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Direct numerical simulation of homogeneous turbulence with hyperviscosity

A. G. Lamorgese, D. A. Caughey, and S. B. Pope
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca,
New York 14853-7501

(Received 18 April 2004; accepted 15 October 2004; published online 15 Decemb@gr 2004

We perform direct numerical simulatiog®NS) of the hyperviscous Navier—Stokes equations in a
periodic box. We consider values of the hyperviscosity indle, 2, 8, and vary the hyperviscosity

to obtain the largest range of lengthscale ratios possible for well-resolved pseudo-spectral DNS. It
is found that the spectral bump, or bottleneck, in the energy spectrum observed at the start of the
dissipation range becomes more pronounced as the hyperviscosity index is increased. The calculated
energy spectra are used to develop an empirical model for the dissipation range which accurately
represents the bottleneck. This model is used to predict the approach of the turbulent kinetic energy
k to its asymptotic valuek.,, as the hyperviscosity tends to zero.2005 American Institute of
Physics [DOI: 10.1063/1.1833415

I. INTRODUCTION effects in hyperviscouéh> 1) turbulence may shed light on
bottleneck effects in conventionéh=1) turbulence.
Recent experimental measureméritsn homogeneous In this work, our initial goal is the construction of a

turbulence at high Reynolds numbers show the unequivocalataset of DNS of the normdah=1) and hyperviscough
presence of a “bottleneck” effect. This phenomenon is ob=1) Navier-Stokes equation. We use such data in the mod-
served in longitudinal and transverse energy spectra alike. laling of bottleneck effects in energy spectra in homogeneous,
the aforementioned works, data for the longitudinal energyhondecaying turbulence. The result is a model spectrum that
spectrumE,;(«;) (wherek, is the wave numbegrare shown is capable of matching numerical spectra to good accuracy
to satisfy —5/3-scaling in an inertial range of scalesrre-  because of its ability to account for the bottleneck. Finally,
sponding to a “plateau” in the compensated spectra, see Figge attempt to use the model spectrum to investigate the Rey-
1 and 2. At larger wave numberé&c; 7~=0.05, a bump-like  nolds number dependence of energy spectra as the Reynolds
(or bottleneck behavior is observed, followed by the spec- number grows unbounded.
trum’s monotonic decay further in the dissipation range.
Similar bumps have been documented in pseudo-spectral
direct numerical simulations(DNS) of homogeneous
turbulence’ Even in the absence of experimental data to
compare with, such bumps may not be explained in terms ofl: HYPERVISCOUS, FORCED DNS
numerical discretization effects, as they are evident in . _
pseudo-spectral DNS in which the numerical errors have [N the following, u(x,t) denotes the fluctuating compo-
been demonstrated to be small in compari&brin other nent ofazero?mean solepoidal velocity fie!d governed by the
words, bottleneck bumps as observed in DNS @teleast forced hyperviscous Navier—Stokes equation
qualitatively) consistent with those observed in recent ex-
periments. JU+U-Vu==Vp+(= )"y v +f, (1)
Recent work on the hyperviscosity-modified Navier—
Stokes equatioh(with hyperviscosity indesh) has clarified ~ Wherew, is the specified constant hyperviscosity coefficient,
the connection that this approach has with large-eddy simiand f is the forcing function which is described below.
lation. We note, however, that it is unclear whether hypervisClearly, the ordinary Navier-Stokes equation corresponds to
cous subgrid-scale models are capable of reproducing reali§=1 .a}ndf:O. We consider the case of periodic boundary
tic features of internal intermittency in the inertial range. conditions
Relevance of the hyperviscoys>1) Navier—Stokes equa-
tion is not restricted to the large-eddy simulation of conven- ~ U(X+ £&,t) =u(x,t), («¢=1,2,3, 2
tional (h=1) turbulence. Hyperviscous Navier—Stokes simu-
lations may be a useful testbed for two-point closure theoriewhere L is the periodicity length and, is the unit vector of
(e.g., a hyperviscous variant of EDQNM the ath (Cartesian coordinate direction. Thus, our solution
In the more basic context of the Kolmogor@¥941)  domain isB=[0,L]>. As is well known, because @2), it is
phenomenology, it is still unclear whether the hyperviscougermissible to writeu(x,t) as a Fourier series
Navier—Stokes equatiofwith h> 1) contains any physics of
bottleneck _eﬁects t_hat are evident in co_nve_ntio(mm 1) tur- ux,t) = S 0, (e, (3)
bulence. It is plausible that a “parametrization” of bottleneck P
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0.7 ' K In this work, Eg. (1) is driven by an acceleration
forcing,10 so chosen as to yield a constant energy injection
0.6 rate (denoted byP). The forcing is most simply defined in
< 05 wave number space by its Fourier coefficients as
, )
O o Pligec.
= o4 | ) = — ~ 0,00,
S o 0= (6)
3_5, 0.3r wherek; is the(specified largest wavenumber acted upon by
lﬂ: 0zl the forcing, Hud=wg] is the indicator function of the forced
' shell (unity when k< k;, zero otherwisg andk; is the ki-
oAl | netic energy of the modes within the shell. The forcing drives
the flow toward a statistically stationary state wherein

o 10" 107 10° 10 (e)=P. (7)

K11
' Use off [as defined by6)] is unnatural(as are most

FIG. 1. Compensated longitudinal energy spectrum in homogeneous shegther ways of forcing turbulengeHowever, we are prima-
flow atR,=915[Fig. Xb) in Shen and Warhaft2000). rily concerned with bottleneck effects on energy spectra, i.e.,
we investigate one particular characteristic of small-scale
turbulence. In this case, use of a large-scale forcthgin
u(x,t)e **dx (4) order to aqalyze'gtatistically stationary rather than de_caying
’ ’ turbulencg is justifiabld?*3on the grounds that the details of
the forcing have little effect on the small-scale statistics. In-
'S deed, at sufficiently high Reynolds numbers, according to the
efficient of u(x,t) associated withw is denoted byl,(t).  first Kolmogorov(1941) hypothesis, the small-scale statistics

(Fourier coefficients are denoted by hats. ~ depend on the forcing solely through its energy injection
Because of homogeneity, the hyperviscous dissipatiofpgte

rate(e)=(~1)"v,(u-V?"u) (where angled brackets denote ex-  The Fourier transform of Eq1) may be rewritten in the
pectation valugsmay be rewritten as,((V"u)?), whichis a  form
positive semidefinite quantityHere V" denotes the outer

1

(D= =
00 ="3 .

where k= kon (with n e Z%) and x,=27/ L. The Fourier co-

product ofV with itself h times and the square denotes con- . N ohn PLjud<x . (
traction on all indices. The hyperviscous dissipation wave (8e) 1 vpll™0 2k (t) 0,0
number is defined by R
_ ~ N -
HEC =FY(FQ,), = lNK——( . 2")"] (8)
Kg—= ? . (5) ' K
h

Itis easily seen thaty= "1 for h=1, wherey is the standard WhereN, is the Fourier coefficient ol (N;=-d;u;u;) and

Kolmogorov microscale.
g F(r,t) = ex f l(PK§)1’3<|£)2h - —Pl[l"g'(f]]dt/
0 Kd 2kf(t’)
9

In this expression, the hyperviscosity has been rewritten in
terms of kg4 using (7) in addition to(5). This simplifies the
numerical evaluation of the integrating facte(,t) at anyt.

0.7

. NUMERICAL METHOD

En(k)sy ()23

Equation (9) summarizes the details of our numerical
setup. If the flow domain were unbounded, two-dimensional
quantities might be set arbitrarily, e.® ,andk;, and then the
additional specification aot4/ x; would completely character-
0 = = - o ize the flow. Since our spatial discretization enforces the box

Kim size to be the largest lengthscale in the problem, the ratio

kil kg @lso needs to be specified. In our setup(ambitrarily)
FIG. 2. Compensated longitudinal energy spectra in decaying homogeneo%setpz 1, ko=1; we specify the fixed value,/ x,=3; then the
turbulence[processing data presented in Table 2 of Katal. (2003] at fl . d' f(') d’ b inal di . fl 0™
different stationgx/M=20,30,40,48in the Corrsin wind tunne{associ- Ow IS defined by a sing énondimensionalparametefe.g.,
ated Reynolds numbers aRy=716,676,650,626 kgl ks or a suitably defined Reynolds numheClearly, €
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FIG. 3. Resolved fraction of dissipation in model calculations with the

2/9-truncation. The bottleneck and the appropriate rate of dec&y«gh)
in the dissipation range are taken into account in the construction of this=3; thicker horizontal dashed line at 1.5Base” refers toAt=1073 andN

figure.

= k; %, andU= (P/ k;)*® are characteristic length and veloc-
ity scales of the energy containing motions: thus, a turbu-

lence Reynolds number may be defined as

Re= €2h_1l/{/vh = (Kd/Kf)Zh_Z/g.

Our spatial discretization is pseudo-spectral whkh
modes in each coordinate direction, and with exact removal
of double- and triple-aliasing errot$ We investigate small-

(10)

FIG. 4. Compensated energy spectra &Qf xo=50 (with h=1 and «;/ g

=160, whereas “At” and “2k,, refer to the same case advanced with
At=2103, N=160 andAt=10" N=320, respectively.

Rogalld® and chooses;, 6,, ¢ € U(0,27]) (uniform ran-
dom deviates i0, 27r]) subject to the requirement of Her-
mitian symmetry for the Fourier coefficients. We choose the
initial energy spectrum to be

(xlkp)?,
(klk) ™R k> k4,

9 K < K¢,
E(k,0) = L up’Ky™ X ! (12)

scale resolution in Fig. 3, that shows the fraction of resolved

dissipation for a velocity field generated in the Fourier spacg nere u!
according to Eqgs(11) and(16) [with f, given by Eq.(18)] 0

denotes the initial root-mean square-intensity of
any one velocity componeriive setuy=1).

and truncated according tdr|<xmax (Where xmad Ko
=\s‘"2/9N). For all values ofh, we employ the same “crite-
rion” for accurate small-scale resoluti§ry,.,= 3/2ky) that
is commonly used in conventionalh=1) turbulence
simulations™* Figure 3 shows that, based on this criterion, no
less than 99% ofe) is resolved foth=1 and 8, and 98% for
h=2. The small-scale resolution criterion may be rewritten as
N=319/8k4/ k. This guarantees that, for the range of reso-
lutionsN e [160,30( considered in this work, the remaining &
(singledaliasing error energy is always less than 0.01% of ﬁ
the resolved kinetic energy. Figures 4 and 5 show the effec
of grid and time-step refinement on the compensated energ £
spectrum for a flow witth=1, x4/ kg=50. Figure 5 suggests %
that (peak relative errors never exceed 11.1%. K
The initial field is a random realizatiéfof a vector field <%
with prescribed energy spectrum, i.e.,

Here 6,, 6, are the phases al, and y,, respectively, 1, 2
being directiongwhose unit vectors are denoted §y,) in
the incompressibility planés-0,.=0) corresponding to the
Euler angles in the (or y) convention™® The azimuth of the
vector (|0,],|Gy|) (in that plang is equal toe. We follow

(11

h=1 ks/ko=3

10° E(r)s*3p~23
107
107
10°
-4
10 LI AL .
— base E(x) :: ' :
- - base-2*At " .y
... base-2%k ' W
107 = l s
-1 (]
10,{/,% 10

FIG. 5. Absolute errordashed, dot—dashgéh steady-state compensated
energy spectra between the “base” andt2simulations, and between the
“base” and “Z,. Simulations. The spectral turn-up in the “basklx)

(solid) in a left neighborhood ok, is the result of single-aliasing errors.
This makes the difference compensated spectrum between the “base” and
“2kmax Simulations meaningless in a left neighborhoodxgf,,.
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FIG. 6. Energy spectra for different values &f/ x, with h=1 and «;/ kg FIG. 7. Kolmogorov-scaled energy spectra for different valuescgig
=3. The thicker dashed line is the Kolmogorov spectrum, (E4). with h=1 and ¢/ xy=3. The thicker dashed line is the Kolmogorov spec-
trum, Eq.(14).

We use a second-order Runge—Kutta for time advance-
ment. In a series of tests, we checked that statistical station- Figure 7 shows Kolmogorov-scaled energy spectra com-
arity may be assumed after 1015 eddy turnover tigties pared to the Kolmogorov inertial-range spectrum
number of eddy turn-over times that the flow has undergone - _ -5/3
at timet is defined as,=(P«?)Y%). Bl 1) = Cledieg) ™, (14)
Whenever isotropy is postulated i@ discret¢ wave with C=1.5. As may be seen, at the higher wave numbers
number space, a discretization in wave number shells of«x/«4>0.1) there is an excellent collapse of the spectra for
thicknesskg is implied for the energy spectrum. This func- different values ofc,/ kg indicating that Kolmogorov scaling

tion is computed as is satisfied to good accuracy. In Fig. 8, compensated spectra
1 10,2 are consistent with the observaticihat the correct plateau
E(nkg) = ——— E < (13) to look at to infer the value of the Kolmogorov constant is to
M’ (nxo) (=112 kip=| | < (N+1/2) g 2 the left of what can be described as a bottleneck peak. Recent

numerical simulatior’s’ show that a true inertial-range pla-
teau in the compensated spectra may be clearly visible for

+ 3_(n— 3 ;
1/2). (n_ 1/27°} M(nko) being the_ ngmber_of modes Reynolds numberR, larger than(at leas} 200 (requiring a
contained in the shell centeredrat, [as indicated in the sum . .
) 17 . . minimum of 512 mode3. From Fig. 8, we see that the
in (13)].7" In subsequent figures, we show time-averaged en;: : - _ oo
. . . ! bottleneck bump starts in proximity &f/ x4=0.05. This is in
ergy spectra, with the time-averaging startingrat 10.

where n=1,2,... N/2 and M'(nkg)=M(nky)/{(47/3)[(n

IV. RESULTS h=1, ki/ko =3
Figure 6 shows energy spectra for1l and different
values of x4/ ko. Associated Reynolds numbefssing Eq.
(10)] are in the rang§43, 93, whereasN  [160, 304. Tay-
o
lor Reynolds numbers (R\=1/20k?/ (31(&)) $ ,
=k\20/3/(vkg)?) are indicated in Table I. The unsteadiness @, ' |
in the time series for the turbulence kinetic ene(dgnoted <
by k, or TKE), as defined by a volume average |af?/2, X = e=10
requires the additional use of time-averaging to finally infer % - xallcz=80
the values ofR, reported in Table I. A R
TABLE |. Parameters for DNS withh=1. / - XM=171
kgl Ko N v Re R 10™ = =
10 }0
50 160 5.428 1073 43 84 K/ kd
70 240 3.466¢10°° 67 105 FIG. 8. Compensated energy spectra for different valuesybk, with h
80 256 2.90x 10° 80 112 =1 and«¢/ko=3 (thicker dashed line at 1)5Eq. (18) (+ mark9 and the
90 300 2.47% 1073 93 128 Comte-Bellot and CorrsitiRef. 24 experimental datghin lines with *, X

and diamond marksare also indicated.
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FIG. 9. Energy spectra for different values mf/ k, with h=2 and ¢/ kg
=3. The thicker dashed line is the Kolmogorov spectrum, (&4).

FIG. 10. Kolmogorov-scaled energy spectra for different values bk,
with h=2 and «;/ k,=3. The thicker dashed line is the Kolmogorov spec-
trum, Eq.(14).

good accord with higher resolution d&tahus, the neces-
sary condition for a value for the Kolmogorov constant to bef, («/«) tends to unity, as does, (k! xg) for small x/ kg.

discernible from the compensated spectra is the presence offdyys, for x; < k< k4, the model spectrum is a Kolmogorov
plateau for x/k3<<0.05 (a clear inertial-range plateau is -5/3-spectrum with constar@. While f, is not universal
missing from Fig. & (having a first-order dependence on the large scales of the

Two comments are in order. First, much scatter in VaIUE$|Ow)' according to the Ko|mogor0v hypothesé;ls univer-
for the Kolmogorov constaribased on various experimental sa| (for given h).
and numerical investigatiof') might be probably reduced Use of(16) with modeled forms foff,_andf,, constitutes
by distinguishing between analyses that recognize the exiggn empirical model for the energy spectrum. This is useful in
tence of a bottleneck and those that do (sete, e.g., Fig. 1 experimental investigatiois®> where E(x) has to be de-
of Ref. 19 Second, bottleneck effects are not incompatibleduced from experimental data fﬁll(Kl)' We also Suggest
with the conventional Richardson—Kolmogorov phenom-that a model spectrurgthat reproduces the important physi-
enology of turbulencgas it is easy to see by interrogating ca| observationsmay be used as a predictive tool to inves-
the Kolmogorov(1941) hypothesesand they are manifest tigate turbulence statistics in the infinite Reynolds number
not only at moderately high Reynolds numi8that may be limit (as shown further below
simulated on 512(or large) grids but also at lower Rey- The capability of Pope’s model spectrum to account for
nolds numbers where no scaling arguments may be invoked.
Bottleneck effects are the result of viscous effects on inertial
transfer.

Figures 9-14 show analogous data for2 andh=8.
From the compensated spectra, it may be seen that the bottlt
neck peak increases asincreasegfor all v,), whereas its
location shifts to largek/ k4. This is summarized in Fig. 16.

h=2 k¢/k0=3

A. Modeling of numerical spectra oL

) x5/3 p=2/3

A fundamental consequence of the KolmogoKd941)
hypotheses is that the energy spectrum in the universal equi-t
librium rangé™?? of an isotropic, forced turbulence is given
by

E(k) = CP?/3x™5/3f (Kl Kg) . (15)

A model spectrum which is a natural extension of this rela-
tion to arbitraryx

Eqn(k) = f(kl k) CP?3k 5% 2Kl Kqg),

was proposed by Poﬁé.CIearly, f, represents the spectrum
behavior in the infrared and energy containing ranges,fgnd
represents the dissipation range behavior. For latfe;,

E(x

—1 s L

10— -
(16) 10 10/’% 10

0

FIG. 11. Compensated energy spectra for different valuegbf, with h
=2 andk;/ k=3 (thicker straight line is at 1)5Equation(18) (+ marks is
also indicated.
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. h=8 ks/kg=3

h=28, ki/ko=3

E(K‘/)K)5/3P_2/3

0.4

KE(k)k2*P=2/3

0.3r

02t A Aveen,

0.1f

0
10

0

1

l-1 0
kg 10

’%I?;io 10

FIG. 12. Energy spectra for different values iff ko, with h=8 and«/ kg . .
=3. The thicker dashed line is the Kolmogorov spectrum, (E4). FIG. 14. Compensated energy spectra for different valueg,bf, with h
=8 andk;/ xy=3 (thicker straight line is at 1)5Equation(18) (+ marksg is

also indicated.
a bottleneck depends on the form chosen for the dissipation

range component,. A recent proposéﬂa (for h=1) is the

result of empirical modeling for each value oh (given x4/ ko). Tables Il and Ill give the

1 1 values of A and o for each of our calculations; based on
f,x)=[1+ a5<— arctajag 10g;o X + a7} + 5) these data, one may hypothesias we do hereaftgthatA,
. o are “independent” ofky/ky (at least over the range of
Xexp(— azX), (17)  values considered here
, . . . Examination of the numerical compensated spectra
where theq;’s are determined by comparing with measure- .
! . shows the exponential component ©of to be of the form
ments(x being a dummy variabje

i _ expa;—b;x"). However, when the factor preceding the ex-
Following a similar approach, we are able to match the I .
L onential is modeled as in E¢L8), we can no longer guar-
dissipation range components of our data to good accura

(see Figs. 15 and 36hrough Antee that Eq(18) with b=b; satisfies
A 1 *
f,0)=11+ E{l +erf(1.1+0.3x)In(ox)]} - f X253 (xucgl k), (X)DIX. (19
0
X exp(— bx"), (18) . L .
This condition is equivalent to
whereA and o are determined by an interpolation procedure
h=8, Rf/ﬁ()=3 10" 54/50280, nf//-c0:3 '
RO R 1
2 |
1 -
A, -
< ®
ms? g 10-1 4
= =
K3
ot — h=1 J
-- h=15
s A
— h=8 i{fx
. L+ _Eq.(18) t:;i
10 -2 I-! IO 10 -2 ‘-1 ‘o .
10 10}{/%0 10 10 10 n/nd 10

FIG. 13. Kolmogorov-scaled energy spectra for different valueg bk, FIG. 15. Compensated energy spectra for different valuds afid «y/ «q
with h=8 and «/ k,=3. The thicker dashed line is the Kolmogorov spec- =80 (with ¢/ ko=3) vs corresponding model curves computed through Eq.
trum, Eq.(14). (18) (+ marks.

Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



015106-7 Direct numerical simulation of homogeneous turbulence Phys. Fluids 17, 015106 (2005)

kg/kg =80, ks/Kg =3 TABLE Ill. Values of o based on differenky/ q.
- h=1 I N '
4if{=-= h=15 v . k4l Ko h=1 h=2 h=8
—-h=2
e s DIE° 50 11.83 4.220 1.266
= + Eq.(18) 70 10.03 3.815 1.268
A 80 9.536 3.927 1.266
Ez 25 90 10.71 3.907 1.262
E 2_
S
1.5¢
------ ¢ 6= {ax+ exp(qu)—l]5/3+p 01
1 L(X) = exp(eX) : (21)
oo with a=1.6,¢=3.5,q=1.5, andp=2. As expected, we found
100_2 10‘_, ':"' (i) the empi.ricallly determineqL’s (for each flow to be
K/Ka strongly realization-dependeirt,) their ensemble average to

FIG. 16. C ted tra for different valuels arid x/ be flow-dependent.
. 16. Compensated energy spectra for different valu kgl Ko .
=80 (with «;/ky=3) vs corresponding model curves computed through Eq. Therefore, we elect to mOdm once and for all as in Eq.

(18) (+ marks. (21). The resulting model spectrum is capable of matching
numerical energy spectra to good accuraeasonable accu-
racy may be achieved at the large scales, with relative errors

% |(E(x) —En(x))/En(x)| never exceeding 0)4Representative

P=(e)= 2vhf K?"E(x)dxk, (200 results are those in Figs. 19 and 20.
0

applied to the model spectrum, E(.6). For givenf,, Eq.  B- Asymptotic behavior of model TKE

(19) imposes a condition of,. Having determined the de- In this section, we consider a model kinetic energy dif-
pendences oA and o on h, we solve(19) for b (using @  ference ratidgi.e., defined in terms of the model spectiuim
secant meth@d The I’esultlng values are g|Ven in Table IV an asymptotic regime as the Reyno'ds number grOWS un-

for xq/ ko=90. bounded. In this case, the effect of large-scale motithis

Figures 17 and 18 show that matching of numericalincjudes the details of the modeling fér) vanishes afRe
spectra in the dissipation range through Ey) [as opposed . .

to Eq.(18)] is also possible, after trial and error tuning of the Figures 6, 9, and 12 suggest thatag, is increased
, . . . 4 1 L . { X 1
«'s to values different from those indicated by Kaegal."  there are two competing effects determining the TKE behav-
The procedure above has been described under the ggr with Reynolds number. ARe grows, the energy spectra
sumption that the functional form fdi_ is known. We now  extend to higher and higher wave numbers, with an attendant
describe the rationale to obtain the form actually used in thigncrease in the TKE. On the other hand, a less intense bottle-
work. Our goal is to determine an approximate expression @ieck is required for the dissipation rate to balance the energy
describe the large-scale behavior of the energy spectrum iflux through the inertial range as this is stretched to higher
such a specialhomogeneoysturbulence as the one driven wave numbers. The two effects may be clearly seen in Figs.
by the forcing defined by6). In contrast to the case df, 9 and 12.
there is no suggestion thét is universal. B For given fixed values oP, «, h, and«;, we denote by
Having decided that, is given by Eq.(18), an empiri-  E_(«: «,) the model energy spectrum which depends on the

cally determinedf, [defined asf{”=E(x)/(CP?*«%% )]  specified value ofcs. The corresponding kinetic energy is
may be computed as soon as the energy spectrum from one

numerical simulation is known. Empirically determingds K(ky) = f E, (K kg)dk. (22)
were computed for different realizations of different flows

(corresponding to different values bfand x4/ ko). For each
flow, we compared eight independent realizationﬁ(L%fwith
their ensemble average and the following model expressio

We are particularly interested in the behaviorkéky) as gy
r{ends to infinity, and so definke,=k() and Ak(xg) =K(xg)
—k.. It follows from the model[Eq. (16)] that

TABLE II. Values of A based on differenky/ «o.

TABLE IV. Values of model coefficients foky/ «,=90.

Kql Ko h=1 h=2 h=8
h=1 h=2 h=8
50 2.9277 2.3198 4.6240
70 3.5151 1.9312 45722 A 2.9574 2.1071 4.2530
80 3.1849 2.1297 4.5863 o 10.71 3.907 1.262
90 2.9574 2.1071 4.2530 b 4.996 2.315 1.239
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10— h=1 Ka/rio =80 ke/rp=3 o h=1, ka/ko =90, Ks/Ko=3
i _Kd/KO=80 10 T —
E__ =
- Eq.(18) A
-.- Eq. (17) . 9. (16)
— - 10
10° ool bt b ] $
o
$ mQﬂ 107
Q, o
e £
msd 10 — S/ 107
~~
¢ £3]
S’
= 107
107 . i
. X 1075
3 oy
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10 ! K/Kd 10 10° 10’ 10°
K/ kg

FIG. 17. Compensated energy spectrgsolid) for h=1 and x4/ x,=80 ) ) _ _ .
(with ¢/ ko=3) compared with Eq(18) (dashegland Eq.(17) (dot-dasheqd Flf" E% Numezclal enetrgy sréeitgum;hd% for_lf_1h— 1daft1d(;<d/ﬁoa?_0 (W'thth
Values ofq; yielding reasonable agreement between the predictions of Eqsﬁf IKO_ ) Vs mode specEruE 416) (dasheyl The dot-dashed line is the
(18) and(17) are a,=4.9, ag=2.55, ag=15, a7=15.5. olmogorov spectrum, E14).

_ Joy Pt (y) - 1]dy
D(h) = JofL00x % 3dx

Ak(kg) = <ﬁ> #Jofuyrd ki)y Sls[f’?(y) — 1]dy. (23) Values forD(h) corresponding to Eq18) are given in Table
Kee TofL(x)x%dx V. As may be seen, fon=2 and 8,D(h) is positive, indicat-
It is evident that for asymptotically large,/ x; ing thatk(x,) decreases ag/ «; increases: The positive con-
tribution from the longer tail is outweighed by the decreased
PR contribution from the reduced bump. Foe1, the value of
Aklk,, = <—> D(h). (24)  D(h) is negative, suggesting to opposite behavior, but this
“ result needs qualification, which is now given.
It is easily seen that the behavior of the integrand in the

(25

K

This is a consequence of the first Kolmogor@®841) hy- . . . .
pothesis(independent of the particular representation usedqumerator on the right-hand side @3) is nonphysical as

. : 0. This is particularly true foh=1 (see Fig. 21 In this
for E,). Because of Eq(16), the asymptotic slope in Eq. y= ) . ‘ .
(24) takes the form case, the integrand in the numerator on the right-hand side of

(25) has a singularity at the origin of the fornby 2. Even
though this singularity is integrable, it yields a nonphysical
negative contribution td(1) [negative values fob(h) are

h= 1, Iid/lio = 80, Iif/lio =3

T— xjx,=80 1o h=28, ka/ko =90, Ks/ko =3
I s : |1== Eqg.(18) — x4 /x,=90
25} R A R -- Eq.(16)
: : P p : : : 10'1_
e om
~
9
_2
B0
~
0o
_ 2
~~
2 103
N’
€3]
107
107k
0 =
102 107 10° 107°L X -
K/ Kq 10 10 10
Ii/K/o

FIG. 18. Compensated energy spectrgsolid) for h=1 and x4/ x,=80

(with ¢/ kg=3) compared with Eq(18) (dashegland Eq.(17) (dot—dashed FIG. 20. Numerical energy spectrufsolid) for h=8 and x4/ ky=90 (with
Values of«; yielding reasonable agreement between the predictions of Eqs«;/ ko=3) vs model spectrum Eq16) (dashegl The dot—dashed line is the
(18) and(17) are @,=4.9, a5=2.55, a=15, a;=15.5. Kolmogorov spectrum, Eql14).
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TABLE V. Values of D(h) for h=1, 2, 8. ciated with the bump decreases. The net effastpredicted
by the first Kolmogorov hypothesiss that the TKE behaves
as Ak/k,, = D(h)(kqy/ kf) 7?2 as kql Kki— .
D(h) -1.262 0.2855 0.0734 The model spectrunfas given by Eqs(16), (18), and
(21)] is found to be inadequate to estimate the asymptotic
slope D(1). Reasonable values are obtained Euth) with
not ruled out unless they result from unphysical effects in thd1=2, 8.
modeling. The values foiD(2), D(8) in Table V are reason-
able as there is no singularity for>5/3.

We conclude that an improved model fbyis required ~ACKNOWLEDGMENTS
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