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The performance of in situ adaptive tabulation in
computations of turbulent flames
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This paper presents a detailed characterization of the local and global errors associated with the
in situ adaptive tabulation (ISAT) algorithm, which is used in conjunction with a transported PDF
method. Calculations of a non-premixed turbulent methane/air piloted jet flame (Sandia flame D)
using a skeletal chemical mechanism were performed using ISAT coupled with the computational
fluid dynamics (CFD) code FLUENT. The three strategies implemented in ISAT for the growing of
the ellipsoids of accuracy (EOAs) are discussed, and the cumulative distribution function (CDF) of
the local error is presented for each of the three growing strategies. Computations are also performed
to characterize the global error in the ISAT/PDF calculation. The computations used to characterize
the global error were performed in parallel to achieve substantial savings in computational time.

In general the local error is well controlled, but there is a small probability of relatively large errors.
Results from the investigation suggest that large retrieve errors are due to the region of accuracy (ROA)
being non-convex, where the ROA is the connected region for which the error does not exceed the
error tolerance, εtol. The global error in ISAT is found to be small compared to statistical error for
εtol ≤ 10−4, and is found to vary linearly with εtol.
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1. Introduction

A major hurdle to accurate calculations of complex turbulent reactive flows is that typical
detailed combustion mechanisms involve tens or hundreds of species, hundreds or thousands
of reactions, and a wide range of timescales. The system of ordinary differential equations
governing chemical reactions is thus large and extremely stiff, making the task of solving
these equations computationally expensive. The in situ adaptive tabulation (ISAT) algorithm,
introduced by Pope (1997) [13], has been shown to speed up these chemistry calculations
by up to a factor of 1000 [13], and can be used in the context of PDF methods for turbulent
combustion, as well as in other approaches (e.g. finite-difference methods for laminar flames
[15]).

Previously, Xu and Pope (2000) [18] and Tang et al. (2000) [17] have used ISAT in con-
junction with PDF methods in the computation of turbulent non-premixed piloted jet flames.
ISAT has also been used with artificial neural networks (ANN) and LES by Kapoor et al.
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(2001) [8], and has also been successfully combined with dimension reduction strategies (e.g.
quasi-steady-state assumption, rate-controlled constrained equilibrium, etc.) [16].

While the performance gains from using ISAT are well demonstrated, a comprehensive
study of the accuracy of the error associated with the storage and retrieval algorithm in ISAT
has not previously been performed. Also, apart from an investigation by Singer and Pope [15]
for a laminar premixed flame test case, there has been no study of the global error in ISAT
to date. This paper addresses these issues by providing a characterization of the local and
global errors associated with ISAT using, as a test case, a turbulent flame calculation by the
composition PDF method with a 16-species skeletal mechanism.

The experimental reacting flow chosen for this study is a piloted jet methane/air flame (flame
D) measured by Barlow and Frank [1]. The next section provides a description of this test flame,
and is followed by a discussion of the local (retrieve) error in ISAT, and by the presentation of
computed cumulative distribution functions (CDFs) of local error. A characterization of the
global error in ISAT is then given, followed by some observations and conclusions.

2. Description of the test flame

This section briefly summarizes the experimental conditions [1] of the piloted jet test flame
used for the calculations in this paper. The fuel jet with radius R j = 3.6 mm is accompanied
by an annular pilot with radius Rp = 9.2 mm. The jet fuel is 25% CH4 and 75% dry air by
volume, and the pilot burns a lean premixture of C2H2, H2, air, CO2, and N2 with the same
nominal enthalpy and equilibrium composition as methane/air at an equivalence ratio of 0.77.
The bulk velocity of the fuel jet is 49.6 m s−1, and the jet Reynolds number is 22,400. The
jet and pilot are surrounded by a slow co-flow of air, with a free-stream velocity of 0.9 m s−1.
Detailed information about the flame can be obtained from Barlow and Frank (2003) [2]. PDF
calculations of this flame have been performed by Xu and Pope (2000) [18], Tang et al. (2000)
[17], and Lindstedt and Louloudi (2000) [10], among others.

3. Computational specifications

All computations were performed using the FLUENT CFD code, which solves the Reynolds
averaged Navier–Stokes (RANS) equations for the mean conservation of mass, momentum
and energy, using the k − ε model for turbulence modelling. The model constants used in the
k − ε model are given in table 1. A transport equation for the composition PDF is coupled
and solved using a Lagrangian particle-based Monte Carlo method. The modified Curl (MC)
mixing model [7] is used with Cφ = 2.0, and the chemical kinetics are treated using ISAT
with a skeletal mechanism for methane consisting of 16 species and 41 reactions (the same
as that used in [14]). The wall functions used in this calculation are based on the proposal
of Launder and Spalding [9]. No radiation effects are considered, and the effect of gravity is
neglected.

The solution domain, shown in figure 1, is an axisymmetric, 2-D domain. The origin is
placed at the centre of the jet exit plane. The axial direction is denoted by x , while y and
r are used interchangeably to denote the radial direction. The solution domain extends 5 jet

Table 1. Model constants used in the k − ε model.

Cµ Cε1 Cε2 σk σε σ�

0.09 1.52 1.92 1.0 1.3 0.7
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Figure 1. Sketch of the solution domain.

diameters upstream and 100 jet diameters downstream (x = 720 mm) in the axial direction; and
50 jet diameters from the centerline in the radial direction (y = 360 mm). The wall thickness
of the pilot flame is treated as infinitesimally thin. The grid is comprised of 2352 cells with
non-uniform grid spacing and some cells made non-orthogonal. More detailed information
about the grid is given in table 2.

Boundary conditions are given in table 3. The compositional inflow boundary condition in
the pilot is determined by matching the measurements at x/d = 1 with calculations of laminar
unstrained premixed CH4/air flames and then extrapolating to the conditions at the burner exit
plane, based on the estimated convective time up to x/d = 1. The pilot burnt gas velocity is
determined from the cold mass flow rate, the density at the estimated exit condition, and the
flow area of the pilot annulus. The pilot composition is thus taken as that of an unstrained
CH4/air premixed φ = 0.77 flame at the point in the flame profile where the temperature is
1880 K, following the process outlined above [2]. In the computation, the inlet boundary
velocity profiles for the jet and coflow are specified. The pilot inlet velocity profile is assumed
to be flat, except for thin boundary layers. Since this inlet velocity profile is obtained directly
from experimental data, it eliminates inaccurate boundary conditions as a source of error in
our computations. In table 3, the turbulence length scale, L , is such that the dissipation ε is

Table 2. Detailed information of the grid used in the calculation.

x y

From (mm) To (mm) Cells From (mm) To (mm) Cells

Fuel jet −36.0 0 8 0 3.6 6
Pilot −36.0 0 8 3.6 9.1 9
Coflow −36.0 720 49 9.1 360 33
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Table 3. Boundary conditions for the calculations.

Stream Condition Value

Fuel jet Bulk velocity (m s−1) 49.6
Temperature (K) 294
Turbulence intensity (%) 4
Turbulence lengthscale,

L (m)
0.0002

YCO2 0.00046
YO2 0.1962
YCH4 0.15605
YN2 0.6473

Pilot Velocity (m s−1) 11.4
Temperature (K) 1880
Turbulence intensity (%) 1
Turbulence lengthscale,

L (m)
0.0001

YH2O 0.0942
YCO2 0.1098
YO2 0.054
YCO 0.00407
YH 2.48 × 10−5

YH2 0.000129
YN2 0.7378

Coflow Velocity (m s−1) 0.9
Temperature (K) 291
Turbulence intensity (%) 1
Turbulence lengthscale,

L (m)
0.001

YH2O 0.00581
YO2 0.23113
YCO2 0.00055
YN2 0.7625

Jet wall Adiabatic wall (zero
heat flux)

Pilot wall Adiabatic wall
Outer boundary Symmetry

determined as ε = ck3/2/L , where k is the turbulent kinetic energy and c is equal to 0.093/4.
Yi denotes the mass fraction of species i .

The numerical conditions selected are as follows: there are nominally 40 particles per cell
(Npc), and approximately 100,000 particles in total. The ordinary differential equation (ODE)
solver DDASAC [4] is used to perform direct integrations where necessary. The absolute and
relative error tolerances in DDASAC are set to 10−6 and 10−9, respectively, for all variables.
The Courant number used for local time-stepping is set to 0.5 for convection, diffusion, and
mixing.

Discretization is achieved via an implicit, segregated finite-volume scheme which solves
the governing equations sequentially. The values of momentum, turbulent kinetic energy,
and turbulent dissipation rate at cell faces are calculated using a multidimensional linear
reconstruction approach [3], yielding second-order accuracy at cell faces through a Taylor
series expansion of the cell-centered solution about the cell centroid. This scheme is also
known as the second-order upwind scheme.

The Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) family of algorithms
[12] is used for pressure–velocity coupling (i.e. introducing pressure into the continuity equa-
tion). The Pressure Staggering Option (PRESTO!) pressure interpolation scheme is used to
obtain the value of pressure at the cell faces from the cell values via a discrete continuity bal-
ance for a control volume about the face. This procedure is similar in spirit to the staggered-grid
schemes used with structured meshes [12].
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The iterative process operates as follows: a FLUENT finite-volume iteration is performed,
followed by a particle iteration in which the particle properties are advanced for one pseudo-
time step [6]. The base case corresponds to a computation in which iterative convergence is
obtained. This fact is ascertained by observing that quantities at monitoring locations become
statistically stationary. Further details about the finite-volume calculations are given by Liu
[11].

4. Brief overview of ISAT

The In Situ Adaptive Tabulation (ISAT) algorithm introduced by Pope (1997) [13] is a storage
and retrieval methodology. This section outlines essential ideas about the ISAT algorithm.

Consider an isobaric reactive gaseous flow (a good assumption for most low-Mach number
flames) with ns species. For a given pressure P , the thermochemical composition vector φ is
given by

φ = {Y1, Y2, . . . , Yns , h}, (1)

where Yk is the mass fraction of species k, and h is the specific enthalpy: φ is a vector of length
nφ ≡ ns + 1.

In the present computational implementation, the fluid within the solution domain is repre-
sented by a large number of particles, whose compositions evolve due to reaction and mixing.
These two processes are treated in separate fractional steps. In the reaction fractional step, the
composition evolves due to chemical reactions at fixed pressure and enthalpy according to the
ordinary differential equation

dφ(t)

dt
= S(φ[t]). (2)

Here Sk is the net creation rate of species k (for k = 1, 2, . . . , ns), and Snφ
≡ 0, corresponding

to constant enthalpy. From the initial condition φ0 at time t0, (2) is integrated for a time �t to
obtain φ(t0 + �t). For fixed �t , the reaction mapping

R(φ0) ≡ φ(t0 + �t), (3)

is uniquely determined by φ0. ISAT uses the ODE solver DDASAC to integrate (2) and stores
the reaction mappings in a binary tree, with each termination node (or leaf) representing a
record consisting of (among other information) the tabulation point φ0, its associated reaction
mapping R(φ0), and the mapping gradient A(φ0), where

Ai j (φ
0) ≡ ∂ Ri (φ0)

∂φ0
j

. (4)

The region of accuracy (ROA) is defined to be the connected region containing φ0 consisting
of points φ for which the local error ε does not exceed the specified tolerance εtol. At each leaf,
ISAT approximates the ROA as a hyperellipsoid, known as the ellipsoid of accuracy (EOA)
centered at φ0. Given a query composition φq , ISAT traverses the tree until a leaf representing
some φ0 is reached, and this value of φ0 is close to φq . Now if φq is determined to be within
the EOA for that leaf, ISAT performs a retreive, and returns a linear approximation to R(φq ).
This linear approximation is denoted R�(φq ), which is defined as

R�(φq ) ≡ R(φ0) + A(φ0)(φq − φ0). (5)
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The local error ε is then simply defined as the scaled difference between the exact mapping
and the linearized estimate

ε ≡ |B(R[φq ] − R�[φq ])|, (6)

where B is a scaling matrix. For a more detailed description of the ISAT algorithm, the reader
is directed to Pope (1997) [13].

5. Local error

5.1 Introduction

As described in the original ISAT paper by Pope (1997) [13], given a query point φq falling
within an existing ellipsoid of accuracy (EOA), the ISAT algorithm uses a piecewise linear
approximation within the EOA to calculate a linear approximation of the reaction mapping. The
(scaled) difference between the exact mapping, R(φq ), and this linearized estimate, R�(φq ), is
known as the retrieve, or local error [13]. Effective control of the local error ensures that the
ISAT part of the turbulent reactive flow calculation is numerically accurate (for sufficiently
small values of the ISAT error tolerance, εtol).

As described in Pope (1997) [13], if a query point φq does not fall within an existing EOA,
but has error ε less than εtol, then the existing EOA is grown. The computational expense
incurred during the growth of an EOA is offset by the increased probability of retrieving from
that (larger) EOA during future evaluations of (2). For a computer with unlimited memory,
the retrieve rate would be close to 100% once the (very large) ISAT table is built. In reality,
however, computer systems have limited memory in which to store the ISAT table, and growing
the EOAs is a cost-effective method to increase the percentage of retrieves for a given ISAT
table size.

It is hypothesized that the growth of the EOAs is one of the major causes of rare large local
errors (reported below). Accordingly, we investigate three different strategies for growing of
EOAs. They are (in ascending order of conservativeness, with mode 3 the most conservative):
Mode 1 (ellipsoidal growing); Mode 2 (ellipsoidal with Chew modification); and Mode 3
(conical growing). This section describes each of these growing strategies, then gives a dis-
cussion of the possible causes of local error in ISAT. Subsequently, a characterization of the
local error for each of these modes is given to assess their relative merits. (It is possible to
suppress the growing of the EOAs by using Mode 0, which does not allow the EOAs to grow
at all.)

5.2 Growing strategies

5.2.1 Grow mode 1: ellipsoidal growing. The ellipsoidal growing strategy used in mode
1 is the growing strategy proposed by Pope in the original ISAT paper [13]. The growing
strategy is illustrated in figure 2. Given an existing EOA centered at a point φ0, the new EOA
is the unique hyper-ellipsoid of minimum volume, centered at φ0, which encloses both the
original EOA and the point φq .

The growing process can be understood more clearly by considering the linear transforma-
tion of the original EOA to a unit hypersphere. In this transformed space, the new EOA is the
hyper-ellipsoid of minimum volume that encloses the unit hypersphere and the grow point.
This is shown schematically in figure 3.
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Figure 2. Growth of an ellipsoid of accuracy using grow mode 1.

One property of mode 1 is that, given a knowledge of the EOA before growth and the grow
point φq , the EOA after growth (for mode 1) is the ellipsoid of smallest volume which is sure
to bound all previous grow points.

5.2.2 Grow mode 2: ellipsoidal with Chew modification. Grow mode 2, also called
the Chew modification, is essentially a slightly more conservative variant of grow mode 1.
This growing strategy was proposed by Chew [5]. For each EOA, the hyper-ellipsoid is first
transformed into a unit hypersphere, as shown in figure 3. A hypercube is now inscribed inside
the unit hypersphere, with its vertices on the surface of the hypersphere. When the EOA is
grown, the new EOA (in transformed space) is the unique hyper-ellipsoid of minimum volume
enclosing both the hypercube and the grow point. Modes 1 and 2 are illustrated in figure 4 for
a two-dimensional case.

It is important to appreciate that while the EOA before growth is known, the sequence of
previous grow points is considered to be unknown. Thus there is a sequence of previous grow
points which yield the EOA before growth, and which, with mode 1, are bounded by the EOA
after growth. As we can see from figure 4, mode 2 is a more conservative growing strategy than
mode 1 as the grown EOA using mode 2 is slightly smaller than the grown EOA using mode

Figure 3. Growth of an ellipsoid of accuracy using grow mode 1 in transformed space.



556 B. J. D. Liu and S. B. Pope

Figure 4. Growth of an ellipsoid of accuracy using grow modes 1 and 2 in two-dimensional transformed space.
Solid lines: mode 1; dotted lines: hypercube used in mode 2; dashed lines: grown EOA using mode 2.

1, and therefore the ellipsoid after growth under mode 2 may not include some previous grow
points (at which ε < εtol). However, under mode 2, the EOA after growth has the property
that it is the ellipsoid of smallest volume that bounds the current grow point φq , and that
could bound all previous grow points. The crucial point here is that all the previous grow
points are unknown, and hence an EOA grown in this way is one of smallest volume that has
a possibility of bounding these old grow points. If the previous grow points are known, then
it would be possible to bound all these old grow points with an ellipsoid of volume smaller
than that generated by mode 1, but larger than that generated by mode 2.

5.2.3 Grow mode 3: conical growing. In grow mode 3, the EOAs are grown using a cone
based on both the current EOA and the grow point. Figure 5 shows a sketch of the EOA
transformed to the unit hypersphere, with the grow point φq located on the axis at distance
r away from the origin. The error at the grow point is εq , and (to leading order) the error
increases as the square of the distance from the origin. The limit point φ p shown in the sketch
is the location on the axis where the error is estimated to be εtol, i.e. φ p = φq (εtol/εq )1/2.

Figure 5. Sketch showing conical growing strategy in transformed space (grow mode 3). Solid line, original EOA;
dotted line, cone used in mode 3; dashed line, grown EOA using mode 3.
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A cone is created (in transformed space) with its vertex at the limit point φ p, as shown in
figure 5. The new EOA is then the hyper-ellipsoid of maximum volume that can be inscribed
within the cone, which may not include the grow point. It is possible that the new EOA has
a smaller volume than the original EOA. In this case the original EOA is retained, and so no
growing is performed.

This growing strategy ensures that, for the case in which the ROA is convex, the EOA after
growth lies entirely within the ROA. The conical growing strategy is the most conservative of
all the grow modes, and the only one with this property for convex ROAs.

The three growing strategies described above present increasingly conservative estimates
for the grown EOA, with the aim of reducing local error. Before the local error associated with
each of these grow modes is characterized, we consider the possible reasons for inaccuracy
due to growing of the EOAs.

5.3 Possible reasons for inaccuracy due to growing

The region of accuracy (ROA) is defined to be the connected region containing the tabulation
point, φ0, consisting of points φ for which the local error ε does not exceed the specified
tolerance εtol. There are three possible reasons as to why inaccuracies arise due to growing of
the EOAs.

Firstly, it is possible that, over the ROA, the tabulated function is significantly non-linear,
and hence the Taylor series analysis may be inaccurate, giving rise to the possibility of non-
monotonic behavior of ε. If this is the case, then, given a query point φq , there might exist
sections on the line segment between φ0 and φq where ε is greater than εtol, even though the
grow point itself has ε less than εtol. Nevertheless, in such a situation, the EOA is grown to
encompass these inaccurate regions, introducing the possibility that subsequent retrieves will
be inaccurate. This problem, if it exists, vanishes as εtol becomes sufficiently small, because
the ROA shrinks and the accuracy of the Taylor series increases within the ROA.

Secondly, the ROA may not be convex. In this case, all growing strategies can cause the
EOA after growing to include inaccurate regions. To elaborate on the geometry of the ROA,
it is readily shown [13] that if the piecewise-constant approximation R(φq ) ≈ R(φ0) is used,
then the ROA (for small εtol) is a hyper-ellipsoid, whose principal axes are given by the
eigendecomposition of εtol(AT A)−1/2. For the case of the piecewise linear approximation, the
analysis is more involved, and reveals that the ROA can have a hyperbolic (i.e. non-convex)
nature.

Thirdly, even if the ROA is convex (e.g. ellipsoidal), the ellipsoidal growing strategies
(modes 1 and 2) can lead to the inclusion of inaccurate regions.

5.4 Computational determination of local error

The aim of the computations described in this section is to characterize the local error ε for
a large number of retrieves. This is done by estimating the cumulative distribution function
(CDF) of the local error

F(x) ≡ Prob{ε < x}, (7)

where x is the sample-space variable corresponding to ε. The CDF F(x) provides a complete
characterization of the local error.

The protocol to determine F(x) is as follows: the PDF calculation described in section 3 is
run for 600 iterations starting from a statistically stationary solution and an empty ISAT table.
Over these initial 600 iterations, the ISAT table is built and filled, i.e. the maximum allocated
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Table 4. ISAT error statistics for different growing strategies, εtol = 1 × 10−4.

Grow mode 1 2 3 No growing

εref × 106 342 303 67.8 —
ε0.99/εref 6.93 6.77 5.94 —
ε0.999/εref 19.77 18.65 15.04 —
Prob{ε > εtol} 20.02 19.89 7.14 0.0

(percentage)
ε0.9/εtol 3.42 3.42 0.678 —
ε0.99/εtol 23.7 20.5 4.03 0.016
ε0.999/εtol 67.6 56.5 10.2 0.027

space (400 megabytes) for the ISAT table has been occupied, and hence no more adding to
the table can take place. Five iterations are subsequently performed, during which, for each
query point φq , the ISAT method is used to determine the mapping, R�(φq ), and in addition
the exact result R(φq ) is obtained by direct integration so that the local error ε can be measured
directly. From these calculations, F(x) is constructed based on the samples of ε. This process
is repeated for each grow mode for two values of εtol: 1 × 10−4 and (1/64) × 10−4.

In these calculations, the absolute and relative error tolerances in DDASAC are set to 10−6

and 10−9, respectively, for all variables, and one binary tree is used in ISAT. As described
previously, there are (nominally) 40 particles per cell, with about 100,000 particles in total,
and hence 5 iterations yields half a million samples of the local error, ε. All computations
reported in this section are performed in serial.

The quantity εα is defined as

F(εα) = Prob{ε < εα} = α, for 0 < α < 1, (8)

i.e. with probability α, the error is less than εα . From F(x), various statistics can be extracted,
such as Prob{ε > εtol}, as well as the error statistics just defined. These statistics are normalized
using both εtol and εref ≡ ε0.9. Normalization by εref allows a comparison of the shapes of
the CDFs obtained with different values of εtol and different growing strategies. Local error
statistics normalized by both εtol and εref are shown in section 5.5.

5.5 Measurement of local error

Tables 4 and 5 show the tabulated values of ISAT error statistics for the different grow modes
with εtol = 1 × 10−4 and εtol = (1/64) × 10−4. Also included are statistics corresponding to
the case where no growing of the EOAs is performed. Various statistics are shown normalized
by εtol and εref (defined in section 5.4). Note that in tables 4 and 5, the data generated from

Table 5. ISAT error statistics as a variation of grow mode, εtol = (1/64) × 10−4.

Grow mode 1 2 3 No growing

εref × 109 9090 7000 872 —
ε0.99/εref 6.63 6.99 9.94 —
ε0.999/εref 17.82 18.29 52.52 —
Prob{ε > εtol} 23.36 21.64 6.76 0.0

(percentage)
ε0.9/εtol 5.82 4.48 0.56 —
ε0.99/εtol 38.6 31.3 5.55 —
ε0.999/εtol 103.7 81.92 29.3 2.6 × 10−3
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the calculations do not give a value of εref for the case where growing is disallowed. This
is because when no growing is allowed, there is a negligible number of samples with errors
greater than εtol, and the CDF of ε does not have a tail from which the value of εref could be
determined. Hence, the normalized data for this case are unavailable.

The statistics of ε normalized by εtol show that grow modes 1 and 2 give similar results, with
mode 2 being slightly more conservative than mode 1 as expected. Mode 3 gives substantially
better error control (with respect to error tolerance). As expected, the absence of growing
provides the best error control of all.

The plots of 1 − F(x) against ε/εref for different grow modes for εtol = 1 × 10−4 and
εtol = (1/64) × 10−4 are shown in figure 6. The quantity 1 − F(x) = Prob{ε ≥ x} is shown
to focus on the larger errors. Figure 7 shows the effect of εtol on the shape of 1 − F(x): each
grow mode is plotted separately for the two values of εtol. For figures 6 and 7, note that the
plots appear to show that 1 − F(x) does not equal 1 for small values of error. This is due to
the fact that the plot of the CDF shows samples which have a value of ε in the range between
εtol/103 and εtol × 103, but about half of the samples have values of ε less than εtol/103.

From figure 6, we see that long tails exist for the plot of 1 − F(x) associated with all
three grow modes. This clearly shows that none of the grow modes exhibits excellent error
control associated with a sharp cutoff in the shape of 1 − F(x) at the specified error toler-
ance. Also, examination of figure 7 shows that εtol does not have a significant effect on the
behaviour of the tail of 1− F(x) if grow modes 1 or 2 are used; the difference between the two
curves is possibly within statistical variability. However, for mode 3, the finer error tolerance

Figure 6. CDF of local error for different grow modes against ε/εref. Left plot, εtol = 1 × 10−4; right plot, εtol =
(1/64) × 10−4. Solid lines, mode 1; dotted lines, mode 2; dashed lines, mode 3.
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Figure 7. CDF of local error against ε/εref. Left plot, mode 1; middle plot, mode 2; right plot, mode 3. Solid lines,
εtol = 1 × 10−4; dashed lines, εtol = (1/64) × 10−4.

εtol = (1/64) × 10−4 clearly shows the tail of 1 − F(x) shifted to the right significantly as
compared with the case of εtol = 1 × 10−4, indicating that error control performance worsens
when εtol is decreased.

After this study was completed, it was discovered that the computation of a Householder
vector used in the algorithm to “grow” EOAs is on rare occasions ill-conditioned. This can
result in EOA grows being inaccurate, and hence retrieves from such EOAs being inaccurate.
Some of the observed large retrieve errors may be attributable to this ill-conditioning. The
retrieve errors measured and reported here are, therefore, upper bounds on the errors that
would be incurred in calculations without the ill-conditioning.

5.6 Conclusions on local error

Here, some conclusions can be drawn. Recall that the statistics of the local retrieve error ε are
fully characterized by the CDF, F(x) ≡ Prob{ε < x}.
1. Large local errors are observed, albeit with small probability. For example, with ellip-

soidal growing (grow mode 1) and εtol = 10−4, ε exceeds about 20εref or 68εtol with 0.1%
probability (see table 4).

2. The observed large local errors result from the growing process. When growing is sup-
pressed, the largest errors are just a few percent of εtol.

3. The large local errors are not caused by non-monotonic behaviour of ε. If this were the
case, error control would improve as εtol is decreased, but this is not observed.
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Table 6. Centre of mixture fraction range of width 0.1 for conditional means.

Quantity T CO2 H2O CO H2 OH

Centre of range 0.37 0.37 0.41 0.47 0.53 0.33

4. The large errors are associated with non-convex regions of accuracy. This follows from
the fact that large errors are observed even with conical growing (grow mode 3), which
guarantees error control (i.e. ε ≤ εtol) if the ROA is convex (for small εtol).

5. The CDFs of ε/εref are generally the same for all growing strategies and values of εtol.
Hence, there is no reason not to use the simplest growing strategy, i.e. ellipsoidal growing
(grow mode 1).

6. Global error

6.1 Introduction and motivation

This section describes the characterization of the global error in the PDF calculations arising
from the local errors incurred in the ISAT algorithm. This is achieved by considering the error
in means of species mass fractions and temperature conditional upon the mixture fraction being
in a specified range of width 0.1 around stoichiometric, estimated from the PDF calculations
of flame D. The global error of any quantity X , εG,X is defined as the difference between the
computed value of X using ISAT and the value obtained using direct integration. If the global
error arising from the ISAT algorithm is controlled, the quantities considered (conditional
species mass fractions and temperature) should converge to the value given by direct integration
as the error tolerance εtol tends to zero.

6.2 Testing protocol

The quantities examined are means of species mass fractions and temperature conditional upon
the mixture fraction being in a specified range of width 0.1 in the vicinity of stoichiometric.
In the experiments [1], the Bilger mixture fraction is used; in the calculations, since equal
diffusivities are assumed, all definitions of mixture fraction are equivalent. The ranges for
the variables (which are shown in table 6) are chosen to be centered on the peak of the mean
conditioned on mixture fraction. Preliminary investigation revealed that these quantities, which
are denoted by 〈YH2 |ξs〉, etc., are much more sensitive to ISAT errors than are unconditional
means. The conditional means at each axial location are evaluated using PDF particles in
9 bins defined in x − r space. The ranges of the bins for each axial location are given in
table 7. The lower and upper bound of the bins in the x-direction are denoted as xlow and
xup, respectively, and the upper bound of the bins in the r -direction is denoted rup. The lower
bound in the r -direction is zero for all axial locations.

Table 7. Ranges in x and r of bins used to evaluate conditional means.

Axial location (x/d) 1 2 3 7.5 15 30 45 60 75

xlow/d 0.75 1.7 2.7 7 14.3 28.8 43.5 58 73
xup/d 1.25 2.3 3.3 8.0 15.7 31.2 46.5 62 77
rup/d 2.5 2.5 2.5 3.1 4.0 7.0 10 12 15
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The computations made to characterize the global error were performed in parallel. Each
parallel computation node is equipped with 2 GB of RAM and two 2.4 GHz Intel Xeon
processors. The nodes are connected using gigabit ethernet.

The computations are performed as follows: starting from the statistically stationary solu-
tion, 600 iterations are performed using 12 parallel processes starting from an empty ISAT
table. The domain is partitioned into rectangular subdomains, each of which extends over the
whole radius, and over a fraction of the axial extent of the domain, with each subdomain having
its own (independent) ISAT table. For all variables, the absolute and relative integration error
tolerances in DDASAC are set to 10−6 and 10−9, respectively. The maximum storage of the
ISAT table is set to 400 megabytes, and grow mode 2 is used. To reduce statistical variabil-
ity, the number of particles per cell is increased to 240. These 600 iterations are performed
to build up the ISAT tables. Subsequently, a further 200 iterations are performed. Values of
conditional means are time-averaged over these 200 iterations. A series of 6 computations is
performed with εtol varying (by factors of 4) between (1/64) × 10−4 and 16 × 10−4. For all
values of εtol except εtol = (1/64) × 10−4, 5 statistically identical runs are performed and the
95% confidence intervals are calculated.

6.3 Results

Figures 8–13 show the conditional temperature and species mass fractions (linear scale) against
εtol (log scale) at different axial locations. The symbols are from the computations. The
vertical lines (most clearly seen in figure 9) correspond to the 95% confidence intervals, and

Figure 8. Plot of mean temperature conditional on stoichiometric 〈T |ξs〉 against error tolerance εtol with confidence
intervals on log-linear scale. Symbols, computations; dashed line, linear fit through middle four points; dotted lines,
plus and minus 5% error.
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Figure 9. Plot of 〈YH2 |ξs〉 against εtol with confidence intervals on log-linear scale. Symbols, computations; vertical
solid lines, 95% confidence intervals; dashed line, linear fit through middle four points; dotted lines, plus and minus
5% error.

these are plotted for all quantities and all values of εtol except εtol = (1/64) × 10−4. In most
cases, the confidence interval is no larger than the symbol size in the figures, and hence
cannot be seen. The dashed line is a linear fit through the middle four points at each axial
location, which appears as a curve in these semi-log plots. The point with the largest value
of εtol is not included in the linear fit because it has very large errors; and the point with
the smallest value of εtol is not included in the linear fit as it is based on a single simulation
and hence is prone to greater statistical variability. The dotted lines show plus and minus
5% about an estimate of the true value (obtained by extrapolating the straight line fit to the
y-axis).

Before describing the results, three points need to be stressed. First, the conditional statis-
tics are selected for examination because they are found to be much more sensitive than
unconditional statistics. Second, the results (except for εtol = (1/64) × 10−4) are based on 5
independent simulations, each with 240 particles per cell (i.e. effectively 1200 particles per
cell). As a consequence, the statistical errors are small compared to those of typical PDF
calculations. Lastly, it is important to remember that the result with εtol = (1/64) × 10−4 is
based on a single simulation (compared to 5 independent simulations for other values of εtol)
and hence is subject to greater statistical variability.

One observation is that, for many of the quantities plotted, the confidence intervals are
large for the one or two largest values of εtol. This is due to the fact that for large values
of εtol, there exist large errors, and these are random (due to the nature of the PDF/ISAT
calculations). These errors can be viewed as bias and statistical errors, both of which



564 B. J. D. Liu and S. B. Pope

Figure 10. Plot of 〈YOH|ξs〉 against εtol with confidence intervals on log-linear scale. Symbols, computations;
vertical solid lines, 95% confidence intervals; dashed line, linear fit through middle four points; dotted lines, plus and
minus 5% error.

Figure 11. Plot of 〈YCO|ξs〉 against εtol with confidence intervals on log-linear scale. Symbols, computations; vertical
solid lines, 95% confidence intervals; dashed line, linear fit through middle four points; dotted lines, plus and minus
5% error.
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Figure 12. Plot of 〈YCO2 |ξs〉 against εtol with confidence intervals on log-linear scale. Symbols, computations;
vertical solid lines, 95% confidence intervals; dashed line, linear fit through middle four points; dotted lines, plus and
minus 5% error.

Figure 13. Plot of 〈YH2 O |ξs〉 against εtol with confidence intervals on log-linear scale. Symbols, computations;
vertical solid lines, 95% confidence intervals; dashed line, linear fit through middle four points; dotted lines, plus and
minus 5% error.
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Table 8. Values of εtol for which the global error is one percent.

Axial location (x/d)

1 2 3 7.5 15 30 45 60 75

ε0.01
T × 104 6.00 5.65 3.60 3.16 6.06 10.40 12.55 10.66 11.30

ε0.01
H2

× 104 0.35 0.50 0.56 0.52 0.79 3.32 6.44 8.49 0.14

ε0.01
OH × 104 0.28 0.49 0.58 0.70 1.28 1.61 1.25 0.75 0.68

ε0.01
CO × 104 0.39 0.63 0.74 1.04 2.10 15.78 10.96 6.25 0.35

ε0.01
CO2

× 104 16.07 8.76 3.32 1.93 5.20 158.15 61.16 52.61 11.70

ε0.01
H2O × 104 2.62 2.83 2.17 2.72 5.82 55.86 141.5 76.10 9.34

increase with εtol, and hence it is logical that the confidence intervals are larger for large
εtol.

The results for conditional temperature at x/D = 7.5 are representative of most of the other
results also. It may be seen from figures 8–13 that for the four smallest values of εtol (1/64,
1/16, 1/4 and 1 × 10−4) all of the calculated results are in agreement (to within confidence
intervals). Indeed, this observation is true for other axial locations, with the possible exception
of x/D = 75. This is indicative of the errors due to ISAT being small relative to statistical
errors for εtol = 10−4, and of their decreasing as εtol is further decreased. On the other hand,
for εtol = 4×10−4, and more so for εtol = 16×10−4, there are substantial errors due to ISAT –
about 60 K at this location. Future PDF calculations of this test case using ISAT should be made
with εtol = 10−4 to ensure an efficient calculation without sacrificing accuracy. However, in
general, the appropriate values of εtol depends on many factors (e.g. the chemical mechanism,
time step range, etc.).

From figures 8–13, we see that in general, the straight line fit passes through at least the
points corresponding to the five smallest values of εtol. This clearly shows that the ISAT
global error varies linearly with εtol (as does the local error and as is expected). Tables 8
and 9 show the values of εtol which result in a global error of 1% and 10%, respectively, for
each of the five species considered, as well as for temperature at each axial location. These
values are computed from the linear fit through the middle four points in each plot. We denote
by εα

β the value of εtol for which statistic β has a global error of α. For example, the value
of εtol for which (conditional) temperature has a 5% error is denoted as ε0.05

T . Clearly, the
global error due to ISAT in the PDF computation of this piloted jet flame test case is well
controlled.

Table 9. Values of εtol for which the global error is 5%.

Axial location (x/d)

1 2 3 7.5 15 30 45 60 75

ε0.05
T × 104 30.00 28.23 18.00 15.80 30.29 52.00 62.74 53.28 56.48

ε0.05
H2

× 104 1.74 2.50 2.78 2.61 3.97 16.59 32.19 42.44 0.69

ε0.05
OH × 104 1.39 2.44 2.92 3.50 6.39 8.04 6.23 3.75 3.38

ε0.05
CO × 104 1.94 3.16 3.71 5.21 10.51 78.94 54.79 31.25 1.75

ε0.05
CO2

× 104 80.37 43.81 16.61 9.66 25.98 790.73 305.82 263.05 58.51

ε0.05
H2O × 104 13.09 14.13 10.86 13.58 29.11 279.3 707.5 380.5 46.64
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7. Conclusions

The ISAT algorithm was used in conjunction with the CFD code FLUENT to perform calcu-
lations of a turbulent non-premixed piloted methane–air jet flame (Barlow and Frank flame
D) to characterize the local and global error characteristics of ISAT. This section summarizes,
in turn, conclusions drawn regarding the local and global error due to ISAT.

With regard to local error, the following conclusions can be drawn. Recall that the local
error ε is completely characterized by its CDF, F(x) = Prob{ε < x}, and εref denotes the 90th
percentile error.

(i) From figures 6 and 7, it is observed that large local errors are present for all growing
strategies, albeit with small probability. From tables 4 and 5, it is shown that when growing
is suppressed, large local errors are no longer observed, indicating that large local errors
result from the growing process.

(ii) From figure 7, the CDFs of ε are found to be largely independent of εtol, suggesting that
large errors are not due to the non-monotonicity of ε.

(iii) Large local errors are associated with non-convex ROAs. This follows from the fact that
large errors are observed even with grow mode 3, which guarantees error control for
convex ROAs.

(iv) When ε is scaled by εref, the CDFs of ε are generally the same for all grow modes, as can
be seen from figure 6. Hence, the simplest strategy (i.e. ellipsoidal growing, grow mode
1) should be used.

Parallel computations were performed to obtain conditional mean quantities in order to
examine the global error in ISAT. Statistical variability in the conditional mean quantities
was reduced considerably by time averaging the quantities over 200 iterations and using a
large number of particles per cell (Npc = 240). The following observations and conclusions
regarding the global error can be made from figures 8–13.

(i) The confidence intervals for the plotted quantities are large for the one or two largest
values of εtol, due to the occurrence of large statistical errors at large εtol.

(ii) In general, for the four smallest values of εtol, the calculated results are in agreement,
indicating that ISAT errors are small relative to statistical errors for εtol ≤ 10−4.

(iii) Figures 8–13 and tables 8 and 9 show that the global error εG varies linearly with εtol, as
expected.

Future work is focused on the improvement of ISAT local error control through the determi-
nation of the geometry of the region of accuracy, and the development of an enhanced growing
algorithm which limits the extent by which EOAs grow to encompass inaccurate regions. The
eventual aim is to achieve excellent local error control, while still maintaining the excellent
speed-up provided by ISAT. It is important to appreciate that even in the absence of effective
local error control, the global error in ISAT is small for εtol ≤ 10−4, and found to vary linearly
with εtol in this calculation.
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