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Coagulation-induced particle-concentration fluctuations in homogeneous,
isotropic turbulence
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The turbulent coagulation of micron-sized colloidal particles in a liquid is controlled by the shearing
motion produced by Kolmogorov scale eddies. The rate of energy dissipation has fluctuations which
vary over the integral length and time scale in a homogeneous, isotropic turbulent flow. We present
a model of the particle concentrations and coagulation rates in a set of fluid packets that are large
compared with the Kolmogorov scale and small compared with the integral scale. Particle
coagulation occurs rapidly in regions of the flow with large dissipation rates, leading to a depletion
of singlet particles. Thus, the singlet number density is negatively correlated with the shear rate.
Turbulent mixing mitigates these concentration variations and the particle concentration field
becomes nearly uncorrelated with dissipation rate in very dilute suspensions withfRl!1. Here,f
is the particle volume fraction andRl is the Reynolds number based on the Taylor microscale. A
simulation of a suspension of coalescing drops shows that the imperfect mixing at finitefRl

broadens the drop size distribution. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1478562#
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I. INTRODUCTION

Previous theoretical studies1,2 of coagulation in homoge
neous, isotropic turbulent flows have assumed a very di
suspension which is well mixed on length scales larger t
the particle diameter. Investigators performing dire
numerical simulations~DNS! of the coagulation rate in hy
drosol and aerosol systems3,4 have endeavored to use a su
ficiently small particle volume fraction so that the partic
concentration does not influence the interparticle collis
rate. The rate at which single particles combine to form d
blets due to coagulation is proportional to the square of
number densityn of singlets and grows with increasing tu
bulent shear rateG5Ae/n or the instantaneous rate of e
ergy dissipatione. Here,n is the kinematic viscosity of the
fluid. The energy dissipation, which is controlled by the ra
at which energy is extracted from the large scale turbu
motions, has large fluctuations and varies over the inte
length and time scales. Singlet particles are preferenti
depleted in regions of the flow characterized by large tur
lent shear ratesG, leading to a negative correlation betwe
n and G. In a very dilute suspension, turbulent mixing w
minimize the coagulation-induced particle concentrat
fluctuations. However, at higher concentrations, the nega
correlations between the fluctuations inn and G over dis-
tances comparable with the integral length scale lead
decrease in the overall rate of coagulation. In this pape
stochastic model is presented that characterizes the ma
tude of the coagulation-induced particle concentration fl
tuations in an isotropic, homogeneous turbulent flow. T
model is used to assess the effect of these fluctuations o
2441070-6631/2002/14(7)/2447/9/$19.00
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overall coagulation rate and particle size distribution and
determine when the dilute theories of particle coagulatio1,2

are appropriate.
Turbulent shearing motion is typically the domina

mechanism driving the coagulation of particles with radiia
of about 0.5–5mm.5 The coagulation of smaller particles
controlled by Brownian motion. The coagulation of larg
particles is dominated by differential sedimentation or turb
lent accelerations, provided that there is some difference
size or density of the particles. The shearing motion in
turbulent flow is dominated by the smallest eddies who
size is characterized by the Kolmogorov length scalel K

5(n3/^e&)1/4, where^ & indicates an ensemble average. T
shear rate produced by these eddies isG5(e/n)1/2. In most
laboratory, industrial, and environmental flows, the Kolmo
orov length lies in the range of 50mm–1 mm. It is therefore
much larger than the size of the aggregating particles
this observation implies that it is only the local linear flo
characterized byG that influences the aggregation proce
Because the Reynolds number based on the Kolmogo
scale variableŝG2&1/2l K

2 /n is defined to be 1, the particle
Reynolds numberRp5^G2&1/2a2/n is much less than one
and fluid inertia may be neglected during particle–parti
encounters. For particles suspended in liquids, the m
densities of the particle and fluid are comparable and
particle inertia is also negligible, i.e., the Stokes numb
St5(2/9)rp^G

2&1/2a2/m!1. Here,rp is the density of the
dispersed phase andm is the dynamic viscosity of the con
tinuous phase. In this paper, we will restrict our attention
the case of negligible particle inertia.

The rater * of coagulation, defined as the number
7 © 2002 American Institute of Physics
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2448 Phys. Fluids, Vol. 14, No. 7, July 2002 D. L. Koch and S. B. Pope
coagulation events per unit volume per unit time in whi
two particles of radiusa combine to form a doublet, is give
by

r * 52
dn

dt
5kn2, ~1!

wherek is the rate constant. If we neglect hydrodynamic a
colloidal interactions among the particles as well as part
inertia, then the only dimensional quantities thatk can de-
pend on are the turbulent shear rateG and the particle radius
a. Thus,

k5aGa3, ~2!

wherea is a dimensionless constant. Saffman and Turn1

considered the local linear flow in the vicinity of a collidin
particle pair to be a purely extensional flow, characterized
a velocity gradient tensor that did not change during
O(G21) time required for an interparticle encounter. This l
to a prediction thata510.35. Brunket al.2 simulated the
relative motion of particle pairs in a linear flow field with
velocity gradient that varied stochastically with time. T
moments of the velocity gradient field were isotropic and
autocorrelation of each component of the strain rate and
the vorticity reproduced the values obtained for Lagrang
particles in direct-numerical simulations of isotrop
turbulence.6 These simulations taking account of the temp
ral variations of the velocity gradient yieldeda58.62.7

Brunk et al.also performed simulations that included t
hydrodynamic interactions and van der Waals attractions
tween the particles. In a continuum fluid, hydrodynamic
teractions provide a viscous resistivity that diverges at sm
separations and would prevent any coalescence from oc
ring in the absence of van der Waals attractions. The sim
case, in which only van der Waals and hydrodynamic for
act, can be realized in a suspension in which the electro
concentration is sufficiently high to screen the electrost
interactions at any appreciable interparticle separation.
coefficienta in this case depends onNs512pma3G/A, the
ratio of viscous to van der Waals forces andNL54pa/l.
Here, A is the Hamaker constant andl is the retardation
length for the van der Waals attractions. For sufficiently la
particles and high shear rates, i.e.,Ns.10 and Ns

.(NL/500)2, the simulation results could be fit with
simple power law

a50.52Ns
20.16. ~3!

Typically, the net effect of particle interactions is to decrea
the coagulation rate by a factor of order 10 and to sligh
decrease the sensitivity of the coagulation to the shear r

The theories of Saffman and Turner1 and Brunket al.2

assume that the suspension is well mixed, so that the p
ability of finding two particles separated by any distan
large compared with 2a is equal to the square of a number
particles per unit volume, which does not fluctuate with p
sition. In this paper, we will extend these results to acco
for the number density fluctuations that occur in a nondil
coagulating hydrosol.
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II. STOCHASTIC MODEL

The theories of Saffman and Turner1 and Brunket al.2

describe the coagulation of hydrosols occurring on len
and time scales comparable with the Kolmogorov scale. T
dissipation rate in a turbulent flow will vary over the muc
larger integral time and length scales and, in a nondil
suspension, these variations will result in large-scale va
tions in the particle number density. In the presence of th
large-scale inhomogeneities, Eq.~2! still provides the correct
relationship of the local rate of coagulation to the local d
sipation rate and particle number density.

To model the shear-rate and number-density variatio
we will consider the flow to consist of a set of many suspe
sion packets. The packet size is much larger than the K
mogorov length scale and is large enough to contain m
particles, but it is much smaller than the integral length sc
Thus, each fluid packet has a dissipation ratee and equiva-
lent Kolmogorov shear rateG and number density of singlet
n. Because the packet size is small compared with the i
gral length scale, these quantities can be assumed to be
form within each packet. To illustrate the effects of mixin
on the coagulation process, we will first consider a sim
model in which two particles are removed from the simu
tion rather than forming a larger particle when they collid
This model has been used in direct-numerical simulations
turbulent coagulation3 and it is qualitatively consistent with
the actual situation in which the total rate of collision
singlets with particles of all sizes decreases as the mean
of the neighboring particles grows. In the final section,
will treat a more realistic model in which drops coalesce
contact to form larger drops. The time variation of the nu
ber density in each packet is given by

dn

dt
52aGn2a32Fn2^n&

tm
G1S, ~4!

where the first term on the right-hand side is the loss
singlets due to coagulation, the second term is a model
turbulent mixing of particles between the packets, and
third termS is a source of particles per unit volume. For th
majority of the calculations we will consider noninteractin
particles so thata58.62. The source, which is a constant,
added in some of the calculations so as to produce a st
tical steady state forn. The mixing term in~4! is the ‘‘inter-
action by exchange with the mean’’ mixing model,8 in which
^n& is the mean number density~i.e., the average over al
packets!. This model is commonly used for single-pha
mixing in probability distribution function modeling of tur
bulent flows;9 and we use here the standard value of
mixing rate.

1

tm
5

Cf^e&
2k

5
1

TE
, ~5!

where the Eulerian integral time scaleTE is defined as the
ratio of the turbulent kinetic energyk to the mean dissipation
rate^e&, and the model constantCf takes the value 2.0. Note

that ^G2&1/2TE5( 3
20)

1/2Rl , where Rl5u8l/n is the Rey-
nolds number based on the turbulent velocityu85(2k/3)1/2

and the Taylor microscale,l, which is related to the rate o
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2449Phys. Fluids, Vol. 14, No. 7, July 2002 Coagulation-induced particle-concentration
energy dissipation byl5(15nu82/^e&)1/2. The use of a mix-
ing model developed for mixing of passive scalar quantit
in a single-phase flow for the mixing of particles or drople
can be justified because:~a! the particles are assumed to b
sufficiently dilute that they do not affect the flow; and~b!
they are small and have negligible inertia so that they foll
the large-scale motion of the fluid.

The variations in the Kolmogorov shear rate are mode
in a manner similar to that proposed by Girimaji and Pope10

Pope11 noted that the logarithm of the Kolmogorov shear ra
can be divided into two parts

G5^G&exp@x1c#, ~6!

wherec varies over the Kolmogorov time scale andx over
the integral time scale. The stochastic variablesc andx are
modeled to vary according to the Ornstein–Uhlenbeck p
cesses

dx52S x1
1

2
sx

2D dt

tx
1S 2sx

2

tx
D 1/2

dWx ~7!

and

dc52S c1
1

2
sc

2 D dt

tc
1S 2sc

2

tc
D 1/2

dWc , ~8!

wheredWx anddWc are independent Wiener processes, i
^dWi&50 and^dWi

2&5dt for i 5x andc. This model cap-
tures the log-normal distributions of the Kolmogorov she
rate G and dissipation ratee. It also reproduces approxi
mately the autocorrelation function of ln~e! observed in
DNS. In particular, it yields an exponential temporal dec
of the autocorrelation function at short times with a tim
scale that is proportional to the Kolmogorov time scale an
second region of exponential decay at long times with a t
constant that scales with the integral time. The variancessx

2

andsc
2 , and the ratios of the time scales to the integral tim

tx /TE and tc /TE, are derived from previous theoretica
DNS, and experimental results in the Appendix.

Typically, calculations were performed using 10 000 s
pension packets to obtain good statistics. Equation~4! for the
number density was solved by forward Euler integration. T
linearity of ~7! and ~8! was exploited to provide a time up
date that exactly reproduces the probability distributions
x(t1dt) andc(t1dt) conditioned on the values ofx andc
at time t.

III. RESULTS FOR COAGULATION-INDUCED
CONCENTRATION FLUCTUATIONS AND
COAGULATION RATE

In this section, we present results of the stochastic sim
lations for the turbulence-induced particle concentrat
fluctuations using the simple model in which the collision
particles results in their annihilation. In most of the calcu
tions, we introduce a constant source of particles through
the suspension to balance those that are removed by coll
events. This eventually leads to a statistical steady state
the particle volume fractionsf5n(4pa3/3) and Kolmog-
orov shear rates of the suspension packets. Figure 1 giv
scatter plot of the volume fractions and shear rates of
Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP
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packets forRl5500 and an average volume fraction of^f&
50.001 08. It can be seen that there is a strong nega
correlation between the particle concentration and the sh
rate. This results from the higher coagulation rates exp
enced by particles in the high-shear-rate regions. This ne
tive correlation betweenf andG leads to a decrease in th
coagulation rate compared with that which would occur in
well-mixed suspension. The ratio of the coagulation rate
that in a well-mixed system is given byr 5^Gf2&/^G&^f&2

and r 50.860 for the example shown in Fig. 1.
The ratio of the rate of coagulation to that in a we

mixed system is plotted as a function of particle volum
fraction for several values ofRl in Fig. 2. The well-mixed
result is recovered at sufficiently small particle volume fra
tions, but the rate decreases with increasingf. The rate of
decrease in the coagulation rate with particle volume fract

FIG. 1. The values of particle volume fraction and Kolmogorov shear r
are plotted for 10 000 fluid packets in a suspension withRl5500 and
^f&50.001 08. For these conditions the ratio of the coagulation rate to
occurring in the absence of mixing limitations isr 50.860, the particle
velocity variance is ^f82&/^f&250.043, and the correlation betwee
particle concentration and shear rate is^G8f8&/~^G&^f&!520.094.

FIG. 2. The ratio of the coagulation rate to that in the absence of mix
limitations is plotted as a function of the average volume fraction forRl

5 24, 62.5, 125, 250, 500, 1000, and 2000. The Reynolds number incre
monotonically from the top curve to the bottom curve.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2450 Phys. Fluids, Vol. 14, No. 7, July 2002 D. L. Koch and S. B. Pope
increases with increasingRl . This may be understood if we
note that the coagulation process changesf in a time of
order 1/~G^f&! while the turbulent mixing of particles amon
fluid packets and variations in the dissipation rate with
each packet occur over the integral time scaleTE. Thus, the
well-mixed condition holds only if TE!1/(G^f&) or
Rl^f&!1. At sufficiently highRl^f&, the turbulent mixing
is very slow compared with coagulation andr reaches a pla-
teau that is determined by the variation ofG within the flow.
This plateau becomes lower at higherRl where the fluctua-
tions in G are larger. These results indicate that mixing lim
tations are likely to be more prevalent at the higher Reyno
numbers that are often characteristic of geophysical app
tions than at the lower Reynolds numbers probed by D
studies and many laboratory experiments.

The results in Figs. 1 and 2 were obtained using a sou
of particles to achieve a statistical steady state distributio
particle concentration among the fluid packets. To dem
strate that this method of analysis produces a quasiste
state approximation, we compare it with the results of a tr
sient calculation. Wanget al.3 introduced an initially uniform
array of particles with volume fractionf050.0168 into a
DNS of isotropic turbulence withRl524 and observed the
subsequent coagulation process. Scheme 3 in their pape
responds to the assumption of particle annihilation on co
sion adopted in this section. We performed a correspond
simulation by setting the initial number density in each flu
packet to 0.0168 and omitting the sourceS. The rater is
plotted as a function of time nondimensionalized byTE in
Fig. 3. The solid line is the rate computed from the transi
calculation. Because the system is initially well mixed, t
initial rate isr 51. As the coagulation proceeds, particles a
depleted preferentially from high shear rate regions, so thr
decreases. With time, however, the volume fraction of p
ticles throughout the system decreases. This slows the co

FIG. 3. The coagulation-rate ratior is plotted as a function of time nondi
mensionalized by the Eulerian integral timeTE for Rl524. The initial par-
ticle volume fraction is 0.0168 and the suspension is initially well mix
The solid line is the simulation result. The dashed line is a quasiste
approximation obtained using the results from Fig. 2 for a stochastic ste
state with the same mean volume fraction as that obtained at timet in the
transient calculation.
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lation process and allows time for turbulent mixing to ree
tablish a more homogeneous particle distribution. T
dashed line is the quasisteady approximation obtained
applying the steady state results from Fig. 2 at the m
volume fraction obtained in the simulation at timet. It is
seen that, after an initial adjustment period, the quasiste
state approximation accurately predicts the transient res
The initial volume fraction in Wanget al.was intended to be
sufficiently small so that mixing limitations would not affec
the coagulation rate. Our calculations confirm that the dev
tion from the well-mixed condition would be small, i.e., le
than 8%. It should be noted, however, that the requiremen
achieve good mixing would become more stringent as
Reynolds number of the simulations was increased. W
et al. noted that their particles developed a bias toward
gions of low energy dissipation and quantified this effect
plotting the ratio of the mean dissipation rate experienced
the particles to the mean dissipation rate in the fluid in th
Fig. 8~b!. Our results for this quantity, i.e.,ep /^e&
5^G2f&/^G2&^f&, exhibit a similar trend to those forr .
They decrease from 1, pass through a minimum of 0.9
and then grow to approach 1 again ast→`. The results from
the DNS of Wanget al. start from the well-mixed state
ep /^e&51 at t50. The dissipation rate seen by the particl
then decreases and fluctuates about a mean value of a
0.99. The DNS results do not show evidence of the recov
to the well-mixed state predicted by the stochastic model,
the statistical uncertainty in the DNS results is substan
and grows with time as the particles are depleted from
simulation domain.

Figure 4 shows the stochastic simulation results~solid
line! for the rate ratior as a function of mean particle vol
ume fraction forRl5500 using the model for highRl along
with the asymptotic results for high and lowRl^f&. At suf-
ficiently large values ofRl^f&, the coagulation occurs muc
more rapidly than turbulent mixing and temporal variatio
in the dissipation rate in a Lagrangian reference frame
this case, the particle concentration in each fluid packet

.
y

dy

FIG. 4. The coagulation-rate ratio is plotted as a function of average volu
fraction for Rl5500. The dotted and dashed lines indicate the small
large ^f&Rl asymptotes, respectively.
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justs to a quasisteady balance of the sourceS and the coagu-
lation rateaGn2, so thatn5(S/(aG))1/2. Using this result,
we can determine the mean number density for a givenS and
thereby the coagulation rater seg for a fully segregated state

r seq5exp~2 3
4 @sx

21sc
2 # !. ~9!

This largeRl^f& asymptote is plotted as the dashed line
Fig. 4. The variation ofr seg with Reynolds number is illus-
trated in Fig. 5. The segregation coagulation rate decre
nearly linearly with ln(Rl) due to the growth of the varianc
of ln(G) with Reynolds number.

In the presence of colloidal interactions, the coagulat
rate has a nonlinear dependence on the shear rate. For
ciently large shear rates and particle diameters, the coag
tion rate is proportional toG0.84f2, cf. ~3!. Thus, the coagu-
lation rate is a weaker function of shear rate in the prese
of colloidal interactions. As a result, the depletion of partic
concentration in high shear regions is not as striking and
reduction of the coagulation rate is not as great. In the p
ence of particle interactions,

r seq5expS 2
1323

2500
@sx

21sc
2 # D . ~10!

The result forr seg ~dashed line! in the presence of particle
interactions can be compared to the result~solid line! without
particle interactions in Fig. 5.

A theory valid for small̂ f&Rl can be derived by real
izing that, in this limit, the system is almost perfectly mixe
and the fluctuations in particle volume fraction are ve
weak, i.e.,f8!^f&. For a nearly constant particle volum
fraction, the coagulation rate and source terms in~4! may be
simplified to yield

df8

dt
1

f8

tm
52ãG8^f&2, ~11!

where ã536.1 in the absence of particle interactions. In
grating~11!, to relatef8 to the previous history of the shea

FIG. 5. The coagulation rate ratio in the limit of large^f&Rl is plotted as a
function ofRl . The solid line indicates the result in the absence of part
interactions and the dotted line results based on the collision efficiency~3!
that includes van der Waals attractions and hydrodynamic interactions.
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rate fluctuations, we can express the shear rate volume
tion correlation in terms of the shear rate autocorrelation,

^G8f8&52ã^f2&E
0

`

expS 2
t

tm
D ^G8~t!G8~0!&dt. ~12!

Using the fact thatx~t! andx~0! are modeled as joint norma
variables, the shear rate correlations are found to be

^G8~t!G8~0!&

^G&2 5@exp~sx
2!21#exp~2utu/tx!

1@exp~sc
2 !21#exp~2utu/tc!. ~13!

Substituting~13! into ~12! yields

^G8f8&52ã^f&2^G&2H tmtx

tm1tx
@exp~sx

2!21#

1
tmtc

tm1tc
@exp~sc

2 !21#J . ~14!

At sufficiently small volume fractions, then, the rate of c
agulation may be approximated as

r 511
^G8f8&

^G&^f&
512bRl^f&, ~15!

whereb is plotted as a function ofRl in Fig. 6. The linear
dependence of the decay of the coagulation rate written
plicitly in ~15! reflects the influence of the difference in tim
scales between the coagulation process on one hand an
mixing process and the variations in dissipation rate on
other. The additional Reynolds number dependence show
the plot ofb in Fig. 6 arises from the decrease intx /TE and
tc /TE at small and moderateRl and from the growth of the
variance of the dissipation rate withRl , cf. Figs. 13 and 11.

The variance of the particle volume fraction at sm
^f&Rl can be derived in a similar manner and one obtai

FIG. 6. The coefficientb in the expression~15! for the coagulation rate ratio
at small^f&Rl is plotted as a function ofRl .
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^f82&5ã2^f&4^G&2H tm
2 tx

tm1tx
@exp~sx

2!21#

1
tm

2 tc

tm1tc
@exp~sc

2 !21#J . ~16!

This indicates that the particle volume fraction variance
proportional tô f&4Rl

2 in the dilute limit. Figure 7 shows the
particle volume fraction variance obtained from the stoch
tic simulations forRl5500 ~solid line! compared with this
dilute asymptote~dotted line!. The normalized volume frac
tion variance grows rapidly with particle concentration
small concentrations but approaches a constant

^f82&

^f&2 5expF3

4
~sx

21sc
2 !G21 ~17!

predicted by the segregation model at high concentratio
For Rl5500, the variance predicted by the segregat
model forfRl@1 is ^f82&50.162̂ f&2, which is indicated
by the dashed line in Fig. 7.

IV. DROP SIZE DISTRIBUTION

We will now briefly consider the evolution of the siz
distribution in a suspension of drops coalescing due
turbulence-driven collisions. It will be assumed that collisi
of two drops leads to the formation of a larger drop with
volume equal to the sum of the volumes of the collidi
drops. In addition, drop break up due to the turbulent fl
will be neglected. These assumptions are reasonable
small drops, which have a small Capillary number
5mGa/s and do not deform appreciably due to the flo
Here,s is the surface tension of the drop interface. A syst
of coalescing drops is simpler than one consisting of part
aggregates, because the larger drops formed due to co
cence events are spherical. For such a polydisperse sus
sion, the rate expression~1! can be replaced by the rate o
collision of drops of speciesi and j , i.e.,

FIG. 7. The variance of the particle volume fraction is plotted as a func
of mean volume fraction forRl5500. The solid line represents the simul
tion results, the dotted line is the small^f&Rl asymptote^f82&55.2
3104^f&4, and the dashed line is the large^f&Rl asymptote ^f82&
50.162̂ f&2.
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where the rate coefficientki j is given by

ki j 58.62GS ai1aj

2 D 3

~19!

and ai is the radius of thei th species. As in Sec. III, we
consider the fluid to consist of a set of fluid packets ea
with its own Kolmogorov shear rate. In the present ca
however, each packet contains a set of drops with differ
radii. We consider an initially monodisperse suspension
drops with radiusa1 . The coalescence of these drops lea
to a discrete set of drop sizes

ai5 i 1/3a1 . ~20!

To achieve a steady state size distribution, we will conside
model in which each fluid packet receives an inlet stre
consisting of droplets of species 1 with a volume fracti
f10 equal to the initial volume fraction in the suspension. A
outlet stream with an equal volumetric flow rate is extrac
from each packet. This is similar to the common model o
continuous stirred-tank reactor. Thus, the number densit
speciesi in each packet evolves according to

dni

dt
52(

j 51

N

ki j ninj1
1

2 (
j 51

i 21

kj ,i 2 jnjni 2 j

2S ni2^ni&
tm

D2S ni2d i1n10

t r
D , ~21!

whereN is the total number of drop sizes considered in t

calculation andn105f10/( 4
3pa1

3). The residence time in the
system,t r , is equal to the ratio of the system volume to t
volumetric flow rate of the inlet stream.

We computed the drop size distribution forRl52000 for
a range of particle volume fractions. Forty drop sizes w
considered in the calculation. Any drop–drop collisions th
should have resulted in the formation of larger drops th
those considered in the calculations led to a loss of m
from the system. For the parameter regime explored this
of mass was always less than 1.5% of the total mass of
drops in the system. The computations were performed w
100 fluid packets. The residence time was taken to bet r

51/(Rlf10). By scaling the residence time with 1/f10, we
assured that the size distribution for a perfectly mixed sys
would be independent off10.

In keeping with the results obtained for the simple an
hilation model in Sec. III, we expect that the mixing limita
tions that arise at higher particle volume fractions will redu
the initial stages of the coagulation process and so reduce
mean radius of the droplets. On the other hand, the variat
of the Kolmogorov shear rate in various parts of the flu
will cause some regions to develop quite large drops wh
little coalescence occurs in other regions. This will tend
broaden the size distribution. These effects can be obse
in Fig. 8, which illustrates the size distribution for a we
mixed suspension~dashed line! with a very small volume
fractionRl^f&51/4 and the distribution for a higher volum
fraction suspensionRl^f&516 ~solid line!. The mixing limi-

n
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tations in the higher volume fraction suspension lead t
smaller volume fraction of doublets and triplets than in t
dilute suspension, indicating that the initial coagulation r
is suppressed. However, the largest droplets are more ev
in the poorly mixed suspension. Figure 9 is a plot of t
mean droplet size as a function of volume fraction. The s
decreases with increasing volume fraction and eventually
proaches a largeRl^f& asymptote. These results are qu
similar to the behavior of the coagulation rate given in Fig.
A simple measure of the breadth of the size distribution is
consider the mean size of the drops that are larger thana1 .
This mean size of nonsinglet drops is plotted as a function
the volume fraction in Fig. 10. While the overall mean dr
size decreases with increasing volume fraction, the mean
of the nonsinglets increases at first with volume fractio
passes through a maximum, and levels off at a value la
than the well-mixed result. This demonstrates that mix
limitations broaden the size distribution of coalescing dro

FIG. 8. The drop size distribution is plotted forRl52000 with Rl^f&
51/4 ~dashed line! andRl^f&516. The ordinate is the fraction of the tota
drop volume consisting of drops with radiusai .

FIG. 9. The mean radius of drops in a turbulent flow withRl52000 is
plotted as a function of the particle volume fraction.
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V. CONCLUSIONS

We have examined the effects of the large scale va
tions in the turbulent dissipation rate in a homogeneous
bulent flow on turbulence-induced coalescence of drops
coagulation of particles. The variation in the Kolmogoro
shear rate with position results in variations in the coagu
tion rate. As a result, the coagulation process induces fl
tuations in the concentrations of singlet particles, doubl
etc. There is a negative correlation between the singlet
ticle concentration and the Kolmogorov shear rate, wh
reduces the overall rate of loss of singlets. We illustrated
effect using a simple model in which the collision of tw
singlets results in annihilation of the particles. The ratio
the coagulation rate to that in a well mixed system decrea
with increasing volume fraction and with increasing Re
nolds number and approaches an asymptote characteris
a fully segregated state at largeRl^f&. The well mixed state
is recovered only if̂ f&,0.03/Rl , so that mixing limita-
tions are more significant in higher Reynolds number flow
Finally, we briefly considered the size distribution of a su
pension of droplets coalescing in a turbulent flow. Here, m
ing limitations not only reduce the overall rate of coale
cence as measured by the mean drop radius, but they
broaden the drop size distribution.
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APPENDIX: STOCHASTIC MODEL FOR LAGRANGIAN
TEMPORAL VARIATIONS OF THE KOLMOGOROV
SHEAR RATE

The shear rate following a fluid particleG(t) is modeled
as

ln@G~ t !/^G&#5c~ t !1x~ t !, ~A1!

wherec(t) and x(t) are independent Ornstein–Uhlenbe
~OU! processes. The two OU processes are defined by t
variancessc

2 andsx
2 , and their time scalestc andtx . ~The

FIG. 10. The mean radius of the nonsinglet drops is plotted as a functio
volume fraction forRl52000.
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means are specified as2 1
2sc

2 and2 1
2sx

2 for consistency with
the normalization ofG by its mean.! The purpose of this
appendix is to provide appropriate specifications for the n
dimensional parameterssc

2 , sx
2 , tc /TE andtx /TE.

The current model forG(t)5@«(t)/n#1/2 is closely re-
lated to the model for«(t) proposed by Pope,11 which can be
written

ln@«~ t !/^«&#5f~ t !1u~ t !. ~A2!

The variances of the stationary random processesf(t) and
u(t) are denoted bysf

2 and su
2 , and their integral time

scales bytf andtu . @Note that in Ref. 11,u(t) is denoted by
c(t), and that heretf andtu are defined as the integrals o
the autocorrelation functions which differ from the defin

FIG. 11. Variance of ln« againstRl : solid line, var (ln«), Eq. ~A9!; dot–
dashed linesf

2 50.55; dashed linesu
25var(ln(«))2sf

2 ; symbols, DNS data
of Yeung and Pope~Ref. 6!.

FIG. 12. Ratio of Lagrangian velocity integral time scale tok/^«&: line, Eq.
~A13!; symbols, DNS data of Yeung and Pope~Ref. 6!.
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tions in Ref. 11.# From the relationG5(«/n)1/2 it follows
that the parameters in the models forG(t) and «(t) are re-
lated by

tc5tf , tx5tu , sc
25 1

4 sf
2 , sx

25 1
4 su

2 . ~A3!

Here we first provide a specification for the parameters in
model for«(t), and then use the above-mentioned equati
to deduce the appropriate parameters in the model forG(t).

As shown by Pope,11 the autocorrelation functions o
ln(«/^«&) given by the model are in good agreement w
those obtained from the DNS of Yeung and Pope6 if the
coefficients are specified by

sf
2 50.55, tu /th52.4, tu /TL50.89, ~A4!

where th is the Kolmogorov timescale, andTL is the La-
grangian velocity integral time scale. The variancesu

2 is ob-
tained from the relation

var~ ln «!5sf
2 1su

2 , ~A5!

with the empirical expression for the variance of the log
rithm of the dissipation

var~ ln «!5A1m ln~L11/h!, ~A6!

whereL11 is the longitudinal integral scale. The value of th
intermittency exponentm50.25 is taken from Sreenivasa
and Kailasnath;12 and the constantA520.15 is chosen to
match DNS data~as shown in the following, Fig. 11!.

To complete the specification we need to relate the v
ous scales that appear—th , TL , L11/h—to Rl and TE

[k/^«&.
From the definition of the quantities involved we ha

th /TE5(20/3)1/2/Rl , and hence from Eq.~A4!

tf /TE56.2/Rl . ~A7!

With L[k3/2/^«&, the length scale ratioL11/h is estimated
as

FIG. 13. Time scales of processes normalized byTE5k/^«&: solid line,
t ln « /TE , Eq. ~A14!; symbols,t ln « /TE , DNS of Yeung and Pope~Ref. 6!;
dashed linetu /TE , Eq. ~A18!; dot–dashed line,tf /TE , Eq. ~A17!.
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L11/h5~L11/L !~L/h!5@0.43112.8/Rl#S 3

20D
3/4

Rl
3/2, ~A8!

where the quantity in square brackets is a fit to the estim
of L11/L given by Pope9 ~see Fig. 6.24!. Thus Eqs.~A6! and
~A8! yield

var~ ln «!520.1510.25 ln~3.1Rl
1/210.1Rl

3/2!. ~A9!

Figure 11 shows this estimate compared to the DNS dat
Yeung and Pope.6

Finally, an estimate ofTL /TE is obtained from Sawford’s
model for fluid particle acceleration,13 as modified by
Pope.14 Equations~80!, ~83!–~86! of Pope14 give

TL

TE
5

4

3CT
1

th

TE

CT

2a0
, ~A10!

where

CT56.2~114/Rl!, ~A11!

and a0 is the Kolmogorov-scaled acceleration varianc
From the DNS data of Vedula and Yeung,15 we estimate

a051.05 ln~0.1Rl!, ~A12!

which leads to

TL

TE
5

0.21

114/Rl
1

7.6~114/Rl!

Rl ln~0.1Rl!
. ~A13!

Figure 12 shows that this estimate agrees well with the D
data; and that atRl'30, TL /TE is about twice its high-
Reynolds number asymptote.

As a check on these estimates, Fig. 13 shows the imp
time scale of ln(«),

t ln «

TE
5

sf
2 tf1su

2tu

~sf
2 1su

2!TE
~A14!

compared to DNS data. Figure 13 also showstf /TE and
tu /TE.

In summary, the parameters specified in the model
G(t) are
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sc
25 1

4 sf
2 50.14, ~A15!

sx
25 1

4var~ ln «!2sc
2520.181 1

16 ln~3.1Rl
1/210.1Rl

3/2!,
~A16!

tc

TE
5

tf

TE
5

6.2

Rl
, ~A17!

tx

TE
5

tu

TE
5

0.19

114/Rl
1

6.8~114/Rl!

Rl ln~0.1Rl!
. ~A18!
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