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Direct numerical simulations (DNS) are used to study fundamental processes in non-premixed turbulent 
reacting flows. A broad range of Damkohler number, Da, and reaction zone thicknesses are studied, 
encompassing: stable, near-equilibrium reaction; local extinction; and global extinction. A simple 
thermochemical model for one-step reversible reaction is employed, in which the state of the fluid is 
described by the mixture fraction ¢(x, t) and the perturbation from equilibrium y(x, t). A pseudo-spectral 
method, with grid sizes up to 1283, is used to solve the Navier-Stokes equations and the conservation 
equations for ~: and y. These equations are augmented with artificial forcing, so that the resulting velocity 
and mixture fraction fields are statistically stationary, homogeneous and isotropic. At sufficiently high 
Damkohler number, the perturbation field is also statistically stationary, corresponding to stable reaction. 
But at lower Da, y increases without bound, corresponding to global extinction. The critical Damkohler 
number Dac, t at which global extinction occurs is determined from the simulations, and is found to be 
significantly different from that predicted by simple models (flamelet, conditional moment closure, etc.). A 
simple statistical model is used to show that the discrepancy can plausibly be explained by statistical 
variability. The simulation results are used to assess the accuracy of simple models, especially for Damkohler 
numbers at which there is globally stable reaction, but significant local extinction. 

1. INTRODUCTION 

When the Damkohler number is very large, 
the fluid in a nonpremixed turbulent flame is 
everywhere close to chemical equilibrium: 
and theories and models based on the equilib- 
rium assumption are successful [1, 2]. There 
are also a number of models that predict 
the small departures from equilibrium. Among 
these are: the flamelet model [3], two-variable 
assumed-pdf methods [4], pdf transport meth- 
ods [5], quasi-equilibrium distributed reactions 
(QEDR) [6], and the conditional moment clo- 
sure (CMC) [7, 8]. 

As the Damkohler number is decreased, the 
departures from equilibrium become larger, 
and local and global extinction can occur. These 
phenomena have been studied in a series of 
experiments on piloted jet diffusion flames by 
Masri et al. [9]. In these more testing circum- 
stances, most of the models mentioned above 
either break down, or at least become much 
less secure. Calculations of the piloted jet 
flames--including local and global extinction 
--have been performed using pdf transport 
equations by Chen and Kollmann [10], Taing 
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et al. [11], and Norris and Pope [12]. In spite of 
the partial success of these calculations, much 
remains to be learned about the detail pro- 
cesses involved in nonpremixed combustion far 
from equilibrium. 

The objective of the present work is to use 
direct numerical simulations (DNS) to study 
nonpremixed turbulent reacting flows near ex- 
tinction. Both the flow--constant-density, sta- 
tistically stationary, homogeneous isotropic 
turbulence--and the thermochemistry--a 
one-step reversible reaction--are extremely 
simple, and yet they contain the required fun- 
damental ingredients to display the competi- 
tion between reaction and mixing which is the 
essence of the problem at hand. 

In the simulations performed, the two pa- 
rameters that are varied are the Damkohler 
number 

Da - Tx/r* ,  (1) 

(where T x and r* are the characteristic turbu- 
lent-mixing and reaction time scales, respec- 
tively) and the flame-thickness parameter 

st* - s c ' / a  str, (2) 

(where st' is the rms mixture fraction and A str 
is the width of the reaction zone in mixture 
fraction space). At large Da, small values of s t* 
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(e.g., ~* = 0.1) correspond to broad reaction 
zones, whereas larger values (e.g. ~ * =  10) 
correspond to thin flamelets. 

Figure 1 is a sketch of the Da-~* parame- 
ter plane. The equations governing the react- 
ing flow (detailed in Section 3) are such that at 
sufficiently large Da a statistically stationary 
state exists corresponding to stable combus- 
tion. In this state, there is (on average) a 
balance between reaction and mixing. As the 
Damkohler number is decreased (by increasing 
the reaction time scale z*), the departure from 
equilibrium increases so as to maintain the 
average reaction rate. But, for given ~*, below 
a critical value of Da--Dacrit(~*)--reaction 
can no longer balance mixing: in the simula- 
tions global extinction occurs, and at large 
times the reaction rate is zero. 

The contributions of this work are: to iden- 
tify the stability boundary Dacrit(~*); to pre- 
sent one-point statistics from simulations in 
the vicinity of this boundary; and to assess the 
accuracy of theories and models (namely, 
flamelet, QEDR and CMC) near this bound- 

ary. 
The simulations (described in detail in Sec- 

tion 4) are performed using a pseudo-spectral 
method on grids of size up to 1283 . For inert 
flows, Taylor-scale Reynolds numbers Rx in 
excess of 90 can be attained on 1283 grids [13] 
with good resolution of the smallest (i.e., Kol- 
mogorov) length scales. But thin reaction zones 
(large ~*) require resolution on scales smaller 

global Dacat(~')~ 
e x t i n c t i o  

combustion 

Da 
Fig. 1. Sketch of the Da - ~* parameter plane showing 
the line Dacri~(~*) that separates the region of stable 
combustion from that of global extinction. 

than the Kolmogorov scale, and hence (for a 
given grid) requires the Reynolds number to 
be reduced in order to maintain resolution. All 
the simulations reported here are at the rather 
low Reynolds number of Ra = 17 so that fairly 
thin reaction zones can be simulated (i.e., ~* 
up to 1.5). 

The next three sections describe, in turn, the 
thermochemistry used, the governing equa- 
tions, and the numerical simulation. In Section 
5, the simulation results determining global 
extinction are presented. Several different 
models are outlined in Section 6, and their 
predictions of Dacrit(~*) are compared to the 
simulation data. The qualitative changes that 
occur in one-point statistics as Da is decreased 
from Da ~ Dacrit to Da ,~ Dacrit are shown in 
Section 7. Then, in Section 8, the range of 
validity of different models is determined by 
quantifying the errors in their predictions as 
functions of Da and ~*. 

2. THERMOCHEMISTRY 

We consider the simplest possible thermo- 
chemistry that allows the study of finite-rate 
kinetic effects in non-premixed combustion. 
Accordingly, the density is taken to be constant 
(p  = 1), and the molecular diffusivities F are 
taken to be equal and constant. The mixing is 
then completely characterized by the mixture 
fraction ~. A one-step reversible reaction (fuel 
+ oxidant ~ product) is considered, with Y 
being the reaction progress variable (i.e. nor- 
malized mass fraction of product). 

At equilibrium, Y adopts the value Ye(~) 
which is determined by the specified stoichio- 
metric mixture fraction ~s (0 < ~s < 1) and by 
the specified equilibrium constant K (K > 
[ ~(1 - ~:s)]- a ). The equilibrium value Ye( ~ ) is 
determined from the relation 

re 
K = ( 3 )  

( ~ -  ~sYe}{1 - ~ -  (1  - ~s)Ye} " 

In the numerator, Ye represents the mass frac- 
tion of products, while in the denominator the 
two terms in braces represent the mass frac- 
tions of fuel and oxidant, respectively. 
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It can be deduced from Eq. 3 that the maxi- 
mum value of Ye( ~ ), Ymax is 

1 
Ymax 

1 + 2/~-K ' 

which occurs at ~ = ~max" 

~max 
~s + K-l~2 

1 + 2 K - 1 / 2 '  

As K tends to infinity it may be observed that 
"Ymax tends to unity and ~max tends to ~:s. 

Different fuels can be simulated by different 
choices of ~s and K. For a real flame both ~: 
and Y lie between zero and unity. However, 
for purposes of DNS it is desirable to define 
the thermochemistry for all vales of ~, and for 
negative values of Y. The specification given 
above leads to well-defined and sensible values 
of Ye(~:) for all values of ~:. 

In the theory of turbulent diffusion flames 
(e.g., Bilger [2]), the quantity 

d2Ye( s ¢ ) 

y f ( ~ )  -= d ~  2 ' 

plays an important role. Figure 2 shows plots 
of Ye(~) and Y~"(s ~) for ~s -- 0.5 and K = 400 
- - the  values used in the simulations. 

1.0 

A central quantity in the present formula- 
tion is y - - t h e  departure from equilibrium of 
the reaction progress variable: 

(4) Y = Ye( S c) -- Y- (7) 

Without implication that it is small, y is re- 
ferred to as the perturbation. The pair of vari- 
able (~:, y) contains the same information as 
(~:, Y). The perturbation y is zero for equilib- 

(5) rium, and otherwise positive. 
The reaction rate S is defined as the rate of 

creation of Y. It is specified by 

Sy(sC, Y) = S(~,y)  = f ( y ) g ( ~ ) / r  c, (8) 

where r~ is a specified time scale, 

f (y )  = By exp(1 - By), (9) 

g(~:) = exp{-B(Ymax - Ye(~))}, (10) 

and B is a specified parameter--related to the 
activation energy--which here is ascribed the 
value B = 15. Both f and g are positive, with 
maximum values of unity. Figure 3 shows f(y) 
for B = 15 while Fig. 4 shows g(s  c) for K = 
400. The makeup of the reaction rate is sum- 

(6) marized for the chosen set of parameters on 
Fig. 5. The maximum reaction rate, which oc- 
curs at (~ ,y )=(~max ,  B -1) is Smax = 1/rc. 
Although it is not based on a particular kinetic 
mechanism, this specification of S( ~:, y) is de- 
signed to contain (in a mathematically simple 
way) the key ingredients of combustion chem- 

i , . , ~ ^  

iii[ ,,, Y"o(~) / 50 

Fig. 2. Equi l ibr ium value of  Y, ~ ( ~ ) ,  and its second 
derivat ive Ye" (~)aga ins t  mixture fract ion for ~:s = 0.5, 
K = 400. 

f(Y) 0.60"81"0 

°4i 
0.2' 

0 ~  . . . .  i . . . .  J , ,  . , , , 

. o _  o.~ o.a o.a 0.4 o.s 016 blr 
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Fig. 3. Reaction rate function f(y) (Eq. 9) versus the 
perturbation y, for B = 15. 
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Fig. 4. Reaction rate function g(~) (Eq. 10) versus mix- 
ture fraction for ~ = 0.5, K = 400, B = 15. 

istry. These include: a linear dependence of S 
on y for small y; an exponential decrease for 
large y; and, a strong attenuation of S for 
mixtures far from stoichiometric. 

Several derived quantities play important 
roles. The lean and rich limits of the reaction 
zone in mixture-fraction space (~t and ~r ) a r e  

defined to be the lower and upper values of 
at which g(~)  equals 0.1. Then, the reaction 
zone thickness in mixture-fraction space is de- 
fined to be 

A~r = ~r - El. (11) 

The quantity So(~) is defined by 

S0(C) [OS(, ,y)]  - = g( ¢)/z*, (12) 
Oy y=0 

where 

r* ---- %/(Be) .  (13) 

The significance of S o is that for small values 
of y the reaction rate is approximately ySo(~). 
At emax, for small y the reaction rate is y/r*, 
and hence we take ~'* to be the characteristic 
reaction time scale. Note that the maximum 
reaction rate is Sma x = 1 / T  c = B e / r * .  

The values of the thermochemical parame- 
ters used in the simulations are summarized in 
Table 1. 

3. GOVERNING EQUATIONS 

The governing equations for the velocity u(x, t), 
the mixture fraction ~(x, t), and the perturba- 

1.0 . . . . . . . . .  S ( E  ~ ( y . . , Y . ,  , (a) 
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Fig. 5. Contour plots of the reaction rate in composition 
space ~:s = 0.5, K = 400, B = 15, r c = 1: (a) Sr(~,Y); (b) 
S(~,y). Contour intervals are 0.1, with the innermost 
contour value being 0.9. 

tion y(x, t) are solved by a pseudo-spectral 
method on an N 3 grid. Periodic boundary con- 
ditions are applied so that all the fields are 
statistically homogeneous. 

Because the density (p  = 1) and the kine- 
matic viscosity v are constant, the evolution of 
the velocity field is unaffected by the ~ and y 
fields. The velocity field is solenoidal (V. u = 
0), and evolves according to the Navier-Stokes 
equations augmented by artificial forcing to 
yield statistically-stationary homogeneous  
nearly-isotropic turbulence. The way this is 
done, and the properties of the resulting turbu- 
lence, are fully described by Eswaran and Pope 
[14] and Yeung and Pope [13], and are summa- 
rized in the next section. 
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TABLE 1 

Thermochemical Parameters 

Specified Thermochemical Parameters 

~s 0.5 
K 400 
B 15 
r* variable 

Derived Thermochemical Parameters 

~max 0,5 
sol 0.384 
£r 0.616 

m~r 0.232 
Ymax 0.909 

r c r ' B e  - 40.8r* 
Smax %- l = 0.0245/~'* 

The evolution equation for the mixture frac- 
tion £(x, t) also contains forcing to maintain 
statistical stationarity. This is done in an indi- 
rect way, which is now described. Then the 
implied equation for ~:(x, t) is presented. 

The equation 

D ,  
~-~: = F V2~ (14) 

is solved for the conserved passive scalar ~. It 
is known that after some time ~ becomes 
self-similar, with a one-point one-time distribu- 
tion that is close to Gaussian [15]. 

We use square brackets [ ] to denote volume 
averages of fields. Thus the (time-dependent) 
volume average of ~(x, t) is [ ~ ] and the rms ~r~ 
is given by 

O'? = [(~--  [~]12]. (15) 

Then the quantity 

~ =  ( ~ -  [ ~])/(r~, (16) 

has volume average mean zero and variance 
unity. Based on this variable, the mixture frac- 
tion is defined by 

~(x, t) = ( ~: ) + ~:'~(x, t), (17) 

where (s  c ) and ~:' are the specified mean and 
standard deviation. Thus at all time the volume 
average mixture fraction is (~:), and its rms is 
~' .  

It can be deduced from the above, that the 
mixture fraction evolves by 

D~ 1 
Dt = FV2~+ 2 ( ~ -  ( ~ ) ) [ X ] / ~ ' 2 '  (18) 

where x- - the  scalar dissipation--is defined by 

X = 2F V¢. V¢. (19) 

Thus, the final term in Eq. 18 corresponds to 
the artificial forcing. It may be observed that 
this is linear, deterministic forcing, with no 
specified parameters. 

The equation solved for the reaction progress 
variable is 

DY 
= F V 2 Y +  S y ( ~ , Y )  

Dt 

1 
+ ~Ye'(~:)(~ -- ( ~:))[ X]/~ 'z" (20/ 

The four terms in the equation represent, re- 
spectively, the rate of change of Y following 
the fluid; molecular diffusion; chemical reac- 
tion; and, forcing. The rationale for the forcing 
term is given shortly. 

From the definition of the perturbation, y = 
Ye( ~ ) -- Y, we obtain 

Dy D~ D Y  
D---~ = Y~'(~) Dt Dt " (21) 

Then, from Eqs. 18 and 20 we obtain 

Dy 1 
Dt = FVZy - ~ x Y " ( ~ )  - S ( G y ) .  (22) 

It may be seen, then, that the forcing term in 
the Y equation (Eq. 20) is specified to be 
Ye'(~) times that in the ~: equation (Eq. 18) so 
that (in Eq. 21) the forcing terms vanish. Hence 
the forcing has no effect on y. In particular, if 
the fluid is in equilibrium (i.e., y = 0) the 
forcing terms do not cause a departure from 
equilibrium. 

In Eq. (22) the mixing rate Z (x, t), defined 
by 

l ~ 1 t¢ -TXYe (~:), (23) 

is of central theoretical importance. It is non- 
negative, and hence tends to draw the fluid 
away from equilibrium (i.e., increasing y), 
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whereas the (nonnegative) reaction rate S 
tends to decrease y towards equilibrium. 

4. SIMULATIONS 

All the simulations performed have statisti- 
cally-identical velocity fields, with a nominal 
Reynolds number of R x = 17. Four different 
values of ~* = ~' /A ~r are considered, namely: 
0.172, 0.517, 1.000, and 1.552. As described 
below, excellent spatial resolution is achieved 
by using 323 , 643 , 963 , and 128 3 grid nodes, 
respectively, for the four cases. Most of the 
results from 323 and 643 calculations are ob- 
tained by averaging the results from 8 statisti- 
cally identical and independent simulations. 

4.1. Vel~i f f  

The velocity fields are marched in time using a 
variant of Rogallo's algorithm [16] to solve the 
incompressible Navier-Stokes equations with 
artificial forcing. Starting from some initial 
conditions, the velocity fields are advanced in 
time until a statistically stationary state is 
achieved. The details of the calculation proce- 
dure and the forcing scheme are fully de- 

scribed by Eswaran and Pope [14] and by 
Yeung and Pope [13]. The purpose of this 
subsection is to characterize the statistical 
properties of the resulting statistically station- 
ary velocity fields. 

Table 2 defines the input parameters and 
the primary statistics, and it gives their numeri- 
cal values. The lowest wavenumber in the sim- 
ulations k 0 is taken to be unity: correspond- 
ingly, the solution domain is a cube of side 2~r. 
The physical input parameters are v and the 
forcing parameters KF, T e, E*, and T~ (see 
Yeung and Pope [13] for definitions). The pri- 
mary statistics (e.g., K and e) are volume-aver- 
age quantities; and the values shown in the 
Table are time-averaged over the duration of 
the simulation. 

Since the physical input parameters are the 
same for each simulation (and since the nu- 
merical errors are very small), the small dif- 
ferences in the resulting statistics (e.g., u' and 
l) are attributable to statistical variability. This 
variability appears to be an underappreciated 
feature of direct numerical simulations: it is 
normal practice to report the results of a single 
simulation. To illustrate the level of variability, 
Fig. 6 shows the evolutions of several statistics 

TABLE 2 

Summary of Velocity-Field Statistics a 

N--grid size N 32 64 
Ns--number of simulations N s 8 8 
v---kinematic viscosity v 0.087 0.087 
r - - turbulent  kinetic energy r 1.642 1.579 
e- -mean dissipation rate e 0.768 0.735 
u'--turbulence intensity (2K)1/2 U' 1.046 1.026 
/--longitudinal integral length scale lk o 1.930 1.962 
A--Taylor scale A/l  0.742 0.741 
r/--Kolmogorov scale ~l/l 0.089 0.089 
Te--eddy turnover time ( l /u ' )  T e 1.885 1.960 
% = Kolmogorov time scale % / T  e 0.179 0.175 
T--duration of simulation T / T  e 16.995 12.261 
R t =- u ' l / v  R I 23,4 23.3 
R a =- u 'A/v R a 17.4 17.3 
ko--smallest wavenumber ko~ 0.172 0.174 
kmax--largest resolved wavenumber kmaxr/ 2.59 5.22 

Kr--forcing parameter K r / k o ~ 
Tv--forcing parameter Tp 0.6369 0.6369 
e* = forcing parameter 6" 0.01306 0.01306 
Tm*= forcing parameter T* 0.4 0.4 

96 
1 

0.087 
1.473 
0.642 
0.991 
2.092 
0.731 
0.087 
2.191 
0.168 
9.141 

23.8 
17.4 
0.182 
8.18 

0.6369 
0.01306 
0.4 

128 
1 

0.087 
1.459 
0.695 
0.986 
1.985 
0.728 
0.088 
2.038 
0.174 
1.423 

22.7 
16.5 
0.175 

10.52 

0.6369 
0.01306 
0.4 

a Dimensional quantities (e.g., v, r ,  ~, T e) are in arbitrary but consistent units. 
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Fig. 6. Temporal evolution of statistics from 8 statistically identical 643 simulations: (a) kinetic energy, (b) 
dissipation, (c) Taylor-scale Reynolds number, (d) eddy turnover time. The dashed lines show the 
maximum and minimum of values from the eight simulations. The solid line is the mean, with the error 
bars denoting the 95% confidence intervals. 

for the 8 statistically-identical 643 simulations. 
Variations of almost a factor of 4 may be 
9bserved in E. 

The quantity kmaxr/characterizes the spatial 
resolution of the velocity field. A rule of thumb 
s that kmaxT/ >_ 1 is adequate, and km,x~7 > 2 
s excellent [13]. Hence, as far as the velocity 
]eld is concerned, the spatial resolution is ex- 
• ellent (in fact, excessive). 

1.2. Mixture Fract ion 

['he mixture fraction equation (Eq. 14) is again 
olved by Rogallo's pseudo-spectral algorithm. 
;tarring from an initial condition, after some 
ime the mixture fraction field sO(x, t) (as well 

as the velocity field) becomes statistically sta- 
tionary. In this subsection, the primary statis- 
tics of these stationary field are reported. It 
should be appreciated that the standardized 
mixture fraction field ~:(x, t ) - -which  have zero 
mean and unit variance (see Eqs. 15-17) - -a re  
statistically identical for all the simulations (in- 
dependent of ~* = ~'/AsCr). (Of course both 
the s c and ~ fields are independent of Da.) 

Table 3 defines and summarizes the princi- 
pal statistics. The time scale Tx--which is used 
henceforth to nondimensionalize the time t - - i s  
the decay time scale of the (unforced) mixture 
fraction variance: 

Tx  _ ~ , e / ( X ) .  (24) 
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TABLE 3 

Summary of Mixture Fraction Statistics 

N - - g r i d  size 
Ns - -number  of simulations 
Tx--scalar time scale ( i ' 2 / (  g ))  
r = time scale ratio ( (K/e ) /T  x) 
/z3( ~) - -skewness  of 

/z4(f ) - - f la tness  of 

( 0 ) - - m e a n  of 0--- In( X/[ X]) 

2 = variance of 
/%(0)--skewness of 
g4(0)--flatness of 
p~---correlation coefficient of ~ and t~ 
f* = reaction zone (thickness parameter i ' /A fr 
is--scalar scale (Eq. 26) 
/,--reaction zone thickness (Eq. 28) 

E~ = area density of stoichiometric surface 

pn--probabi l i ty  of i t  < i < f~ 
1 tt Z--mix ing  rate ( -  ~XY~ ) 

N 32 64 96 128 
N s 8 8 1 1 

Tx/T e 0.493 0.466 0.436 0.475 
r 2.302 2.350 2.422 2.172 

/X3(~) --0.025 0.116 --0.555 --0.383 

/Z4(~) 2.891 3.019 3.443 2.846 

( 0 )  -- 0.663 -- 0.664 -- 0.707 -- 0.625 

O~ 2 1.588 1.588 1.695 1.468 

/Z3(0) --0.499 --0.496 --0.458 --0.467 

/Z4(t~) 3.504 3.507 3.381 3.562 

p~ - 0.01 0.04 - 0.223 - 0.204 
i *  0.172 0.517 1.000 1.552 

fB /A  fr 0.104 0.318 0.632 0.938 
lr/l 1.162 0.383 0.193 0.129 
lr/" q 12.999 4.311 2.221 1.458 
k 0 l, 2.242 0.751 0.404 0.256 

km~ x l r 33.63 22.54 18.17 15.36 
~ r /  0.178 0.179 0.180 0.176 
E~l, 2.314 0.771 0.399 0.257 
PR 0.997 0.667 0.398 0.249 

( Z ) T  x 0.020 0.086 0.112 0.250 

Recall that ( X )  - (2F Vs c. V~) is the mean 
scalar dissipation. The mechanical-to-scalar 
time scale ratio r = 2.3 agrees with that ob- 
tained by Eswaran and Pope [14] even though 
the Reynolds number here is smaller. 

Table 3 and Fig. 7, show some of the marginal 
and joint statistics of ~ and of the logarithm of 
X normalized by its volume average [ X]: 

- In( X/[ X ]). (25) 

To a good approximation, at least up to three 
standard deviations, the pdf of ~,fe(qJ), is 
Gaussian. In the central region, the pdf of 
O, fo(O) is also approximately Gaussian, but 
clearly the tails are not, with the negative tail 
being exponential and leading to a significant 
negative skewness. 

To the statistical precision of the results, it 
appears that ~ and 0 are independent. While 
the single 963 and 1283 runs show the correla- 
tion coefficient between ~ and 0 to be of 
order -0 .2 ,  it is nevertheless clear from Fig. 
7c that this is almost certainly due to statistical 
variability. 

Figure 8 shows the conditionally averaged 
scalar dissipation. If ~ and X were indepen- 

dent, then ( X I ~ ) / ( X )  would be unity, inde- 
pendent of ~. Given the size of the confidence 
intervals in Fig. 8, and recalling that ( X [ ~ )  is 
statistically-symmetric about ~:-- 0 the results 
are not inconsistent with independence (i.e., 

<x l~ )  = <x)).  
The statistics described so far (i.e. down to 

pg# in Table 3) are independent of ~*. Hence, 
different values for different simulations re- 
flect statistical variability. 

We use the parameter ~* - ~ ' /A~,  as the 
non-dimensional measure of the reaction zone 
thickness--or,  rather, the reaction zone thin- 
ness, since A ~:r various inversely with s c*. Bil- 
ger [2] argues that, in place of ~', the physi- 
cally appropriate scale to use is the scalar-scale 

~B ~-~ (< X > I ( E / b ' ) I / 2 )  1/2" (26) 

This is the microscale, of dimension ~, analo- 
gous to the Kolmogorov velocity scale, intro- 
duced by Gibson [17]. It may be seen from 
Table 3 that the range of ~* considered goes 
from s ¢* = 0.172 (corresponding to A~ r --- 
10EB) to ~:* = 1.552 (corresponding to A~r 
~B). (As is discussed in the next subsection, 
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Fig. 8. Conditional mean of  the scalar dissipation from 643 
simulations. Significance of l ines- -same as Fig. 6. 

larger grid sizes, or lower RA, is needed for 
resolved simulations at larger values of ~:*.) 

Several other statistics are now described 
which provide more insight into the signifi- 
cance of ~:*. 

We define PR to be the probability that ~: is 
in the reaction zone in mixture-fraction space. 
That is, 

PR -= Prob( ~c t < ~: < ~:r} 

where f~(~O) is the pdf of ~. It may be seen 
that PR is very close to unity at ~* = 0.172 
and decreases to about 1 /4  at ~* = 1.552. 
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A characteristic length scale of the reaction 
zones is taken to be 

l r =-- A ~ r / ( V  ~" V ~ )  1/2.  (28) 

The ratios l J l  and l r /~  are given in Table 3. 
At the largest value of s c*, l r is about 1½~7: but 
is should be recalled that 7} underestimates by 
about an order of magnitude the characteristic 
scale of the smallest features of the velocity 
field [18], [19]. 

The surface-to-volume ratio (or area den- 
sity) of the iso-scalar surface ~(x, t ) =  q, is 
denoted by Z(¢).  It can be evaluated from the 
geometric equation [20] 

Z(~,) = fe(q,)<lV~ll ~ = ~,>. (29) 

For the stoichiometric surface, we write Es = 
Z(~s), and values of Es are given in Table 3. 

For a small length l*, the product Esl* is 
the fraction of the volume occupied by a sheet 
of thickness l* that straddles the stoichiomet- 
ric surface. It may be observed from Table 3 
that, as expected from the above argument, for 
the smaller values of l~, the product Zslr gives 
the volume fraction (i.e., probability) of fluid in 
the reaction zone, PR. 

4.3. Perturbation 

The equation for the perturbation y(x, t) (Eq. 
22) is solved by the same pseudo-spectral 
method used for u and s c. In addition to con- 
vection and diffusion, this equation contains 

-  xY; source terms due to mixing (Z = 1 , ' ,  

and to reaction, S( ~, y). In order for the simu- 
lations to be accurate, the Z and S fields must 
be well resolved on the computational grid. 
For a given mixture fraction field ~, if A~ r is 
decreased, the length scale of the Z field de- 
creases, and hence the resolution requirements 
increase. 

These resolution requirements are studied 
in detail by Lee [21], who performed extensive 
numerical tests. The minimum grid size Nm~n 
that yields adequate resolution depends on R~, 
~*, and the details of the forcing. With the 
forcing used here, an approximate empirical 
expression obtained by Lee [21] becomes 

Nmi n = (0.404 + 2.165~*)Rx 12 (30) 

Evidently, for ~* = 1 (because of the thin re- 
action zones) the required value of N is 6 ~ 
times that required to resolve the velocity field 
alone (i.e., ~:* = 0). Since the computer time 
required scales approximately a s  N 4, it is 
clearly very costly to perform simulations with 
large ~:*. 

A contour plot of Nmi n given by Eq. 30 is 
shown on Fig. 9. It may be seen that, according 
to this guideline, the four values of ~* chosen 
in the present work lead to well-resolved simu- 
lations on the four grid sizes employed. In each 
case, the tail of the spectrum of y was exam- 
ined to confirm that indeed the field is well 
resolved. 

All the simulations reported start at time 
t = 0 with statistically-stationary velocity and 
mixture fraction fields, and with the initial 
condition y(x, 0) = 0 corresponding to chemi- 
cal equilibrium. 

5. GLOBAL EXTINCTION 

The starting point for understanding the simu- 
lation results (shortly to be presented) is the 
volume average of the evolution equation for 
the perturbation y(x, t) (Eq. 22): 

d[y] 
= [Z]  - [S].  (31) 

dt 

Recall that square brackets denote the volume 
average, and that the mixing rate is Z = 

z o . . = ,  . , .= ,  I 
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Fig. 9. Contour  plot of the minimum grid size Nmi n re- 
quired for adequate spatial resolution (Eq. 30) as a func- 
tion of R ,  and ¢*. The four simulations reported here 
are: N = 32, O;  N = 64, rq; N = 96, A; N = 128, ©. 
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Fig. 10. Normalized mixing rate versus time for R~ = 17.3, 
~:* = 0.517. Dashed lines show maximum and minimum of 
the eight simulations. The solid line and error bars show 
the mean and 95% confidence interval. 

½ x Y " ( £ ) .  When  Eq. 22 is vo lume  averaged,  
the t ranspor t  t e rms  (convect ion and diffusion) 
vanish because  of  periodicity. 

For  given values of  Ra and £* ,  the mixing 
rate  [Z ]  is a statistically s ta t ionary funct ion of  
t ime, independen t  of  Da.  Figure  10 shows [Z]  
(normal ized  by its t ime average,  ( Z ) )  as a 
funct ion of  t ime for  R~ = 17.3 and ~* = 0,517. 
This il lustrates the stat ionari ty of  [Z]  and the 
level of  statistical variability. Values of  ( Z )  
are given in Table  3. 

At  sufficiently large D a  there  is stable com- 
bustion. In this case [y] is statistically station- 
ary; and (on average)  react ion [S] balances  
mixing [Z].  results f rom such a case (R~ = 17.3, 
~:* -- 0.517, D a  = 93.2) are shown on Fig. 11. 
The  imbalance  be tween  react ion and mixing is 
quantif ied by the nondimens iona l  quanti ty 

e s ( t )  =- ( [S]  - [ Z ] ) / [ Z ] .  (32) 

It  may  be seen f rom Eq. 31 and Fig. l l c  that  
for  this case of  stable combus t ion  the mean  
( e s ) is zero.  

(Because  of  the initial condi t ion y(x, 0) -- 0, 
both  [y]  and IS] are initially zero,  and es 
equals  - 1 .  The re  is then  a short  initial t ran- 
sient during which these  quant i t ies  rise to their  
s ta t ionary values. While  this t ransient  is per-  
fectly well resolved in the simulations,  the out-  
pu t - t ime  increments  used to genera te  Fig. 11 
are too large to reveal  the transient .)  
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(Eq. 32). Significance of lines--same as Fig. 10. 
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At the other extreme, for zero Damkohler  
number the reaction rate [S] is zero. Hence 
Eq. 31 shows that [y] increases monotonically 
with t ime- - the re  is no statistically stationary 
state. For this case es is - 1 (Eq. 32). 

Figure 12 shows results for a carefully se- 
lected intermediate value of Damkohler num- 
ber (Da = 18.6). By the end of these long 
simulations (t = 26T x) it may be seen that in 
four of the eight simulations global extinction 
has occurred (i.e., E s = - 1 ) .  There  is every 
reason to suppose that the other four simula- 
tions would also have exhibited global extinc- 
tion if the runs had been extended for long 
enough. Note also, that if the runs had termi- 
nated at t = 12T x, the conclusions drawn would 
have been unclear or possibly erroneous: in 
the time interval 0 < t < 12T x,  the confidence 
intervals on E s straddle zero, consistent with 
stable combustion. 

As well as illustrating global extinction, these 
results reveal tha t - -because  of statistical vari- 
a b i l i t y - t h e r e  are inherent difficulties in quan- 
tifying the phenomenon. For  given parameters 
(Rx, ~* ,Da)  does global extinction occur? in 
the absence of statistical variability (e.g., for a 
laminar system), the question can be answered: 
yes, if Da < Dacrit; no, if Da > Dacrit. And the 
phenomenon is then quantified by determining 
the critical Damkohler  number, Dacrit. 

But with statistical variability, the question 
can only be answered probabilistically, and the 
duration of the simulation T is an additional 
parameter.  For example, two possible ways to 
quantify the phenomenon are: 

i. the probability of extinction by the normal- 
ized time T 

P e ( T ,  R, ,  ~ * , D a )  - Vrob{~s(T) < -0 .99},  

where T = T / T  x. 
ii. the normalized mean time to extinction 

Te(Rx ,  ~* Da), defined as the expectation 
of the earliest normalized time t / T  x at 
which e s equals the threshold value -0 .99 .  
(For surely-stable combustion ir E is infinite.) 

The amount of computer  time required to 
"measure"  Pe or T E to useful precision is 
unthinkably vast. 
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Fig. 12. Volume-averaged quantities versus time for simu- 
lations exhibiting global extinction (Rx = 17.3, ~* = 0.517, 
Da = 18.6). Line with symbols and error bars--mean over 
eight simulation and 95% confidence interval. Other lines 
--from each of the eight simulations. (a) mean perturba- 
tion, (b) mean reaction rate, (c) imbalance index. 
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Given the practical impossibility of precisely 
quantifying the extinction phenomenon, we 
content ourselves with estimating an impre- 
cisely defined Damkohler number range to 
characterize extinction. The lower and upper 
bounds of this range Da l and Dau (which 
depend on R A and ~*) are such that in a 
simulation of duration of order 30 T x, say, 
global extinction is likely for Da < Dal, but is 
unlikely for Da > Dau. 

In order to estimate the extinction range 
(Dal, Dau), rather than performing many simu- 
lations with different values of Da, it is compu- 
tationally more efficient to perform a single 
simulation in which Da is gradually reduced 
(by increasing r c) until extinction occurs. For 
each value of ~:* studied, such simulations 
were performed with Da decreasing according 
to  

Da(t) = D a o e x p ( - t / T o ) ,  (33) 

where the values of Da 0 and T O are given in 
Table 4. Figure 13 shows the imbalance index 
e s obtained from these simulations, plotted 
against Da(t). Notice that Da(t) decreases 
(corresponding to time increasing) from left to 
right in these figures. 

It may be seen from Fig. 13 that the initial 
Damkohler number, Da0, is chosen to be suf- 
ficiently large so that e s is very close to zero 
for a substantial initial period, corresponding 
to stable combustion. And the duration of the 
simulations is sufficiently long so that e s ap- 
proaches -1 ,  corresponding to global extinc- 
tion. Based on these curves, the values of Da t 
and Da u are subjectively ascribed: their values 
are given in Table 4 and are indicated on Fig. 
13. 

(It may be noted that, in Table 4, T o / r  ~ 

gives the decay time scale of Da(t) relative to 
the reaction time scale r* at Da = Dat. Clearly 
Da(t) decays very slowly compared to the reac- 
tion time scale, and hence--as far as the local 
balance between reaction and mixing is con- 
cerned--the decay of Da is quasi-static.) 

Figure 14 shows the extinction ranges 
(Da t, Da u) determined from the simulation on 
the Da - ~* parameter plane. Also shown are 
the values of Dacrit given by different theories 
--presented in the next section. In spite of the 
imprecisions in the definition and determina- 
tion of the extinction range, it is nevertheless 
clear that, in the simulations, extinction occurs 
at a significantly higher Damkohler number 
than predicted by the theories. 

6. M O D E L S  OF 
N O N P R E M I X E D  C O M B U S T I O N  

Most can be learned from simulations when 
the results are compared with the predictions 
of theories or models. In this section we out- 
line the application of four simple models in 
the present context. Their predictions of ex- 
tinction are compared to the results presented 
in the previous section: and further compar- 
isons are given in Section 7. 

6.1. F lamele t  Mode l  

The fundamental assumption in the flamelet 
model (see, e.g., Peters [3]) is that the structure 
of the turbulent flame is locally the same as 
that of a strained laminar flame. A first step, 
then, in the application of the flamelet model 
is to determine properties of the strained lami- 

TABLE 4 

Global Extinction Parameters 

N--grid size 
N~--number of simulations 
~. = ~'/A~r 
Da0--initial value of Da (Eq. 33) 
T0--decay time scale (Eq. 33) 
zt*--reaction time scale for Da = Da t 
Daz--lower value of extinction range 
Da . - -upper  value of extinction range 

N 32 
us 8 
~* 0.172 

Da 0 47.4 
To/T x 20.147 
To/r ~ 24. 

1.2 
3. 

64 
8 
0.517 

372.8 
3.677 

74. 
20. 
60. 

96 
1 
1.000 

1299.2 
2.699 

351. 
130. 
300. 

128 
1 
1.552 

2467.1 
1.759 

704 
400. 
500. 
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nar  flames. With  the the rmochemis t ry  consid- 
e red  here,  this is achieved by solving the con- 
servat ion equat ions  for  ~ and Y, with a velocity 
field cor responding  to un i fo rm plane  strain 
(with strain rate  a). These  equat ions  (obta ined  
f rom Eqs. 18 and 20 by omit t ing the  forcing 
t e rms  and assuming steady one-d imens iona l  
solutions ~(x)  and Y ( x ) )  are 

F~-- 3- + a x e -  = 0, (34) 

d 2 Y  d Y  
S y ( ~ , Y )  + F -~ -  T + a x - ~ -  = 0, (35) 

and the appropr ia t e  bounda ry  condit ions are 
~ ( - ~ )  = Y ( - ~ )  = Y(~) = 0, and ~(oo) = 1. 

Equa t ion  34 is solved analytically; and f rom 
the solution it is deduced  that  the scalar dissi- 
pa t ion  Xs at s to ichiometr ic  (i.e., where  ~(x)  = 
~ = 0.5) is 

Xs = a /~r .  (36) 

Thus  ei ther  a or  Xs can be  used  to pa ramet r i ze  
the strain rate.  

As is well known (see, e.g., Giovangigli  and 
Smooke  [22]), equat ions  of  the  fo rm of  Eq. 35 
admit  no solutions above  a critical value of the 
strain rate,  aq; while for  a value less than aq, 



there are two solutions--one stable and one 
unstable. In order to obtain these solutions 
and to determine aq accurately, Equation 35 is 
solved numerically using arc-length continua- 
tion [23]: the details are given in Lee [21]. The 
value of aq obtained is 

aqT* = 5 . 3 1 2  × 10 -3, (37) 

(38) 

or, equivalently, the corresponding quenching 
value of the scalar dissipation is 

XF ~* = aqT*/~ = 1.691 × 10 -3. 

Fig. 15. 
flamelet The value of the perturbation y = Ye(~) -- Y 

obtained from the strained laminar flame cal- 
culations can be parametrized by ~: and X, and 
is denoted by YF(~, Xs)" Figure 15 shows YF 
against ~ for Xs/XF ~ 2 = 3, 3, and 1. In the next 
Section, the flamelet predication YF(¢, Xs) of 
the perturbation y is compared with the DNS 
results• But now we return to the question of 
extinction. 

In the flamelet model applied to turbulent 
nonpremixed combustion, if at a particular lo- 
cation on the stoichiometric surface the scalar 
dissipation rate X exceeds XF, then it is as- 
sumed that there is local extinction of the 
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Fig. 14. The Da-~ c* parameter plane showing extinction 
observations and predictions. Extinction range (Dal, Da .) 
determined from simulations: Da t - [ ; D a , -  ]. Critical 
Damkohler number Dacrit(~:*) from the ttamelet 
model--solid line; Dacrit(~:*) from CMC--crosses; 
Dacrit(~*) from statistical model (Section 6.4)--solid cir- 
cles. Triangles show Da0.1(~:*) , <, and Da0.5(~*) , t>, the 
values of Da at which the error in the flamelet model 6 r is 
0.1 and 0.5, respectively (see Section 8). 
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flame. Peters and Williams [24] define the frac- 
tion of burnable flamelets by 

Pb = Prob{ X < XF] ~ = ~s } 

= Prob{ X/XF < iI ~ = ~:,} (39) 

and they argue that global extinction occurs 
when Pb decreases below a critical value Pb, crit 
= 0.72• In the present context, Pb is deter- 
mined by the parameters of the simulation, i.e., 
Pb = Pb( Da, ~:*) (at fixed Ra). Hence this ar- 
gument leads to a prediction of the critical 
Damkohler number Dacrit( ~* ). Specifically, on 
the Da-~* plane, the line Dacrit(~*) is the 
locus of the points satisfying Pb(Da, ~ * ) =  
Pb, crit, and hence is determined implicitly by 
the equation 

Ph(Dac r i t (  ~ *  ),  ~:* ) = Pb,crit" (40) 

The flamelet model prediction of Dacrit(~*) 
obtained from Eq. 40 is shown on Fig. 14. It 
may be seen that it underestimates the value 
of Da required for stable combustion by as 
much as a factor of 4. Furthermore, on the 
log-log plot, the slope of the Dacrit(~*) line is 
different from that given by the DNS data. It is 
readily shown that Dacrit(~:*) obtained from 
Eq. 40 varies as (~.)2 ,  whereas the depen- 
dence suggested by DNS data is (s c*)232. 

6.2. Conditional Moment Closure 

We now apply the conditional moment closure 
(CMC) developed by Bilger [7] and Klimenko 
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[8] in the present context for the case of statis- 
tically stationary stable combustion. 

The fundamental quantity of interest is the 
conditional mean of the reaction progress vari- 
able Y--conditioned, that is, on the value of 
the mixture fraction st. We introduce ~" as the 
sample-space variable corresponding tO st. 
Then the conditional mean YM(~) is defined 
by 

YM( ~ ) = (Y(x, t)l st(x, t) = ~ ). (41) 

Notice that ~" is an independent variable: and, 
because of the assumed statistical homogeneity 
and stationarity, YM does to depend on x or t. 
The simplest assumption that can be made in 
order to obtain the CMC equations is that 
fluctuations of Y(x,t) from the conditional 
mean YM(St(X, t)) are negligibly small. Hence, 
fluctuations in Y(x, t) are (by assumption) due 
entirely to fluctuations in st. While the assump- 
tion of zero conditional fluctuations is suffi- 
cient to obtain the CMC equations, it appears 
that weaker assumptions may suffice [25, 26]. 

Following Bilger's methodology, an ordinary 
differential equation for YM(~') is obtained 
from the evolution equation for Y, Eq. 20: 

1 dZYM 1 
Sy( L YM) + -~( X)-d- ~ -  + -~( X)(~ - ( st )) 

dYM ,2 
X ( Y ' ( ~ ' ) ~ / T  ) / s t  = 0 .  (42) 

The only assumptions made in obtaining this 
equation are that X and st are statistically 
independent, and that fluctuations of Y about 
its conditional mean are negligible. The appro- 
priate boundary conditions are YM(O) = YM(1) 
= 0 .  

The CMC equation (Eq. 42) is very similar 
to the laminar flame equation (Eq. 35), and the 
qualitative behavior of its solutions is the same. 
In particular, solutions exist only for a limited 
range of parameter values. This can be better 
understood if Eq. 42 is recast in the nondimen- 
sional form 

)2 d2yM 
2DaSy(~,Y M) + (Astrst* ~-~ 

+ ( ~ -  (st)) Y/(~') ~-~] = 0, (43) 

where the nondimensional reaction rate Sy = 
S~,~-* is independent of Da and st*. 

For given st*, there is a critical value of Da, 
Dacrit(st*), below which Eq. (43) admits no 
solutions; while for Da > Dacrit there is a sta- 
ble and an unstable solution. 

For several values of st*, Eq. 43 was solved 
numerically using arclength continuation to 
determine Dacrit(st*)--the CMC prediction of 
the global extinction boundary. The values, 
plotted on Fig. 14, are quite close to the 
flamelet model prediction, and differ signifi- 
cantly from the DNS results. 

It may be observed that for large Da and 
s t*, the first two terms in Eq. 43 must balance, 
and hence Dacrit(st*) scales as st*2--as in the 
flamelet model. And for the same reason, for 
large st*, the solution YM(¢) depends on 
Da/Daerit , but only weakly on st*. Figure 16 
shows the perturbation from equilibrium 

Y~( ( )  = r~ ( ( )  - YM((), (44) 

obtained from Eq. (43) for s t*= 1.552 and 
Dacrit/D a = ~,1 2, and 1. Not surprisingly, these 
curves are similar to those obtained from the 
flamelet model (Fig. 15). 

6.3. Quasi-Equilibrium Distributed Reaction 

The third simple model considered is that of 
quasi-equilibrium distributed reaction (QEDR) 
introduced by Bilger [6]. 

0 . 1 0 0  . . . .  , . . . .  , . . . .  , . . . .  , . . . .  

0 . 0 9 0  

0 . 0 8 0  

0 . 0 7 0  

0 . 0 6 0  

YM 0 , 0 5 0  

0 . 0 4 0  

0 . 0 3 0  

O . 0 2 0  

0 . 0 1 0  

0"0000 - 0.2 0.4 0.6 0.8 1.0 

Fig. 16. Perturbations YM(~) obtained from the condi- 
tional moment closure with ~ * =  1.552, Dacrlt/Da 
= ½([]), ~( ~ ), l(o). (Dacrlt = 80.4). 
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The transport equation for the perturbation 
y(x, t) (Eq. 22) contains four terms--convec- 
tion, diffusion, mixing and reaction. Bilger [6] 
argues that at high Da, and for mixture frac- 
tions in the reaction zone (i.e., ~t < ~: < ~r), 
there is a local balance between mixing and 
reaction. This leads to the QEDR prediction of 
y, denoted by yo(~, ~(): by equating reaction 
and mixing, we obtain the implicit equation for 

Yo 

S( ~, To( ~, X)) = - ½xY"( ~ ). (45) 

The QEDR model leads then to an algebraic 
equation for the predicted perturbation, 
whereas the previous two models considered 
(flamelet and CMC) resulted in ordinary dif- 
ferential equations. Nevertheless the qualita- 
tive nature of the solutions is similar. With all 
other parameters fixed, there is an upper value 
of x--denoted by xQ--for which Eq. 45 ad- 
mits solutions. For )~ less than go, there is a 
stable and an unstable solution. The value of 
Xo is obtained from Eq. 45 by substituting 
S( ~, y) = f(y)g( ~ )/r,., and taking the upper 
limit of f(y), which is unity. After some ma- 
nipulation the result is 

XQ _ Da [ - 2g( ~ ) ] 
(,)() ( ~ , ) 2  BeA~r2y , , (~)"  (46) 

The QEDR model shows that a local bal- 
ance between reaction and mixing is not possi- 
ble if g exceeds XQ. A reasonable extension of 
the theory, then, is to predict that global ex- 
tinction occurs if 

PO =- Prob{ g > xol ~z < ~ < ~r}' (47) 

exceeds a critical value PQ,crit" It is readily 
shown from Eq. 46 that such a theory predicts 
that the critical Damkohler number Dacrit 
scales with ~* 2. This prediction is qualitatively 
the same as that of the flamelet and CMC 
models, and is at variance with the DNS obser- 
vations. 

6.4. Temporal Fluctuations in Volume Averages 

As observed above, the three different models 
considered all predict that that the critical 
Damkohler number Dacrit varies as (~,)2,  
whereas the DNS results suggest a scaling of 

( ~ * )2.3. At the highest value of ¢* studied, the 
DNS extinction range (Dat, Da u) is about 4 
times greater than the value of Dacrit given by 
the flamelet and CMC models. It is certainly 
true that the CMC and QEDR models have 
been used beyond their limits of validity; but 
nevertheless the discrepancy between all the 
models and the DNS observations requires fur- 
ther comment. 

A possible explanation for this discrepancy 
lies in the significant temporal fluctuations in 
volume-averaged statistics in the simulations. 
Consider, for example, rQ(t) defined as the 
volume fraction of the fluid in the reaction 
zone (~l < ~ < ~r) for which X exceeds Xo. 
Thus rQ(t) and PO (Eq. 47) are defined by the 
same event { X > gO] ~1 < ~ < ~r}, but rio(t) is 
a volume average, rather than the probability. 
(The mean (pQ(t)) equals pQ.) 

At any time t in a simulation, it is reason- 
able to suppose that the current value of rio(t) 
is a better indicator of the propensity for global 
extinction that is the m e a n  pQ. And if the 
condition rio(t) > PQ,crit is taken as a predictor 
for global extinction, then clearly the fluctua- 
tions in PQ, not just its m e a n  pQ, affect extinc- 
tion. In the present simulations, the fluctua- 
tions in rio(t) clearly increase with ~*, simply 
because the probability of fluid in the reaction 
zone (PR = Prob{~:l < ~: < ~:r}) decreases with 
increasing ~* (see Table 3). Hence, relative to 
the prediction based on the mean pQ, the 
extinction prediction Dacrit(~:*) based on rio(t) 
will increase more rapidly with ~*--more 
rapidly, therefore, than ~* 2, in accord with the 
observation from DNS. 

We now present a crude statistical model to 
demonstrate the plausibility of the above argu- 
ments. The central idea is to use averages over 
a finite ensemble of N random samples to 
simulate volume averages. The statistical fluc- 
tuations in the ensemble averages (which scale 
as N - 1 / z  ) mimic the fluctuations in volume 
averages. 

Random samples of mixture fraction, ~n), 
and of scalar dissipation, X ~n), are drawn from 
Gaussian and log-normal distributions, respec- 
tively, with means and variances taken from 
Table 3. For the nth sample, the mixing rate is 

Z (~ = - ½X(")Y"(~:{")). (48) 
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For a given value of ~, the maximum reaction 
rate is S m a x ( ~ ) = g ( ~ ) / T c  (see Eq. 8). The 
reaction rate for the nth sample is modeled as 

S (n) = Smax(~(n)), if Smax(~ (n)) > Z (n), 

= 0 if Smax(~ (n)) ~_~ Z (n). (49) 

The ensemble average (Z)N is defined by 

1 N 
( Z ) N  ~ "N E z(n), 

n = l  
(50) 

and similarly for (S)N. 
Recalling that stable combustion requires 

( Z )  to balance (S)  (Eq. 31), we suppose that 
global extinction occurs if 

PN(~*,Da)  = Prob{(Z)N > (S)N}. (51) 

exceeds a critical value, ecrit" For Specified N 
and Pcrit, this criterion defines the predicted 
stability boundary Dacrit(s c*) by the implicit 
relation 

PN( ~*, Dacrit(  ~*  ))  = ecrit (52) 

For N = 50 and ecrit = 0.02, the predicted 
stability boundary D a c r i t ( ~ * )  (determined by 
Monte Carlo) is shown on Fig. 14; and it may 
be seen that this crude model reproduces the 
DNS results. 

It is emphasized that this model is presented 
merely to demonstrate that the observed dis- 
crepancies between DNS and standard models 
can plausibly be attributed to fluctuations in 
volume-averaged statistics. The model for re- 
action (Eq. 49) is at best a gross approxima- 

tion; and obviously the model parameters (N 
and ecrit ) w e r e  chosen to produce the desired 
result. Further research is needed to test the 
hypothesis offered here. 

7. STATISTICAL DISTRIBUTIONS 

In this section, results of simulations are pre- 
sented to show the qualitatively different sta- 
tistical distributions that exist at different 
Damkohler numbers. The specific results pre- 
sented are scatter plots involving ~, y, X, Z, 
and S, all from simulations with s c* = 0.517. 
Except as noted below, each scatter plot con- 
sists of 4,096 samples, taken from a uniform 
163 mesh of points in physical space. 

First, we contrast results obtained from two 
simulations with Damkohler numbers of 93.2 
and 18.6. Withs ~* = 0.517, the extinct range is 
deemed to be (Da/, Da u) = (20, 60) (see Table 
4). Hence Da = 93.2 is a relatively high 
Damkohler number, and the simulation yields 
statistically stationary fields corresponding to 
stable combustion. On the other hand, Da = 
18.6 is below the extinction limit and, if the 
simulation were continued for long enough, 
there would certainly be global extinction. 
However, the fields are examined at t / T  x = 6.5, 
in the quasi-stationary state preceding extinc- 
tion (see Fig. 12). Primary statistics character- 
izing the two simulations are given in Table 5. 

For the high Damkohler number case (Da = 
93.2), Fig. 17 shows scatter plots of y / ( y ) ,  
Z / ( Z ) ,  S / ( Z ) ,  and ( Z  - S ) / ( Z ) ,  all against 
~. It should be noted that for this case (y )  is 
very small ( (y )  = 0.0036), so that perturbation 

TABLE 5 

Summary of Primary Statistics from Simulations with ~* = 0.517 and Da = 18.6 and 93.2 

N--grid size 
~*--E'/A~r 
Da--Damkohler number 
T--duration of run 
( Z ) - - m e a n  mixing rate 
(S ) - -mean  reaction rate 
( y ) - -mean  perturbation 
( X ) - -mean  scalar dissipation 
pF--probability of local extinction (flamelet) 
pQ--probability of local extinction (QEDR) 

N 64 64 
s ~* 0.517 0.517 
Da 18.6 93.2 

T/T x 16.4 26.3 
( Z ) T x 0.086 0.086 
(S)T x 0.075 0.086 
(y)  9.9 X 10 -2 3.6 X 10 -3 

(X)/Xe 0.46 0.091 
PF 0.118 1.2 X 10 -3 
pQ 0.116 1.5 X 10 -3 
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Fig. 17. Scatter plots of  different statistics against mixture fraction from simulation with ~* = 0.517, 
Da =93.2. (a) normalized perturbation y / ( y ) .  (b) normalized mixing rate Z / ( Z ) .  (c) normalized 
reaction rate S / ( Z ) .  (d) normalized imbalance between mixing and reaction ( Z  - S ) / ( Z ) .  

of, say, y = 10(y)  = 0.036 are still quite small, 
signifying small departures from equilibrium. 
The normalized mixing rate Z / ( Z )  is negligi- 
ble outside the reaction zone (~t = 0.38 < ~ < 
~r = 0.62) since Y~"(~) is negligible there. The 
scatter plot of S / ( Z )  appears very similar to 
that of Z / ( Z ) ,  not by coincidence: the Q E D R  
theory predicts S = Z. This prediction is tested 
directly by the scatter plot of (Z  - S ) / ( Z ) .  
Indeed it may be observed that ( Z -  S) is 
typically one order of magnitude less than Z, 
confirming the Q E D R  result. 

Figure 18 examines the Q E D R  and flamelet 
predictions of the perturbation, y. Let ~ and X 
be the mixture fraction and scalar dissipation 
at any point in the flow. Then if X is less that 
the quenching value (i.e. X < XQ(~)), Q E D R  

predicts that y equals YQ(~,X), where the 
function yo(~, X) is defined by Eq. 45. Figure 
18a is the scatter plot of ( y -Yo . (~ ,  X ) / ( Y )  
versus ~:, for the subset of points satisfying 
X < Xo(~). For this case, nearly all of the 
4,096 points are included, since po ---- Prob{ X 
> Xa(~)} is less than 1% (see Table 5). Simi- 
larly, Fig. 18b refers to the flamelet model 
prediction yp(s  c, X) for all samples satisfying 
X < XF" It may be seen from Fig. 18 that the 
models are accurate for this case, with the 
departures l y - -YFI / (Y)  and l y - - Y Q I / ( y )  
seldom exceeding 0.2. 

On closer examination of (Z  - S ) / ( Z )  (Fig. 
17) and of (y - yQ) / (y )  (Fig. 18a), a pattern 
in the scatter is evident: the sample points are 
predominately positive around ~ = ~s = 0.5, 
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Fig. 18. Scatter plots of the perturbation y relative to 
QEDR and flamelet model predictions, against mixture 
fraction. From simulation with ~* = 0.517, Da = 93.2. (a) 
normalized departure from QEDR prediction ( y -  
YQ((;,X))/(Y). (b) normalized departure from flamelet 
model prediction (y - YF ~:, X)/(Y). 

while they tend to be negative around ¢ = ¢I 
and ¢ = ¢,. This is likely because the diffusion 
term F V2y is not negligible in the balance of 
y (as supposed by the Q E D R  model), but rather 
it transports y away from where it is maximum 
(i.e., near ~ = ~s). The flamelet model ac- 
counts more completely for diffusion, and in- 
deed the pattern mentioned above is not ob- 
servable in the scatter plot of (y -Ye)/(Y),  
Fig. 18b. 

The same statistics are now examined for 
the low Damkohler number case (Da = 18.2), 
and a very different picture emerges. The mean 
of y is about 30 times larger ( ( y )  = 0.1) and 

the scatter plot of y (Fig. 19) shows values in 
excess of 0.4. Since Z is independent of Da, 
the scatter plot of Z / ( Z )  for this Damkohler 
number (Fig. 19b) is statistically identical to 
the higher-Damkohler number result (Fig. 17b): 
though rare, some samples of Z / ( Z )  exceed 
10. The scatter plot of S / (Z)  no longer ap- 
pears the same as that of Z/(Z) .  Instead, the 
sample points are dearly confined in a com- 
pact region. The observed upper bound is sim- 
ply the maximum possible reaction rate, 
Smax( ~ ) -~ g( ¢)/~'c. It is evident from the scat- 
ter plot of (Z - S) / (Z)  that there are large 
departures from the Q E D R  balance Z = S. 

From Fig. 20 it may be observed that there is 
some concentration of sample points about the 
model predictions (i.e., y - yQ = 0 and y - YF 
= 0), but there is also significant probability of 
large departures. 

On Fig. 21 we compare the (S, ~) scatter 
plots for the two cases, and show the condi- 
tional reaction rates. The quantity [S(¢, y)l ¢] 
is the volume-average reaction rate condi- 
tioned on ¢; while [S(~,[y1¢])1¢] is the con- 
ditional average of S evaluated at the condi- 
tional mean Y, [YI¢]. According to the 
conditional moment closure, these quantities 
are equal because (it is assumed) the fluctua- 
tions in y about [yl¢]  are small. For the high 
Damkohler number case, the two conditional 
means are indeed close to each other, but not 
for the reason supposed in CMC. For, an ex- 
amination of Fig. 17 reveals significant fluctu- 
ations in y at any given ¢. Rather, the quanti- 
ties are approximately equal because, over the 
small range of y encountered (0 < y < 0.01), 
the reaction rate S(~:, y) varies essentially lin- 
early with y. For the lower Damkohler number 
case, on the other hand, the range of y is 
much larger, spanning the peak in f(y) which 
occurs at B -1 --0.07. Hence the two condi- 
tional means of S differ significantly, by more 
than a factor of 2. 

To provide further insight into the qualita- 
tive changes with Da, a simulation (with ¢* = 
0.517) was performed in which the Damkohler 
number was quasi-statistically reduced from an 
initially high value (just as described in Section 
5, Table 4). Scatter plots are now presented, 
taken from this simulation at times when the 
Damkohler number is 144, 55, 21.4, and 3.2. 
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Figure 22 is a scatter plot of the normalized 
imbalance (Z - S)/(Z), and ~. At the high- 
est Damkohler numbers (Da = 144 and Da = 
55), there is a small amount of scatter about 
zero, with the characteristic pattern mentioned 
above. At Da = 21.4, the scatter is g rea te r - -  
maybe by a factor of 3 - - and  the distinctive 
pattern has disappeared. At stoichiometric, al- 
though the distribution is positively skewed, 
there are significant negative fluctuations. At 
the lowest Damkohler (Da = 3.2) reaction is 
almost negligible, and consequently the scatter 
plot resembles that of Z/(Z).  

The scatter plot just described (Fig. 22) shows 
how the imbalance Z -  S varies with ~:. To 
investigate how the imbalance varies with the 
magnitude of Z itself, on Fig. 23 we show 
scatter plots of S/(Z)  against Z/(Z).  If there 

is perfect balance (as assumed in QEDR),  then 
the sample point lies on the diagonal line 
indicated in the figure. At the highest Dam- 
kohler number (Da = 144), up to Z/ (Z)  = 15 
the small amount of scatter appears evenly 
distributed about the 45 ° line. But for the 
most intense mixing events (Z/(Z)  > 15), Z 
consistently exceeds S. At the next Damkohler 
number (Da = 55), the same pattern is evi- 
dent, but now Z consistently exceeds S for 
Z/(Z)  > 10. By Da = 21.4 the pattern has 
changed. At this Damkohler number, the maxi- 
mum possible reaction rate is S/(Z)~-6. 
Hence, as is evident from the figure, for Z/(Z)  
greater than 6, it is impossible for the sample 
points to lie on the 45 ° line. There is also a 
difference at the lowest mixing values: evi- 
dently there are many sample points signifi- 
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Fig. 20. Scatter plots of the perturbation y relative to 
QEDR and flamclet model predictions, against mixture 
fraction. From simulation with ~:* = 0.517, Da = 18.2. 

cantly above the 45 ° line. Thus, as Da is de- 
creased, the local balance between mixing and 
reaction breaks down first for high values of Z, 
but close to the extinction limit the breakdown 
occurs for small Z also. At the lowest value of 
Da, reaction is negligible, resulting in the sam- 
ple points lying close to the Z / ( Z )  axis. 

Figures 24 and 25 show the perturbation y, 
and the discrepancy in the flamelet model pre- 
diction y - Y F  for the four Damkohler num- 
bers. It should be recalled that in the y - Y r  
vs. ~ scatter plot (Fig. 25) only those samples 
with X < X~. are shown. Hence although it is 
not surprising to see the discrepancy increase 
with decreasing Damkohler number, for the 
samples shown, locally a flamelet structure is 
possible. 
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93.2,  (b)  D a  = 18.2. L o w e r  l ine ,  c o n d i t i o n a l  m e a n  r e a c t i o n  

rate [S(¢, y)[ ~: ]; upper line, reaction rate based on condi- 
tional mean [S( ~, [Yl ~ ])1 g ]. 

8. QUANTITATIVE ASSESSMENT 
OF MODELS 

We now quantify the accuracy of the flamelet 
and Q E D R  models over the range of g* and 
Da investigated. 

Both models predict local extinction if the 
scalar dissipation exceeds a particular quench- 
ing value. The probability of local extinction 
for the flamelet model is defined, then, by 

PF = Prob{ X > Xr[ ~t < ~ < ~r}" (53) 

And for the Q E D R  model it is 

pa = Prob{ X > XQ( ~)1 ~1 < ~ < ~r}" (54) 
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Fig. 22. Scatter plots of the normalized imbalance between mixing and reaction ( Z  - S ) / ( Z )  against 
mixture fraction, ~, for a simulation with ~ * =  0.517 and Da decreasing quasi-statistically. (a) 
Da = 144, (b) Da = 55, (c) Da = 21.4, (d) Da = 3.2. 

Next we define the regions in ~ - X  space 
where the models can be expected to be valid. 
For the flamelet model the region of validity is 

~'F -- { (~ ,  X): X < XF, ~:t < ~: < ~r}, (55) 

.and similarly for QEDR 

2Q = {(s c , X ) : X < X O ( ~ ) , ~ : ,  < ~: < ~r}" (56) 

Two error indices are used to quantify the 
discrepancy between flamelet model predic- 
tions and the DNS result: the fractional error in 
the conditional mean 

af -- [(YF - -Y ) I~ 'FI / [Y I~ 'F] ,  (57) 

and the rms normalized error, 

er =- [(YF -- Y ) 2 / m a x ( y F ,  Y)2I~2F] 1/2. (58) 

For QEDR, 6Q and EQ are defined in the 
same way. 

It is important to recognize that the proba- 
bility of local extinction and the error indices 
are quantifying different aspects of perfor- 
mance. For reactive fluid ( ~t < ~ < ~r ), PF 
measures the probability that the flamelet 
model is inapplicable (i.e., X > XF); whereas 
the error indices measure the accuracy of the 
model where it is applicable (i.e., X < XF). 

Figure 26 shows the quantities defined above 
for the simulation with ~* = 0.517 and with 
the Damkohler number decreasing quasi-stat- 
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Fig. 23. Scatter plots of normalized reaction rate S/(Z) against normalized mixing rate Z/(Z) for 
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Da = 55, (c) Da = 21.4, (d) Da = 3.2. The solid diagonal line corresponds to a balance between reaction 
and mixing, i.e., S = Z. 

istically from an initially-large value. I t  may be 
seen that there is little difference between the 
performance of the two models: hence we de- 
scribe the performance of the flamelet model, 
but the observations apply equally to QEDR.  

At the highest Damkohler  number  PF and 
8 e are essentially zero, while ee shows an 
rms error slightly over 10%. At the lowest 
Damkohler  number  there is local extinction 
almost everywhere (PF = 1), and, with y in- 
creasing without bound, 8 e and E F asymptote 
to - 1  and 1, respectively. 

Most flamelet models that a t tempt  to incor- 
porate effects of  extinction (e.g. Peters 1984) 
assume that the occurrence of local extinction 
for some flamelets (with X > XF) does not 

affect the properties of  the remaining flamelets 
(X < XF). But the results shown on Fig. 26 
dear ly  refute this assumption. For, as Da de- 
creases the error indices rise and become ap- 
preciable while PF increases more slowly. This 
observation is reinforced by Fig. 27 which shows 
~F plotted against PF for simulations with dif- 
ferent values of ~*, and with Da  decreasing 
quasi-statistically. It may be seen that, in all 
cases, the r.m.s, error  ee exceeds 40% before 
the probability of local extinction PF exceeds 
10%. 

These simulations are used to identify the 
region of validity of  the flamelet and Q E D R  
models on the D a -  ~* plane. We define 
Da0.1(~*) and Da0.5(~*) as the values ofm- 
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Fig. 24. Scatter plot of y / ( y )  against mixture fraction, ~:, for a simulation with ~:* = 0.517 and Da 
decreasing quasi-statistically. (a) Da = 144, (b) Da = 55, (c) Da  = 21.4, (d) D a  = 3.2. 

Damkohler number at which the error in the 
predicted conditional mean 6 F equals 0.1 and 
0.5, respectively. Their values are plotted in 
Fig. 14. It may be seen that there is a close 
correspondence between the range (Da0~, 
Da0.5) and the extinction range (Dat, Da,). 

It can be argued that the flamelet model is 
inapplicable for small ¢* (i.e. broad reaction 
zones, e.g. Bilger [6]); and certainly its accuracy 
is expected to increase as ¢* increases. This is 
indeed observed in Fig. 27. For very small PF 
--and hence large Da--the rms error, eF, is 
about 40% for ~:* = 0.172, but is just 10% for 
¢* = 1.552. 

9. SUMMARY AND CONCLUSIONS 

Direct numerical simulations have been per- 
formed in order to study fundamental pro- 

cesses in non-premixed turbulent reacting 
flows. A simple thermochemical model for 
one-step reversible reactions is employed, in 
which the state of the fluid is described by the 
mixture fraction ~:(x, t) and the perturbation 
from equilibrium y(x,t). A pseudo-spectral 
method, with grid sizes up to 1283 , is used to 
solve the Navier-Stokes equations and the con- 
servation equations for ¢ and y. These equa- 
tions are augmented by artificial forcing, so 
that the resulting velocity and mixture frac- 
tions fields are statistically stationary, homoge- 
neous, and isotropic. At sufficiently high 
Damkohler number, Da, the perturbation field, 
y, is also statistically stationary--correspond- 
ing to stable combustion. But at low Damkohler 
number, y increases without bound--corre- 
sponding to global extinction. 

The three most important non-dimensional 
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Fig. 25. Scatter plot of the discrepancy in the flamelet model prediction (y -YF(¢, X))/(Y) against 
mixture fraction ~:. From simulation with ¢ * =  0.517, and Da decreasing quasi-statistically. (a) 
Da = 144, (b) Da = 55, (c) Da = 21.4, (d) Da = 3.2. 

parameters characterizing the simulations are: 
the Taylor-scale Reynolds number, Ra; the 
Damkohler number Da; and, ~* defined as 
the ratio of the r.m.s, mixture fraction, ~', to 
the reaction-zone thickness in mixture-fraction 
space A~,. The range of ~* studied--~* = 
0.172 to ¢* = 1.552--goes from broad, to rel- 
atively narrow reaction zones in physical space. 
For the narrowest reaction zones ( ¢* = 1.552), 
the numerical resolution requirements for the 
y field are approximately 8 times those of the 
velocity and ¢ fields. In consequence, with a 
practical computational limit on grid size of 
1283, the rather low Reynolds number R a = 17 
is selected so that indeed the y field is well 
resolved. There is no difficulty in studying all 
values of Da of interest. 

In an overly simple view, global extinction is 
characterized by the function D a c r i t ( ~ * ) :  for 
Da > Dacrit  there is stable combustion; for 
Da < Dacrit there is global extinction. The 
standard models (flamelet, QEDR and CMC) 
make similar predictions of Dacri t (  ¢ * ) ;  in par- 
ticular that Dacrit  scales as ¢,2. The simula- 
tion results (e.g., Fig. 12) demonstrate that the 
phenomenon is more complex, because of sta- 
tistical variability. Consequently, in place of 
Da,it(~:*), we estimate an extinction range, 
with lower and upper Damkohler number val- 
ues, Dat(¢*) and Dau(~:*). In spite of the 
imprecision in Dat, it is found that qualita- 
tively and quantitatively the DNS results differ 
from the model predictions: Da t scales as ¢'23, 
and exceeds Da, i  t (given by the models) by up 
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~:* = 1.0, E3; s c* = 1.552, (5. 

to a factor  of  4 (see Fig. 14). A s imple statisti- 
cal mode l  is used to show that  the discrepan-  
cies can plausibly be  explained by statistical 
variability. 

A t  la rge  D a m k o h l e r  n u m b e r  ( D a  ~- 
D a , ( ~ * ) )  it is found that  bo th  f lamelet  and 
Q E D R  models  accurately describe the per tur -  
ba t ion  field y(x, t) in t e rms  of  the mixture 
fract ion field ~(x, t). But  as Da  is decreased  
towards  D a ,  significant discrepancies  emerge .  
It  is expected  that  a s imple f lamelet  s t ructure  
does not  exist where  the scalar dissipation X 
exceed the f l amele t  quenching value XF. The 
probabi l i ty  of  this occurrence,  PF, increase as 
D a  decreases.  But  pe rhaps  unexpectedly,  it is 
found that  the f lamelet  mode l  predict ion at 
locations with )( < XF deter iora tes  very signif- 
icantly even when PF is not  large. For  example  
with PF = 0.1 the mode l  e r ror  exceeds 40%. 
The  D a m k o h l e r  number s  Da0.1 and Da0. s at 
which the mode l  errors  are 10% and 50% 
corre la te  well with D a ,  and D a  t (see Fig. 14). 
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