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The performance of in situ adaptive tabulation in
computations of turbulent flames
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This paper presents a detailed characterization of the local and globa errors associated with the
in situ adaptive tabulation (ISAT) agorithm, which is used in conjunction with a transported PDF
method. Calculations of a non-premixed turbulent methane/air piloted jet flame (Sandia flame D)
using a skeletal chemical mechanism were performed using ISAT coupled with the computational
fluid dynamics (CFD) code FLUENT. The three strategies implemented in ISAT for the growing of
the ellipsoids of accuracy (EOAS) are discussed, and the cumulative distribution function (CDF) of
thelocal error is presented for each of the three growing strategies. Computations are a so performed
to characterize the global error in the ISAT/PDF calculation. The computations used to characterize
the global error were performed in parallel to achieve substantial savingsin computational time.

In general thelocal error iswell controlled, but thereisasmall probability of relatively large errors.
Resultsfrom theinvestigation suggest that largeretrieve errors are due to the region of accuracy (ROA)
being non-convex, where the ROA is the connected region for which the error does not exceed the
error tolerance, o). The global error in ISAT is found to be small compared to statistical error for
etol < 1074, and isfound to vary linearly with g.
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1. Introduction

A magjor hurdle to accurate calculations of complex turbulent reactive flows is that typical
detailed combustion mechanisms involve tens or hundreds of species, hundreds or thousands
of reactions, and a wide range of timescales. The system of ordinary differential equations
governing chemical reactions is thus large and extremely stiff, making the task of solving
these equations computationally expensive. The in situ adaptive tabulation (ISAT) algorithm,
introduced by Pope (1997) [13], has been shown to speed up these chemistry calculations
by up to afactor of 1000 [13], and can be used in the context of PDF methods for turbulent
combustion, as well as in other approaches (e.g. finite-difference methods for laminar flames
[15]).

Previously, Xu and Pope (2000) [18] and Tang et al. (2000) [17] have used ISAT in con-
junction with PDF methods in the computation of turbulent non-premixed piloted jet flames.
ISAT has also been used with artificial neural networks (ANN) and LES by Kapoor et al.
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(2001) [8], and has al so been successfully combined with dimension reduction strategies (e.g.
quasi-steady-state assumption, rate-controlled constrained equilibrium, etc.) [16].

While the performance gains from using ISAT are well demonstrated, a comprehensive
study of the accuracy of the error associated with the storage and retrieval algorithm in ISAT
has not previously been performed. Also, apart from an investigation by Singer and Pope [15]
for alaminar premixed flame test case, there has been no study of the global error in ISAT
to date. This paper addresses these issues by providing a characterization of the local and
global errors associated with ISAT using, as atest case, a turbulent flame calculation by the
composition PDF method with a 16-species skeletal mechanism.

Theexperimental reacting flow chosenfor thisstudy isapiloted jet methane/air flame (flame
D) measured by Barlow and Frank [ 1]. The next section providesadescription of thistest flame,
and isfollowed by adiscussion of thelocal (retrieve) error in | SAT, and by the presentation of
computed cumulative distribution functions (CDFs) of local error. A characterization of the
global error in ISAT isthen given, followed by some observations and conclusions.

2. Description of thetest flame

This section briefly summarizes the experimental conditions [1] of the piloted jet test flame
used for the calculationsin this paper. The fuel jet with radius R; = 3.6 mm is accompanied
by an annular pilot with radius Ry = 9.2 mm. The jet fuel is 25% CH, and 75% dry air by
volume, and the pilot burns a lean premixture of C,H», Hy, air, CO,, and N, with the same
nominal enthal py and equilibrium composition as methane/air at an equivalenceratio of 0.77.
The bulk velocity of the fuel jet is 49.6 m s71, and the jet Reynolds number is 22,400. The
jet and pilot are surrounded by aslow co-flow of air, with afree-stream velocity of 0.9 ms™2.
Detailed information about the flame can be obtained from Barlow and Frank (2003) [2]. PDF
cal culations of thisflame have been performed by Xu and Pope (2000) [18], Tang et al. (2000)
[17], and Lindstedt and Louloudi (2000) [10], among others.

3. Computational specifications

All computations were performed using the FLUENT CFD code, which solves the Reynolds
averaged Navier—Stokes (RANS) equations for the mean conservation of mass, momentum
and energy, using the k — ¢ model for turbulence modelling. The model constants used in the
k — & model are given in table 1. A transport equation for the composition PDF is coupled
and solved using a Lagrangian particle-based Monte Carlo method. The modified Curl (MC)
mixing mode! [7] is used with C, = 2.0, and the chemical kinetics are treated using |SAT
with a skeletal mechanism for methane consisting of 16 species and 41 reactions (the same
as that used in [14]). The wall functions used in this calculation are based on the proposal
of Launder and Spalding [9]. No radiation effects are considered, and the effect of gravity is
neglected.

The solution domain, shown in figure 1, is an axisymmetric, 2-D domain. The origin is
placed at the centre of the jet exit plane. The axial direction is denoted by x, while y and
r are used interchangeably to denote the radial direction. The solution domain extends 5 jet

Table 1. Mode constants used in the k — ¢ model.

Cu Ce1 Ce2 ok 0% oo
0.09 152 192 1.0 13 0.7
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Figure 1. Sketch of the solution domain.

diametersupstream and 100 jet diametersdownstream (X = 720 mm) intheaxial direction; and
50 jet diameters from the centerlinein theradia direction (y = 360 mm). The wall thickness
of the pilot flame is treated as infinitesimally thin. The grid is comprised of 2352 cells with
non-uniform grid spacing and some cells made non-orthogonal. More detailed information
about the grid isgiven in table 2.

Boundary conditions are given in table 3. The compositional inflow boundary condition in
the pilot isdetermined by matching the measurementsat x/d = 1 with calculations of laminar
unstrained premixed CH,/air flames and then extrapolating to the conditions at the burner exit
plane, based on the estimated convective time up to x/d = 1. The pilot burnt gas velocity is
determined from the cold mass flow rate, the density at the estimated exit condition, and the
flow area of the pilot annulus. The pilot composition is thus taken as that of an unstrained
CHy/air premixed ¢ = 0.77 flame at the point in the flame profile where the temperature is
1880 K, following the process outlined above [2]. In the computation, the inlet boundary
velocity profilesfor thejet and coflow are specified. The pilot inlet velocity profileis assumed
to be flat, except for thin boundary layers. Since thisinlet velocity profile is obtained directly
from experimental data, it eliminates inaccurate boundary conditions as a source of error in
our computations. In table 3, the turbulence length scale, L, is such that the dissipation ¢ is

Table 2. Detailed information of the grid used in the calculation.

X y

From(mm) To(mm) Cels From(mm) To(mm) Cells

Fuel jet —36.0 0 8 0 3.6 6
Pilot —36.0 0 8 3.6 9.1 9
Coflow —-36.0 720 49 9.1 360 33
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Table 3. Boundary conditions for the calculations.

Stream Condition Value
Fuel jet Bulk velocity (ms™1) 49.6
Temperature (K) 294
Turbulence intensity (%) 4
Turbulence lengthscale, 0.0002
L (m)
Yco, 0.00046
Yo, 0.1962
YcH, 0.15605
Yn, 0.6473
Pilot Velocity (ms™2) 114
Temperature (K) 1880
Turbulence intensity (%) 1
Turbulence lengthscale, 0.0001
L (m)
YH,0 0.0942
Yco, 0.1098
Yo, 0.054
Yco 0.00407
Yi 2.48 x 1075
Yh, 0.000129
YN, 0.7378
Coflow Velocity (ms™1) 0.9
Temperature (K) 291
Turbulence intensity (%) 1
Turbulence lengthscale, 0.001
L (m)
Yi,0 0.00581
Yo, 0.23113
Yco, 0.00055
YN, 0.7625
Jet wall Adiabatic wall (zero
heat flux)
Pilot wall Adiabatic wall

Outer boundary ~ Symmetry

determined as ¢ = ck®2/L, wherek is the turbulent kinetic energy and c is equal to 0.09%4,
Y; denotes the mass fraction of speciesi.

The numerical conditions selected are as follows: there are nominally 40 particles per cell
(Npc), and approximately 100,000 particlesin total. The ordinary differential equation (ODE)
solver DDASAC [4] is used to perform direct integrations where necessary. The absolute and
relative error tolerances in DDASAC are set to 10-% and 102, respectively, for all variables.
The Courant number used for local time-stepping is set to 0.5 for convection, diffusion, and
mixing.

Discretization is achieved via an implicit, segregated finite-volume scheme which solves
the governing equations sequentially. The values of momentum, turbulent kinetic energy,
and turbulent dissipation rate at cell faces are calculated using a multidimensional linear
reconstruction approach [3], yielding second-order accuracy at cell faces through a Taylor
series expansion of the cell-centered solution about the cell centroid. This scheme is also
known as the second-order upwind scheme.

The Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) family of algorithms
[12] isused for pressure-vel ocity coupling (i.e. introducing pressure into the continuity equa-
tion). The Pressure Staggering Option (PRESTQ!) pressure interpolation scheme is used to
obtain the value of pressure at the cell faces from the cell values via a discrete continuity bal-
ancefor acontrol volumeabout theface. Thisprocedureissimilar in spirit to the staggered-grid
schemes used with structured meshes[12].
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The iterative process operates as follows: a FLUENT finite-volume iteration is performed,
followed by a particle iteration in which the particle properties are advanced for one pseudo-
time step [6]. The base case corresponds to a computation in which iterative convergence is
obtained. Thisfact isascertained by observing that quantities at monitoring locations become
statistically stationary. Further details about the finite-volume calculations are given by Liu
[11].

4, Brief overview of | SAT

TheIn Stu Adaptive Tabulation (ISAT) algorithm introduced by Pope (1997) [13] isastorage
and retrieval methodology. This section outlines essential ideas about the | SAT agorithm.

Consider an isobaric reactive gaseous flow (agood assumption for most low-Mach number
flames) with ng species. For a given pressure P, the thermochemical composition vector ¢ is
given by

¢ = {Y1, Yz,...,YnS,h}, (]_)

where Y, isthe massfraction of speciesk, and h isthe specific enthalpy: ¢ isavector of length
Ny =Ns+ 1.

In the present computational implementation, the fluid within the solution domain isrepre-
sented by alarge number of particles, whose compositions evolve due to reaction and mixing.
These two processes are treated in separate fractional steps. In the reaction fractional step, the
composition evolves due to chemical reactions at fixed pressure and enthal py according to the
ordinary differential equation

do(t)

TR S(ol[t]). 2
Here S isthenet creation rate of speciesk (fork = 1,2, ..., ns),and §,, = 0, corresponding
to constant enthal py. From theinitial condition ¢° at timety, (2) isintegrated for atime At to
obtain ¢(tp + At). For fixed At, the reaction mapping

R(#°) = ¢(to + At), ©)

isuniquely determined by ¢°. ISAT usesthe ODE solver DDASAC to integrate (2) and stores
the reaction mappings in a binary tree, with each termination node (or leaf) representing a
record consisting of (among other information) the tabulation point ¢°, its associated reaction
mapping R(¢°), and the mapping gradient A(¢°), where

IR (9°)
399

The region of accuracy (ROA) is defined to be the connected region containing ¢° consisting
of points ¢ for which thelocal error & does not exceed the specified tolerance et . At each leaf,
I SAT approximates the ROA as a hyperellipsoid, known as the ellipsoid of accuracy (EOA)
centered at ¢°. Given aquery composition ¢9, | SAT traversesthe tree until aleaf representing
some ¢ is reached, and this value of ¢° iscloseto ¢9. Now if ¢9 is determined to be within
the EOA for that leaf, ISAT performs aretreive, and returns alinear approximation to R(¢?).
Thislinear approximation is denoted R*(¢9), which is defined as

RY(¢%) = R(#°) + A(¢%)(¢? — ¢?). (5)

Aij(¢°) = (4)
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Thelocal error ¢ isthen simply defined as the scaled difference between the exact mapping
and the linearized estimate

e = [B(R[¢%] — R‘[¢%])], (6)

where B isascaling matrix. For amore detailed description of the ISAT algorithm, the reader
is directed to Pope (1997) [13].

5. Local error

5.1 Introduction

As described in the original ISAT paper by Pope (1997) [13], given a query point ¢ falling
within an existing ellipsoid of accuracy (EOA), the ISAT agorithm uses a piecewise linear
approximation withinthe EOA to cal cul atealinear approximation of thereaction mapping. The
(scaled) difference between the exact mapping, R(¢%), and thislinearized estimate, R¢(¢%), is
known as the retrieve, or local error [13]. Effective control of the local error ensures that the
ISAT part of the turbulent reactive flow calculation is numerically accurate (for sufficiently
small values of the ISAT error tolerance, ).

Asdescribed in Pope (1997) [13], if aquery point ¢9 does not fall within an existing EOA,
but has error ¢ less than ey, then the existing EOA is grown. The computational expense
incurred during the growth of an EOA is offset by the increased probability of retrieving from
that (larger) EOA during future evaluations of (2). For a computer with unlimited memory,
the retrieve rate would be close to 100% once the (very large) ISAT tableis built. In redlity,
however, computer systemshavelimited memory inwhichto storethe | SAT table, and growing
the EOAs is a cost-effective method to increase the percentage of retrieves for a given ISAT
table size.

It is hypothesized that the growth of the EOAsis one of the major causes of rarelarge local
errors (reported below). Accordingly, we investigate three different strategies for growing of
EOAs. They are (in ascending order of conservativeness, with mode 3 the most conservative):
Mode 1 (ellipsoidal growing); Mode 2 (ellipsoidal with Chew modification); and Mode 3
(conical growing). This section describes each of these growing strategies, then gives a dis-
cussion of the possible causes of local error in ISAT. Subsequently, a characterization of the
local error for each of these modes is given to assess their relative merits. (It is possible to
suppress the growing of the EOAs by using Mode O, which does not allow the EOAs to grow
atal.)

5.2 Growing strategies

5.2.1 Grow mode 1: ellipsoidal growing. The ellipsoidal growing strategy used in mode
1 is the growing strategy proposed by Pope in the original ISAT paper [13]. The growing
strategy isillustrated in figure 2. Given an existing EOA centered at a point ¢°, the new EOA
is the unique hyper-ellipsoid of minimum volume, centered at ¢°, which encloses both the
original EOA and the point ¢9.

The growing process can be understood more clearly by considering the linear transforma-
tion of the original EOA to a unit hypersphere. In this transformed space, the new EOA isthe
hyper-ellipsoid of minimum volume that encloses the unit hypersphere and the grow point.
Thisis shown schematically in figure 3.



In situ adaptive tabulation 555

S

Figure 2. Growth of an ellipsoid of accuracy using grow mode 1.

One property of mode 1 isthat, given aknowledge of the EOA before growth and the grow
point ¢4, the EOA after growth (for mode 1) isthe ellipsoid of smallest volume which is sure
to bound all previous grow points.

5.2.2 Grow mode 2: dlipsoidal with Chew modification. Grow mode 2, also caled
the Chew modification, is essentialy a dlightly more conservative variant of grow mode 1.
This growing strategy was proposed by Chew [5]. For each EOA, the hyper-ellipsoid is first
transformed into aunit hypersphere, asshown infigure 3. A hypercubeisnow inscribed inside
the unit hypersphere, with its vertices on the surface of the hypersphere. When the EOA is
grown, the new EOA (in transformed space) isthe unique hyper-ellipsoid of minimum volume
enclosing both the hypercube and the grow point. Modes 1 and 2 areillustrated in figure 4 for
atwo-dimensional case.

It is important to appreciate that while the EOA before growth is known, the sequence of
previous grow pointsis considered to be unknown. Thusthere is a sequence of previous grow
pointswhich yield the EOA before growth, and which, with mode 1, are bounded by the EOA
after growth. Aswe can seefrom figure4, mode 2 isamore conservative growing strategy than
mode 1 as the grown EOA using mode 2 is slightly smaller than the grown EOA using mode

Grown EOA

N

-

Transformed Original EOA

Figure 3. Growth of an ellipsoid of accuracy using grow mode 1 in transformed space.
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Figure 4. Growth of an ellipsoid of accuracy using grow modes 1 and 2 in two-dimensional transformed space.
Solid lines: mode 1; dotted lines: hypercube used in mode 2; dashed lines: grown EOA using mode 2.

1, and therefore the ellipsoid after growth under mode 2 may not include some previous grow
points (at which ¢ < g). However, under mode 2, the EOA after growth has the property
that it is the ellipsoid of smallest volume that bounds the current grow point ¢9, and that
could bound all previous grow points. The crucial point here is that all the previous grow
points are unknown, and hence an EOA grown in thisway is one of smallest volume that has
a possihility of bounding these old grow points. If the previous grow points are known, then
it would be possible to bound all these old grow points with an ellipsoid of volume smaller
than that generated by mode 1, but larger than that generated by mode 2.

5.2.3 Grow mode 3: conical growing. Ingrow mode 3, the EOAs are grown using acone
based on both the current EOA and the grow point. Figure 5 shows a sketch of the EOA
transformed to the unit hypersphere, with the grow point ¢9 located on the axis at distance
r away from the origin. The error at the grow point is g4, and (to leading order) the error
increases as the square of the distance from the origin. The limit point ¢ P shown in the sketch
is the location on the axis where the error is estimated to be ey, i.6. ¢P = ¢%(et/2q)>.

Figure 5. Sketch showing conical growing strategy in transformed space (grow mode 3). Solid line, original EOA;
dotted line, cone used in mode 3; dashed line, grown EOA using mode 3.
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A cone is created (in transformed space) with its vertex at the limit point ¢°, as shown in
figure 5. The new EOA is then the hyper-éllipsoid of maximum volume that can be inscribed
within the cone, which may not include the grow point. It is possible that the new EOA has
a smaller volume than the original EOA. In this case the original EOA is retained, and so no
growing is performed.

This growing strategy ensures that, for the case in which the ROA is convex, the EOA after
growth lies entirely within the ROA. The conical growing strategy isthe most conservative of
all the grow modes, and the only one with this property for convex ROAs.

The three growing strategies described above present increasingly conservative estimates
for the grown EOA, with theaim of reducing local error. Beforethelocal error associated with
each of these grow modes is characterized, we consider the possible reasons for inaccuracy
due to growing of the EOAs.

5.3 Possiblereasonsfor inaccuracy dueto growing

Theregion of accuracy (ROA) is defined to be the connected region containing the tabulation
point, ¢°, consisting of points ¢ for which the local error ¢ does not exceed the specified
tolerance e . There are three possible reasons as to why inaccuracies arise due to growing of
the EOAS.

Firstly, it is possible that, over the ROA, the tabulated function is significantly non-linear,
and hence the Taylor series analysis may be inaccurate, giving rise to the possibility of non-
monotonic behavior of ¢. If thisis the case, then, given a query point ¢9, there might exist
sections on the line segment between ¢° and ¢ where ¢ is greater than o, even though the
grow point itself has ¢ less than ¢y Nevertheless, in such a situation, the EOA is grown to
encompass these inaccurate regions, introducing the possibility that subsequent retrieves will
be inaccurate. This problem, if it exists, vanishes as ¢, becomes sufficiently small, because
the ROA shrinks and the accuracy of the Taylor series increases within the ROA.

Secondly, the ROA may not be convex. In this case, all growing strategies can cause the
EOA after growing to include inaccurate regions. To elaborate on the geometry of the ROA,
it is readily shown [13] that if the piecewise-constant approximation R(¢9) ~ R(¢°) is used,
then the ROA (for small ¢) is a hyper-éllipsoid, whose principal axes are given by the
eigendecomposition of g, (ATA)~1/2, For the case of the piecewise linear approximation, the
analysisis more involved, and reveals that the ROA can have a hyperbolic (i.e. non-convex)
nature.

Thirdly, even if the ROA is convex (e.g. ellipsoidal), the elipsoidal growing strategies
(modes 1 and 2) can lead to the inclusion of inaccurate regions.

5.4 Computational determination of local error

The aim of the computations described in this section is to characterize the local error ¢ for
alarge number of retrieves. This is done by estimating the cumulative distribution function
(CDF) of the local error

F(x) = Prob{e < x}, (7

where X is the sample-space variable corresponding to . The CDF F(x) provides acomplete
characterization of the local error.

The protocol to determine F (x) is asfollows: the PDF calculation described in section 3is
run for 600 iterations starting from a statistically stationary solution and an empty 1SAT table.
Over these initial 600 iterations, the ISAT tableisbuilt and filled, i.e. the maximum allocated
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Table 4. ISAT error statistics for different growing strategies, ey = 1 x 1074

Grow mode 1 2 3 No growing
eref x 10° 342 303 67.8 —
£0.99/ Eref 6.93 6.77 5.94 —
£0.999/ Eref 19.77 18.65 15.04 —
Prob{e > &0} 20.02 19.89 7.14 0.0
(percentage)

£0.9/tol 3.42 3.42 0.678 —
£0.99/ tol 237 205 4.03 0.016
£0.999/ €tol 67.6 56.5 10.2 0.027

space (400 megabytes) for the ISAT table has been occupied, and hence no more adding to
the table can take place. Five iterations are subsequently performed, during which, for each
query point ¢9, the ISAT method is used to determine the mapping, R*(¢9), and in addition
theexact result R(¢Y) isobtained by direct integration so that thelocal error & can be measured
directly. From these calculations, F (x) is constructed based on the samples of ¢. This process
is repeated for each grow mode for two values of ey, 1 x 10~% and (1/64) x 1074,

In these calculations, the absolute and relative error tolerancesin DDASAC are set to 106
and 10~°, respectively, for all variables, and one binary tree is used in ISAT. As described
previously, there are (nominally) 40 particles per cell, with about 100,000 particles in total,
and hence 5 iterations yields half a million samples of the local error, ¢. All computations
reported in this section are performed in serial.

The quantity &, isdefined as

F(eo) = Prob{e < gy} =a, for0<a <1, (8)

i.e. with probability «, the error islessthan g,. From F(x), various statistics can be extracted,
suchas Prob{e > &y}, aswell astheerror statisticsjust defined. Thesestatisticsarenormalized
using both ey and erg = £099. Normalization by e alows a comparison of the shapes of
the CDFs obtained with different values of ¢, and different growing strategies. Local error
statistics normalized by both ey, and &, are shown in section 5.5.

5.5 Measurement of local error

Tables 4 and 5 show the tabulated values of ISAT error statistics for the different grow modes
with o = 1 x 10~ and &, = (1/64) x 10~%. Also included are statistics corresponding to
the case where no growing of the EOAsis performed. Various statistics are shown normalized
by et and e (defined in section 5.4). Note that in tables 4 and 5, the data generated from

Table 5. ISAT error statistics as avariation of grow mode, &g = (1/64) x 1074

Grow mode 1 2 3 No growing
eref x 10° 9090 7000 872 —
£0.99/ £ref 6.63 6.99 9.94 —
£0.999/ Eref 17.82 18.29 52.52 —
Prob{e > &t} 23.36 21.64 6.76 0.0
(percentage)
£0.9/€tol 5.82 4.48 0.56 —
£0.99/ €tol 38.6 313 5.55 —

£0.999/ €tol 103.7 81.92 29.3 26x1072
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the calculations do not give a value of g« for the case where growing is disallowed. This
is because when no growing is allowed, there is a negligible number of samples with errors
greater than ey, and the CDF of ¢ does not have atail from which the value of &4 could be
determined. Hence, the normalized data for this case are unavailable.

The statistics of ¢ normalized by &t show that grow modes 1 and 2 give similar results, with
mode 2 being dlightly more conservative than mode 1 as expected. Mode 3 gives substantially
better error control (with respect to error tolerance). As expected, the absence of growing
provides the best error control of all.

The plots of 1 — F(x) against ¢/e,¢ for different grow modes for g = 1 x 104 and
eto = (1/64) x 10~* are shown in figure 6. The quantity 1 — F(x) = Prob{e > x} is shown
to focus on the larger errors. Figure 7 shows the effect of ey, on the shape of 1 — F(x): each
grow mode is plotted separately for the two values of e. For figures 6 and 7, note that the
plots appear to show that 1 — F(x) does not equal 1 for small values of error. Thisis due to
the fact that the plot of the CDF shows samples which have avalue of ¢ in the range between
e101/10° and gy x 103, but about half of the samples have values of ¢ less than sy /10°.

From figure 6, we see that long tails exist for the plot of 1 — F(x) associated with al
three grow modes. This clearly shows that none of the grow modes exhibits excellent error
control associated with a sharp cutoff in the shape of 1 — F(x) at the specified error toler-
ance. Also, examination of figure 7 shows that &, does not have a significant effect on the
behaviour of thetail of 1 — F(x) if grow modes 1 or 2 are used; the difference between the two
curves is possibly within statistical variability. However, for mode 3, the finer error tolerance

6
10 L L d . d L 10 l L 1l d d l
107 107 107 107 10° 10" 10® 10° 107 107 107 107 10° 10" 10® 10°

ele ele

ref ref

Figure 6. CDF of local error for different grow modes against «/erer. Left plot, so) = 1 x 10~%; right plot, ey =
(1/64) x 10~4. Solid lines, mode 1; dotted lines, mode 2; dashed lines, mode 3.
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Figure 7. CDF of local error against ¢/eref. Left plot, mode 1; middle plot, mode 2; right plot, mode 3. Solid lines,
eto) = 1 x 10~%; dashed lines, ey = (1/64) x 1074,

ol = (1/64) x 10~ clearly shows the tail of 1 — F(x) shifted to the right significantly as
compared with the case of &y = 1 x 1074, indicating that error control performance worsens
when g is decreased.

After this study was completed, it was discovered that the computation of a Householder
vector used in the algorithm to “grow” EOASs is on rare occasions ill-conditioned. This can
result in EOA grows being inaccurate, and hence retrieves from such EOAs being inaccurate.
Some of the observed large retrieve errors may be attributable to this ill-conditioning. The
retrieve errors measured and reported here are, therefore, upper bounds on the errors that
would be incurred in cal culations without the ill-conditioning.

5.6 Conclusionson local error

Here, some conclusions can be drawn. Recall that the statistics of the local retrieve error ¢ are
fully characterized by the CDF, F(x) = Prob{e < x}.

1. Large local errors are observed, albeit with small probability. For example, with elip-
soidal growing (grow mode 1) and sy = 1074, & exceeds about 20e ¢ Or 685y, With 0.1%
probability (seetable 4).

2. The observed large local errors result from the growing process. When growing is sup-
pressed, the largest errors are just afew percent of gq).

3. The large local errors are not caused by non-monotonic behaviour of . If this were the
case, error control would improve as g is decreased, but thisis not observed.
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Table 6. Centre of mixture fraction range of width 0.1 for conditional means.

Quantity T CO, H,0O CcO Ho OH

Centre of range 0.37 0.37 041 0.47 0.53 0.33

4. The large errors are associated with non-convex regions of accuracy. This follows from
the fact that large errors are observed even with conical growing (grow mode 3), which
guarantees error control (i.e. ¢ < gyq) if the ROA is convex (for small gyg)).

5. The CDFs of ¢/¢. are generally the same for al growing strategies and values of g.
Hence, thereis no reason not to use the simplest growing strategy, i.e. ellipsoidal growing
(grow mode 1).

6. Global error

6.1 Introduction and motivation

This section describes the characterization of the global error in the PDF calculations arising
from thelocal errorsincurred in the ISAT agorithm. Thisis achieved by considering the error
inmeansof speciesmassfractionsand temperature conditional uponthe mixturefraction being
in a specified range of width 0.1 around stoi chiometric, estimated from the PDF calculations
of flame D. The global error of any quantity X, e x is defined as the difference between the
computed value of X using |SAT and the value obtained using direct integration. If the global
error arising from the ISAT algorithm is controlled, the quantities considered (conditional
speciesmassfractionsand temperature) should convergetothevaluegiven by directintegration
as the error tolerance ¢y tends to zero.

6.2 Testing protocol

Thequantities examined are means of speciesmassfractionsand temperature conditional upon
the mixture fraction being in a specified range of width 0.1 in the vicinity of stoichiometric.
In the experiments [1], the Bilger mixture fraction is used; in the calculations, since equal
diffusivities are assumed, all definitions of mixture fraction are equivalent. The ranges for
the variables (which are shown in table 6) are chosen to be centered on the peak of the mean
conditioned on mixturefraction. Preliminary investigation reveal ed that these quantities, which
are denoted by (Yu,|&s), €tc., are much more sensitive to ISAT errors than are unconditional
means. The conditional means at each axial location are evaluated using PDF particles in
9 hins defined in X — r space. The ranges of the bins for each axial location are given in
table 7. The lower and upper bound of the bins in the x-direction are denoted as Xq, and
Xup, respectively, and the upper bound of the binsin ther -direction is denoted ry,. The lower
bound in ther -direction is zero for all axial locations.

Table 7. Rangesinx andr of bins used to evaluate conditional means.

Axid location(x/d) 1 2 3 75 15 30 45 60 75

Xjow/d 075 17 27 7 143 288 435 58 73
Xup/d 125 23 33 80 157 312 465 62 77
ryp/d 25 25 25 31 4.0 70 10 12 15
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The computations made to characterize the global error were performed in parallel. Each
parallel computation node is equipped with 2 GB of RAM and two 2.4 GHz Intel Xeon
processors. The nodes are connected using gigabit ethernet.

The computations are performed as follows: starting from the statistically stationary solu-
tion, 600 iterations are performed using 12 parallel processes starting from an empty 1SAT
table. The domain is partitioned into rectangular subdomains, each of which extends over the
wholeradius, and over afraction of theaxial extent of the domain, with each subdomain having
its own (independent) | SAT table. For all variables, the absolute and relative integration error
tolerances in DDASAC are set to 10~¢ and 102, respectively. The maximum storage of the
|SAT tableis set to 400 megabytes, and grow mode 2 is used. To reduce statistical variabil-
ity, the number of particles per cell isincreased to 240. These 600 iterations are performed
to build up the ISAT tables. Subsequently, a further 200 iterations are performed. Values of
conditional means are time-averaged over these 200 iterations. A series of 6 computationsis
performed with e varying (by factors of 4) between (1/64) x 10~ and 16 x 10~*. For all
values of &y, except ey = (1/64) x 1074, 5 statistically identical runs are performed and the
95% confidence intervals are cal cul ated.

6.3 Results

Figures8-13 show the conditional temperature and speciesmassfractions(linear scale) against
eo (log scale) at different axial locations. The symbols are from the computations. The
vertical lines (most clearly seen in figure 9) correspond to the 95% confidence intervals, and
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Figure 8. Plot of mean temperature conditional on stoichiometric (T |&s) against error tolerance i With confidence
intervals on log-linear scale. Symbols, computations; dashed line, linear fit through middle four points; dotted lines,
plus and minus 5% error.
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these are plotted for all quantities and all values of e except s, = (1/64) x 1074, In most
cases, the confidence interval is no larger than the symbol size in the figures, and hence
cannot be seen. The dashed line is a linear fit through the middle four points at each axial
location, which appears as a curve in these semi-log plots. The point with the largest value
of et is not included in the linear fit because it has very large errors; and the point with
the smallest value of ¢ is not included in the linear fit asit is based on a single simulation
and hence is prone to greater statistical variability. The dotted lines show plus and minus
5% about an estimate of the true value (obtained by extrapolating the straight line fit to the
y-axis).

Before describing the results, three points need to be stressed. First, the conditional statis-
tics are selected for examination because they are found to be much more sensitive than
unconditional statistics. Second, the results (except for ey = (1/64) x 10~%) are based on 5
independent simulations, each with 240 particles per cell (i.e. effectively 1200 particles per
cell). As a consequence, the statistical errors are small compared to those of typical PDF
calculations. Lastly, it is important to remember that the result with ey = (1/64) x 1074 is
based on a single simulation (compared to 5 independent simulations for other values of &)
and henceis subject to greater statistical variability.

One observation is that, for many of the quantities plotted, the confidence intervals are
large for the one or two largest values of g. This is due to the fact that for large values
of e, there exist large errors, and these are random (due to the nature of the PDF/ISAT
calculations). These errors can be viewed as bias and statistical errors, both of which
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Table 8. Valuesof ¢ for which the global error is one percent.

Axial location (x/d)
1 2 3 7.5 15 30 45 60 75

9% x10* 600 565 360 316 606 1040 1255 1066 11.30
et x 10 035 050 056 052 079 3.32 644 849 014
e x10* 028 049 058 070 128 1.61 125 075 068
28 x10* 039 063 074 104 210 1578 1096 625 035
egdt x 10 1607 876 332 193 520 15815 6116 5261 1170
e x 100 262 283 217 272 58 558 1415 7610 934

increase with &, and hence it is logical that the confidence intervals are larger for large
ol -

Theresultsfor conditional temperatureat x/ D = 7.5 arerepresentative of most of the other
results aso. It may be seen from figures 8-13 that for the four smallest values of e (1/64,
1/16, 1/4 and 1 x 10~4) all of the calculated results are in agreement (to within confidence
intervals). Indeed, this observationistruefor other axial locations, with the possible exception
of x/D = 75. Thisisindicative of the errors due to ISAT being small relative to statistical
errorsfor ey = 1074, and of their decreasing as ey is further decreased. On the other hand,
for eiq = 4x 1074, and moresofor ey = 16 x 104, there are substantial errorsdueto | SAT —
about 60K at thislocation. Future PDF cal culations of thistest caseusing I SAT should be made
with o = 10~ to ensure an efficient calculation without sacrificing accuracy. However, in
general, the appropriate values of &, depends on many factors (e.g. the chemical mechanism,
time step range, etc.).

From figures 8-13, we see that in general, the straight line fit passes through at least the
points corresponding to the five smallest values of & . This clearly shows that the ISAT
global error varies linearly with gy (as does the local error and as is expected). Tables 8
and 9 show the values of gt Which result in aglobal error of 1% and 10%, respectively, for
each of the five species considered, as well as for temperature at each axial location. These
values are computed from the linear fit through the middle four pointsin each plot. We denote
by &% the value of ¢ for which statistic g has a global error of «.. For example, the value
of er for which (conditional) temperature has a 5% error is denoted as £%%. Clearly, the
global error due to ISAT in the PDF computation of this piloted jet flame test case is well
controlled.

Table 9. Valuesof gy for which the global error is 5%.

Axial location (x/d)
1 2 3 75 15 30 45 60 75

905 104 3000 2823 1800 1580 3029 5200 6274 5328 56.48
eg®x 10 174 250 278 261 397 1659 3219 4244 069

3% x 104 139 244 292 350 639 8.04 6.23 375 338
2% x 104 194 316 371 521 1051 7894 5479 3125 175
2% x 10" 8037 4381 1661 966 2598 79073 30582 26305 5851

g% x 100 1309 1413 1086 1358 2911 2793 7075 3805 4664
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7. Conclusions

The | SAT agorithm was used in conjunction with the CFD code FLUENT to perform calcu-
lations of a turbulent non-premixed piloted methane—air jet flame (Barlow and Frank flame
D) to characterize thelocal and global error characteristics of | SAT. This section summarizes,
in turn, conclusions drawn regarding the local and global error due to 1SAT.

With regard to local error, the following conclusions can be drawn. Recall that the local
error ¢ iscompletely characterized by itsCDF, F(x) = Prob{s < x}, and ;¢ denotesthe 90th
percentile error.

(i) From figures 6 and 7, it is observed that large local errors are present for al growing
strategies, albeit with small probability. Fromtables4 and 5, it isshown that when growing
is suppressed, large local errors are no longer observed, indicating that large local errors
result from the growing process.

(ii) From figure 7, the CDFs of ¢ are found to be largely independent of ¢, suggesting that
large errors are not due to the non-monotonicity of ¢.

(iii) Largelocal errors are associated with non-convex ROAs. This follows from the fact that
large errors are observed even with grow mode 3, which guarantees error control for
convex ROASs.

(iv) When ¢ isscaled by ¢, the CDFs of ¢ are generally the samefor all grow modes, as can
be seen from figure 6. Hence, the simplest strategy (i.e. ellipsoidal growing, grow mode
1) should be used.

Parallel computations were performed to obtain conditional mean quantities in order to
examine the global error in ISAT. Statistical variability in the conditional mean quantities
was reduced considerably by time averaging the quantities over 200 iterations and using a
large number of particles per cell (N = 240). The following observations and conclusions
regarding the global error can be made from figures 8-13.

(i) The confidence intervals for the plotted quantities are large for the one or two largest
values of gy, due to the occurrence of large statistical errors at large ey
(ii) In general, for the four smallest values of &, the calculated results are in agreement,
indicating that | SAT errors are small relative to statistical errorsfor s, < 1074,
(iii) Figures 8-13 and tables 8 and 9 show that the global error eg varieslinearly with g, as
expected.

Future work isfocused on theimprovement of I SAT local error control through the determi-
nation of the geometry of the region of accuracy, and the devel opment of an enhanced growing
algorithm which limits the extent by which EOAs grow to encompassinaccurate regions. The
eventual aim isto achieve excellent local error control, while still maintaining the excellent
speed-up provided by ISAT. It isimportant to appreciate that even in the absence of effective
local error control, the global error in ISAT issmall for e < 10~4, and found to vary linearly
with gy in this calculation.
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