turbulence and what models
should stand for. Although these criteria are somewhat different in the single- and two-phase cases,
the approach followed in the present paper represents an attempt at addressing stochastic models
devised for each situation from a unified standpoint.

It is believed that the present list of criteria is made up by simple and physically meaningful
requirements that must be met by Lagrangian stochastic models. Yet, from the analyses which are
summarized in Table I for single-phase models and in Table II for two-phase models, first conclusions
can be drawn. For single-phase flows, it was brought out that present normalized Langevin models
are flawed since they do not respect convective transport in general non-homogeneous flows, as
shown in Sec. IV A 2. For two-phase flows, the situation is more confused and, in that respect, the
analysis carried out in Sec. V A is helpful to clarify the modeling picture. It appears that, among
those considered there, only one formulation is acceptable, in the sense that all the criteria chosen in
Sec. III B are met. Not surprisingly, this model remains the only two-phase PDF model which has
been validated in engineering configurations.6 This is clearly a very poor and unsatisfactory state
and much work remains to be done. In that sense, another conclusion is that a safe approach is to
formulate models in terms of instantaneous fluid particle velocities, as for the GLM in single-phase
flows.

It is hoped that the guidelines put forward here will lead to improved Lagrangian stochastic
models. For example, it appears that the complete Langevin model in two-phase flows is based on
the SLM and, therefore, one option could be to devise extensions to obtain the counterpart for the
velocity of the fluid seen of the GLM for the velocity of fluid particles. Furthermore, the present set
of criteria is not meant as a definitive choice and could be extended in further works. For instance,
low-Reynolds, Brownian effects, or specific aspects of particle preferential concentration effects
could be considered through the formulation of new criteria to guide model assessment in these
limits.

Another important aim of the present approach is to provide guidelines for future model develop-
ments and in related subjects. In particular, the present analysis has been carried out in the framework
of Reynolds Averaged Navier-Stokes (RANS) approaches where a complete formalism is available.
Yet, the methodology followed here, as well as the conclusions which have been reached, have direct
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TABLE I. Summary of the properties of the stochastic models for single-phase flows considered in Sec. IV with respect to
the criteria listed in Sec. III A.

(F-1) (F-2) (F-3)

Generalized Langevin modela � � �
Incomplete Langevin model for fluctuating velocitiesb � X �
Incomplete Langevin model for fluctuating velocitiesc � � X
Complete Langevin model for fluctuating velocitiesd � � �
Normalized Langevin modele X � X

aAs analyzed in Sec. IV A.
bAs analyzed in Sec. IV A 1 where the term labeled (a) in Eq. (39b) is missing.
cAs analyzed in Sec. IV A 1 where the term labeled (b) in Eq. (39b) is missing.
dAs analyzed in Sec. IV A 1 where all the terms on the rhs of Eq. (39b) are present.
eAs analyzed in Sec. IV A 2.

implications for particle-laden turbulent flows simulated with a LES method. Indeed, in the LES
approach, a specific model is needed to account for the unresolved part of the fluid velocity seen by
discrete particles73, 74 which corresponds to the fluctuating velocity in the RANS context. Among the
few models developed so far, most are written in terms of this unresolved part of the fluid velocity
seen74, 75 but some formulations74 include terms similar to the ones appearing on the rhs of Eq. (39b)
while others retain only the simplest form of a Langevin equation.75 Furthermore, some proposals
disregard effects due to particle inertia or the CTE effect and write an equation with a diffusion coef-
ficient as for fluid particles74 whereas others assume that the unresolved part is at equilibrium to close
the diffusion coefficient of the Langevin model.75 On the other hand, it is interesting to note that, for
engineering applications, another proposal76, 77 was formulated in terms of the instantaneous fluid
velocity seen with a model that is an extension to the LES context of the complete Langevin model dis-
cussed in Sec. V A 2 with corresponding expressions of the Csanady’s time scales and diffusion terms
but without the mean slip term in the drift vector that is essential to the criterion (P-6). Clearly, there
is some uncertainty and the issues addressed in this paper concerning the formulation of Lagrangian
stochastic models (instantaneous versus fluctuating or unresolved fluid velocity components, clo-
sures of the drift and diffusion terms in the two-phase flow case, etc.) are relevant for the question
on how to express subgrid effects to simulate two-phase flows with the LES method. However, as
the statistical operator involved is different (a spatial filtering is applied instead of a mathemati-
cally well-defined probabilistic expectation), a rigorous formalism is needed to address these issues.
The situation is more advanced for single-phase flows where the FDF (Filtered Density Function)
formalism has been developed.78, 79 First steps have been proposed in the two-phase case80 but
additional work is needed to clarify the formulations of Lagrangian stochastic models in the LES
approach to particle-laden turbulent flows.

TABLE II. Summary of the properties of the stochastic models for two-phase flows considered in Sec. V with respect to the
criteria listed in Sec. III B.

(P-1) (P-2) (P-3) (P-4) (P- 5) (P-6) (P-6bis)

First Langevin modela � X . . . . . . � X �
Complete Langevin model (2001)b � � � � X � �
Complete Langevin model (2004)c � � � � � � �
Normalized Langevin modeld X � X � � X X
Hybrid-DNS modele � X X X � X �

aAs analyzed in Sec. V A 1 (where the sign (. . . ) indicates that the criterion cannot be checked).
bAs analyzed in Sec. V A 2.
cAs analyzed in Sec. V A 2.
dAs analyzed in Sec. V A 4.
eAs analyzed in Sec. V A 5.
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