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Abstract
The basis for the conditionally cubic-Gaussian (CCG) stochastic Lagrangian model
(Lamorgese et al 2007 J. Fluid Mech. 582 423) is briefly reviewed and its large-time
behaviour further addressed. To this end, we perform additional multiple-scales
calculations which support the adiabatic elimination result of our previous analysis.
Lagrangian intermittency in the CCG model is briefly addressed and found to be
consistent with the findings of previous works.

PACS numbers: 47.27.Gs, 87.10.Mn

1. Introduction

Recently, intermittency and non-Gaussian effects of
fluid particle acceleration (and their Reynolds-number
dependences) have been addressed in the conditionally
cubic-Gaussian (CCG) stochastic Lagrangian model [1].
In the formulation of this model systematic procedures
are employed for incorporating non-Gaussian one-time
statistics and intermittent two-time statistics (and their
Reynolds-number dependences) from direct numerical
simulations (DNS) of homogeneous turbulence with
Taylor-scale Reynolds numbers up to 650 on a 20483 grid.
Adiabatic elimination [2] is one such procedure which
has been shown useful [1] for removing dissipative range
information from the CCG model and for analyzing the
large-time behaviour of two-time velocity statistics predicted
by the model. In this paper, we briefly review the basis for the
CCG model and further investigate the adiabatic elimination
result of our previous analysis [1]. Finally, we briefly address
inertial-range behaviour in the CCG model, by showing
model predictions for Lagrangian velocity increment PDFs
and Lagrangian velocity structure functions against DNS.

2. CCG stochastic Lagrangian model

The CCG model is a stochastic model for the fluid particle
acceleration A(t) and it also involves the fluid particle velocity

U (t) and a conditioning variable χ(t). The latter is taken to be
χ(t) ≡ ln ϕ(t)/〈ϕ〉, where ϕ denotes the pseudo-dissipation.
A Lagrangian DNS database for homogeneous turbulence has
been interrogated to determine the joint-statistical behaviour
of those quantities (see [3, 4]). It is found that the one-time
distribution of χ is close to Gaussian with variance σ 2

χ and
its autocorrelation is close to exponential (with timescale
Tχ ). This supports a modelling assumption for χ(t) as an
Ornstein–Uhlenbeck process [1, 5].

The conditional variance of acceleration σ 2
A|ϕ = 〈A2

|ϕ〉

accounts for the major effects of intermittency of dissipation
on acceleration [6]. Based on the DNS data [3, 6], an empirical
expression

S2
≡

σ 2
A|ϕ

a2
η

=
1.2

R0.2
λ

(
ϕ

〈ϕ〉

)0.15

+ ln
(

Rλ

20

)(
ϕ

〈ϕ〉

)1.25

, (1)

(where aη = (〈ϕ〉
3/ν)1/4, with ν the fluid kinematic viscosity,

and Rλ =

√
15σ 4

U
ν〈ϕ〉

is the Taylor-scale Reynolds number, σU

being the velocity standard deviation) is utilized in the CCG
to accurately describe the variation of σ 2

A|ϕ with ϕ and with
Reynolds number, in a way that deviates from the Kolmogorov
(1962) prediction [1].

When considering the joint-statistics of acceleration
and pseudo-dissipation [3, 6], a significant quantity is
the conditionally standardized acceleration Ã = A/σA|ϕ . Its
conditional mean and variance are zero and one, respectively,
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and the DNS data [6] show the one-time PDF of Ã|ϕ

as very nearly universal, and, in particular, cubic-Gaussian
[1, 6]. In other words, given ϕ = ϕ̂ (where ϕ̂ is arbitrary) the
acceleration Ã can be modelled as cubic-Gaussian, i.e.

Ã = C[(1 − p) Ā + p Ā3], (2)

where Ā is a standardized Gaussian random variable and
C is determined by the standardization condition 〈 Ã2

〉 = 1
as C(p) = (1 + 4p + 10p2)−1/2. A value of p ≈ 0.1 results
from the observation that the conditional flatness µ4( Ã|ϕ̂) ≈

8 (approximately independent of ϕ̂ and the Reynolds
number) [1, 6].

Based on the observations from DNS, the CCG model is
by construction exactly consistent with a stationary one-time
distribution g of (U, Ā, χ) in which U , Ā and χ are
independent Gaussian variables [1], i.e.

g =
1

σU

√
2π

exp
(

−
v2

2σ 2
U

)
1

√
2π

× exp
(

−
ā2

2

)
1

σχ

√
2π

exp

(
−

x∗2

2σ 2
χ

)
, (3)

where v, ā and x∗ denote sample-space variables for U , Ā
and χ∗

≡ χ − 〈χ〉. The imposition of this PDF leads to the
CCG equations [1]:

dU = Adt = σA|ϕ(c1 Ā + c2 Ā3) dt, (4)

d Ā = −
b̄2

2
Ā dt −

σA|ϕ

σ 2
U

U (c1 + 2c2 + c2 Ā2) dt + b̄ dW, (5)

dχ∗
= −χ∗

dt

Tχ

+

√
2σ 2

χ

Tχ

dW ′, (6)

where c1 = C(1 − p) and c2 = Cp. In equations (5) and (6),
b̄ is a diffusion coefficient, and W and W ′ independent
Wiener processes. Being a second-order model, the CCG
model accounts for Reynolds-number effects in a natural way.
The Reynolds-number dependence for σA|ϕ/aη is specified
by equation (1). Furthermore, based on the DNS data [1,
3, 6], Tχ/T = 0.055 + 3.55R0.7

λ (where T ≡ 1.5σ 2
U /〈ϕ〉).

As mentioned above, p in equation (2) is approximately
independent of the Reynolds number so that c1 and c2 are
constants in equations (4) and (5). The Reynolds-number
dependence of τηb̄2 is unknown but can be investigated [1]
by means of the technique of adiabatic elimination [2], as
discussed further below.

3. Specification of diffusion coefficient

The CCG model consists of three stochastic differential
equations (equations (4)–(6)) with the coefficients σ 2

χ , Tχ ,
σ 2

A|ϕ and b̄. The timescale T ≡ 1.5σ 2
U /〈ϕ〉 characterizes the

velocity U (t), whereas the Kolmogorov temporal microscale
τη ≡

√
ν/〈ϕ〉 is appropriate for describing the evolution of

A(t). At high Reynolds number, T is widely separated from
τη and A is a ‘fast’ variable compared to U . This limit
corresponds to the adiabatic elimination of acceleration from

the stochastic model [1]. An approximate multiple-scales
analysis [1] suggests that, in that limit, U (t) and χ(t)
evolve by

dU = −
U

TL ,ϕ

dt +

√
2σ 2

U

TL ,ϕ

dW, (7)

dχ = −
χ

Tχ

dt +

√
2σ 2

χ

Tχ

dW ′. (8)

In the appendices, additional multiple-scales calculations
are performed to further investigate the velocity conditional
timescale TL ,ϕ(χ).

For the sake of clarity, we recall definitions of
dimensionless variables [1]

τ =
aη

σU
t, v̄ =

v

σU
, x̄ =

x∗

σχ

, (9)

along with the small parameter ε ≡
uη

σU
=

151/4
√

Rλ
(with uη ≡

(ν〈ϕ〉)1/4). Then, the Fokker–Planck equation for the one-time
joint PDF f (v̄, ā, x̄; τ) associated with equations (4)–(6) can
be written as [1]

ε


∂

∂τ
+

σA|ϕ

aη︸︷︷︸
S

[
(c1ā + c2ā3)

∂

∂v̄
− 2c2v̄ā − v̄(c3 + c2ā2)

∂

∂ ā

] f

=
τηb̄2

2︸︷︷︸
B

Lā f + 2
3ε2 hLx̄ f, (10)

where h ≡ T/Tχ , Ly ≡
∂
∂y (y + ∂

∂y ) and c3 = c1 + 2c2. The
ε-dependences for S and h follow from the Reynolds-number
dependences noted above. However, the ε-dependence for
B ≡

1
2τηb̄2 is unknown. Multiple-scales calculations are

shown in appendix C that allow for Reynolds-number
dependences in the coefficients (previous calculations [1]
are also shown in appendix B for clarity). Two analyses
in the appendices are based on different assumptions or
approximations concerning S, B and h but lead to the
same conclusion [1] that adiabatic elimination of acceleration
from the CCG model yields a velocity-dissipation model,
equations (7) and (8), with the conditional velocity timescale
TL ,ϕ given by

TL ,ϕ

T
=

τηb̄2

3δ(σA|ϕaη)2
, (11)

where δ = C2(1 + 4p + 6p2). In [1] this result has been
coupled with the observation that the velocity-dissipation
model is exactly solvable and can be matched with DNS data
for second-order conditional Lagrangian velocity structure
functions to back out ϕ-dependences for τηb̄2 at different
Reynolds numbers. In other words, the diffusion coefficient
for the CCG model can be specified in terms of the conditional
velocity timescale as follows [1]:

T

TL ,ϕ

= α + β

(
ϕ

〈ε〉

)1/2

, (12)

α = 2.9, β = β0

√
Rλ, β0 = 0.16. (13)
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Figure 1. CCG predictions for Rλ = 650 based on equations (12)
and (13) for standardized PDFs of Lagrangian velocity increments.

4. Comparison of CCG model with DNS data

A comparison of CCG model predictions with DNS data for
basic conditional and unconditional velocity and acceleration
statistics has been reported in [1]. We comment below on
the inertial-range behaviour of the CCG model. To this end,
we show Lagrangian velocity increment PDFs for different
values of the time lag (figure 1) and the associated structure
functions (figures 2 and 3). With the choice of equations (12)
and (13) for the diffusion coefficient, the Lagrangian velocity
increments PDFs are approximately Gaussian at large times
but develop stretched tails as the time lag decreases and
ultimately approach the Lagrangian acceleration PDF for very
small time lags. This behaviour is consistent with recent
observations of Lagrangian intermittency in experiments and
simulations [7, 8].

We compare CCG model predictions with the
velocity-dissipation model (equations (7) and (8)) and
with the Langevin equation model. This last model can be
obtained after adiabatic elimination of acceleration from the
Sawford (1991) model [9] with the result

dU = −
U

T ∞

L

dt +

√
2σ 2

U

T ∞

L

dW, (14)

where T ∞

L = 2σ 2
U /(C0〈ε〉) ( C0 being the Kolmogorov constant

for the second-order Lagrangian velocity structure function).
Lagrangian velocity structure functions (from order 1 to 10)
for the CCG and velocity-dissipation models are compared
to DNS data in figures 2 and 3. As can be seen (figure 2),
although the CCG and velocity-dissipation models have been
matched with the DNS data for second-order Lagrangian
velocity structure functions at large times, the higher order
structure functions, too, exhibit good matching with DNS
at large times. The velocity-dissipation model predictions
in the figure asymptote to constant values at very small
times, i.e., the velocity-dissipation model cannot reproduce
any intermittency corrections to the Kolmogorov (1941)
inertial-range scaling prediction for Lagrangian velocity

Figure 2. Lagrangian velocity structure function of order n (with
n increasing from 1 to 10, bottom to top) for the CCG (solid) and
velocity-dissipation (dotted) models compared to data at Rλ ≈ 391
from 10243 DNS (dashed).

Figure 3. Lagrangian velocity structure function of order n (with
n increasing from 1 to 10, bottom to top) for the CCG (solid) and
velocity-dissipation (dotted) models compared to data at Rλ ≈ 391
from 10243 DNS (dashed).

structure functions. Nevertheless, one finds

〈|1sU |
n
〉

2/n

〈ε〉s
=

4

3

〈[
α + β

(
ϕ

〈ε〉

)1/2
]n/2〉2/n

, (15)

with the velocity-dissipation model as opposed to a
constant value for the right-hand side as determined by the
Langevin equation. Figure 3 shows the quantity 〈|1sU |

n
〉

2/n

as a function of the second-order Lagrangian velocity
structure function for the CCG and velocity-dissipation
models compared to DNS. This figure confirms that the
velocity-dissipation model provides no accurate description
of the DNS data on small-scale two-time statistics. It is
notable, however, that for large times and low values of n,
the velocity-dissipation model predictions can approximately
describe the observations from DNS.

5. Conclusions

After a brief review of the basis for the CCG model,
its large-time behaviour is further investigated by means

3
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of different assumptions for the multiple-scales procedure
which leads to the adiabatic elimination result, equation (11).
This relation was derived assuming frozen ε-dependences
for the coefficients in equation (10). However, additional
multiple-scales calculations are presented which support the
conclusion that equation (11) has more general validity than
suggested by the assumptions made in its derivation.

We briefly examine the intermittent behaviour of the
CCG model by showing Lagrangian velocity increments
PDFs in the inertial range. Associated Lagrangian velocity
structure functions are compared to predictions with the
velocity-dissipation model and with the DNS data. This
comparison is consistent with previous observations of
Lagrangian intermittency in experiments and simulations.
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Appendix A. Regular expansion

First, we show (below) that a regular perturbative treatment of
the Fokker–Planck equation (10) leads to a secular divergence
at large times, which can be prevented using the method of
multiple scales.

Let us now assume that S, B and h are effectively
independent of ε so that equation (10) can be rewritten in the
form

ε

{
∂

∂τ
+ S

}
f = BLā f +

2

3
ε2 hLx̄ f, (A.1)

where S ≡ S[(c1ā + c2ā3) ∂
∂v̄

− 2c2v̄ā − v̄(c3 + c2ā2) ∂
∂ ā ]. It is

not difficult to see that a regular perturbative treatment
of (A.1) fails in the large-time limit, i.e.

f = f (0) + ε f (1) + ε2 f (2) + · · · (A.2)

is not uniformly convergent for small ε. This can be
seen by solving the sequence of problems obtained by
substituting (A.2) into (A.1) and equating coefficients of like
powers in ε. At O(1) equation (A.1) is Lā f (0)

= 0, whence

f (0)(v̄, x̄; τ) = 8(v̄, x̄; τ)
e−ā2/2

√
2π

, (A.3)

where 8 is the joint PDF of ( U
σU

,
χ∗

σχ
) at O(1).† At O(ε)

equation (A.1) is

BLā f (1)
=

{
∂

∂τ
+ S

}
f (0), (A.4)

† It should be noted that since Lā is a second-order differential operator,
we would expect there to be two linearly independent solutions. A second

linearly independent solution is of the form f (0)
= 9 e−ā2/2

√
2π

i erf
(

iā
√

2π

)
. This

is an odd function that does not stay positive and therefore cannot be used as
a PDF.

which has to be solved for f (1). For this equation to have a
solution, the right-hand side has to be orthogonal to the null
space of the adjoint operator L ∗

ā (by the Fredholm alternative
theorem). The adjoint operator is L ∗

ā = (−ā + ∂
∂ ā ) ∂

∂ ā and its
null space is spanned by the functions 1 and i erf( iā

√
2
) (the

latter function is unbounded and has to be discarded). Hence,
requiring that the integral of the right-hand side of (A.4)
with respect to ā be zero ensures solvability for (A.4). The
solvability condition at O(ε) is ∂8

∂τ
= 0 and one finds

f (1)
= −

(
c3ā +

c2

3
ā3
) S
B

e−ā2/2

√
2π

[
∂8

∂v̄
+ v̄8

]
+ 9(v̄, x̄; τ)

e−ā2/2

√
2π

, (A.5)

where 9 is the joint PDF of ( U
σU

,
χ∗

σχ
) at first order. At O(ε2)

equation (A.1) is

BLā f (2)
=

{
∂

∂τ
+ S

}
f (1)

−
2
3 hLx̄ f (0), (A.6)

which implies the following solvability condition:

∂9

∂τ
=

δS2

B
Lv̄8 + 2

3 hLx̄8, (A.7)

where δ ≡ c2
1 + 6c1c2 + 11c2

2. However, the solvability
condition at O(ε) and (A.7) imply that 9 ∼ τ . Thus, a
regular perturbative treatment for (A.1) leads to a secular
divergence in the large-time limit. The method of multiple
scales must then be used to prevent loss of asymptoticness for
the perturbation series (A.2) for τ > O(ε−1).

Appendix B. Multiple-scales treatment
with frozen coefficients

Using the method of multiple scales, the joint PDF in
equation (A.1) is treated as a function of several timescales

τ0 = τ, τ1 = ετ, τ2 = ε2τ, . . . , (B.1)

so that
∂

∂τ
→

∂

∂τ0
+ ε

∂

∂τ1
+ ε2 ∂

∂τ2
+ · · · . (B.2)

The function f (v̄, ā, x̄; τ0, τ1, τ2, . . .) is then expanded in
powers of ε as in (A.2) and the solution eventually obtained
by restricting the auxiliary time variables to the line (B.1). The
fact that f (v̄, ā, x̄; τ0, τ1, τ2, . . .) has no physical meaning
outside the line (B.1) is exploited to enforce conditions that
eliminate the secular divergence at large times.

Substituting (A.2) into the governing equation (A.1) and
comparing coefficients of equal powers of ε yields a sequence
of problems. At O(1) equation (A.1) is

Lā f (0)
= 0, (B.3)

whence

f (0)(v̄, ā, x̄; τ0, τ1, τ2, . . .)=8(v̄, x̄; τ0, τ1, τ2, . . .)
e−ā2/2

√
2π

,

(B.4)

4



Phys. Scr. T132 (2008) 014044 A G Lamorgese et al

where 8 (with the timescales restricted to (B.1)) is the joint
PDF of ( U

σU
,

χ∗

σχ
) at leading order. At O(ε) equation (A.1) is

BLā f (1)
=

{
∂

∂τ0
+ S

}
f (0). (B.5)

The solvability condition at O(ε) is ∂8
∂τ0

= 0 and one then finds

f (1)(v̄, ā, x̄; τ0, τ1, τ2, . . .)

= −

(
c3ā +

c2

3
ā3
) S
B

e−ā2/2

√
2π

[
∂8

∂v̄
+ v̄8

]
(B.6)

+ 9(v̄, x̄; τ0, τ1, τ2, . . .)
e−ā2/2

√
2π

,

where 9 (with the timescales restricted to (B.1)) is the joint
PDF of ( U

σU
,

χ∗

σχ
) at first order. At O(ε2) equation (A.1) is

BLā f (2)
=

{
∂

∂τ0
+ S

}
f (1) +

∂

∂τ1
f (0)

−
2
3 hLx̄ f (0), (B.7)

which implies the following solvability condition

∂9

∂τ0
= −

∂8

∂τ1
+

δS2

B
Lv̄8 + 2

3 hLx̄8. (B.8)

The right-hand side of this equation does not depend on τ0

and hence one must impose the condition ∂9
∂τ0

= 0 to prevent
a secular divergence at large τ0. Combining the solutions
to (B.3) and (B.5), the joint PDF of ( U

σU
,

χ∗

σχ
) follows as ρ =∫

f dā. Then, the governing equation for ρ is

∂ρ

∂τ
= ε

[
δS2

B
Lv̄ρ +

2

3
hLx̄ρ

]
+ O(ε2). (B.9)

In terms of dimensional variables (and to leading order in ε),
equation (B.9) can be recast in the form

∂ρ

∂t
=

3δS2

2B

[
∂

∂v

( v

T
ρ
)

+
σ 2

U

T

∂2ρ

∂v2

]

+
∂

∂x∗

(
x∗

Tχ

ρ

)
+

σ 2
χ

Tχ

∂2ρ

∂x∗2 , (B.10)

which is the Fokker–Planck equation corresponding to the
velocity-dissipation model

dU = −
U

TL ,ϕ

dt +

√
2σ 2

U

TL ,ϕ

dW, (B.11)

dχ∗
= −χ∗

dt

Tχ

+

√
2σ 2

χ

Tχ

dW ′, (B.12)

with
TL ,ϕ

T
=

2B
3δS2

. (B.13)

This relation shows that τηb̄2
= 2B can be usefully expressed

as the ratio on the right-hand side of (B.13) because that is
the velocity timescale of a velocity-dissipation model that
is obtained from the CCG model upon formal removal of
dissipation-range information (via adiabatic elimination of
acceleration).

Appendix C. Multiple-scales procedure with
ε-dependences in S and B

In this section, the multiple-scales treatment is modified to
account for the ε-dependence in S,

S =

√
C1S1ε0.4 + ln

(
C2

ε2

)
S2, (C.1)

with C1 = 1.2 × 15−0.1, C2 =
√

15/20, S1 = (ϕ/〈ϕ〉)0.15 and
S2 = (ϕ/〈ϕ〉)1.25 (equation (C.1) is identical to (1)). The
Reynolds-number dependence for B is unknown and therefore
we consider hypothetical dependences that are consistent with
the minimal requirement that B be a decreasing function of
Reynolds number (in agreement with the observed increase
in intermittency of velocity for increasing Reynolds number)
and that make the multiple-scales treatment tractable.

We assume

B =
1

√
ln ε−1

B, (C.2)

where B =
1
2τηb̄2, and use a two-term expansion for

S ≈

√

ln ε−1

[
1 −

ln C2

4 ln ε

]√
2S2︸ ︷︷ ︸
S∗

2

, (C.3)

valid at asymptotically high Reynolds numbers (i.e. as ε → 0).
Thus, equation (10) can be recast in the form:{

ε
√

ln ε−1
∂

∂τ
+ ε(ln ε−1)S2 + ε

ln C2

4
S2

}
f

= BLā f +
2h

3
ε2

√

ln ε−1Lx̄ f, (C.4)

where S2 = S∗

2 [(c1ā + c2ā3) ∂
∂v̄

− 2c2v̄ā − v̄(c3 + c2ā2) ∂
∂ ā ].

(Additionally,

h(ε) ≈ 18.18 − 454.85 ε1.4 + · · · , as ε → 0; (C.5)

however, we make h ≡ h(ε = 0) in (C.4) because we are only
interested in the solvability conditions at second order.)

The joint PDF in equation (C.4) is treated as a function of
several timescales

τ0 = τ, . . . τi j = εi (ln ε−1) j/2τ, . . . (C.6)

so that

∂

∂τ
→

∂

∂τ0
+

∞∑
i=1

∞∑
j=−∞

εi (ln ε−1) j/2 ∂

∂τi j
. (C.7)

The function f (v̄, ā, x̄; τ0, . . . , τi j , . . .) is then expanded in
powers of ε and ln ε−1,

f = f (0) +
∞∑

i=1

∞∑
j=−∞

εi (ln ε−1) j/2 f (i, j) (C.8)

and the solution eventually obtained by restricting the
auxiliary time variables to the line (C.6). Substituting (C.8)
into the governing equation (C.4) and comparing coefficients
of equal powers of ε and ln ε−1 yields a sequence of problems.
At O(1) equation (C.4) is

Lā f (0)
= 0, (C.9)

5
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whence

f (0)(v̄, ā, x̄; τ0, τ1, τ2, . . .)= 8(v̄, x̄; τ0, τ1, τ2, . . .)
e−ā2/2

√
2π

,

(C.10)

where 8 (with the timescales restricted to (C.6)) is
the joint PDF of ( U

σU
,

χ∗

σχ
) at O(1). At O(ε(ln ε−1) j/2)

equation (C.4) is

BLā f (1, j)
=

∂ f (0)

∂τ0
δ j,1 + S2 f (0)δ j,2 +

ln C2

4
S2 f (0)δ j,0.

(C.11)

The only solvability condition at O(ε) is ∂8
∂τ0

= 0 and one then
finds

f (1, j)
= −

[(
ln C2

4
− 1

)
δ j,0 + 1

] [
c3ā +

c2

3
ā3
] S∗

2

B

e−ā2/2

√
2π

×

[
∂8

∂v̄
+ v̄8

]
(δ j,0 + δ j,2) + 8(1, j) e−ā2/2

√
2π

,

(C.12)
where 8(1, j) (with the timescales restricted to (C.6)) is the
joint PDF of ( U

σU
,

χ∗

σχ
) at first order. At O(ε2(ln ε−1) j/2)

equation (C.4) is

BLā f (2, j)
=

∂ f (1, j−1)

∂τ0
+

∂ f (0)

∂τ1, j−1
+ S2 f (1, j−2)

+
ln C2

4
S2 f (1, j)

−
2
3 hLx̄ f (0)δ j,1, (C.13)

which implies the following solvability conditions:

∂8(1, j)

∂τ0
+

∂8

∂τ1, j
=

[
δ j,3 + δ j,1

ln C2

2
+ δ j,−1

(
ln C2

4

)2
]

×
δS∗

2
2

B
Lv̄8 + 2

3 hδ j,0Lx̄8, (C.14)

where δ ≡ c2
1 + 6c1c2 + 11c2

2. Combining the solutions
to (C.9) and (C.11), the joint PDF of ( U

σU
,

χ∗

σχ
) follows as

ρ =
∫

f dā. In terms of dimensional variables (and to leading
order in ε), the governing equation for ρ is

∂ρ

∂t
=

√

ln ε−1
3δ

2B

[
ln
(

C2

ε2

)]
S2

[
∂

∂v

( v

T
ρ
)

+
σ 2

U

T

∂2ρ

∂v2

]

+
∂

∂x∗

(
x∗

Tχ

ρ

)
+

σ 2
χ

Tχ

∂2ρ

∂x∗2 . (C.15)

This is the Fokker–Planck equation associated with
equations (B.11) and (B.12) with

TL ,ϕ

T
=

2B/
√

ln ε−1

3δ ln
(C2

ε2

)
S2

, (C.16)

or
TL ,ϕ

T
=

2B
3δ ln

( Rλ

20

)
S2

. (C.17)

This expression is identical to that given by equation (B.13)
when only the second term on the right-hand side of (C.1) is
considered.

In another multiple-scales treatment for the CCG model
based on

B =

√

ε ln ε−1 B (C.18)

(in place of (C.2)) and (C.3), the same result (i.e.
equation (C.16)) is obtained.
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