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The turbulent coagulation of micron-sized colloidal particles in a liquid is controlled by the shearing
motion produced by Kolmogorov scale eddies. The rate of energy dissipation has fluctuations which
vary over the integral length and time scale in a homogeneous, isotropic turbulent flow. We present
a model of the particle concentrations and coagulation rates in a set of fluid packets that are large
compared with the Kolmogorov scale and small compared with the integral scale. Particle
coagulation occurs rapidly in regions of the flow with large dissipation rates, leading to a depletion
of singlet particles. Thus, the singlet number density is negatively correlated with the shear rate.
Turbulent mixing mitigates these concentration variations and the particle concentration field
becomes nearly uncorrelated with dissipation rate in very dilute suspensiongRjtd 1. Here,¢

is the particle volume fraction and, is the Reynolds number based on the Taylor microscale. A
simulation of a suspension of coalescing drops shows that the imperfect mixing atdRjte
broadens the drop size distribution. D02 American Institute of Physics.
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I. INTRODUCTION overall coagulation rate and particle size distribution and to
determine when the dilute theories of particle coagulatfon
Previous theoretical studieof coagulation in homoge- are appropriate.
neous, isotropic turbulent flows have assumed a very dilute  Turbulent shearing motion is typically the dominant
suspension which is well mixed on length scales larger thamechanism driving the coagulation of particles with raalii
the particle diameter. Investigators performing direct-of about 0.5-5um.> The coagulation of smaller particles is
numerical simulationgDNS) of the coagulation rate in hy- controlled by Brownian motion. The coagulation of larger
drosol and aerosol systehfshave endeavored to use a suf- particles is dominated by differential sedimentation or turbu-
ficiently small particle volume fraction so that the particle lent accelerations, provided that there is some difference of
concentration does not influence the interparticle collisiorsize or density of the particles. The shearing motion in a
rate. The rate at which single particles combine to form douturbulent flow is dominated by the smallest eddies whose
blets due to coagulation is proportional to the square of theize is characterized by the Kolmogorov length scije
number densityr of singlets and grows with increasing tur- = (%/(¢€))Y4, where() indicates an ensemble average. The
bulent shear rat& = Je/v or the instantaneous rate of en- shear rate produced by these eddieE is(e/ )2 In most
ergy dissipatione. Here, v is the kinematic viscosity of the laboratory, industrial, and environmental flows, the Kolmog-
fluid. The energy dissipation, which is controlled by the rateorov length lies in the range of 30m—1 mm. It is therefore
at which energy is extracted from the large scale turbuleniuch larger than the size of the aggregating particles and
motions, has large fluctuations and varies over the integrahis observation implies that it is only the local linear flow
length and time scales. Singlet particles are preferentiallgharacterized by that influences the aggregation process.
depleted in regions of the flow characterized by large turbuBecause the Reynolds number based on the Kolmogorov
lent shear rate¥, leading to a negative correlation betweenscale variableI'?)*4%/v is defined to be 1, the particle
n andT. In a very dilute suspension, turbulent mixing will Reynolds numbeR,=(I'*)*%?/v is much less than one
minimize the coagulation-induced particle concentrationand fluid inertia may be neglected during particle—particle
fluctuations. However, at higher concentrations, the negativencounters. For particles suspended in liquids, the mass
correlations between the fluctuationsnnand I over dis-  densities of the particle and fluid are comparable and the
tances comparable with the integral length scale lead to particle inertia is also negligible, i.e., the Stokes number
decrease in the overall rate of coagulation. In this paper, &t=(2/9)p(I'*>)"%a? u<1. Here,p, is the density of the
stochastic model is presented that characterizes the magnlispersed phase andis the dynamic viscosity of the con-
tude of the coagulation-induced particle concentration fluctinuous phase. In this paper, we will restrict our attention to
tuations in an isotropic, homogeneous turbulent flow. Thishe case of negligible particle inertia.
model is used to assess the effect of these fluctuations on the The rater* of coagulation, defined as the number of
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coagulation events per unit volume per unit time in whichll. STOCHASTIC MODEL

two particles of radiust combine to form a doublet, is given .
P 9 The theories of Saffman and Turheand Brunket al?

b . . )
y describe the coagulation of hydrosols occurring on length
dn and time scales comparable with the Kolmogorov scale. The
== kn?, (1)  dissipation rate in a turbulent flow will vary over the much

larger integral time and length scales and, in a nondilute
wherek is the rate constant. If we neglect hydrodynamic andsuspension, these variations will result in large-scale varia-
colloidal interactions among the particles as well as particldions in the particle number density. In the presence of these
inertia, then the only dimensional quantities thatan de- large-scale inhomogeneities, H@) still provides the correct
pend on are the turbu'ent Shear rﬂtand the partic|e radius relationship Of the |Oca| rate Of Coagu|a'[i0n to the |Oca| diS-

a. Thus, sipation rate and particle number density.
To model the shear-rate and number-density variations,
k=ala®, (2 we will consider the flow to consist of a set of many suspen-

sion packets. The packet size is much larger than the Kol-

where « is a dimensionless constant. Saffman and Tl}rnermogorov |ength scale and is |arge enough to contain many
considered the local linear flow in the vicinity of a colliding particles, but it is much smaller than the integral length scale.
particle pair to be a purely extensional flow, characterized byrnys, each fluid packet has a dissipation raend equiva-
a velocity gradient tensor that did not change during thgent Kolmogorov shear ratE and number density of singlets
O(I' %) time required for an interparticle encounter. This ledn, Because the packet size is small compared with the inte-
to a prediction thata=10.35. Brunket al? simulated the gral length scale, these quantities can be assumed to be uni-
relative motion of particle pairs in a linear flow field with a form within each packet. To illustrate the effects of mixing
VelOCity gradient that varied StOChaStica"y with time. The on the Coagu|ati0n process, we will first consider a Simp|e
moments of the velocity gradient field were isotropic and themodel in which two particles are removed from the simula-
autocorrelation of each component of the strain rate and ofon rather than forming a larger particle when they collide.
the vorticity reproduced the values obtained for Lagrangiarrhis model has been used in direct-numerical simulations of
particles in direct-numerical simulations of isotropic tyrbulent coagulatiohand it is qualitatively consistent with
turbulence’. These simulations taking account of the tempo-the actual situation in which the total rate of collision of
ral variations of the velocity gradient yieldes=8.62/ singlets with particles of all sizes decreases as the mean size

Brunk et al. also performEd simulations that included the of the neighboring partides grows. In the final section, we
hydrodynamic interactions and van der Waals attractions begjj|| treat a more realistic model in which drops coalesce on

tween the particles. In a continuum fluid, hydrodynamic in-contact to form larger drops. The time variation of the num-
teractions provide a viscous resistivity that diverges at smalber density in each packet is given by

separations and would prevent any coalescence from occur-
ring in the absence of van der Waals attractions. The simple @: _ al'n?ad— n—(n
case, in which only van der Waals and hydrodynamic forces  dt Tm

act, can be realized in a suspension in which the electrolytg ore the first term on the right-hand side is the loss of
concentration is sufficiently high to screen the electrostati%ing|ets due to coagulation, the second term is a model for
interactions at any appreciable interparticle sgparation. Th&irbulent mixing of particles between the packets, and the
coefficienta in this case depends dWs=12mua’l'/A, the g termS is a source of particles per unit volume. For the
ratio of viscous to van der Waals forces aNg=4ma/\.  maiority of the calculations we will consider noninteracting
Here, A is the Hamaker constant andis the retardation ,aricles so that=8.62. The source, which is a constant, is
Iength for the van.derWaaIs attractlon.s. For sufficiently 'argeadded in some of the calculations so as to produce a statis-
particles and high shear rates, i.eNs>10 and Ns ica| steady state fon. The mixing term in(4) is the “inter-
?(NLISOO)Z, the simulation results could be fit with a 44on by exchange with the mean” mixing modeh which
simple power law (n) is the mean number density.e., the average over all
packet$. This model is commonly used for single-phase
mixing in probability distribution function modeling of tur-
ebulent flows® and we use here the standard value of the

+S, (4)

a=0.52_°1°, ()

Typically, the net effect of particle interactions is to decrease ™~ -
the coagulation rate by a factor of order 10 and to slightly™XIng rate.
decrease the sensitivity of the coagulation to the shear rate. 1 c¢<e> 1

The theories of Saffman and Turheand Brunket al? P e 6)
assume that the suspension is well mixed, so that the prob- " 8
ability of finding two particles separated by any distancewhere the Eulerian integral time scalg is defined as the
large compared with & is equal to the square of a number of ratio of the turbulent kinetic enerdyto the mean dissipation
particles per unit volume, which does not fluctuate with po-rate(e), and the model consta, takes the value 2.0. Note
sition. In this paper, we will extend these results to accounthat (I'?)Y2T.=(2)¥?R,, where R,=u’\/v is the Rey-
for the number density fluctuations that occur in a nondilutenolds number based on the turbulent veloaity= (2k/3)*?
coagulating hydrosol. and the Taylor microscale,, which is related to the rate of

Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 14, No. 7, July 2002 Coagulation-induced particle-concentration 2449

energy dissipation by = (15vu’?/(€))2 The use of a mix- 0.0020
ing model developed for mixing of passive scalar quantities

in a single-phase flow for the mixing of particles or droplets .
can be justified becauséa) the particles are assumed to be 0.0015 4.
sufficiently dilute that they do not affect the flow; aiil)
they are small and have negligible inertia so that they follow
the large-scale motion of the fluid.

The variations in the Kolmogorov shear rate are modeled
in a manner similar to that proposed by Girimaji and PYpe.
Popé! noted that the logarithm of the Kolmogorov shear rate
can be divided into two parts

I'=(I'yexd x+ 1, (6) 0.0000

where ¢ varies over the Kolmogorov time scale agdver
the integral time scale. The stochastic variahlesnd y are

modeled to vary according to the Ornstein—Uhlenbeck proFIG. 1. The values of particle volume fraction and Kolmogorov shear rate
cesses are plotted for 10000 fluid packets in a suspension ViR{h=500 and
(¢»=0.001 08. For these conditions the ratio of the coagulation rate to that

- 0.0010 -

0.0005 -

T
0.1 1 10

T/<I>

1 dt 202\ 12 occurring in the absence of mixing limitations is=0.860, the particle
dy=— X-I——a')z( — X dw, (7) velocity variance is{¢’?)/(¢$)?=0.043, and the correlation between
2 Tx Tx particle concentration and shear rat&li$¢’ )/ ((I'){ ¢))=—0.094.
and
I } 2 ﬂ+ 205, lIZdW ® packets forR, =500 and an average volume fraction{(gf
==\ 2% Ty Ty ¥ =0.00108. It can be seen that there is a strong negative

. . . correlation between the particle concentration and the shear
wheredW, anddVV\\;% are mdependent Wlenelr ProCESSES, 1.€.yate. This results from the higher coagulation rates experi-
(dW)=0 and(d i>:(.jt f_or =X and . This model cap- enced by particles in the high-shear-rate regions. This nega-
tures the log-normal distributions of the Kolmogorov shear,[ive correlation betweer and T leads to a decrease in the

ratel; ar;}d dISSIpatIOI’: rgtes.flt aI;o refrodu%es apzrqxp coagulation rate compared with that which would occur in a
mately the autocorrelation function of () observed in well-mixed suspension. The ratio of the coagulation rate to

DNS. In particular, it yields an exponential temporal decay,[hat in a well-mixed svstem is given T DN 2
of the autocorrelation function at short times with a time . _ 5 860 for the es;ample s%own ki]r¥2F<ig ¢1> (D¢

scale that is proportional to the Kolmogorov time scale and a The ratio of the rate of coagulation to that in a well-

second region of exponential decay at long times with atim‘?nixed system is plotted as a function of particle volume
constant that scales with the integral time. The varian@%s, fraction for several values d®, in Fig. 2. The well-mixed

2 . . . .
ando,, and the ratios of the time scales to the integral timeyoq it is recovered at sufficiently small particle volume frac-
7, /Te and 7,/Te, are derived from previous theoretical, yi,ng pyt the rate decreases with increasingrhe rate of

DNS, apd expenmen'tal results in the Appendlx. decrease in the coagulation rate with particle volume fraction
Typically, calculations were performed using 10 000 sus-

pension packets to obtain good statistics. Equatdgior the
number density was solved by forward Euler integration. The 1.0
linearity of (7) and (8) was exploited to provide a time up-

date that exactly reproduces the probability distributions for

x(t+dt) and¢(t+dt) conditioned on the values gfand 0.9 -
at timet.
IIl. RESULTS FOR COAGULATION-INDUCED M os

CONCENTRATION FLUCTUATIONS AND
COAGULATION RATE

In this section, we present results of the stochastic simu- %7

lations for the turbulence-induced particle concentration
fluctuations using the simple model in which the collision of
particles results in their annihilation. In most of the calcula- 06 - - ' '
tions, we introduce a constant source of particles throughou 000 00! 0.02 008 004 008
the suspension to balance those that are removed by collisio <>

events. This eventually leads to a statistical steady state for

; : _ 3 _ FIG. 2. The ratio of the coagulation rate to that in the absence of mixing
the particle volume fractiong=n(4sa*/3) and Kolmog limitations is plotted as a function of the average volume fractionRpr

orov shear rates of the suspens_ion packets. Figure 1 gives_ay, 625, 125, 250, 500, 1000, and 2000. The Reynolds number increases
scatter plot of the volume fractions and shear rates of thenonotonically from the top curve to the bottom curve.
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FIG. 3. The coagulation-rate ratfois plotted as a function of time nondi- FIG. 4. The coagulation-rate ratio is plotted as a function of average volume

mensionalized by the Eulerian integral tifig for R, =24. The initial par- g0 for R),=500. The dotted and dashed lines indicate the small and
ticle volume fraction is 0.0168 and the suspension is initially well mixed. large ()R, asymptotes, respectively
X 1 .

The solid line is the simulation result. The dashed line is a quasisteady
approximation obtained using the results from Fig. 2 for a stochastic steady
state with the same mean volume fraction as that obtained atttimé¢he

transient calculation. . . .
lation process and allows time for turbulent mixing to rees-

tablish a more homogeneous particle distribution. The

dashed line is the quasisteady approximation obtained by
increases with increasirig, . This may be understood if we applying the steady state results from Fig. 2 at the mean
note that the coagulation process changes a time of volume fraction obtained in the simulation at tinelt is
order 1{I'{¢)) while the turbulent mixing of particles among seen that, after an initial adjustment period, the quasisteady
fluid packets and variations in the dissipation rate withinstate approximation accurately predicts the transient results.
each packet occur over the integral time scgle Thus, the  The initial volume fraction in Wangt al. was intended to be
well-mixed condition holds only if Te<1/(T'(¢)) or  sufficiently small so that mixing limitations would not affect
R\ (¢)<1. At sufficiently highR,(¢), the turbulent mixing the coagulation rate. Our calculations confirm that the devia-
is very slow compared with coagulation andeaches a pla- tion from the well-mixed condition would be small, i.e., less
teau that is determined by the variationlofvithin the flow.  than 8%. It should be noted, however, that the requirement to
This plateau becomes lower at high®y where the fluctua- achieve good mixing would become more stringent as the
tions inI" are larger. These results indicate that mixing limi- Reynolds number of the simulations was increased. Wang
tations are likely to be more prevalent at the higher Reynoldet al. noted that their particles developed a bias toward re-
numbers that are often characteristic of geophysical applicagions of low energy dissipation and quantified this effect by
tions than at the lower Reynolds numbers probed by DN$lotting the ratio of the mean dissipation rate experienced by
studies and many laboratory experiments. the particles to the mean dissipation rate in the fluid in their

The results in Figs. 1 and 2 were obtained using a sourcBig. 8b). Our results for this quantity, i.e.e,/(€)

of particles to achieve a statistical steady state distribution of=(I'?¢)/(I'?)(#), exhibit a similar trend to those far.
particle concentration among the fluid packets. To demonThey decrease from 1, pass through a minimum of 0.990,
strate that this method of analysis produces a quasisteadnd then grow to approach 1 againtasc. The results from
state approximation, we compare it with the results of a tranthe DNS of Wanget al. start from the well-mixed state
sient calculation. Wangt al2 introduced an initially uniform €,/(e)=1 att=0. The dissipation rate seen by the particles
array of particles with volume fractiogpg=0.0168 into a then decreases and fluctuates about a mean value of about
DNS of isotropic turbulence witliR, =24 and observed the 0.99. The DNS results do not show evidence of the recovery
subsequent coagulation process. Scheme 3 in their paper cdo-the well-mixed state predicted by the stochastic model, but
responds to the assumption of particle annihilation on collithe statistical uncertainty in the DNS results is substantial
sion adopted in this section. We performed a correspondingnd grows with time as the particles are depleted from the
simulation by setting the initial number density in each fluid simulation domain.
packet to 0.0168 and omitting the sourSe The rater is Figure 4 shows the stochastic simulation res(stslid
plotted as a function of time nondimensionalized By in line) for the rate ratior as a function of mean particle vol-
Fig. 3. The solid line is the rate computed from the transienime fraction forR, =500 using the model for higR, along
calculation. Because the system is initially well mixed, thewith the asymptotic results for high and Io®;{ ¢). At suf-
initial rate isr = 1. As the coagulation proceeds, particles areficiently large values oR,(¢), the coagulation occurs much
depleted preferentially from high shear rate regions, sorthat more rapidly than turbulent mixing and temporal variations
decreases. With time, however, the volume fraction of parin the dissipation rate in a Lagrangian reference frame. In
ticles throughout the system decreases. This slows the coagthis case, the particle concentration in each fluid packet ad-
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FIG. 5. The coagulation rate ratio in the limit of largé)R, is plotted as a

function of R, . The solid line indicates the result in the absence of particle FIG. 6. The coefficieng in the expressiofl5) for the coagulation rate ratio
interactions and the dotted line results based on the collision effici@cy at small(#)R, is plotted as a function oR, .

that includes van der Waals attractions and hydrodynamic interactions.

rate fluctuations, we can express the shear rate volume frac-
justs to a quasisteady balance of the soB@ad the coagu- tion correlation in terms of the shear rate autocorrelation, i.e.,
lation rateal'n?, so thatn=(S/(aI"))*2 Using this resuilt,
we can determine the mean number density for a givand 2>fmexp< T
0 Tm

thereby the coagulation ratg.,for a fully segregated state (I ¢")=—a(¢ (r'(nr’(0)dr. (12

— 3 2 2

Mseq=€XP(— 3Lyt oyl). © Using the fact thaj(7) and x(0) are modeled as joint normal
This largeR,(®) asymptote is plotted as the dashed line invariables, the shear rate correlations are found to be
Fig. 4. The variation of .y with Reynolds number is illus-
trated in Fig. 5. The segregation coagulation rate decreases (I''(7)I''(0))
nearly linearly with InR,) due to the growth of the variance (I)?
of In(I") with Reynolds number. )

In the presence of colloidal interactions, the coagulation +lexp(oy) —1lexp(—|7l/7)). (13
rate has a nonlinear dependence on the shear rate. For suffi- ) ,
ciently large shear rates and particle diameters, the coagul§-UbSt'tu“ng(13) into (12) yields
tion rate is proportional td'°84p?, cf. (3). Thus, the coagu-
lation rate is a weaker function of shear rate in the presence (' ¢’')= —a($)X(I')?
of colloidal interactions. As a result, the depletion of particle

=[exp(o?) — 1]exp(—|7l/7,)

T expo?) 1]

I
Tm™T Ty

concentration in high shear regions is not as striking and the o
reduction of the coagulation rate is not as great. In the pres- + ”jr v [exp(oﬁ,)— 1]]. (14
ence of particle interactions, Tm™ Ty
1323 , At sufficiently small volume fractions, then, the rate of co-
Fseq=€XP ~ 5500 ox T oul |- (100 agulation may be approximated as
The result forr o4 (dashed lingin the presence of particle (T"¢")
interactions can be compared to the regsdiid line) without r=1+ TP 1-BR\(9), (15

particle interactions in Fig. 5.

A theory valid for smal¢)R, can be derived by real- \whereg is plotted as a function oR, in Fig. 6. The linear
izing that, in this limit, the system is almost perfectly mixed dependence of the decay of the coagulation rate written ex-
and the fluctuations in particle volume fraction are verypijicitly in (15) reflects the influence of the difference in time
weak, i.e.,¢'<<(¢). For a nearly constant particle volume scales between the coagulation process on one hand and the
fraction, the coagulation rate and source termglirmay be  mixing process and the variations in dissipation rate on the

simplified to yield other. The additional Reynolds number dependence shown in
do’ &’ the plot of 8 in Fig. 6 arises from the decreasesp/Te and
W‘F = —al'(¢)?, (11 7,/ Tg at small and moderat®, and from the growth of the
m

variance of the dissipation rate wil, , cf. Figs. 13 and 11.
where @=36.1 in the absence of particle interactions. Inte-  The variance of the particle volume fraction at small
grating(11), to relate¢’ to the previous history of the shear (¢$)R, can be derived in a similar manner and one obtains
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1 rﬁ:kijninj, (18)

where the rate coefficierk; is given by

0.1
a+a\?

(19

o and a; is the radius of thath species. As in Sec. lll, we

consider the fluid to consist of a set of fluid packets each

with its own Kolmogorov shear rate. In the present case,

however, each packet contains a set of drops with different

radii. We consider an initially monodisperse suspension of

0.0001 ; , . drops with radiusa;. The coalescence of these drops leads
163 Tes 1e3 te2 Te-t to a discrete set of drop sizes

> By, . (20)

<¢'2>l<¢>2

0.001 +

ai:il

FIG. 7. The variance of the particle volume fraction is plotted as a function_I_ hi d ize distributi il id
of mean volume fraction foR, =500. The solid line represents the simula- 0 achieve a steady state size distribution, we will consider a

tion results, the dotted line is the smalip)R, asymptote(4'2=5.2  model in which each fluid packet receives an inlet stream
X 10 ¢)*, and the dashed line is the larges)R, asymptote(¢’?  consisting of droplets of species 1 with a volume fraction
=0.162¢)°. ¢10 equal to the initial volume fraction in the suspension. An
outlet stream with an equal volumetric flow rate is extracted
from each packet. This is similar to the common model of a

2 . . .
TmT continuous stirred-tank reactor. Thus, the number density of
12\ _~=2 4 2 m°x 2\ _ !
(¢ )=aX()T') [Tm+ TX[exp(oX) 1] species in each packet evolves according to
2 N i—1
mTy 2, M S A ES e an
Tm+T¢[exp(a¢) 1]]. (16) It le k,Jn,anZJZ1 Kiionini—;
This indicates that the particle volume fraction variance is n—(n;) N — 8i1N10
proportional to ¢)*R? in the dilute limit. Figure 7 shows the —( . ) —( - ) : (21)
m r

particle volume fraction variance obtained from the stochas-
tic simulations forR, =500 (solid line) compared with this whereN is the total number of drop sizes considered in the
dilute asymptotgdotted ling. The normalized volume frac- calculation anch;g= ¢10/(37a3). The residence time in the

tion variance grows rapidly with particle concentration atsystem,r, , is equal to the ratio of the system volume to the

small concentrations but approaches a constant volumetric flow rate of the inlet stream.
2 3 We computed the drop size distribution fg= 2000 for
("% 2, 2 : : .
)2 =ex Z(UXJF oy)|—1 (17 arange of particle volume fractions. Forty drop sizes were

considered in the calculation. Any drop—drop collisions that
predicted by the segregation model at high concentrationshould have resulted in the formation of larger drops than
For R,=500, the variance predicted by the segregatiorthose considered in the calculations led to a loss of mass
model for R, >1 is (¢'?)=0.162 ¢)?, which is indicated from the system. For the parameter regime explored this loss
by the dashed line in Fig. 7. of mass was always less than 1.5% of the total mass of the
drops in the system. The computations were performed with
100 fluid packets. The residence time was taken torbe
=1/(R, ¢410). By scaling the residence time withdy,, we

We will now briefly consider the evolution of the size assured that the size distribution for a perfectly mixed system
distribution in a suspension of drops coalescing due tavould be independent ab;.
turbulence-driven collisions. It will be assumed that collision In keeping with the results obtained for the simple anni-
of two drops leads to the formation of a larger drop with ahilation model in Sec. Ill, we expect that the mixing limita-
volume equal to the sum of the volumes of the collidingtions that arise at higher particle volume fractions will reduce
drops. In addition, drop break up due to the turbulent flowthe initial stages of the coagulation process and so reduce the
will be neglected. These assumptions are reasonable fonean radius of the droplets. On the other hand, the variations
small drops, which have a small Capillary number Caof the Kolmogorov shear rate in various parts of the fluid
=ul'a/o and do not deform appreciably due to the flow. will cause some regions to develop quite large drops while
Here, o is the surface tension of the drop interface. A systemittle coalescence occurs in other regions. This will tend to
of coalescing drops is simpler than one consisting of particldroaden the size distribution. These effects can be observed
aggregates, because the larger drops formed due to coalés-Fig. 8, which illustrates the size distribution for a well-
cence events are spherical. For such a polydisperse suspenixed suspensioridashed ling with a very small volume
sion, the rate expressiail) can be replaced by the rate of fractionR,{¢)=1/4 and the distribution for a higher volume
collision of drops of speciesandj, i.e., fraction suspensioR,{ ¢)= 16 (solid line). The mixing limi-

IV. DROP SIZE DISTRIBUTION
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FIG. 8. The drop size distribution is plotted fét,=2000 with R\(¢) FIG. 10. The mean radius of the nonsinglet drops is plotted as a function of
=1/4 (dashed lineandR,(¢$)=16. The ordinate is the fraction of the total yolume fraction forR, = 2000.

drop volume consisting of drops with radiag.

V. CONCLUSIONS

. _ _ ) _ We have examined the effects of the large scale varia-
tations in the higher volume fraction suspension lead 10 gjqng in the turbulent dissipation rate in a homogeneous tur-
smaller volume fraction of doublets and triplets than in they ,.ant flow on turbulence-induced coalescence of drops or
_dilute suspension, indicating that the initial coagulation r?ltecoagulation of particles. The variation in the Kolmogorov
Is suppressed. However, the largest droplets are more evidegito oy rate with position results in variations in the coagula-
in the poorly mixed suspension. Figure 9 is a plot of they,, rate As a result, the coagulation process induces fluc-

mean droplet size as a function of volume fraction. The siz& ations in the concentrations of singlet particles, doublets,
decreases with increasing volume fraction and eventually alstc. There is a negative correlation between the singlet par-

p.rogches a IargRA<'¢> asymptote. These resglts are qUiteticIe concentration and the Kolmogorov shear rate, which
S|m'|lar to the behavior of the coagulation rate givenin F'Q- 2reduces the overall rate of loss of singlets. We illustrated this
A simple measure of the breadth of the size distribution is Qafract using a simple model in which the collision of two
consider the mean size of the drops that are larger é9an  qjpgjets results in annihilation of the particles. The ratio of
This mean size of nonsinglet drops is plotted as a function ofe coaqgylation rate to that in a well mixed system decreases
the volume fraction in Fig. 10. While the overall mean drop,yit, increasing volume fraction and with increasing Rey-
size decreases with increasing volume fraction, the mean SiZ€1ds number and approaches an asymptote characteristic of
of the nonsinglets increases at first with volume fraction,a fully segregated state at larBg( ). The well mixed state
passes through a maximum, and levels off at a value largeL  ocqvered only if{ $)<0.03R, , so that mixing limita-

than t_he well-mixed resglt. T.his. de.monstrateS th.at miXingtions are more significant in higher Reynolds number flows.
limitations broaden the size distribution of coalescing dropsFma"y' we briefly considered the size distribution of a sus-

pension of droplets coalescing in a turbulent flow. Here, mix-
ing limitations not only reduce the overall rate of coales-
cence as measured by the mean drop radius, but they also
broaden the drop size distribution.
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¢ APPENDIX: STOCHASTIC MODEL FOR LAGRANGIAN
1.190 + o TEMPORAL VARIATIONS OF THE KOLMOGOROV
¢ SHEAR RATE

1185 LI The shear rate following a fluid particlé(t) is modeled

o as

1.180 T T

0 5 10 15 2 2 20 35 IN[T(t)/{T)]= () + x(t), (A1)

<0p> . .
Ry<¢ where ¢(t) and y(t) are independent Ornstein—Uhlenbeck
FIG. 9. The mean radius of drops in a turbulent flow with=2000 is (OU) procezsses. Tzhe two OL_J processes are defined by their
plotted as a function of the particle volume fraction. variancesr;, and Ty and their time scales,, and, . (The
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FIG. 11. Variance of I againstR, : solid line, var (Ins), Eq. (A9); dot— FIG. 13. Time sciales of processes normalizedThy=k/{e): solid Iine.,
dashed Iinarf,,=0.55; dashed Iine?,=var(|n(s))—0§;; symbols, DNS data ~ 7in ATe, _Eq. (A14); symbols, 7, . /Tg, DNS_of Yeung and PopéRef. 6);
of Yeung and Pop¢Ref. 6. dashed liner,/Te, Eq.(A18); dot-dashed liner, /Te, Eq. (A7)

means are specified as}o?, and— 3o for consistency with ~ tions in Ref. 11} From the relationl’ = (/v) "% it follows

the normalization ofl" by its mean). "The purpose of this that the parameters in the models 16(t) andz(t) are re-

appendix is to provide appropnate specifications for the nonlated by

dimensional parametets2 a'X, Tyl/Teandr, /Tg. o= r—7 Uz_; 2 21,2 (A3)
The current model fonl“(t) [8(t)/v]1/2 is closely re- v X e 49¢, Iy=a%:

lated to the model foe(t) proposed by Pop®,which can be  Here we first provide a specification for the parameters in the

written model fore(t), and then use the above-mentioned equations
to deduce the appropriate parameters in the moddr o).
In[e(t)/(e)]= (1) + 6(1). (A2) As shown by Popé! the autocorrelation functions of

In(e/(e)) given by the model are in good agreement with
The variances of the stationary random process@$ and  those obtained from the DNS of Yeung and Pbjfethe
0(t) are denoted byr¢ and ag, and their integral time coefficients are specified by
scales byr, and7,. [Note that in Ref. 114(t) is denoted by
#(t), and that herer, and 7, are defined as the integrals of %:0 55, 1yl7,=2.4, 7,/T =0.89, (A4)
the autocorrelation functions which differ from the defini- where 7, is the Kolmogorov timescale, an is the La-

grang|an velocity integral time scale. The variamcgis ob-
tained from the relation

var(ine) = o5+ o5, (A5)
0.6f ] with the empirical expression for the variance of the loga-
rithm of the dissipation
0.5} i
var(ine)=A+uIn(L11/7), (AB6)
941 1 wherelL ¢ is the longitudinal integral scale. The value of the
E_. intermittency exponeni=0.25 is taken from Sreenivasan
0.3r 1 and Kailasnath? and the constanA=—0.15 is chosen to
match DNS datdas shown in the following, Fig. 31
0.2+ 1 To complete the specification we need to relate the vari-
ous scales that appear T_, Lii/7—to R, and Tg
0.1t 1 =k/(e).
From the definition of the quantities involved we have
2)01 o " 7,/ Te=(20/3)*%R, , and hence from EqA4)

T 1 : < acti
FIG. 12. Ratio of Lagrangian velocity integral time scaletée): line, Eq. With L=k*9(e), the length scale ratib,,/7 is estimated
(A13); symbols, DNS data of Yeung and Pofieef. 6). as
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3/4 2 _ 2 _
RS2, (AB) 0,=104=0.14, (A15)

3
Lis/n=(L /L)(L/n)=[0.43+12.8/R](—
N i 0 = jvarine)— o= —0.18+ %In(3.1R}*+0.1R}?
Ox~ 1 g)mo,= U 16IN(3.1Ry ARYY),

where the quantity in square brackets is a fit to the estimate (A16)
of L;/L given by Pop2(see Fig. 6.2% Thus Eqs(A6) and
(A8) yield Ty _Ts_62 (A17)
Te Te R’
var(ine)=—0.15+0.25IN3.1RY2+0.1R¥?).  (A9) £ E

. ) . 0.19 6.81+4R
Figure 11 shows this estimate compared to the DNS data of x_To A V)

Finally, an estimate of _ /T is obtained from Sawford's | " con the colision of _ |
model for fluid particle acceleratiori, as modified by Cpl'gfj'df? szﬂngnﬁeihsi Tllg?leééaon the collision of drops in turbulent
Pope!* Equations(80), (83)—(86) of Popée* give 2B.K. Brunk, D.L. Koch, and L.W. Lion, “Turbulent coagulation of colloi-

dal particles,” J. Fluid Mech364, 81 (1998.

T|_ 4 ’7'77 CT

L + 7 (A10) 3L.-P. Wang, A.S. Wexler, and Y. Zhou, “On the collision rate of small
Te 3Cy Tg2a,’ particles in isotropic turbulence. 1. Zero-inertia case,” Phys. Fldids

(A18)

266 (1998.
where 43. Sundaram and L.R. Collins, “Collision statistics in an isotropic particle-
laden turbulent suspension. 1. Direct numerical simulations,” J. Fluid
C1=6.21+4/R,), (A11) Mech. 335, 75 (1997).

. . . 5H.R. Prupacher and J.D. Klet}icrophysics of Clouds and Precipitation
and a, is the Kolmogorov-scaled acceleration variance. (reidel, Dordrecht, Netherlands, 1978

From the DNS data of Vedula and Yeuhywe estimate 5p.K. Yeung and S.B. Pope, “Lagrangian statistics from direct numerical
simulations of isotropic turbulence,” J. Fluid Meck07, 531 (1989.
Qo= 1.05 |r(0.lR)\), (A12) "Brunk et al. (Ref. 2 actually gave the rate of coagulation as twice the

value specified here, because they took the number of particle pairs in the

which leads to suspension to be? instead of the appropriate expressi%nn2 for indistin-

T, 0.21 7.6(1+ 4/R)\) guishable particles.

— = + . (A13) 8J. Villermaux and J.C. Devillon, iProceedings of the Second Interna-

Te 1+4/R, R,In(0.1R,) tional Symposium on Chemical Reaction Engineeriidsevier, New
York, 1972.

Figure 12 shows that this estimate agrees well with the DNSg g " pope Turbulent Flows(Cambridge University Press, Cambridge,

data; and that aR,~30, T /Tg is about twice its high-  2000.
Reynolds number asymptote. 1033, Girima’J"i and S.B.‘Pope, “A stochastic model for velocity gradients in
As a check on these estimates, Fig. 13 shows the impliegg’g’“":,ence"‘ Phys. Fluids &, 242(1990. A
. .B. Pope, “Lagrangian microscales in turbulence,” Philos. Trans. R. Soc.
time scale of Ing), London, Ser. A333 309 (1990.
12K.R. Sreenivasan and P. Kailasnath, “An update on the intermittency ex-
ponent in turbulence,” Phys. Fluids 3, 512 (1993.
13B.L. Sawford, “Reynolds number effects in Lagrangian stochastic models
of turbulent dispersion,” Phys. Fluids 3, 1577(1991).
compared to DNS data. Figure 13 also ShOWﬁTE and 1“S.B_. Pope, “Lagrangian PDF methods for turbulent flows,” Annu. Rev.
T Fluid Mech.26, 23 (1994.
o E - . 15p, Vedula and P.K. Yeung, “Similarity scaling of acceleration and pressure
In summary, the parameters specified in the model for ggistics in numerical simulations of isotropic turbulence,” Phys. Fluids

I'(t) are 11, 1208(1999.

2 2

The 0¢7'¢+097'9

T = (o2t oD Te (A14)
E (04, 0’9) E
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