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A general procedure for simplifying chemical kinetics and its use in reacting flow models
is developed, which is based on the dynamical systems approach. In contrast to conventional
reduced mechanisms no information is required concerning which reactions are to be as-
sumed to be in partial equilibrium nor which species are assumed to be in steady state.
Based on a local eigenvector analysis, the method identifies the fast time scales of the chem-
ical reaction systems, which differ typically by orders of magnitude. Assuming that the fastest
relaxation processes in chemical reactions proceed infinitely fast (i.e., are in local equilibrium),
it is then possible to reduce the state space globally, such that it can be described by means
of only a small number of reaction progress variables. The only “inputs” to the procedure
are the detailed kinetics mechanism and the number of degrees of freedom required in the
simplified scheme. Then the state properties given by the simplified scheme are automati-
cally determined as functions of the coordinates associated with the degrees of freedom. A
tabulation procedure allows an efficient use of the results in CFD codes. Furthermore a
general procedure for coupling the reduced mechanism with other than chemical processes
like flow and molecular transport is discussed. Results are presented for the CO/H,/air sys-

tem both for a simple homogeneous closed system and a flow reactor.

Introduction

There are now many examples (e.g., Ref. 1-4) of
successful computations of simple laminar flames
using detailed chemical kinetics schemes. Such
schemes typically involve 40 species which partic-
ipate in several hundred reactions. In most prac-
tical combustion problems there are additional
complicating factors such as geometric complexity
and turbulence. For many decades to come, com-
puting power will remain inadequate to handle these
complexities in conjunction with detailed kinetics.
Consequently there has been considerable interest
in the development of simplified kinetic schemes
(see e.g. Ref. 5 for references) that have much lower
computational requirements.

Recently we®” developed a new methodology—
the Intrinsic Low-Dimensional Manifold (ILDM)
method—for generating simplified kinetic schemes,
based on ideas from dynamical systems. This ap-
proach, though different (see Ref. 6, 7), uses sim-
ilar methods as the computational singular pertur-
bation method developed by Lam et al.®® The two

contributions of this paper are: to describe an ef-
ficient computational implementation of the scheme;
and, by comparison with detailed kinetics calcula-
tions, to demonstrate the accuracy of the scheme
as a whole for a perfectly-stirred reactor test (which
includes extinction).

In general, in a simplified kinetics scheme, the
thermochemical state of the fluid is represented by
a small number (N) of variables—typically less than
five—which we denote by 8 = {6y, 6, ..., Ox}.
These variables may correspond to species mass
fractions, though they need not. Then, by assump-
tion, the density p(6), the temperature T(§), and
the mass fraction of the general species o, w,(6) are
known functions of 6.

In a fluid flow, the composition field @(x, t) evolves

by
a% o, ) = S0l ) + T, 0. ()

Here S(0) is the rate of change of  due to chemical
reaction, while I(x, ) denotes the rate of change
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due to all other effects—convection, molecular dif-

fusion etc. The simplified scheme determines

5(0).

In the numerical solution of the governing equa-
tions for a combustion problem (e.g. Eq. (1)), func-
tions such as p(@) and S(@) have to be evaluated
many times—perhaps 10’ times in a pdf/Monte-
Carlo calculation—and consequently it is essential
that this can be done economically. The method
used'®! is first, to tabulate the required func-
tions, and then to perform the evaluations by in-
terpolation in the table.

There is no inherent reason why, in the long run,
the whole procedure cannot be automated—the
generation of the reduced scheme, the table set-up,
and the interpolation. While not fully automated at
present, the Intrinsic Low-Dimensional Manifold
(ILDM) method generates a near-optimal reduced
scheme, with an absolute minimum of input: this
is briefly reviewed in the next section. In the third
section an automatic tabulation and interpolation
method is described. This uses adaptive gridding to
generate unstructured tables that ensure that sub-
sequent interpolation errors are less than a speci-
fied tolerance. In the fourth section the method is
applied to a PSR (perfectly stirred reactor) test
problem. The results demonstrate both the accu-
racy of the simplified scheme, and also the com-
putational economy of the tabulation procedure.

Mathematical Model

The mathematical model for gas-phase chemical
reaction systems consists of a set of partial differ-
ential equations, namely the conservation equa-
tions, which describes the time-dependent devel-
opment of all the properties that determine the state
of the system (e.g., species mass fractions, specific
enthalpy, pressure and velocity field). The govern-
ing processes (i.e., flow, molecular transport and
chemical reaction) occur at time-scales which differ
by orders of magnitude. In combustion processes
chemical reaction is usually governed by time-scales
ranging from 107° to 10*2 s. If we look at a typical
spectrum of time-scales as it occurs in flames, it can
be seen that the chemical time scales cover a larger
range than the so-called physical time scales (rep-
resenting, e.g., molecular transport). The very fast
time scales in chemical kinetics usually are respon-
sible for equilibration processes (reactions are in
partial equilibrium, species are in steady state). If
we make use of the fact that those time scales are
very fast, it is possible to decouple them. In this
section we briefly outline the method we use to de-
couple slow from fast chemical time scales for the
case of a homogeneous, adiabatic, isobaric closed
system (details can be found in®7). The coupling of
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the method with physical processes like diffusion
will be discussed in the fourth section.

The state of a spatially homogeneous, adiabatic,
isobaric closed system is completely determined by
ns + 2 variables (where n, denotes the number of
species in the reaction system), namely by the en-
thalpy, the pressure and the mass fractions. Thus
the state of the chemical system is given as a point
in an n(= n, + 2)—dimensional state space. The
governing equation system reads:

oh oP
_= _— 0
at ot
a; i(h, P,
%0, o=-20P9 ®
ot p(h, P, ¢)
or in vector formulation:
Sy=rp ®
a? TEY
WIth d’ = (h’ P7 (blr ¢2> e ¢ﬂs)T and E(lll) =

(0,0, 2y, 2, ..., 2,)". In these equations ¢; de-
notes the specific mole number of species i, which
is defined by: ¢; = w;/M;, w;, the mass fraction of
species i, M; the molar mass of species i, h the spe-
cific enthalpy, P the pressure and w; the molar rate
of production of species i. Furthermore, if we make
use of the fact that the system is closed, adiabatic
and isobaric, it follows that chemical reaction takes
place in a linear subspace of dimension n(= n, —
n), the so-called reaction space, corresponding to
fixed values of enthalpy, pressure and element
composition (n, = number of elements). Chemical
reaction corresponds to a movement along trajec-
tories in the reaction space, governed by the chem-
ical rate equations. Because of the large differences
in the chemical time scales, usually the behaviour
of a reaction system can be separated into two dif-
ferent processes: Processes which occur at slow or
intermediate time scales and very fast equilibration
processes (which in chemical terms correspond, e.g.,
to reactions in partial equilibrium or species in steady
state).

This behaviour can be nicely seen in a plot of
trajectories (obtained by detailed chemistry calcu-
lations) in the state space of a chemical reaction
system. Shown in Fig. 1 is a projection into the
COy/H-plane for a CO/Hs/air combustion system
at fixed values of enthalpy, pressure and element
composition. It can be seen that (starting at arbi-
trary initial conditions), all the different trajectories
approach (after some fast relaxation process) some
lower-dimensional subspace, in which reaction pro-
ceeds only according to slow time scales. That means
chemical reaction can be separated into fast pro-
cesses, attracting the system to a low-dimensional
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FiG. 1. Sample trajectories in the state space for
a CO/H,/air system @ denotes the equilibrium
value; projection into the CO,-H plane.

subspace and slow processes, governing the move-
ment within this subspace. If we are not interested
in the details of the relaxation processes (occurring
at very short time scales), but only in the slow time
scales, we can confine chemistry to those low-di-
mensional manifolds and describe the whole chem-
ical reaction system by a much smaller number of
variables.

The basic task is now to identify these low-di-
mensional subspaces of the reaction space, where
local equilibrium with respect to the fastest time
scales exists. This can be done by an analysis of the
Jacobian J of the system (J;; = 9F;/ay;). Analyzing
Eq. (3) it can be seen, that locally (i.e. at all points
in the state space there exist n characteristic time
scales and associated with those time scales n char-
acteristic directions (eigenvalues and eigenvectors
of the local Jacobian, see®” for details). Starting at
some point in the state space, the fast relaxation
processes (corresponding to eigenvalues < 0) will
lead the system to points in the state space, where
there is local equilibrium with respect to the fastest
time scales. Then the system will evolve further.
The relaxation processes will always (during the re-
action) move the system back to states with local
equilibrium. Thus, if we identify the points in state
space where local equilibrium with respect to the
ny fastest relaxing time scales exists, we identify the
low-dimensional manifold of dimension N = n —
ng with the property that movements within this
manifold correspond to slow time scales and we can
confine chemistry to movements within this mani-
fold. The manifold can be parametrized by N vari-
ables. In simple case those parameters 6; might e.g.
be the mass fractions of some species, however, the
manifold does not depend on the parametrization.
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See Ref. 6, 7 for a detailed mathematical formula-
tion of the method.

Tabulation of the Chemical Rates of Production

Having developed the method needed to identify

~ the low-dimensional manifolds in composition space,

there is need of a numerical method in order to
use the results for a simplified treatment of the
chemical kinetics. Noting that the low-dimensional
manifold can be parametrized by a small number
(N) of variables 8 = (6, 6,, ..., 8y), the governing
equation system (3) can be transformed into a par-
ametrized form (cf. eq. (1):

ol A 5(8), )

describing the change of the parameters @ with time,
i.e. the movement within the manifold. The ad-
vantage of this formulation is that the dimension (N)
of this equation system is usually much smaller than
that of the full equation system.

If we tabulate $(6) as functions of the parameters
0, we can integrate Eq. (4) numerically with the
aid of a table lookup. However, there might be
ranges of the parameters, where $(6) depends cru-
cially on 6, whereas for other values of the param-
eters the rates of change depend only slightly on
0. A straight forward approach, namely an equidis-
tributed table would either lead to a low accuracy
or (for a very fine mesh) to an unnecessary amount
of stored information. Thus, a locally refined table
setup should be performed. There are two princi-
ple problems which have to be addressed. First the
determination of the region in the state space, which
has to be tabulated and second the method of the
local mesh refinement.

The maximum region which has to be tabulated
can be determined if we identify the maximum range
of parameter values, for which physically reason-
able states (i.e. mass fractions positive and smaller
than one; pressure and temperature positive etc.
(see®7) exist at all. This can be done by a standard
simplex method'? and shall not be described in de-
tail. The results of this procedure are upper and
lower bounds for the parameters @, namely 6,,,;, and
Omar, Where min and max denote the vectors com-
posed of the minima and maxima of the compo-
nents 6; respectively. However, for specific com-
bustion problems, the region of tabulation might also
be confined to a smaller parameter range.

The method of local mesh refinement that we use
starts with an N-dimensional coarse grid within the
bounds 6,,;,, and 8,,.... The mesh refinement can be
applied generally to multidimensional grids. It is
basically independent of the structure of the coarse
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Fic. 2. Locally refined two-dimensional tabula-
tion mesh, contour lines: rates of change of the pa-
rameters, (d6,/dt = dco,/dt, d6,/dt = ddy,o/dt);

see text for details.

grid. Thus, let us just consider one cell of the coarse
grid in the following. The basic criterion for the grid
refinement is given by the accuracy of the inter-
polation within one cell. Let 6; be the tabulation
coordinates and p(6) be some associated properties
(e.g., the state variables, the rate of change of the
parameters etc.). Let furthermore {5(6) be ‘the val-
ues of the properties obtained by multi-linear cell
interpolation. If we look at one cell of the coarse
grid, the algorithm for the refinement procedure
can be outlined as follows: First the values of p and
p are evaluated at the cell centre. If the weighted
norm ||p — |l is smaller than a specified tolerance
€, no refinement of the cell is performed. Other-
wise the best direction for a cell refinement is de-
termined. The use of a weighted norm allows to
control the refinement. Weighting, e.g., the error
by the absolute values of the properties, allows to
. obtain a high accuracy even in regions, where the
properties are small in magnitude (see Fig. 2). In
one refinement step a cell is allowed to be divided
in one dimension of the table into two equally sized
children cells. Having generated two children cells
out of one parent cell, the procedure is repeated
for the children cells until either the required ac-
curacy is obtained or some minimum mesh size has
been reached. The result of this procedure is a bi-
nary tree of parent and children cells. In the table
lookup, this corresponds to a binary search tree.
Having determined the coarse cell in which the point
of interest is located; the tree can be followed down
to the finest grid'level, i.e. the fine cell containing

the point can be identified. Within this cell, the
values of the properties (p(8)) can be approximated
by multi-linear interpolation.

Fig. 2 shows a two-dimensional table generated
by this procedure. The system considered here is
a CO/H; air system corresponding to a 6/10 mix-
ture of syngas (40 Vol. % CO, 30 Vol. % H,, 30
Vol. % Nj) and air at 300 K and 1 bar. Input to
the manifold and table setup procedure has been a
detailed reaction mechanism consisting of 13 spe-
cies and 67 elementary reactions.®

As parameters, the specific mole numbers of CO,
and H,0 have been chosen for convenience (i.e., 6,
= ¢co, 02 = du,0), the element composition, en-
thalpy and pressure are fixed and thus do not form
additional dimensions of the table. (It shall be noted
once more that the manifolds themselves are in-
dependent of the choice of the parameters). The
table has been generated allowing a tolerance € =
1%, a maximum refinement depth of 6 (referring to
the maximum number of refinement levels of one
coarse cell). The fine grid consists of 4604 cells and
2989 vertices. For the sample calculations pre-
sented below, an even finer grid (¢ = 0.5%) has
been chosen in order to minimize interpolation er-
rors such that the results presented below do not
depend on the accuracy of the table. In fact much
coarser grids can be used without much loss of ac-
curacy." The criterion for the grid refinement is
the accuracy of the magnitude of the rate of change
of the parameters in this case, which is included in
the diagram as contour lines. It can be seen that
the mesh is refined in regions, where the reaction
progress rates change nonlinearly. In the table, for
given values of @, the rate of change of the param-
eters are stored as well as the values of the state
space and some other information (see below) and
can be used for an efficient integration of the rate
equations.

Figure 3 finally shows a comparison of results ob-
tained using detailed chemical kinetics (15-dimen-
sional state space) to integrate the rate equations
and the two-dimensional intrinsic manifold de-
scribed above. The starting value is a point on the
manifold_corresponding to 6; = ¢co, = 3 and 6,
= ¢y,0 = 2 which corresponds to an initial tem-
perature of about 1240 K. Both, reduced and de-
tailed chemical rate equations were integrated us-
ing an implicit extrapolation code.'® Plotted are the
specific mole numbers of COy, HyO, OH and O
versus the time. In fact the method does not only
reproduce the major species (CO, and H,0), but a
similarly good agreement is obtained for reactive
species like OH and O radicals. The small discrep-
ancies in the early stage of the reaction can be ex-
plained by the fact, that during that period the gap
between slow and fast time scales is quite narrow,
leading to a coupling of those time scales, which
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FiG. 3. Plot of the specific mole numbers of CO,,
H,0, O and OH versus time for a CO/H,/air sys-
tem (see text for details on the reaction system and
the initial values); lines denote detailed chemical
kinetics, symbols denote the reduced kinetics re-
sults.

are, at the same time, of the order of the overall
time scale of the chemical reaction.

Coupling of Chemistry with Physical Processes

In the last chapter it has been shown that the
method of constructing intrinsic low-dimensional
manifolds in composition space can be used to sim-
plify chemical kinetics and thus, the solution of the
chemical rate equations. However, most interesting
reacting flow problems involve the coupling of
chemical kinetics with other processes like flow and
molecular transport. Now, all those physical pro-
cesses can be viewed as disturbances of the chem-
ical reaction system (which may, indeed be very

- large). In the context of the geometrical represen-
tation of chemical kinetics all those processes do the
same thing: they move the state either within the

“low-dimensional manifolds or off the manifold. The
consequences for the chemical reaction system can
be explained by means of a simple diagram (Fig.
4). Let us assume that we are at a point ¢ on the
manifold and that there is some perturbation 5. We
can always decompose the perturbation into its
components in the local eigenvector basis, i.e. in
two parts. One part, describing the rate of change
in the slow subspace and one describing the rate
of change in the fast subspace. Now let us assume
that the time-scale of the perturbation is of the or-
der of the time scales of the slow movement within
the manifold, i.e. much smaller than those of the
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F1G. 4. Schematical illustration of a perturbation
process.

fast relaxing time scales. This is what will happen:
The components of the perturbation in the direc-
tion of the fast subspace will have a minor effect
on the chemical reaction system, because chemistry
(fast equilibration processes) relaxes the perturba-
tion back to the manifold. The components of the
perturbation in the slow subspace instead, will di-
rectly couple with the time scales of the chemical
reaction and thus move the state within the man-
ifold. That means if we project the perturbation lo-
cally onto the slow subspace, we can account for
the interaction of the physical processes with the
slow time scales, whereas we neglect all processes
which perturb the chemistry, but are “equili-
brated” by the chemistry within a very short time
(of the order of the fast time scales).

Using those ideas, we can formulate a projection
operator P, which depends on the local character-
istics of the manifold and which projects a physical
perturbation S(4) onto a perturbation I(§) within
the manifold (see appendix). This means that all we
have to know in order to solve the coupled prob-
lem are the rates of change of the parameters S(6),
the state space y/{6) and the local projection matri-
ces P(f) as functions of the parameters §. The
method described above will work and yield good
approximations as long as the time scales of the
perturbations are slow compared with the fast re-
laxing time scales which had been decoupled by the
construction of the intrinsic low-dimensional mani-
fold. Note that there has not been made any re-
striction to the kind of perturbation. It could be,
e.g. be caused by diffusion processes, mixing pro-
cesses etc.

In order to show the validity and the limits of
applicability of this approach, we have performed
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Fic. 5. Plot of the specific mole numbers of CO,
and H,O versus time for a CO/H,/air system in a
flow reactor for mixing rates of » = 1,000 1/s and
v = 15,000 1/s (see text for details on the reaction
system and the initial values); empty symbols de-
note detailed chemical kinetics, full symbols denote
the reduced kinetics results.

sample calculations for a test case, namely the model
of a perfectly stirred flow reactor. In this case the
system is constantly perturbed by mixing with an
unburnt gas mixture. The governing equation sys-
tem is given by:

—=FEY) +vy" - ¢) )

where ¢™ denotes the state of the mixing gas en-
tering the reactor, and v the rate of mixing. The
mixture considered has been described in chapter
3. In the sample calculations, the initial composi-
tion of the mixture had been taken as the equilib-
rium value, for the mixing gas an unburnt mixture
of CO, H, and air with the same enthalpy, pres-
sure and element composition as that in the reac-
tion vessel has been used. Of course other condi-
tions can be handled, too, and various sample
calculations all show the same behavior as the sys-
tem discussed in this paper. Both, reduced and de-
tailed chemical rate equations were integrated us-
ing an implicit extrapolation code'® with internal
order and stepsize control and error estimation.
Plotted in Figs. 5 and 6 are the specific mole num-
bers of CO, and H,0 versus time. The mixing rate
has been varied over a wide range. Shown are only
values of 1,000, 10,000 and 15,000 1/s. For the case
of a mixing rate of 1,000 1/s detailed and reduced
chemical kinetics are almost identical. Increasing the
rate of mixing narrows the gap between the time
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F1G. 6. Plot of the specific mole numbers of CO,,
H;O, O and OH versus time for a CO/H,/air sys-
tem in a flow reactor, mixing rate v = 10,000 1/s;
empty symbols denote detailed chemical kinetics,
full symbols denote the reduced kinetics results.

scale of mixing and the decoupled fast time scales.
Thus the error of the simplified scheme increases
slightly. Fig. 6 shows (for v = 10,000 1/s) plots of
the radicals O and OH, and it can be seen, that
our method not only describes the development of
major species very well, but also minor species,
which is an important issue e.g. in modelling pol-
lutant formation.

The behaviour of the reaction system for » =
15,000 1/s deserves a special discussion. In this case
mixing with unbumnt gas leads to extinction. This
process (which is an important issue in turbulent
flame computations) is captured by the reduced
mechanism, too. However, the increase of the mix-
ing rate to 15,000 1/s leads to compositions, where
the local time scales which had been decoupled be-
come very close to the time scale of mixing, and
thus the reduced scheme is inaccurate during the
transition process (right side of the diagram). But
the onset of extinction and the final state (unburnt
mixture in the reaction vessel) are simulated cor-
rectly even in this case. The conclusions which can
be drawn from this behaviour are: The scheme works
very well if the time scale of the physical process -
(e.g. diffusion or mixing) is reasonably slower than
the fast decoupled time scales. If the gap between
the fast time scales and the time scale of the cou-
pling physical process becomes too narrow, a higher
dimensional table has to be used. Increasing the
dimension of the table simply changes the slowest
of the fast time scales into a slow (and thus con-
trolling) time scale. Fig. 7 shows a plot of the neg-
ative eigenvalues versus time for » = 15,000 1/s
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FiG. 7. Eigenvalue spectrum versus time for mix-
ing rate v = 15,000 1/s.

and allows to determine the dimension of the man-
ifold needed to capture different time scales. Thus,
even if we are e.g. interested to capture processes
occurring at time scales of 10° 1/s (corresponding
to a time of 100 us), we can decouple 6 fast time
scales (namely those corresponding to eigenvalues
<—5-10° 1/s), at least in the time interval before
the extinction process.

One further feature is the influence of the re-
duction procedure on the numerical integration of
the rate equations. One effect is the reduction of
the dimension of the system. Whereas for the ex-
ample above 15 coupled ordinary differential equa-
tions have to be solved in the detailed kinetics
scheme, the reduced scheme only needs the treat-
ment of two equations. Furthermore, time consum-
ing computation of the chemical rate equations is
replaced by a simple table lookup. In the example
above, the cpu time for the reduced rate equations
is only about 6% of the cpu time needed for the
detailed chemistry calculation. Not only is the di-
mension of the system reduced considerably, but
also along with decoupling the fast time scales, much
of the stiffness of the governing equation system is
eliminated. This allows (at least in some cases) the
use of explicit methods in the CFD computations.
Furthermore, very often in CFD codes not the
chemical rates of production are needed, but the
changes of composition in certain time intervals. In
this case, these increments can be stored in the ta-
ble, too, avoiding any integration of the rate equa-
tions in the CFD code.

Appendix

In order to obtain a mathematical formulation for
the coupling of the reduced chemistry scheme with
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physical processes, let us start with the general for-
mulation of a chemical reaction system perturbed
by some physical processes:

(A1)

where F(i) denotes the chemical rates of change
and Z(y) the physical perturbation. The state i it-
self is a function of the N parameters § which par-
ametrize the manifold. If S(¢) is the perturbation,
its components in the local eigenvector basis V (see
6,7) are given by:
T=(m, my, ..., m) =V EW). (A2

Having sorted the eigenvectors according to de-
creasing real part (see above), 7 is given by 7 =
(75, ms)" where 7, and 7; denote the vectors of the
components in the slow and the fast subspace, re-
spectively.

Noting that the perturbations in the fast sub-
space relax to zero, the approximation of the per-
turbation is given by:

(A.3)

7= (7, O = ((’) 8)v-15(¢>,

where I denotes an NN dimensional identity ma-
trix and the zeros denote that all other elements of
the matrix are zero. Transformation back into the
natural basis yields for the “effective perturbation™:

I 0

5@)=v(0 O)V-lsu_/;). (A4

Making use of the parametrization of the manifold,
which (for simplicity) shall be given by 8 = Cy,
where C denotes an N - n-dimensional parametri-
zation matrix, we obtain for the equation system

(1):

-, = CEW) + C2w) = 5(0) + PEWO), (A5
where P denotes the projection matrix:
— I 0}, -1
P=CV <0 0>V (A.6)
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COMMENTS

Michael Tanoff, Chalmers University of Technol-
ogy, Sweden. Often, the terms “reduced chemistry”
or “reduced kinetic mechanism” call to mind “global”
or “overall” chemical reactions, such as the water-
gas shift reaction, CO + H,O0 — CO, + H,. Your
intrinsic low-dimensional manifolds do not seem to
explicitly reveal such physically descriptive chem-
istry. It is possible to extract conventional overall
chemical reactions from your resulting manifold
space, or are such chemical steps imbedded too

deeply in the mathematical formulation of your
method?

Author’s Reply. The aim of our method is to pro-
vide a numerical algorithm for reducing chemical
kinetics. However, the method can also reveal in-
formation about the chemistry. Having identified
the low-dimensional manifold, we obtain all states
of the system which correspond to equilibrium with
respect to the fastest relaxing time scales, i.e. the
manifold reveals all states where some kind of par-

tial equilibrium or steady state exists. If we analyze
the eigenvectors of the Jacobian for given states
which lie on the manifold, we can obtain infor-
mation about the underlying chemical processes. It
turns out that the quite abstract eigenvectors are
simply some linear combinations of chemically
meaningful vectors (e.g. reaction vectors denoting
the rate of change according to certain elementary
reactions, species vectors denoting the rate of change
of certain species (see Ref. 1). If, for example, an
eigenvector with a large negative eigenvalue cor-
responds to a reaction vector of an elementary re-
action, this implies that this reaction is in partial
equilibrium.

Usually partial equilibrium and steady state con-
ditions change with changing conditions, but be-
cause the ILDM method maps the whole-thermo-
chemical state space, it captures those changes and
thus provides information concerning the optimal
assumptions in the different regimes.
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1. Mass, U. aND PopE, S. B.: Simplifying Chemical
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A. K. Oppenheim, University of California,
Berkeley, USA. The paper provides a beautiful rec-
ognition of the fact that thermochemistry of com-
bustion is a nonlinear process whose essential prop-
erties are described in terms of an ODE system.
The solution is an intergral curve (trajectory) in a
phase space. Characteristic features of thse curves
and, especially, of their manifolds and singularities
one of obvious interest, as, indeed, the paper dem-
onstrates. Singularities are particularly prominent
with respect to the concentration of a significant ac-
tive radical as a reference coordinate, as reflected
by the studies of Brian Grey, Peter Grey, John
Griffiths and their associates at Leeds. Have you
taken these aspects into account in the course of
your studies?

Author’s Reply. The nonlinear character of chem-
ical kinetics, which is reflected by the mathematical
properties of the governing ordinary differential
equation system, leads to interesting phenomena
both from a mathematical as well as from a chem-
ical point of view. The qualitative theory of ordi-
nary differential equation systems, dating back to
the work of Poincare, Liapunov, Picard and others,
can provide useful information about stability, os-
cillatory behaviour, etc. Analysis of the stationary
states of a chemical reaction system were, e.g., suc-
cessfully used to explain the oscillatory and explo-
sive behaviour in the oxidation of carbon monoxide
(see e.g. 1-3).

The method that we presented exploits the fact
that besides the information obtained by mathe-
matical methods for stationary points, analysis of the
ODE system can, in addition, provide information
about how (i.e. along which path) the chemistry ap-
proaches equilibrium. Simply stated our method
connects the stationary points by manifolds which
act as attractors for trajectories. The manifolds
themselves are sets of points with partial equilib-
rium (“stationarity”) with respect to the fastest re-
laxing time scales and thus can represent the in-
teresting dynamic behaviour of the chemical reaction
system.
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S. H. Lam, Princeton University, USA. The method
of Computational Singular Perturbation (CSP") and
ILDM exploit the same basic idea: suppress the fast
modes when they are exhausted by finding and us-
ing the basis vectors of the fast manifold. The im-
plementations are different, and I believe the ILDM
implementation has certain fundamental shortcom-
ings.

Let’s formally decompose F(y) into its fast and
slow components:

F(§) = F@)™ + . m

While theoretically F() can be evaluated by either

F()™ = F(0) @
or
F(y)'™ = v|(‘) 3\<vr' FW), )

‘the numerical accuracy requirement of ¢ = (8) for

(2) is unreasonably more severe than for (3). Let €
denote the ratio of the fast over the slow time scales.
Mathematically, the algorithm being advocated by
Maas and Pope, (2), requires & = ,(6) + €y () +
O(€%), and its small O(e) component (i.e. ,(0)) is
crucial and must be accurately evaluated. This (the-
oretically correct) algorithm is simply not numeri-
cally viable for problems with very large time-scale
separations (i.e. € < 1).

The CSP method advocated by myself and Gous-
sis uses a variant of (3) which has the normal ac-
curacy requirement (i.e. ¢ = ¢,(6) + O(e)) but does
not require the calculation of the slow eigen-vec-
tors.
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Author’s Reply. Indeed ILDM and CSP exploit
some of the same basic ideas, but not only the im-
plementation, but also the results obtained by the
methods are different. Both methods can be used
to obtain information about the chemical reaction
system (species in steady state, partial equilibrium
reactions, etc.). But this is not the main motivation
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for using the ILDM method. CSP makes use of the
fact that, during the course of a chemical reaction,
certain fast modes can be suppressed if they are
exhausted. This reduces the stiffness of the prob-
lem and allows the use of explicit methods for the
integration of the chemical rate equations. How-
ever, the governing equation system that has to be
solved, still has a dimension corresponding to the
number of chemical species. In practical applica-
tions (e.g. three-dimensional turbulent flames), one
is not only interested in reducing the stiffness, but
the complexity of the problem requires a reduction
of the number of variables which govern the chem-
ical reaction system (this number corresponds to the
number of partial differential equations that have to
be solved in order to simulate the reacting flow).
Our ILDM method thus, in contrast to CSP, re-
duces (based on an eigenvector analysis) the state
space globally such that the chemical reaction can
be expressed in terms of a small number of reaction

progress variables. The results can be used in sub-
sequent reacting flow calculations.

In the comment the accuracy requirement is dis-
cussed. It is stated that (2) has a higher accuracy
requirement than (3). Specifically Prof. Lam him-
self states that the accuracy requirement for ¢ in
(2) is

¥ = 9(0) + eg(6) + O(€) @

Thus for problems with very large time scale sep-
arations (i.e., € < 1) the method will work very well.
Numerical experiments for the examples presented
in the paper show that the values obtained nu-
merically for F(y)™ using (2) or (3) show almost no
difference. Furthermore (if it really were neces-
sary), (3) could be readily used for the evaluation
of F($)™, because all information is obtained as
output of the ILDM method. From this discussion
we conclude that there is no basis for the belief
that the ILDM implementation has certain funda-
mental shortcomings.



