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Abstract

Large Eddy Simulation/particle Probability Density Function (LES/PDF) approaches are well devel-
oped and have been applied to turbulent combustion problems involving complex flows with strong
turbulence-chemistry interactions. However, the level of details that can be used to describe the chem-
istry in those simulations is severely restricted by the available computational resources. To reduce
both the CPU time and memory cost, a pre-partitioned adaptive chemistry (PPAC) methodology tai-
lored to LES/PDF simulation has been developed in previous work, in which each particle is assigned
a specialized reduced representation and chemical model tailored to their individual composition. In-
stead of performing chemical reduction at runtime to determine the optimal set of equations to use
for a given particle, an analysis of the composition space region likely accessed during the turbulent
flow simulation is performed using simple Partially Stirred Reactor (PaSR) computations. The PPAC
approach relies on an a priori partitioning of the composition space into a user-specified number of
regions, over which suitable reduced chemical representations and chemical models are identified auto-
matically using the Directed Relation Graph with Error Propagation method. A computational particle
in the LES/PDF simulation evolves according to, and carries only the variables present in the reduced
representation corresponding to the composition space region it belongs to. This region is identified us-
ing a low-dimensional binary tree search algorithm, thereby keeping the run-time overhead associated
with the adaptive approach to a minimum. The methodology was tested in a non-premixed propane/air
PaSR, showing good performances both in terms of CPU cost and memory requirements. In this work,
the PPAC method is first applied to a different and larger kinetic mechanism for dodecane oxidation
to provide a broader validation of the technique. An extension to include dimension reduction based
on Rate-Constrained Controlled Equilibrium (RCCE) is then investigated to complement the DRGEP
chemistry reduction performed in the pre-processing stage, and significantly lower the number of vari-
ables required to be carried by the PDF particles.
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1 Introduction

With a deeper understanding of chemical kinetics for hydrocarbon fuel combustion and improved
mechanistic considerations, some of the latest published detailed chemical kinetic schemes are ap-
proaching 104 species and usually five times as many reactions [1]. However, integrating these ad-
vances in chemical kinetics with Computational Fluid Dynamics (CFD) tools to fully realize their
potential in terms of improved understanding and optimization of practical combustion devices
is numerically prohibitive. Typically, different modeling approaches for reactive turbulent flows
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allow different upper limits of the number of variables that can be used to describe the chemistry.
We specifically focus here on LES/particle PDF methods, which are shown to be computationally
viable up to a few dozen variables [2].

Considering that thermodynamic conditions can vary widely in space and time for a given reactive
flow configuration, and in any small range of temperature and compositions, only a few species
are chemically active, one way forward is to employ the concept of adaptive chemistry, in which
the chemical representation and kinetic equations are adapted to the local chemical activity and
thermodynamic state. Hence, the chemistry description for different conditions may require many
fewer species and reactions. Several adaptive strategies have been proposed recently (e.g. [3–15].
While those studies showed good results in terms of CPU cost reduction, very few of them directly
address the issue of memory and storage requirements, a major limitation in LES/PDF simulations.

Recently, we proposed and assessed an adaptive chemistry methodology tailored to LES/PDF sim-
ulations, as described by Liang et al. [16]. The two primary defining characteristics of the method-
ology are that (1) the composition space is partitioned, and reduced representations and models
defined in a pre-processing step, and (2) that the Directed Relation Graph with Error Propagation
(DRGEP) is used to generate the reduced kinetic models. The methodology is therefore called
Pre-Partitioned Adaptive Chemistry using Direction Relation Graphs with Error Propagation, or
PPAC-DRGEP.

To provide context to the work described in this paper, a brief description of the method is pro-
vided in Sec. 2, focusing on the aspects most relevant to the subsequent sections. For additional
details, the reader is referred to the original paper by Liang et al. [16] (preprint accessible online.)
This is followed by the description of the two main contributions in this paper: 1) the application
of PPAC to a larger chemical kinetic mechanism describing the oxidation of dodecane, to con-
firm that the methodology is indeed general (Sec. 3); and 2) the extension of the methodology to
include dimension reduction based on Rate-Constrained Controlled Equilibrium (RCCE) [19], to
complement the DRGEP chemistry reduction performed in the pre-processing stage. The potential
of RCCE to further decrease the number of variables required to be carried by the PDF particles in
PPAC is investigated (Sec. 4).

Note that all test cases described here are conducted in a Partially-Stirred Reactor (PaSR), which
is (by construction) similar to a single cell in a LES/PDF simulation: it should be emphasized that
the same methodology is directly applicable to an LES/PDF simulation.

2 PPAC Methodology Overview
We consider a reacting mixture of ideal gases, consisting of ns chemical species composed of ne

elements. For simplicity of exposition, the mixture is assumed to evolve at a fixed pressure p, so
that (given p) the full thermochemical state, or composition, of the mixture is completely charac-
terized by the ns-vector of species mass fractions Y and the mixture temperature T , defined by the
composition vector of size (ns +1): Φ ≡ {Y, T}. In the PaSR simulation, the compositions of the
large number of particles evolve in time in small time steps, ∆t, in three fractional steps accounting
for: inflow/outflow/pairing; mixing; and reaction. Similarly, in an LES/PDF simulation, particles
are added and removed as appropriate at boundaries, and there composition changes in mixing and
reaction fractional steps.
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The PPAC-DRGEP combines an off-line, pre-processing stage (during which the composition
space is partitioned and a set of reduced kinetic models is created), and an online, dynamic proce-
dure, the adaptive simulation, in which the appropriate reduced representation and model to use
for each particle at time t is identified.

The pre-processing stage consists of the following three tasks:

1. Database creation: Using the PaSR and the detailed chemical mechanism (involving ns

species and nr reactions), generate a database D consisting of a large number nD of full
compositions, representative of the compositions that occur during the PaSR or LES/PDF
simulation of interest.

2. Partitioning: Partition a suitably-defined low-dimensional space (referred to as the classify-
ing space), C, into a specified number NR of regions, the J th region being denoted by RJ ,
by iteratively introducing cutting hyperplanes in C to isolate groups of sample compositions,
i.e. subsets ofD, with similar short-term kinetics. The partition structure is stored as a binary
tree.

3. Reduced modeling: For each region RJ , identify a reduced representation and kinetic model
MJ involving a reduced set of nJ

s retained species and nJ
r reactions, with the expectation that

nJ
s and nJ

r are significantly smaller that ns and nr, respectively. The nJ
s -vector of the mass

fraction of the retained species is denoted by yJ . In the adaptive simulation, the reduced
composition of the nth particle is denoted by φ(n), or reduced composition based on model
MJ and is defined as

φ
(n)
J = {y(n)

J , T (n)} , (1)

Once the classifying space partition and a corresponding set of reduced kinetic models MJ=1,...,NR

have been constructed, the time evolution of a particle composition in the PaSR or LES/PDF can
be computed using reduced representations and kinetic models dynamically chosen among this set.
The steps involved in the adaptive algorithm are described in Fig. 1 for NR = 4.

3 Application to non-premixed dodecane oxidation

The first objective of this paper is to demonstrate that the strategy outlined above, successfully
tested for a 100-species propane mechanism, can be used to handle different, larger kinetic models
with similar performances. This is done here in a non-premixed PaSR burning an overall stoichio-
metric mixture of n-dodecane and air. The parameters used in the study are provided in Sec. 3.1,
followed by the description of the error measures used to assess the performances of the adaptive
strategy (Sec. 3.2). Section 3.3 compares results obtained in this work for dodecane oxidation to
those obtained in Liang et al. [16] for propane.

3.1 PaSR configuration and parameters
We consider the detailed mechanism for n-dodecane developed by Narayanaswamy et al [17],
which consists of ns = 255 species involved in nr = 2289 reactions. The PaSR has three inflow
streams: pure fuel, oxidizer (air), and a pilot stream defined as the burnt products of a stoichiomet-
ric dodecane/air mixture in chemical equilibrium. The pressure is 1 bar throughout. The fuel and
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Figure 1: Overview of the adaptive strategy. The classifying space C is partitioned into NR = 4
regions, R1 to R4, for which there are corresponding reduced kinetic models M1 to M4. At the

beginning of the time step, particle n, represented by the black circle, has the reduced
representation based on model M1. In the mixing fractional step, the reduced representation φ

(n)
J=1

is mixed according to the specified mixing model to obtain the composition after mixing Φ(n),m

(2). Because of the mixing process, the representation after mixing, Φ(n),m, has moved to region
R4, which is determined from classification in the partition (3). Φ(n),m is reduced to the

appropriate representation, φ(n),m
J=4 (4), then integrated in time according to the reduced model M4

(5) to yield the particle composition at the end of the time step: φ(n)
J=4(t+ ∆t). (Note that the final

composition, although based on model M4 is not necessarily in region R4).

air streams are at a temperature of 300K, while the pilot stream is at the adiabatic flame tempera-
ture. Initially, all particles in the reactor are set to the pilot composition. The number of particles,
and hence the total mass, in the reactor remains constant. The particle compositions change in time
through reaction and mixing. All relevant parameters are included in Table 1.

Table 1: Specification of the parameters for the non-premixed propane/air piloted PaSR test case.

Reactor characteristics
Parameters Name Values

Pressure p 1 bar
Number of particles np 100

Pairing time τpair 1 ms
Mixing time τmix 1 ms

Residence time τres 10 ms
Time step ∆t 0.1 ms

The PaSR is run with the above parameters for 10 residence times. We observe a transient state,
which depends on the initial conditions, for about the first three residence times, after which the
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PaSR operates in a statistically stationary state. After this initial run, we collect sample composi-
tions for another ten residence times. The composition database D consists of 10, 000 composi-
tions, obtained by randomly sampling from the 105 compositions collected.

3.2 Assessment of performances
It is important to define clearly the different types of errors and performance measures used to
assess the accuracy of the adaptive runs.

• The error tolerance, or cut-off error εc, is used during Reduced Modeling in the pre-processing
stage to determine for each region J a reduced model MJ that can describe the short-term
time evolution of any composition belonging to that region with an error tolerance εc. This
error tolerance is user-specified.
• The incurred error for a quantity X , εX is the error observed during adaptive runs when

comparing the resulting particle trajectories to those obtained using the detailed mechanism.
This error has two sources: the reduced kinetic modeling, directly controlled by εc; and the
conversion error, which arises when the representation of a particle’s composition changes
from one reduced representation to another. The incurred error is measured for any quantity
X (temperature or species mass fractions) as:

εX =

∑nt

k=1

∑np

n=1 |X
(n),A
k −X(n),D

k |∑nt

k=1

∑np

n=1 |X
(n),D
k |

. (2)

where X(n),A
k and X(n),D

k denote the value of quantity X at time step k for particle n in a
PaSR simulation with adaptive chemistry (A) and detailed chemistry (D), respectively.
• An additional measure relevant to PDF methods aims at assessing the computer memory cost

of the adaptive simulations. It is defined as the relative number of species, n̄, defined as the
number of species in the reduced models used (averaged over all particles and time steps)
divided by the number of species in the detailed mechanism, ns:

n̄ ≡ 1

ntnp

nt∑
k=1

np∑
n=1

n
(n),A
s,k , (3)

where n(n),A
s,k is the number of species in the reduced model used for particle n on time step

k, and nt is the total number of time step.
• Finally, we define the relative time trel of an adaptive simulation as its CPU time divided by

that of the simulation with detailed chemistry.

Adaptive simulations are run for a wide range of error tolerances εc (therefore leading to a wide
range of incurred errors εX), and for two values of NR, namely NR =1 and NR =30. Note that the
case NR = 1 is degenerate in that the adaptive methodology is in fact not adaptive: we refer to this
as the non-adaptive case. Particle evolutions are recorded over a total time τ equal to 10 residence
times, corresponding to nt = 1, 000 time steps. In order to create a fair test of the adaptive method,
the seed that generates the pseudo-random numbers used in the PaSR simulations is changed from
that used to create the sample database D. Therefore the PaSR particles follow trajectories in the
same areas of the composition space, but they are not strictly identical to those obtained in the
pre-processing stage.
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3.3 Results
Figure 2 shows how the incurred error measures for temperature, εT , and a major product, in this
case CO2, εCO2 compare to one another. The correlation between the two being very strong, εT is
used throughout the section as the representative incurred error ε.
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Figure 2: Correlation between incurred error in temperature, εT , and incurred error in CO2, εCO2 ,
showing that εT is an appropriate representative measure of the errors introduced during the

adaptive simulation.

Computer time Figure 3(a) shows the relative time trel as a function of the incurred temperature
error for the different values of NR. It may be observed that, as expected, the simulations using
reduced models require less CPU time than those using the detailed mechanism (i.e., trel is less
than unity), and the adaptive case (NR = 30) require, typically, just two thirds of the time of the
non-adaptive case (NR = 1). At an incurred error of εT = 3 × 10−3, the CPU time required for
the adaptive cases is about 20% of that for the detailed mechanism, and about 36% of that for the
non-adaptive case.

Computer memory Storage requirements of the PaSR simulations, as measured by the rela-
tive number of species n̄, are shown in Fig. 3(b) for both adaptive (NR = 30) and non-adaptive
(NR = 1) cases. This shows, for any specified incurred temperature error in the adaptive PaSR
simulations, the degree of reduction that can be achieved by the method. Both curves are monoton-
ically decreasing with increasing incurred error ε, from values very close to unity, corresponding
to very low error levels at one extreme (in which the reduced models are very close to the detailed
model), to large errors and very small reduced models at the other extreme. A clear difference
is observed between the non-adaptive case (NR = 1) and the adaptive cases, with the number of
species retained to achieve a specified error tolerance being up to a factor of two lower for the
adaptive cases (compared to the non-adaptive case). As above, considering εT = 3 × 10−3 as
a typical desired error level, of the order of 30% of the species are needed (on average) in the
adaptive simulations, compared to roughly 60% for the non-adaptive case (NR = 1).
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(a) Relative time.
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(b) Relative number of species.

Figure 3: Relative time trel and number of species n̄ (adaptive to detailed) vs. the incurred error in
temperature εT . Comparison between the non-adaptive case, NR = 1 (red squares) and adaptive

case with NR=30 (blue diamonds).

Comparison with previous results. While the above results show clear benefits of the adaptive
approach, even in a PaSR with pair-wise mixing (and it is expected that those benefits will be even
more pronounced in a turbulent combustion calculation, since the portion of particles carrying in-
erts or burnt compositions, described efficiently with few variables, is much higher than in a PaSR),
it is interesting to compare performances of the PPAC-DRGEP approach when applied to differ-
ent mechanisms. This is done in Figure 4, where results obtained previously for a non-premixed
propane/air PaSR (115 species, 1300 reactions, [16]) are plotted on top of the above dodecane re-
sults (255 species, 2289 reactions). The qualitative behavior is quite similar, with the non-adaptive
case yielding both higher relative times and number of species. It can also be observed that perfor-
mances in the propane case are significantly better for low values of the incurred error, which may
indicate a non-optimal choice of parameters in DRGEP. However, these differences for a large part
disappear (with better performances even observed for the dodecane case) in the range of incurred
errors most likely of interest for LES/PDF, namely, 10−4 < ε < 10−2.

4 Combined DRGEP/RCCE methodology in PPAC

The PPAC procedure described above relies on the DRGEP chemistry reduction technique to si-
multaneously decrease computer time and memory requirement. DRGEP’s main mode of action is
to eliminate from the models MJ all species and reactions that do not significantly impact combus-
tion chemistry, as measured by the prediction of user-specified targets. To further decrease CPU
and memory costs, PPAC-DRGEP can be combined with additional dimension/reduction tech-
niques to further decrease the number of variables to consider, and storage/retrieval algorithms to
accelerate the expensive evaluation of the chemical source terms. Of special interest here is the
combined rate-controlled constraint equilibrium/in situ adaptive tabulation (RCCE/ISAT) method-
ology previously developed by Hiremath et al. [2, 18], since it has been shown to be very efficient
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Figure 4: Relative time trel and number of species n̄ (adaptive to detailed) vs. the incurred error in
temperature εT . Comparison between simulations using a 255-species dodecane mechanism

(diamonds/squares) and a 115-species propane mechanism (triangles).

in the LES/PDF computational framework. As a first step toward full integration of PPAC-DRGEP
and RCCE/ISAT, we focus on the potential of the RCCE approach to further decrease computer
memory requirements. Integration with ISAT, and therefore demonstration of further CPU cost
reduction, is left to future work.

4.1 Methodology
In the conventional RCCE framework [2, 18], the user specifies a number nrep of major species
(or, more generally, “represented variables”, which are linear combinations of species), with the
assumption that nrep is much smaller than the number of species ns of the detailed kinetic mech-
anism. Then, the RCCE reduction method identifies a low-dimensional manifold (of dimension
nrep) in the ns-dimensional species space; and, by assumption, the composition occurring in the
reactive flow are confined to this low-dimensional manifold, which is parameterized by the major
species.

Here, rather than considering the detailed mechanism as starting point, the RCCE procedure is ap-
plied to the reduced models MJ identified by DRGEP in each region of the partition. Accordingly,
the PPAC-DRGEP reduced representation φJ = {yJ , T} in region RJ is replaced by the RCCE
representation φR

J defined as:
φR

J ≡
{
yR
J , z

u,e, T
}

(4)

where yR
J is the mass fraction of the nJ

rep represented species for region J , and zu,e is the ne-vector
of the specific moles of the elements in the unrepresented species (atom conservation). Species
reconstruction from φR

J to φJ is performed by calculating the constrained-equilibrium composition
for the given constraints of represented species using CEQ library [19], and the reconstruction of
φJ to full representation is done using the usual PPAC conversion tools.

The represented species for each region J , forming a subset of the retained species in region
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J , is chosen as part of the pre-processing stage using a greedy algorithm. Initially, all retained
species are identified as represented species. Species are then removed iteratively from the set
of represented species based on how they impact the accuracy of the CEQ reconstruction step.
The algorithm stops when the CEQ reconstruction applied to all composition in the pre-processing
database yields errors larger than the 10% DRGEP error cut-off εc. In the adaptive simulation,
particles carry only represented species and unrepresented elements instead of the DRGEP-derived
φJ representation.

4.2 Results

The non-premixed propane/air PaSR used as main test case in previous work [16] is repeated here
with an identical choice of parameters and the addition of the RCCE procedure. This results in two
major effects: 1) on the relative number of species required, since only φR

J needs to be carried by
the particles, and 2) on the observed error levels, since the CEQ reconstruction step does introduce
an additional source of error. The performances of the combined DRGEP/RCCE approach are
compared to the original PPAC-DRGEP in Fig. 5 for both incurred temperature and CO2 errors.
We observe a significant shift of the curves toward lower errors, for example decreasing the number
of variables needed to achieve an incurred error of 10−3 by close to a factor of two.
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Figure 5: Relative number of species n̄ (computed based on the number of represented variables
(nJ

rep + ne) carried by particles) as a function of the incurred temperature error (left) and CO2

error (right) in a non-premixed propane/air PaSR. Comparison between the non-adaptive case
(NR = 1, DRGEP only, red squares) and the adaptive cases (NR = 30) with RCCE (black

triangles) and without RCCE (blue diamonds).

5 Conclusions

The recently developed pre-partitioned adaptive chemistry PPAC approach tailored for LES/particle
PDF simulations has been tested on a larger kinetic mechanism for dodecane oxidation containing
more than 250 species and nearly 2300 reactions. Similar observations have been made compared
to the propane/air configuration extensively studied in the original work [16], including excellent
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correlations between various incurred errors, and significant time and memory reduction compared
to both the detailed mechanism, and a non-adaptive reduced simulation. The PPAC procedure has
also been extended to include dimension-reduction in the pre-processing chemistry reduction stage.
Using the resulting combined DRGEP/RCCE approach, the number of variables required to main-
tain the incurred errors in the adaptive simulation below a given threshold has been reduced by a
factor of two compared to the DRGEP procedure alone. To fully reap the benefits of the RCCE
approach, PPAC will be combined with ISAT in future work, with an expected significant decrease
in CPU time for the adaptive simulations.
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