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We perform direct numerical simulations(DNS) of the hyperviscous Navier–Stokes equations in a
periodic box. We consider values of the hyperviscosity indexh=1, 2, 8, and vary the hyperviscosity
to obtain the largest range of lengthscale ratios possible for well-resolved pseudo-spectral DNS. It
is found that the spectral bump, or bottleneck, in the energy spectrum observed at the start of the
dissipation range becomes more pronounced as the hyperviscosity index is increased. The calculated
energy spectra are used to develop an empirical model for the dissipation range which accurately
represents the bottleneck. This model is used to predict the approach of the turbulent kinetic energy
k to its asymptotic value,k`, as the hyperviscosity tends to zero. ©2005 American Institute of
Physics. [DOI: 10.1063/1.1833415]

I. INTRODUCTION

Recent experimental measurements1–4 in homogeneous
turbulence at high Reynolds numbers show the unequivocal
presence of a “bottleneck” effect. This phenomenon is ob-
served in longitudinal and transverse energy spectra alike. In
the aforementioned works, data for the longitudinal energy
spectrumE11sk1d (wherek1 is the wave number) are shown
to satisfy −5/3-scaling in an inertial range of scales(corre-
sponding to a “plateau” in the compensated spectra, see Figs.
1 and 2). At larger wave numberssk1h<0.05d, a bump-like
(or bottleneck) behavior is observed, followed by the spec-
trum’s monotonic decay further in the dissipation range.

Similar bumps have been documented in pseudo-spectral
direct numerical simulations(DNS) of homogeneous
turbulence.5–7 Even in the absence of experimental data to
compare with, such bumps may not be explained in terms of
numerical discretization effects, as they are evident in
pseudo-spectral DNS in which the numerical errors have
been demonstrated to be small in comparison.7,8 In other
words, bottleneck bumps as observed in DNS are(at least
qualitatively) consistent with those observed in recent ex-
periments.

Recent work on the hyperviscosity-modified Navier–
Stokes equation9 (with hyperviscosity indexh) has clarified
the connection that this approach has with large-eddy simu-
lation. We note, however, that it is unclear whether hypervis-
cous subgrid-scale models are capable of reproducing realis-
tic features of internal intermittency in the inertial range.
Relevance of the hyperviscoussh.1d Navier–Stokes equa-
tion is not restricted to the large-eddy simulation of conven-
tional sh=1d turbulence. Hyperviscous Navier–Stokes simu-
lations may be a useful testbed for two-point closure theories
(e.g., a hyperviscous variant of EDQNM).

In the more basic context of the Kolmogorov(1941)
phenomenology, it is still unclear whether the hyperviscous
Navier–Stokes equation(with h.1) contains any physics of
bottleneck effects that are evident in conventionalsh=1d tur-
bulence. It is plausible that a “parametrization” of bottleneck

effects in hyperviscoussh.1d turbulence may shed light on
bottleneck effects in conventionalsh=1d turbulence.

In this work, our initial goal is the construction of a
dataset of DNS of the normalsh=1d and hyperviscoussh
.1d Navier–Stokes equation. We use such data in the mod-
eling of bottleneck effects in energy spectra in homogeneous,
nondecaying turbulence. The result is a model spectrum that
is capable of matching numerical spectra to good accuracy
because of its ability to account for the bottleneck. Finally,
we attempt to use the model spectrum to investigate the Rey-
nolds number dependence of energy spectra as the Reynolds
number grows unbounded.

II. HYPERVISCOUS, FORCED DNS

In the following, usx ,td denotes the fluctuating compo-
nent of a zero-mean solenoidal velocity field governed by the
forced hyperviscous Navier–Stokes equation

]tu + u · ¹ u = − ¹ p + s− 1dh+1nh¹
2hu + f , s1d

wherenh is the specified constant hyperviscosity coefficient,
and f is the forcing function which is described below.
Clearly, the ordinary Navier–Stokes equation corresponds to
h=1 and f =0. We consider the case of periodic boundary
conditions

usx + Lêa,td = usx,td, sa = 1,2,3d, s2d

whereL is the periodicity length andêa is the unit vector of
the ath (Cartesian) coordinate direction. Thus, our solution
domain isB=f0,Lg3. As is well known, because of(2), it is
permissible to writeusx ,td as a Fourier series

usx,td = o
k

ûkstdeik·x, s3d
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ûkstd =
1

L3E
B

usx,tde−ik·xdx, s4d

wherek=k0n (with nPZ3) andk0=2p /L. The Fourier co-
efficient of usx ,td associated withk is denoted byûkstd.
(Fourier coefficients are denoted by hats.)

Because of homogeneity, the hyperviscous dissipation
ratek«l=s−1dhnhku ·¹2hul (where angled brackets denote ex-
pectation values) may be rewritten asnhks¹hud2l, which is a
positive semidefinite quantity.(Here ¹h denotes the outer
product of¹ with itself h times and the square denotes con-
traction on all indices.) The hyperviscous dissipation wave
number is defined by

kd = S k«l
nh

3 D1/s6h−2d

. s5d

It is easily seen thatkd=h−1 for h=1, whereh is the standard
Kolmogorov microscale.

In this work, Eq. (1) is driven by an acceleration
forcing,10 so chosen as to yield a constant energy injection
rate (denoted byP). The forcing is most simply defined in
wave number space by its Fourier coefficients as

f̂kstd =
P1fukuøkfg

2kfstd
ûkstd, s6d

wherek f is the(specified) largest wavenumber acted upon by
the forcing, 1fukuøkfg

is the indicator function of the forced
shell (unity whenkøk f, zero otherwise), and kf is the ki-
netic energy of the modes within the shell. The forcing drives
the flow toward a statistically stationary state wherein

k«l = P. s7d

Use of f [as defined by(6)] is unnatural(as are most
other ways of forcing turbulence). However, we are prima-
rily concerned with bottleneck effects on energy spectra, i.e.,
we investigate one particular characteristic of small-scale
turbulence. In this case, use of a large-scale forcing9,11 (in
order to analyze statistically stationary rather than decaying
turbulence) is justifiable12,13on the grounds that the details of
the forcing have little effect on the small-scale statistics. In-
deed, at sufficiently high Reynolds numbers, according to the
first Kolmogorov(1941) hypothesis, the small-scale statistics
depend on the forcing solely through its energy injection
rate.

The Fourier transform of Eq.(1) may be rewritten in the
form

sûkd,t + nhuku2hûk −
P1fukuøkfg

2kfstd
ûkstd

= F−1sFûkd,t = FN̂k −
sN̂k · kdk

k2 G , s8d

whereN̂k is the Fourier coefficient ofN sNi =−] juiujd and

Fsk,td = expHE
0

t FsPkd
2d1/3S uku

kd
D2h

−
P1fukuøkfg

2kfst8d
Gdt8J .

s9d

In this expression, the hyperviscosity has been rewritten in
terms ofkd using (7) in addition to(5). This simplifies the
numerical evaluation of the integrating factorFsk ,td at anyt.

III. NUMERICAL METHOD

Equation (9) summarizes the details of our numerical
setup. If the flow domain were unbounded, two-dimensional
quantities might be set arbitrarily, e.g.,P andk f, and then the
additional specification ofkd/k f would completely character-
ize the flow. Since our spatial discretization enforces the box
size to be the largest lengthscale in the problem, the ratio
k f /k0 also needs to be specified. In our setup, we(arbitrarily)
setP=1, k0=1; we specify the fixed valuek f /k0=3; then the
flow is defined by a single(nondimensional) parameter(e.g.,
kd/k f or a suitably defined Reynolds number). Clearly, ,

FIG. 1. Compensated longitudinal energy spectrum in homogeneous shear
flow at Rl=915 [Fig. 5(b) in Shen and Warhaft(2000)].

FIG. 2. Compensated longitudinal energy spectra in decaying homogeneous
turbulence[processing data presented in Table 2 of Kanget al. (2003)] at
different stationssx/M =20,30,40,48d in the Corrsin wind tunnel(associ-
ated Reynolds numbers areRl=716,676,650,626).
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;k f
−1, andU;sP/k fd1/3 are characteristic length and veloc-

ity scales of the energy containing motions: thus, a turbu-
lence Reynolds number may be defined as

Re= ,2h−1U/nh = skd/k fd2h−2/3. s10d

Our spatial discretization is pseudo-spectral withN
modes in each coordinate direction, and with exact removal
of double- and triple-aliasing errors.14 We investigate small-
scale resolution in Fig. 3, that shows the fraction of resolved
dissipation for a velocity field generated in the Fourier space
according to Eqs.(11) and (16) [with fh given by Eq.(18)]
and truncated according toukuøkmax (where kmax/k0

=Î2/9N). For all values ofh, we employ the same “crite-
rion” for accurate small-scale resolutionskmaxù3/2kdd that
is commonly used in conventionalsh=1d turbulence
simulations.11 Figure 3 shows that, based on this criterion, no
less than 99% ofk«l is resolved forh=1 and 8, and 98% for
h=2. The small-scale resolution criterion may be rewritten as
Nù3Î9/8kd/k0. This guarantees that, for the range of reso-
lutionsNP f160,300g considered in this work, the remaining
(single-)aliasing error energy is always less than 0.01% of
the resolved kinetic energy. Figures 4 and 5 show the effect
of grid and time-step refinement on the compensated energy
spectrum for a flow withh=1, kd/k0=50. Figure 5 suggests
that (peak) relative errors never exceed 11.1%.

The initial field is a random realization15 of a vector field
with prescribed energy spectrum, i.e.,

ûks0d =ÎEsk,0d
2pk2 fcosweiu1 ĵ1 + sinweiu2 ĵ2g. s11d

Here u1, u2 are the phases ofû1 and û2, respectively, 1, 2

being directions(whose unit vectors are denoted byĵ1,2) in
the incompressibility planesk ·ûk=0d corresponding to the
Euler angles in thex (or y) convention.16 The azimuth of the
vector suû1u , uû2ud (in that plane) is equal tow. We follow

Rogallo15 and chooseu1, u2, wPUsf0,2pgd (uniform ran-
dom deviates inf0,2pg) subject to the requirement of Her-
mitian symmetry for the Fourier coefficients. We choose the
initial energy spectrum to be

Esk,0d =
9

11
u08

2k f
−1 3 H sk/k fd2, k ø k f ,

sk/k fd−5/3 k . k f ,
J s12d

where u08 denotes the initial root-mean square-intensity of
any one velocity component(we setu08=1).

FIG. 3. Resolved fraction of dissipation in model calculations with the
2/9-truncation. The bottleneck and the appropriate rate of decay ofEsk ;hd
in the dissipation range are taken into account in the construction of this
figure.

FIG. 4. Compensated energy spectra forkd/k0=50 (with h=1 andk f /k0

=3; thicker horizontal dashed line at 1.5). “Base” refers toDt=10−3 andN
=160, whereas “2Dt” and “2kmax” refer to the same case advanced with
Dt=210−3, N=160 andDt=10−3, N=320, respectively.

FIG. 5. Absolute error(dashed, dot–dashed) in steady-state compensated
energy spectra between the “base” and “2Dt” simulations, and between the
“base” and “2kmax” simulations. The spectral turn-up in the “base”Eskd
(solid) in a left neighborhood ofkmax is the result of single-aliasing errors.
This makes the difference compensated spectrum between the “base” and
“2kmax” simulations meaningless in a left neighborhood ofkmax.
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We use a second-order Runge–Kutta for time advance-
ment. In a series of tests, we checked that statistical station-
arity may be assumed after 10–15 eddy turnover times(the
number of eddy turn-over times that the flow has undergone
at time t is defined aste=sPk f

2d1/3t).
Whenever isotropy is postulated in(a discrete) wave

number space, a discretization in wave number shells of
thicknessk0 is implied for the energy spectrum. This func-
tion is computed as

Esnk0d =
1

M8snk0d o
sn−1/2dk0øuku,sn+1/2dk0

uûku2

2
, s13d

where n=1,2, . . . ,N/2 and M8snk0d=Msnk0d / hs4p /3dfsn
+1/2d3−sn−1/2d3gj, Msnk0d being the number of modes
contained in the shell centered atnk0 [as indicated in the sum
in (13)].17 In subsequent figures, we show time-averaged en-
ergy spectra, with the time-averaging starting atte=10.

IV. RESULTS

Figure 6 shows energy spectra forh=1 and different
values ofkd/k0. Associated Reynolds numbers[using Eq.
(10)] are in the range[43, 93], whereasNP f160,300g. Tay-
lor Reynolds numbers sRl=Î20k2/ s3nk«ld
=kÎ20/3/snkdd2d are indicated in Table I. The unsteadiness
in the time series for the turbulence kinetic energy(denoted
by k, or TKE), as defined by a volume average ofuuu2/2,
requires the additional use of time-averaging to finally infer
the values ofRl reported in Table I.

Figure 7 shows Kolmogorov-scaled energy spectra com-
pared to the Kolmogorov inertial-range spectrum

Êsk/kdd = Csk/kdd−5/3, s14d

with C=1.5. As may be seen, at the higher wave numbers
sk /kd.0.1d there is an excellent collapse of the spectra for
different values ofkd/k0 indicating that Kolmogorov scaling
is satisfied to good accuracy. In Fig. 8, compensated spectra
are consistent with the observation5 that the correct plateau
to look at to infer the value of the Kolmogorov constant is to
the left of what can be described as a bottleneck peak. Recent
numerical simulations5–7 show that a true inertial-range pla-
teau in the compensated spectra may be clearly visible for
Reynolds numbersRl larger than(at least) 200 (requiring a
minimum of 5123 modes). From Fig. 8, we see that the
bottleneck bump starts in proximity ofk /kd=0.05. This is in

FIG. 6. Energy spectra for different values ofkd/k0 with h=1 andk f /k0

=3. The thicker dashed line is the Kolmogorov spectrum, Eq.(14).

TABLE I. Parameters for DNS withh=1.

kd/k0 N n Re Rl

50 160 5.428310−3 43 84

70 240 3.466310−3 67 105

80 256 2.900310−3 80 112

90 300 2.479310−3 93 128

FIG. 7. Kolmogorov-scaled energy spectra for different values ofkd/k0

with h=1 andk f /k0=3. The thicker dashed line is the Kolmogorov spec-
trum, Eq.(14).

FIG. 8. Compensated energy spectra for different values ofkd/k0 with h
=1 andk f /k0=3 (thicker dashed line at 1.5). Eq. (18) (1 marks) and the
Comte-Bellot and Corrsin(Ref. 24) experimental data(thin lines with *, 3
and diamond marks) are also indicated.
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good accord with higher resolution data.6 Thus, the neces-
sary condition for a value for the Kolmogorov constant to be
discernible from the compensated spectra is the presence of a
plateau for k /kd,0.05 (a clear inertial-range plateau is
missing from Fig. 8).

Two comments are in order. First, much scatter in values
for the Kolmogorov constant(based on various experimental
and numerical investigations18,19) might be probably reduced
by distinguishing between analyses that recognize the exis-
tence of a bottleneck and those that do not(see, e.g., Fig. 1
of Ref. 19). Second, bottleneck effects are not incompatible
with the conventional Richardson–Kolmogorov phenom-
enology of turbulence[as it is easy to see by interrogating
the Kolmogorov(1941) hypotheses] and they are manifest
not only at moderately high Reynolds numbers20 that may be
simulated on 5123 (or larger) grids but also at lower Rey-
nolds numbers where no scaling arguments may be invoked.
Bottleneck effects are the result of viscous effects on inertial
transfer.

Figures 9–14 show analogous data forh=2 and h=8.
From the compensated spectra, it may be seen that the bottle-
neck peak increases ash increases(for all nh), whereas its
location shifts to largerk /kd. This is summarized in Fig. 16.

A. Modeling of numerical spectra

A fundamental consequence of the Kolmogorov(1941)
hypotheses is that the energy spectrum in the universal equi-
librium range21,22 of an isotropic, forced turbulence is given
by

Eskd = CP2/3k−5/3fhsk/kdd. s15d

A model spectrum which is a natural extension of this rela-
tion to arbitraryk

Emskd = fLsk/k fdCP2/3k−5/3fhsk/kdd, s16d

was proposed by Pope.22 Clearly, fL represents the spectrum
behavior in the infrared and energy containing ranges, andfh

represents the dissipation range behavior. For largek /k f,

fLsk /k fd tends to unity, as doesfhsk /kdd for small k /kd.
Thus, fork f !k!kd, the model spectrum is a Kolmogorov
−5/3-spectrum with constantC. While fL is not universal
(having a first-order dependence on the large scales of the
flow), according to the Kolmogorov hypotheses,fh is univer-
sal (for given h).

Use of(16) with modeled forms forfL and fh constitutes
an empirical model for the energy spectrum. This is useful in
experimental investigations,4,23 where Eskd has to be de-
duced from experimental data forE11sk1d. We also suggest
that a model spectrum(that reproduces the important physi-
cal observations) may be used as a predictive tool to inves-
tigate turbulence statistics in the infinite Reynolds number
limit (as shown further below).

The capability of Pope’s model spectrum to account for

FIG. 9. Energy spectra for different values ofkd/k0 with h=2 andk f /k0

=3. The thicker dashed line is the Kolmogorov spectrum, Eq.(14).
FIG. 10. Kolmogorov-scaled energy spectra for different values ofkd/k0

with h=2 andk f /k0=3. The thicker dashed line is the Kolmogorov spec-
trum, Eq.(14).

FIG. 11. Compensated energy spectra for different values ofkd/k0 with h
=2 andk f /k0=3 (thicker straight line is at 1.5). Equation(18) (1 marks) is
also indicated.
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a bottleneck depends on the form chosen for the dissipation
range componentfh. A recent proposal23 (for h=1) is the
result of empirical modeling

fhsxd = F1 + a5S 1

p
arctanha6 log10 x + a7j +

1

2
DG

3exps− a4xd, s17d

where theai’s are determined by comparing with measure-
ments(x being a dummy variable).

Following a similar approach, we are able to match the
dissipation range components of our data to good accuracy
(see Figs. 15 and 16) through

fhsxd = H1 +
A

2
h1 + erffs1.1 + 0.3sxdlnssxdgjJ

3exps− bxhd, s18d

whereA ands are determined by an interpolation procedure

for each value ofh (given kd/k0). Tables II and III give the
values ofA and s for each of our calculations; based on
these data, one may hypothesize(as we do hereafter) that A,
s are “independent” ofkd/k0 (at least over the range of
values considered here).

Examination of the numerical compensated spectra
shows the exponential component offh to be of the form
expsa1−b1x

hd. However, when the factor preceding the ex-
ponential is modeled as in Eq.(18), we can no longer guar-
antee that Eq.(18) with b=b1 satisfies

1

2C
=E

0

`

x2h−5/3fLsxkd/k fdfhsxddx. s19d

This condition is equivalent to

FIG. 12. Energy spectra for different values ofkd/k0 with h=8 andk f /k0

=3. The thicker dashed line is the Kolmogorov spectrum, Eq.(14).

FIG. 13. Kolmogorov-scaled energy spectra for different values ofkd/k0

with h=8 andk f /k0=3. The thicker dashed line is the Kolmogorov spec-
trum, Eq.(14).

FIG. 14. Compensated energy spectra for different values ofkd/k0 with h
=8 andk f /k0=3 (thicker straight line is at 1.5). Equation(18) (1 marks) is
also indicated.

FIG. 15. Compensated energy spectra for different values ofh and kd/k0

=80 (with k f /k0=3) vs corresponding model curves computed through Eq.
(18) (1 marks).

015106-6 Lamorgese, Caughey, and Pope Phys. Fluids 17, 015106 (2005)

Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



P = k«l = 2nhE
0

`

k2hEskddk, s20d

applied to the model spectrum, Eq.(16). For given fL, Eq.
(19) imposes a condition onfh. Having determined the de-
pendences ofA and s on h, we solve(19) for b (using a
secant method). The resulting values are given in Table IV
for kd/k0=90.

Figures 17 and 18 show that matching of numerical
spectra in the dissipation range through Eq.(17) [as opposed
to Eq.(18)] is also possible, after trial and error tuning of the
ai’s to values different from those indicated by Kanget al.4

The procedure above has been described under the as-
sumption that the functional form forfL is known. We now
describe the rationale to obtain the form actually used in this
work. Our goal is to determine an approximate expression to
describe the large-scale behavior of the energy spectrum in
such a special(homogeneous) turbulence as the one driven
by the forcing defined by(6). In contrast to the case offh,
there is no suggestion thatfL is universal.

Having decided thatfh is given by Eq.(18), an empiri-
cally determinedfL [defined asfL

sed=Eskd / sCP2/3k−5/3fhd]
may be computed as soon as the energy spectrum from one
numerical simulation is known. Empirically determinedfL’s
were computed for different realizations of different flows
(corresponding to different values ofh andkd/k0). For each
flow, we compared eight independent realizations offL

sed with
their ensemble average and the following model expression:

fLsxd = Fax+ expscxqd − 1

expscxqd G5/3+p

, s21d

with a=1.6,c=3.5,q=1.5, andp=2. As expected, we found
(i) the empirically determinedfL’s (for each flow) to be
strongly realization-dependent,(ii ) their ensemble average to
be flow-dependent.

Therefore, we elect to modelfL once and for all as in Eq.
(21). The resulting model spectrum is capable of matching
numerical energy spectra to good accuracy(reasonable accu-
racy may be achieved at the large scales, with relative errors
usEskd−Emskdd /Emskdu never exceeding 0.4). Representative
results are those in Figs. 19 and 20.

B. Asymptotic behavior of model TKE

In this section, we consider a model kinetic energy dif-
ference ratio(i.e., defined in terms of the model spectrum) in
an asymptotic regime as the Reynolds number grows un-
bounded. In this case, the effect of large-scale motions(this
includes the details of the modeling forfL) vanishes asRe
→`.

Figures 6, 9, and 12 suggest that askd/k0 is increased,
there are two competing effects determining the TKE behav-
ior with Reynolds number. AsRegrows, the energy spectra
extend to higher and higher wave numbers, with an attendant
increase in the TKE. On the other hand, a less intense bottle-
neck is required for the dissipation rate to balance the energy
flux through the inertial range as this is stretched to higher
wave numbers. The two effects may be clearly seen in Figs.
9 and 12.

For given fixed values ofP, k0, h, andk f, we denote by
Emsk ;kdd the model energy spectrum which depends on the
specified value ofkd. The corresponding kinetic energy is

kskdd ; E
0

`

Emsk;kdddk. s22d

We are particularly interested in the behavior ofkskdd askd

tends to infinity, and so definek`=ks`d and Dkskdd=kskdd
−k`. It follows from the model[Eq. (16)] that

TABLE II. Values of A based on differentkd/k0.

kd/k0 h=1 h=2 h=8

50 2.9277 2.3198 4.6240

70 3.5151 1.9312 4.5722

80 3.1849 2.1297 4.5863

90 2.9574 2.1071 4.2530

TABLE III. Values of s based on differentkd/k0.

kd/k0 h=1 h=2 h=8

50 11.83 4.220 1.266

70 10.03 3.815 1.268

80 9.536 3.927 1.266

90 10.71 3.907 1.262

TABLE IV. Values of model coefficients forkd/k0=90.

h=1 h=2 h=8

A 2.9574 2.1071 4.2530

s 10.71 3.907 1.262

b 4.996 2.315 1.239

FIG. 16. Compensated energy spectra for different values ofh and kd/k0

=80 (with k f /k0=3) vs corresponding model curves computed through Eq.
(18) (1 marks).
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Dkskdd
k`

= Skd

k f
D−2/3e0

`fLsykd/k fdy−5/3ffhsyd − 1gdy

e0
`fLsxdx−5/3dx

. s23d

It is evident that for asymptotically largekd/k f

Dk/k` < Skd

k f
D−2/3

Dshd. s24d

This is a consequence of the first Kolmogorov(1941) hy-
pothesis(independent of the particular representation used
for Em). Because of Eq.(16), the asymptotic slope in Eq.
(24) takes the form

Dshd =
e0

`y−5/3ffhsyd − 1gdy

e0
`fLsxdx−5/3dx

. s25d

Values forDshd corresponding to Eq.(18) are given in Table
V. As may be seen, forh=2 and 8,Dshd is positive, indicat-
ing thatkskdd decreases askd/k f increases: The positive con-
tribution from the longer tail is outweighed by the decreased
contribution from the reduced bump. Forh=1, the value of
Dshd is negative, suggesting to opposite behavior, but this
result needs qualification, which is now given.

It is easily seen that the behavior of the integrand in the
numerator on the right-hand side of(23) is nonphysical as
y→0. This is particularly true forh=1 (see Fig. 21). In this
case, the integrand in the numerator on the right-hand side of
(25) has a singularity at the origin of the form −by−2/3. Even
though this singularity is integrable, it yields a nonphysical
negative contribution toDs1d [negative values forDshd are

FIG. 20. Numerical energy spectrum(solid) for h=8 andkd/k0=90 (with
k f /k0=3) vs model spectrum Eq.(16) (dashed). The dot–dashed line is the
Kolmogorov spectrum, Eq.(14).

FIG. 17. Compensated energy spectrum(solid) for h=1 and kd/k0=80
(with k f /k0=3) compared with Eq.(18) (dashed) and Eq.(17) (dot–dashed).
Values ofai yielding reasonable agreement between the predictions of Eqs.
(18) and (17) area4=4.9, a5=2.55,a6=15, a7=15.5.

FIG. 18. Compensated energy spectrum(solid) for h=1 and kd/k0=80
(with k f /k0=3) compared with Eq.(18) (dashed) and Eq.(17) (dot–dashed).
Values ofai yielding reasonable agreement between the predictions of Eqs.
(18) and (17) area4=4.9, a5=2.55,a6=15, a7=15.5.

FIG. 19. Numerical energy spectrum(solid) for h=1 andkd/k0=90 (with
k f /k0=3) vs model spectrum Eq.(16) (dashed). The dot–dashed line is the
Kolmogorov spectrum, Eq.(14).
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not ruled out unless they result from unphysical effects in the
modeling]. The values forDs2d, Ds8d in Table V are reason-
able as there is no singularity forh.5/3.

We conclude that an improved model forfh is required
to correctly represent the nondimensional kinetic energy dif-
ference spectra[appearing in the integrand in the numerator
of (23)] for small values ofy. Computation of the asymptotic
slopeDshd requires that an improved representation of such
spectra be available in an asymptotic regime askd/k f →`.

V. CONCLUSIONS

Accurate numerical simulations have been performed of
forced homogeneous isotropic turbulence evolving according
to the hyperviscous Navier–Stokes equation. Values of the
hyperviscosity indexh between 1(corresponding to ordinary
Navier–Stokes) and 8 are considered. UsingN3 Fourier
modes(with N up to 300) simulations are performed with
length-scale ratioskd/k0 up to 90. Forh=1, the largest
Taylor-scale Reynolds number achieved is 128.

In all cases, the high-wave number spectra are found to
be self-similar under Kolmogorov scaling. In the dissipation
range, the spectra decay as exps−bsk /kddhd.

As summarized in Fig. 16, the compensated spectra re-
veal a spectral bump. The value of the peak of the bump
increases withh (from about 2.3 forh=1 to approximately 4
for h=8) and it moves to higher wave number(from k /kd

<0.15 forh=1 to k /kd<0.8 for h=8).
The spectra from the simulations are well represented by

the model spectrum, Eq.(16), with the empirical expression
Eq. (18) for the dissipation range functionfh.

As kd/k f increases, the spectrum extends to higher wave
numbers(tending to increase the TKE), but the energy asso-

ciated with the bump decreases. The net effect(as predicted
by the first Kolmogorov hypothesis) is that the TKE behaves
asDk/k`<Dshdskd/k fd−2/3 askd/k f →`.

The model spectrum[as given by Eqs.(16), (18), and
(21)] is found to be inadequate to estimate the asymptotic
slope Ds1d. Reasonable values are obtained forDshd with
h=2, 8.
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