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We consider the propagation speeds of steady waves simulated by particles with stochas-
tic motions, properties and mixing (Pope particles). Conventional conservative mixing
is replaced by competitive mixing simulating invasion processes or conditions in turbu-
lent premixed flames under the flamelet regime. The effects of finite correlation times
for particle velocity are considered and wave propagation speeds are determined for
different limiting regimes. The results are validated by stochastic simulations. If the
correlation time is short, the model corresponds to the KPP–Fisher equation, which is
conventionally used to simulate invasion processes. If the parameters of the simulations
are properly selected, the model under consideration is shown to be consistent with
existing experimental evidence for propagation speeds of turbulent premixed flames.
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Nomenclature

a constant
A normalised acceleration
b premixed flame exponent ≈ 0.3 or = 2/7
C constant
D modelling Damkohler number = 2τ ∗/τm

De effective modelling Damkohler number, see Equation (28)
Da physical Damkohler number
D diffusion coefficient
d distance in the phase space
f (x, u) joint PDF of x∗ and u∗, f = 〈ψ〉 = f0/l0
f0(u) PDF of u∗

g(x, u) = 〈(1 − Y )ψ〉
ĝ(x, u) = g/f

ḡ(x) = 〈(1 − Y )|x〉
h(x, u) = 〈Yψ〉
ĥ(x, u) = h/f

h̄(x) = 〈Y |x〉
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680 A.Y. Klimenko and S.B. Pope

K modelling Knudsen number K = lp/lm
Ka physical Karlovitz number
l0 length of the domain
l0 r.m.s. distance travelled by a particle in the time τm

lp particle spacing = L/np

lt dispersion distance
l∗ convective length scale = τ ∗u∗
L normalised flame width
np number of particles
N number of particles in the transition zone
p probability
q(x) function see Equation (76)
R modelling Reynolds number = τ 2

∗/τ
2
p

Re physical Reynolds number
r time-dependent separation distance in the phase space
S non-dimensional propagation speed = s/u∗
s propagation speed of a flame or wave
sL laminar flame propagation speed
smin minimal propagation speed
T non-dimensional time = 2ωet

t time
U non-dimensional sample-space velocity = u/u∗
u velocity
umax effective maximal particle velocity
u∗ particle velocity
W (Y ) (chemical) source term
W source of ĝ (negative)
w(t) Wiener process
X non-dimensional position = 2xω∗/u∗
x∗ particle position
Y particle composition
Z non-dimensional front coordinate Z = (X − ST )
� increment, zone scale or time step (as followed by another symbol)
�(Y ) premixed flamelet function
ψ(x, u) fine-grained joint PDF of x∗ and u∗

υ = (U − S) S
ζ = (Z − Z0)
τ ∗ velocity relaxation time scale
τm ω−1

m
τ p particle convective collision time = lp/u∗
τ r reaction time
� ω/ωe

ωc collision frequency
ωc0 ωc for u = 0
ωm mixing rate
˜(·) ‘tilde’ indicates a normalised quantity

(·)K subscript ‘K’ indicates Kolmogorov scales
(·)◦ superscript ‘◦’ indicates effective premixed scales
(·)(p), (·)(q) superscripts indicate particles p and q.
(·)(p), (·)(s) superscripts indicate primary and secondary particle.
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Combustion Theory and Modelling 681

1. Introduction

One of the simplest possible stochastic models for emulating the propagation of combustion
waves in turbulent premixed combustion was suggested by Pope and Anand [1]. The model
utilises Pope particles – this term was suggested by Klimenko and Cleary [2] in the
development of the concept of ‘stochastic particles’ introduced by Pope [3]. In the case
when the flame fronts are very thin (the flamelet regime), the model can be formulated with
the use of non-conservative or competitive mixing [4]. Competitive mixing can be seen as
the superposition of conventional conservative mixing followed by the rapid evolution of
the particles into the burned state. The unburned state is interpreted as ‘the loser’ and the
burned state is ‘the winner’ in this process. The source terms that correspond to this process
are similar to the BML (Bray–Moss–Libby) model for premixed turbulent combustion [5].
Stochastic simulations of turbulent combustion [3, 6–11] and premixed flames [12–20]
have been repeatedly reviewed in publications.

A source term similar to ones considered in the present work also appears in the
convection–diffusion–reaction equation, which was introduced by Fisher [21]. The mathe-
matical theory for this and similar equations was developed by Kolmogorov, Petrovsky and
Piskunov (KPP) [22] and this class of equations is also commonly referred to as the KPP
equations. The model under consideration here is different from the KPP–Fisher equation
because of the finite correlation time of particle velocities considered in the present work;
although, as we show in the paper, the KPP–Fisher equation can be recovered when this
correlation time tends to zero. The KPP–Fisher equation is linked to a number of stochastic
processes that are conventionally used to describe invasions of successful species or genes.
Mollison [23] extensively discussed links of the KPP–Fisher equation with the contact
distribution process and other stochastic processes. McKean [24] demonstrated that the po-
sition of the leading particle in the branching Brownian random walk process is controlled
by the KPP–Fisher equation. Blythe and McKane [25] recently reviewed stochastic models
related to the approach originated by Fisher [21]. We note here that Pope particles with
competitive mixing give an alternative stochastic interpretation of the KPP–Fisher equation.

In the present work, we are concerned with determining the propagation speeds of
premixed combustion and invasion waves as simulated by the stochastic model with com-
petitive mixing and finite correlation time of particle motions. We examine the statistically-
stationary state in which the propagation speed is constant, and the governing equations
admit a steady solution (in a frame moving with the wave). The cases of very large and
very small Damkohler numbers and different localisations of mixing are considered. We
also investigate the effect of having a limited number of particles in the simulations. The
results are validated by stochastic simulations.

In the next section we describe the particle system considered and the statistical equa-
tions which describe it. In Sections 3 and 4 solutions for the flame speed are obtained for the
case in which mixing is localised only in physical space. Numerical simulations confirming
and extending these results are given in Section 5. In Section 6 we consider the case in
which mixing is localised in both physical and velocity spaces. The results obtained are
discussed in the context of turbulent premixed flame propagation in Section 7. A solution
for the problem of the propagation speed of disturbances carried by Brownian particles in
one-dimensional space is presented separately in Appendix A.

2. Particle systems and governing equations

In the first three subsections we describe the particle system considered for: (1) the
statistically-homogeneous case; (2) the one-dimensional case with diffusive motion; and
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682 A.Y. Klimenko and S.B. Pope

Table 1. Rules for competitive mixing.

The rule for mixing

Before mixing After mixing

Yp Yq Ýp Ýq Probability of event

0 0 0 0 (1 − 〈Y 〉)2

0 1 1 1 〈Y 〉 (1 − 〈Y 〉)
1 0 1 1 〈Y 〉 (1 − 〈Y 〉)
1 1 1 1 〈Y 〉2

(3) the one-dimensional case with finite correlation time of the particles’ velocity. The latter
case includes the other two as special cases, and its governing statistical equation is derived
in the subsequent subsections.

2.1. The homogeneous case

We consider Pope particles with property Y and two-particle mixing defined according to
the rules of competitive mixing. The rules for mixing a couple of particles, say particles p
and q, are given in Table 1.

The last column indicates the probability of occurrence of the mixing event, not the
probability of the outcome, which is certain. This rule is the most simple form of compet-
itive mixing with only two particle states allowed: Y = 1 representing winners and Y = 0
representing losers. Assuming that all couples are formed with equivalent probability, the
value of 〈Y 〉 represents the fraction of the winners among the particles, and the probabilities
of each mixing event are given in the last column of the table (assuming stochastic inde-
pendence of particles). Note that these probabilities sum to one and that only the second
and third cases change particle values.

In a homogeneous case with a large number of particles, the rate of change of the mean
〈Y 〉 is given by the following equation:

d 〈Y 〉
dt

= 2ωm 〈Y 〉 (1 − 〈Y 〉) , (1)

where ωm is the number of couples formed per unit time divided by the total number of
particles, while 2 〈Y 〉 (1 − 〈Y 〉) is the probability of a change in particle values. For example,
if all np particles form np/2 couples within each time step �t , then ωm = (2�t)−1.

The mixing scheme considered here corresponds to a number of physical processes in
inhomogeneous systems: invasion of a strong competitor into a domain occupied by weaker
participants, or premixed combustion with very fast reaction rates. In the latter case, any
disturbance of the initial unburned state Y = 0 leads to intensive combustion and rapid
change of Y to its final burned state of Y = 1. The BML theory of turbulent premixed
combustion indicates a source-term structure similar to Equation (1).

2.2. Inhomogeneous diffusive case: the KPP–Fisher Equation

If the particles are uniformly distributed in physical space and move in physical space
according to the following stochastic differential equation:

dx∗ = (2D0)1/2 dw, (2)
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Combustion Theory and Modelling 683

where w(t) denotes a Wiener process, then the value 〈Y 〉 satisfies the KPP–Fisher Equa-
tion [21, 22]

∂ 〈Y 〉
∂t

− D0
∂2 〈Y 〉
∂x2

= 2ωm 〈Y 〉 (1 − 〈Y 〉) (3)

Equation (3) differs from Equation (1) by the diffusional term in (3) that appear due to
inhomogeneous effects. It should be noted that independence of particles is assumed in
evaluation of probabilities of forming different couples – these probabilities are shown in
Table 1. As considered by Klimenko [26] for conservative mixing, dependencies between
particles result in a reduction of the effective mixing rate.

The theory for Equation (3), which was developed by KPP, indicates that, although
Equation (3) allows for steady waves ∂ 〈Y 〉 /∂t = −s∂ 〈Y 〉 /∂x propagating with the speed
s that may take different values

s ≥ smin = 2
√

2ωmD0, (4)

it is the speed smin, however, that is realizable in most practical cases when the gradients
of the initial conditions have a finite support (and this is the case in computer simulations
and experiments). In the rest of the paper we use smin by default as the wave speed for
KPP-type equations. It can be noted that the representation considered here is an alternative
stochastic representation for a ‘simple epidemic process’ or a ‘simple invasion’ which was
studied by Fisher, KPP and many others [23, 25]. The stochastic representations of KPP-
type equations are, of course, not limited to the stochastic model based on competitive
mixing and presented here. For example, the KPP–Fisher source term can be recovered by
simply setting the probability of conversion of the particle values from Y = 0 to Y = 1 to
be proportional to 〈Y 〉 [27].

2.3. Particle motion with finite velocity correlation time

Consider the system of stochastic differential equations

dx∗ = u∗dt, (5)

du∗ = −u∗ dt

τ ∗
+
(

2
u2

∗
τ ∗

)1/2

dw, (6)

where the particle velocity u∗ is modelled by the Ornstein–Uhlenbeck (OU) process with
mean 〈u∗〉 = 0, variance

〈
(u∗)2

〉 = u2
∗ and the autocorrelation time scale τ ∗. These equations

take into account that motions in physical space may have a finite correlation time τ ∗.
For example, in turbulent premixed combustion, velocity changes have a characteristic
correlation time determined by turbulence macro-scales.

With x and u being sample space variables corresponding to x∗ and u∗, we define the
joint PDF of x∗(t) and u∗(t) to be f (x, u, t). This can be expressed as

f = 〈ψ〉 , ψ ≡ δ(u∗ − u)δ(x∗ − x), (7)
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684 A.Y. Klimenko and S.B. Pope

where ψ is a fine-grained PDF. It follows from Equations (5) and (6) that f evolves by the
Fokker–Planck equation

∂f

∂t
+ u

∂f

∂x
− 1

τ ∗

(
∂uf

∂u
+ u2

∗
∂2f

∂u2

)
= 0. (8)

For the statistically-stationary case of interest, Equation (8) has a solution

f (x, u) = f0(u)

l0
, f0(u) ≡ 1√

2πu2∗
exp

(
− u2

2u2∗

)
, (9)

where l0 represents the length of the domain under consideration.

2.4. Length and times scales

We consider np particles uniformly spaced in the x-domain of length l0. Thus the mean
particle spacing lp and the associated time scale are

lp = l0/np, τ p = lp/u∗. (10)

Based on the parameters u∗ and τ ∗ defining the OU process, we can define the convective
length scale

l∗ = u∗τ ∗. (11)

There are two independent non-dimensional parameters in the problem, which we take to
be

D = 2
τ ∗
τm

and R = τ 2
∗
τ 2

p

= l2∗
l2p
, (12)

where τm ≡ 1/ωm. As the parameters D and R resemble the Damkohler and Reynolds
numbers, they can be referred to as modelling Damkohler and Reynolds numbers or, when
this cannot cause confusion, simply as Damkohler and Reynolds numbers. It should be
noted, however, that these parameters do not coincide with the physical Damkohler and
Reynolds numbers used in the last section.

Another relevant time scale is the ‘collision time scale’ τ c defined as the time for the
r.m.s. particle displacement to reach the interparticle spacing difference lp. Thus, τ c is a
measure of the time between a particle acquiring new partners. After time t , the variance
of particle displacement is [7]

l2t (t) = 2u2
∗τ ∗

{
t − τ ∗

[
1 − exp

(
− t

τ ∗

)]}
.
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Combustion Theory and Modelling 685

Figure 1. Regime diagram.

Thus τ c is such that lt(τ c) = lp. We can readily deduce the limiting behaviour

τ c = 1

2

τ 2
p

τ ∗
, R 	 1 (13)

τ c = τ p, R 
 1. (14)

In the case τm 	 τ c, a particle will mix repeatedly with the same partner (approximately
τm/τ c times) before it acquires a new partner. Second and subsequent mixing with the same
partner has no effect. Consequently, we define the ‘effective’ mixing time scale by

τ e = max(τm, τ c). (15)

In the case τ c > τm mixing is limited not by ωm, but by the rate of encountering new
partners: we refer to this case as ‘rarefied’. The case τ c < τm is referred to as ‘continuum’. If
τ e is less then τ ∗, then the particle motion between non-trivial mixing events is ‘convective’
whereas if τ e is greater than τ ∗ it is ‘diffusive’. The regime diagram is shown in Figure 1
(where the symbol ‘0’ indicates the coordinate origin ln(D) = 0 and ln(R) = 0), while
major regimes are summarised in Appendix B.

In addition to the parameters D and R, we introduce the modelling Knudsen number
K , which, when convenient, can be used in place of the modelling Reynolds number as the
second non-dimensional parameter. This is defined by

K ≡ lp

lm
=
[
D(1 +D)

4R

]1/2

≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
D

4R

]1/2

, D 	 1

D

[4R]1/2
, D 
 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (16)
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686 A.Y. Klimenko and S.B. Pope

where lm is an approximation to the r.m.s. distance travelled by a particle in the time τm,
and is defined by

l2m ≡ u2
∗τ

2
m

1 + τm

2τ ∗

= u2
∗τ

2
m

D

1 +D
. (17)

Note that for large modelling Damkohler number there is convective motion over time τm,
and Equation (17) yields lm ≈ u∗τm, whereas for small modelling Damkohler number there
is diffusive motion with lm ≈ √

2u2∗τ ∗τm. The significance of the Knudsen number is that
K 	 1 and K 
 1 correspond to the continuum and rarefied regimes, respectively.

2.5. Transport equations

We now consider Pope particles with property Y = (0, 1) and binary mixing operation
defined in Table 1. This model is very similar to the model of turbulent premixed combustion
introduced by Pope and Anand [1] who have shown that, when the reactions are fast and
reach the flamelet regime, the PDF of the progress variable Y is dominated by two states
Y = 0 (unburned) and Y = 1 (burned) and mixing is predominantly controlled by mixing
of these states. The probability of Y > ε and Y < 1 − ε where ε is any small value, is
small and, in this region, the rate of change of the progress variable is controlled by
dY/dt = �(Y ). The function �(Y ) is determined by the laminar premixed solution and
�(Y ) does not coincide with the chemical source term, although the function �(Y ) scaled
in the same way as the chemical source term, that is� ∼ 1/τ r where τ r is the characteristic
time of chemical reactions. The function �(Y ) is essentially positive for ε < Y < 1 − ε

(while the chemical source term can be zero for a large section of this interval) and results
in prompt evolution of Y from any positive value to the burned state of Y = 1. The exact
shape of the function �(Y ) is not important – competitive mixing can be interpreted as a
superposition of conventional Curl’s mixing and the following very fast process of evolution
into the burned state. Competitive mixing introduces an upper limit for the propagation
speed of the flames simulated by the same particle scheme but with conventional mixing
(i.e. Curl’s model with the same intensity of mixing) combined with a finite rate chemistry.
The degree of similarity of competitive mixing and conventional mixing schemes with
fast chemistry depends on specific features of mixing and chemical kinetics. Competitive
mixing matches the expected shape of the source term�(Y ), which was investigated in [1],
reasonably well.

In the laminar case, the function �(Y ) and time τ r determine the overall flame prop-
agation rate. However, in turbulent flows the rate of mixing between two dominant states
of Y = 0 and Y = 1 determines the intensity of the combustion processes and the overall
propagation speed. Note that the characteristic time of mixing τm = ω−1

m may depend on,
but is not necessarily equal to, the characteristic reaction time τ r. As discussed by Pope
and Anand [1], this analysis is valid only for the flamelet regime. If only the reaction zone
remains thin compared to the smallest scales in turbulence (thin reaction zone regime), no
function �(Y ) can be deduced and, after mixing, evolution is controlled by the chemical
source term W (Y ), which, typically, is essentially positive only for 1 − εr < Y < 1 where
εr is usually small. In this case, complete conservative mixing of the burned Y = 1 and
unburned Y = 0 states results in two particles with Y = 1/2. If the reaction zone is thin,
these values are still away from the reaction zone and do not evolve to the burned state
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Combustion Theory and Modelling 687

even if the reactions are very fast at 1 − εr < Y < 1. In the present work we, however,
investigate the properties of the model for the whole range of the model parameters.

We define

h = 〈Yψ〉 , g = 〈(1 − Y )ψ〉 , (18)

so that, obviously

h+ g = f. (19)

The equation for g can be derived from (5) and (6) by the standard technique using the
Delta-functions [28]

∂g

∂t
+ u

∂g

∂x
− 1

τ ∗

(
∂ug

∂u
+ u2

∗
∂2g

∂u2

)
= −

〈
dY

dt
ψ

〉
. (20)

The primary quantity we will examine is ĝ(x, u) defined as

ĝ(x, u) = g(x, u)

f (u)
= 〈(1 − Y )ψ〉

〈ψ〉 = 〈(1 − Y ) |x, u〉 , (21)

where the condition in the last conditional term is used as an abbreviation for x∗ = x and
u∗ = u. Similarly we define

ĥ(x, u) = h(x, u)

f (u)
= 〈Y |x, u〉 , (22)

and clearly we have

ĝ(x, u) + ĥ(x, u) = 1. (23)

From Equations (8) and (20) we obtain

∂ĝ

∂t
+ u

∂ĝ

∂x
+ 1

τ ∗

(
u

∂ĝ

∂u
− u2

∗
∂2ĝ

∂u2

)
= W ≡ − 1

f

〈
dY

dt
ψ

〉
= −

〈
∂Y

∂t

∣∣∣∣x, u
〉
. (24)

Expressions for W are derived in the following subsections.

2.6. Dimensionless form of the transport equations

The dimensionless form of Equations (24) is given by

∂ĝ

∂T
+ U

∂ĝ

∂X
+ 1

De

(
U

∂ĝ

∂U
− ∂2ĝ

∂U 2

)
= W̃ , (25)
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688 A.Y. Klimenko and S.B. Pope

where

W̃ ≡ W

2ωe
= − 1

2ωef

〈
∂Y

∂t
ψ

〉
= − 1

2ωe

〈
∂Y

∂t

∣∣∣∣x, u
〉
, (26)

T = 2ωet, X = 2
ωe

u∗
x, U = u

u∗
, De = 2ωeτ ∗, (27)

the value of ωe = 1/τ e represents the effective mixing frequency and the effective number
De indicates the relative intensity of the source term. Equations (12)–(14) indicate that

De =

⎧⎪⎨
⎪⎩

D, τ c 	 τm

4R, τ c 
 τm, R 	 1

2R1/2, τ c 
 τm, R 
 1.

(28)

The distribution f0 defined by (9) satisfies the following dimensionless equation:

dUf0

dU
+ d2f0

dU 2
= 0. (29)

A mixing event can result in a change in particle values only if the mixing couple is
formed between new particles while repeated mixing does not change particle values for
the competitive mixing scheme considered here. Thus, the effective mixing frequency
ωe ≈ min(ωm, ωc) can be estimated as the minimum of two values: the mixing frequency
ωm and the collision frequency ωc. Since ωc = ωc(U ) can vary over the domain, this
definition needs some clarification: the propagation speed is determined as the minimum
of the flame speeds determined with ωe = ωm and ωe = ωc. Assuming that each particle
forms a couple with its closest neighbour, collision is understood here as a neighbour
change. Neighbourhood can be defined by the distance x in physical space or in u–x
phase space. This change is determined by the number of particles and the intensity of
their random walk. In the rarefied case, ωc determines the rate of change of 〈Y 〉 while if
the particles are densely distributed then ωm is the determining parameter. We note that
the mixing frequency is an input parameter of the system, whose exact value is known,
while the collision frequency depends on the other conditions of the simulations and can
be estimated rather than specified exactly. Thus, effective replacement of ωm by ωc in
rarefied flows is approximate and can be used only for estimations.

2.7. Steadily propagating wave

In most cases, we are interested in long-time asymptotics when a wave with the steadily
propagating speed is formed. The steady-state version of Equation (25) is given by

(U − S)
∂ĝ

∂Z
+ 1

De

(
U

∂ĝ

∂U
− ∂2ĝ

∂U 2

)
= W̃ , (30)

where S = s/u∗ is the non-dimensional wave speed, and Z = (X − ST ) is the dimension-
less coordinate attached to the front. The boundary conditions for steady propagation of a

D
ow

nl
oa

de
d 

by
 [

C
or

ne
ll 

U
ni

ve
rs

ity
] 

at
 1

2:
20

 1
8 

A
ug

us
t 2

01
2 



Combustion Theory and Modelling 689

wave are given by the relations

ĝ → 0 as Z → −∞ (31)

in the burned state and

ĝ → 1 as Z → +∞ (32)

in the unburned state.

2.8. Localisation of mixing in the physical space

A precise description of the mixing process is as follows. Given the ensemble of np particles,
‘primary’ particles are selected (randomly with equal probability) at the rate npωm. For each
primary particle a ‘secondary’ is selected: in the present case the secondary particle is the
primary particle’s nearest neighbour in physical space.

The quantity W in Equation (24) has, for notational convenience, been written as
W = 〈dY/dt |x, u〉. However becauseY changes discontinuously it is more precisely defined
as

W (x, u, t) = lim
�t→0

(
1

�t
〈�Y |x, u〉

)
, (33)

where �Y = Y (t +�t) − Y (t) is defined as the increment. Although Y changes discon-
tinuously from 0 to 1, the averages of Y typically display a more continuous behaviour as
indicated by KKP-type source terms in the average equations considered in Section 2.2 and
below. Let us consider particle Y (q). In a small time interval �t it has probability ωm�t

of being selected as a primary particle, in which case we denote its secondary particle
as Y (s) (the compositions of the primary and secondary particles are denoted by Y (p) and
Y (s)). Particle Y (q) also has probability ωm�t of being selected as a secondary particle
of a selected primary particle, Y (p). Then we have: �Y (p) = 1 if Y (p)(t) = 0, Y (s)(t) = 1;
otherwise�Y (p) = 0. Similar relations are valid for�Y (s). These considerations lead to the
result

W (x, u, t) = lim
�t→0

(
1

�t

〈
�Y (q)|x, u〉)

= −ωm Prob
{
Y (q)(t) = 0, Y (s)(t) = 1|x(q) = x, u(q) = u

}
−ωm Prob

{
Y (q)(t) = 0, Y (p)(t) = 1|x(q) = x, u(q) = u

}
. (34)

Now the two particles Y (p) and Y (s) are statistically identical (but not necessarily statistically
independent). And so we have

W (x, u, t) = −2ωm Prob
{
Y = 0, Y (s) = 1|x, u}

= −2ωm Prob
{
Y (s) = 1|x, u, Y = 0

} 〈(1 − Y )|x, u〉 . (35)
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690 A.Y. Klimenko and S.B. Pope

For the case of localisation in physical space only, the selection of the secondary particle
does not depend on the primary particle velocity and

W (x, u, t) = −2ωm Prob
{
Y (s) = 1|x, Y = 0

} 〈(1 − Y )|x, u〉 . (36)

For the continuum case, the probability of two particles pairing with each other repeatedly
is very small, and so independence can be assumed. Thus for localisation in physical space
in the continuum regime we have

W = −2ωm 〈Y |x〉 〈(1 − Y )|x, u〉 = −2ωmh̄ĝ. (37)

Here, we introduce the averages

h̄(x) = 〈Y |x〉 =
∫ +∞

−∞
ĥf0 du,

ḡ(x) = 〈(1 − Y )|x〉 =
∫ +∞

−∞
ĝf0 du.

It is clear that

h̄(x) + ḡ(x) =
∫ +∞

−∞
f0(x, u) du = 1. (38)

For the rarefied case, the two particles repeatedly mix with each other (with no effect after
the first mixing) and so independence certainly cannot be assumed. It is more reasonable to
assume independence for mixing with a new partner, which occurs at the rate ωc. Hence,
in the rarefied case, the approximation is

W = −2ωch̄ĝ. (39)

For the normalised source W̃ = W/(2ωe), the above two equations can be written in the
common form

W̃ = −�h̄ĝ, (40)

where � ≈ 1 is the ratio between the effective mixing rate and its estimate ωe.
The formulae determining τ c for localisation of mixing in physical space were specified

previously by (13) and (14).

2.9. Localisation of mixing in the phase space

We now consider the case in which mixing is localised in the x–u phase space. It is most
conventional to consider the non-dimensional phase space of x̃ = x/l∗ and U = u/u∗.We
also introduce non-dimensional time t̃ = t/τ ∗. Mixing is performed by selecting a primary
particle as previously but now the secondary particle is selected to be the primary particle’s
nearest neighbour in x̃–U space.
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Combustion Theory and Modelling 691

The analysis forW proceeds as in the previous subsection but now the conditioning on
u is needed which leads to the result

W̃ = −�ĥĝ, (41)

i.e. ĥ = 〈Y |x, u〉 in place of h̄ = 〈Y |x〉 .
We now determine collision frequencies for localisation of mixing in the phase space.

First we note that in the rarefied case τ ∗ 	 τ p a particle quickly ‘forgets’ its initial location
in the velocity space and conditioning of mixing on u does not have any effect. Hence we
still use Equation (13), although Equation (14) needs corrections to be applicable to mixing
with phase-space localisation as considered below.

In x̃–U space, the particle number density is

ñ = npf u
2
∗τ ∗ = 1√

2π

l∗
lp

exp

(
−U

2

2

)
, (42)

where Equation (9) has been used for f . The mean square nearest neighbour distance d̃2 is
the inverse of ñ :

d̃2 =
√

2π
lp

l∗
exp

(
U 2

2

)
. (43)

Note that this distance depends on U and increases with |U |.
Consider two particles labelled ‘p’ and ‘s’ initially with the same position and velocity,

both evolving according to Equations (5)–(6) (with independent Wiener processes). An
analysis based on Equations (5)–(6) shows that the mean square separation of the particles
in x̃–U space is

r̃2(t̃) ≡
〈(
x̃(p)(t) − x̃(s)(t)

)2
〉
+
〈(
U (p)(t) − U (s)(t)

)2
〉

= 4
(
t̃ − 1 + e−t̃

)
+ 2

(
1 − e−2t̃

)
≈ 4t̃ . (44)

In the second line, the first term is the dispersion in x̃, which dominates for t̃ > 1, and
the second term is the dispersion in U , which dominates for t̃ < 1. Interestingly, the
approximation r̃2 ≈ 4t̃ is valid for both very short and very long times while being
applicable with 10% accuracy to all t̃ .

For short times when τ c 	 τ ∗ we determine the collision time τ c from the condition
r̃(τ c/τ ∗) = d̃, i.e.

τ c = τ c0 exp

(
1

2

u2

u2∗

)
, R 
 1, (45)

where

τ c0 =
√

π

8
τ p ≈ τ p (46)
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692 A.Y. Klimenko and S.B. Pope

is the centreline value of τ c. Equations (45) and (46) replace (14) when conditioning of
mixing is performed on both x and u.

3. Diffusive regime De � 1

In this section, we analyse the diffusive regime De 	 1. Since we use the effective mixing
frequency, the analysis is applicable both to the continuum regime and, approximately, to
the rarefied regime. These results are also applicable to both the physical-space and phase-
space localisations, as particles ‘forget’ their initial positions in the velocity space between
mixing events. Consider Equation (25)

∂ĝ

∂T
+ U

D
1/2
e

∂ĝ

∂X̃
+ 1

De

(
U

∂ĝ

∂U
− ∂2ĝ

∂U 2

)
= W̃ (47)

at the limit of De → 0, which corresponds to the diffusive regime. Here, we introduce
characteristic coordinate X̃ = X/D1/2

e . The source term is given either by Equation (40)
for the physical-space localisation or by Equation (41) for the phase-space localisation of
mixing. Expanding ĝ into the series

ĝ = ĝ0 +D1/2
e ĝ1 +Deĝ2 + · · · (48)

results in

U
∂ĝ0

∂U
− ∂2ĝ0

∂U 2
= 0 (49)

U
∂ĝ1

∂U
− ∂2ĝ1

∂U 2
= −U ∂ĝ0

∂X̃
(50)

U
∂ĝ2

∂U
− ∂2ĝ2

∂U 2
= −∂ĝ0

∂T
− U

∂ĝ1

∂X̃
+ W̃0, (51)

where W̃0 = W̃ (ĝ0) does not depend on U . Integration of these equations yields

ĝ0 = ĝ0(T , X̃), ĝ1 = −U ∂ĝ0

∂X̃
(52)

and

U
∂ĝ2

∂U
− ∂2ĝ2

∂U 2
= −∂ĝ0

∂T
+ U 2 ∂2ĝ0

∂X̃2
+ W̃0. (53)

Multiplication of this equation byf0(U ) and integration over allU (while taking Equation 29
into account) indicates that

∂ĝ0

∂T
= ∂2ĝ0

∂X̃2
+ W̃0, (54)
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Combustion Theory and Modelling 693

where we use that

∫ +∞

−∞
U 2f0 dU = 1,

or, in the dimensional form this equation,

∂ĝ0

∂t
= Dτ

∂2ĝ0

∂x2
+W0, Dτ ≡ u2

∗τ ∗, (55)

is essentially identical to the KPP–Fisher Equation (3). We note that at the leading order
the expression for the source term is the same for physical-space (40) and phase-space (41)
localisations W̃0 = −(1 − ĝ0)ĝ0 since ĝ0 does not depend on U and we put � = 1 here.
The equation for the minimal flame speed takes the form

s = u∗S = 2
√

2Dτωe = 2u∗D1/2
e , De = 2ωeτ ∗. (56)

This equation is derived for both the continuous regime where S = 2D1/2 and for the
rarefied regime but for the rarefied regime this equation becomes an estimate of S ≈ 4R1/2

according to (28). With the use of Equation (13) to estimate τ c, the speed s becomes for
the rarefied case

s = C0u∗
τ ∗
τ p

= C0
u2

∗τ ∗
lp

= C0
Dτ

lp
, (57)

where the constant C0 depends on the detail of the mixing process. This constant is
determined in Appendix A for the special case of Brownian relay, where particles mix
instantaneously when their trajectories in x-space intersect.

In the continuum regime the thickness of the flame is determined by the condition�X̃ ∼
1, �X ∼D1/2 or�x ∼ u∗(τ ∗/ωm)1/2 or�x̃ ≡ �x/l∗ ∼ D−1/2, while in the rarefied case
the flame location is an imaginary line separating particles with Y = 1 on one side from
particles with Y = 0 on the other side.

The steady wave version of Equation (47) is given by

U − S

D
1/2
e

∂ĝ

∂Z̃
+ 1

De

(
U

∂ĝ

∂U
− ∂2ĝ

∂U 2

)
= W̃ , (58)

where Z̃ = X̃ − ST/D1/2
e . This equation after multiplication by f0 and taking into account

(29) can be transformed into

∂

∂Z̃

(
U − S

D
1/2
e

ĝf0

)
+ 1

De

∂

∂U

(
Uĝf0 − ∂ĝf0

∂U

)
= W̃f0.

Integration of this equation over all U and Z̃, while taking into account Equation (9) and
also that ĝ → 1 as Z̃ → +∞ and ĝ → 0 as Z̃ → −∞, yields

S

D
1/2
e

= −
∫ +∞

−∞

∫ +∞

−∞
W̃f0 dU dZ̃. (59)
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694 A.Y. Klimenko and S.B. Pope

Substitution of the asymptotic series W̃ = W̃0 +D1/2
e W̃1+DeW̃2 + · · · , where the terms

are determined by the series (48) and Equations (40) or (41), results in

S

D
1/2
e

= S0 +DeS2 + · · · . (60)

The term S1 is not present for both cases (40) and (41) since ĝ1 is an odd function of U , i.e.
ĝ1(−U ) = −ĝ1(U ). The value of S0 = 2 is determined from Equation (56), while finding
S2 needs numerical integration for the wave solution of the KPP–Fisher equation and can
be different for the source terms defined by (40) and (41).

4. The convective regime De � 1 with physical-space localisation of mixing

The convective regime De 
 1 is considered in this section for the case of localisation of
mixing in the x-space. Both continuum and rarefied regimes are analysed. The transport
Equation (30) for this case takes the from

(U − S)
∂ĝ

∂Z
+ 1

De

(
U

∂ĝ

∂U
− ∂2ĝ

∂U 2

)
= −�h̄ĝ. (61)

Here we note that the particle density in physical space is constant since as discussed
previously f = f0(U )/l0 and thus we expect that ωe = const and � = 1.

4.1. The major transformation zone

The regular expansion

ĝ = ĝ0 + ĝ1

De
+ · · · ,

substituted into Equation (61) results in

(U − S)
∂ĝ0

∂Z
= −h̄0ĝ0, (62)

which can be integrated while taking into account unburned boundary conditions forU < S

and burned boundary conditions for U > S resulting in

(a) ĝ0 = 1, Z ≥ Z0

(b) ĝ0 = exp

( −1

S − U

∫ Z0

Z

h̄0 dZ

)
, Z ≤ Z0, U < S (63)

(c) ĝ0 = 0, U ≥ S,

where

h̄0(Z) =
∫ ∞

−∞
(1 − ĝ0)f0(U ) dU = 1 −

∫ ∞

−∞
ĝ0f0(U ) dU.
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Combustion Theory and Modelling 695

The line of U = S formally requires that either ĝ0 = 0 or h̄0 = 0 (and ĝ0 = 1). This
indicates the need for consideration of leading points located at U ≥ S and Z � Z0, this
analysis presented in the next subsection indicates that S is logarithmically larger than 1.
Hence, we can approximately evaluate the integral for h̄0 as

h̄0(Z) = 1 −
∫ ∞

−∞
ĝ0(Z,U )f0(U ) dU = 1 − ĝ(Z, 0) +O

(
U 2

S2

)
,

since ĝ0 can be expanded into the series

ĝ0(Z,U ) = ĝ(Z, 0)

(
1 + U

S
+ U 2

S2
+ · · ·

)
,

obtained by expanding 1/(S − U ) and the exponent in (63b) into the power series of U/S.
Substitution of ĝ(Z, 0) = 1 − h̄0(Z) into (63b) results in

h̄0(Z) = 1 − exp

(
− 1

S

∫ Z0

Z

h̄0 dZ

)
, Z ≤ Z0.

Differentiating this equation indicates that we can write at the leading order

S
∂h̄0

∂Z
= − (

1 − h̄0
)
h̄0. (64)

The length of the transition zone where h̄0 changes from 0 to 1 is determined, according to
Equation (64), by �Z ∼ S or �x ∼ s/ωe ∼ u∗/ωe.

4.2. Maximal propagation speed

The front speed cannot significantly exceed the speed umax of the fastest particles moving
in the same direction as the flame (assuming mixing is well localised) since umax limits the
speed of propagation of any disturbances in the system. Assuming the continuum regime,
the number of particles within the transition zone (having the width of �x ∼ sτm) is
determined by N ∼ �x/lp ∼ sτm/lp. With the use of a rough estimate s ∼ u∗ we obtain
N ∼ lm/lp = 1/K . The particle velocities have the standard Gaussian distribution (9) with
the c.d.f. (cumulative distribution function)

F

(
u

u∗

)
=
∫ u

−∞
f0(u) du = 1

2

[
1 + erf

(
1
\√2

u

u∗

)]
. (65)

Since the particles’ motions are independent, the probability that all N particle have ve-
locities less than u is (F (u/u∗))N . If umax is defined as the median value (that is the value
having the c.d.f. of 1/2) then F (umax/u∗) = 1/21/N and the expression for umax becomes

s ≈ umax = u∗F−1
(
2−1/N

) = u∗F−1
(
2−CKK) , (66)

where CK is constant and F−1 is the inverse of the function F . This equation provides an
estimate for maximal propagation speed of the front as D → ∞.
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696 A.Y. Klimenko and S.B. Pope

In a rarefied regime, the propagation velocity becomes independent of τm. Hence
umax/u∗ should depend on R, but not on K or D. According to (16), K ∼ D/R1/2 in this
case. Assuming that the number of particlesN in the leading group that may have a leading
particle with highest velocity is proportional to R1/2 we obtain N ≈ CRR

1/2 and

s ≈ umax ≈ u∗F−1
(

2−CR/R1/2
)
, (67)

where CR is constant and the exact propagation speed is likely to be dependent on the
details of mixing.

Numerical diffusion can be prominent in the rarefied regime and this needs special
consideration. The effective numerical diffusion coefficient can be estimated as Dn| ∼
l2p/τ c [26], while dimensional considerations indicate that the flame speed associated with
numerical diffusion can be estimated as sn ∼ (Dn|/τ c)1/2. Since according to (14) τ c = τ p

in this case, the speed sn is estimated as sn ∼ lp/τ p = u∗. The exact form of this equation
depends on the details of the mixing process. One can see that the numerical diffusion can
contribute substantially but not dominantly to the flame speed s.

4.3. Analysis of the leading points for the continuum regime

In this section, we consider leading points located at U � S and Z � Z0 and determine
the propagation speed which remains unknown in the previous subsection. The importance
of leading points for the propagation speed of turbulent premixed flames was pointed out
by Kuznetsov and Sabelnikov [16]. Characteristic variables for the leading point zone are
given by

υ = (U − S) S, ζ = (Z − Z0)
S3

De
, (68)

so that (61) rewritten for ĥ = 1 − ĝ takes the form

υ
∂ĥ

∂ζ
+ (1 + · · · )

∂ĥ

∂υ
− ∂2ĥ

∂υ2
= De

S2
h̄(1 − ĥ) = D

S2
h̄+ · · · , (69)

where, in the source term, ĝ = 1 − ĥ ≈ 1 (we neglect ĥ as both ĥ and h̄ must be small in
this zone). It is also expected that S is weakly large – that is S increases with increasing D
but very slowly. Obtaining the solution for this equation may be quite difficult (instead we
provide a numerical solution of the whole problem obtained by stochastic simulations) but
our analysis needs only estimates that can balance the major terms in the equation.

Approximate evaluation of the integral for h̄

h̄ =
∫ ∞

−∞
ĥf0 du =

∫ ∞

0

ĥ√
2π

exp

[
−
(
S2

2
+ υ + · · ·

)]
dυ

S
∼ exp

(−S2/2
)

S
ĥ (70)

indicates that

exp
(−S2/2

)
S

De

S2
∼ const, (71)
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Combustion Theory and Modelling 697

as the reaction term must be present at the leading order. If we neglect S, which only weakly
depends on De,

exp

(
−S

2

2

)
De ∼ const or S ∼

√
C1 + 2 ln(De). (72)

The leading order terms are given by S2 ∼ 2 ln(D) for the continuum regime and, according
to Equation (14), by S2 ∼ ln(R) for the rarefied regime.

s ∼ u∗
√
C1 + 2 ln(2ωeτ ∗), (73)

where C1 is a constant. The length of the leading zone is given by �Z ∼De/S
3 or �x ∼

u∗τ ∗/S3 ∼ u∗τ ∗, i.e. leading points stretch far ahead of the major transformation zone.
In the evaluation of the integral (70) we used the infinite limit assuming that the number

of particles is infinitely large andK is infinitely small. If this is not the case the upper limit
in this integral needs to be replaced by umax. This removes a part of the integral that can be
assessed according to

∫ ∞

umax

f0 du = 1 −
(

1

2

)CKK
≈ ln(2)CKK.

Hence

h̄ =
∫ umax

−∞
ĥf0 du =

[
exp

(−S2/2
)

S
− ln(2)CKK

]
ĥ (74)

and

[
exp

(−S2/2
)− C◦

KK
]
D ∼ const or S ∼

√
C1 − 2 ln(D−1

e + C◦
KK), (75)

where C◦
K = ln(2)CK . In the continuum regime De = D. If K is very small, we obtain

Equation (73). However, the line C◦
KK ∼ 1/D separatesK-limited andD-limited regimes

and, if C◦
KK 
 1/D, we obtain S ∼ √

C◦
1 − 2 ln(K) where C◦

1 is a new constant. This
equation is a more approximate version of Equation (66), where a simple exponential
estimate is used for F . Equation (75) is formulated for continuum regime but takes into
account the effects of having a limited number of particles. In the rarefied regime, both
terms D−1

e and K become, as previously noted, proportional to R−1/2 so that S2 ∼ ln(R).

5. Stochastic simulations for mixing with physical-space localisation

Stochastic simulations are performed over the range of the parameters D and R and the
observed flame speeds and thicknesses are compared to theoretical estimates.

5.1. Numerical method

The OU parameters u∗ and τ ∗ are arbitrarily set to unity. Then, given the values ofD andR,
all other parameters in the problem are determined (e.g.ωm, lp, τ e, . . . ). Initially the number
of particles is set to np = 64, and the initial domain considered in x is [−l0/2, l0/2], with

D
ow

nl
oa

de
d 

by
 [

C
or

ne
ll 

U
ni

ve
rs

ity
] 

at
 1

2:
20

 1
8 

A
ug

us
t 2

01
2 



698 A.Y. Klimenko and S.B. Pope

l0 = nplp. The particles are initialised: the position x∗ is uniformly random in [−l0/2, l0/2];
the velocity u∗ is random, standardised Gaussian; and the particle composition is set to
Y = 1 for x < 0 and to Y = 0 for x ≥ 0. If during the simulation a particle with Y = 1
reaches the right boundary, or a particle with Y = 0 reaches the left boundary, then the
domain is deemed to be too narrow. The simulation is then re-started with both np and l0
doubled.

The only numerical parameter, C, in the simulation is used to control the time step �t
according to �t = Cτ e. The convergence of the scheme with C has been verified, and the
relatively small value C = 0.05 is used in the simulations reported below.

A time step consists of three sub-steps: x∗ and u∗ are advanced for time �t/2; mixing
is performed for time �t ; and then x∗ and u∗ are again advanced for time �t/2.

The x∗–u∗ advance is performed exactly. That is, given their values at the beginning of
the step, their values at the end of the step have a known joint normal distribution. Hence
their values at the end of the step are drawn from this distribution. At the end of each
x∗–u∗ sub-step, reflective boundary conditions are applied and the values of Y crossing the
boundary are checked (and, if necessary, the simulation is re-started in a larger domain).

On the mixing sub-step, each particle is selected with probability �p ≡ min(ωm�t, 1)
as a primary particle. Note that, in rarefied cases, ωm�t can exceed unity, in which case
all particles are primary particles. Then, for each primary particle, the secondary particle
is determined as the closest neighbouring particle (in x-space). (A refinement, which
accelerates the temporal convergence, is that in the case�p < 0.1, the secondary particles
are instead selected from the ensemble of non-primary particles.) The pair of particles then
mix: if both have Y = 0 at the start of the step, then their composition does not change;
otherwise they both have Y = 1 at the end of the step.

On each time step, the centre, xc, and the width, �x, of the flame are determined as
follows. The function q(x) is defined by

q(x) = l2p

∑
(1 − Y | x∗ < x)

∑
(Y | x∗ ≥ x), (76)

where the sums are over all particles. This approximates the quantity

q̄(x) =
∫ x

−∞
(1 − 〈Y 〉) dx

∫ ∞

x

〈Y 〉 dx. (77)

Note that q(x) is zero outside the flame (on both sides) and is positive within the flame.
Thus we define the centre xc to be the centroid, such that

∑
q(x∗)(xc − x∗) = 0, (78)

and the width �x is defined by

�x3 = lp
∑

q(x∗), (79)

which is an approximation to

�x
3 =

∫ ∞

−∞

(∫ x

−∞
(1 − 〈Y 〉) dx ′

∫ ∞

x

〈Y 〉 dx ′
)

dx. (80)
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Combustion Theory and Modelling 699

The above methodology provides a stable way to extract xc and �x from the particles, and
it requires neither binning nor smoothing.

At the end of the step, the solution domain is shifted so that xc is at its centre, and
particles are added and removed at the boundaries as needed. It should be noted that all
treatments at the boundaries are exact (since the particle distribution there is known).

The simulation is run for a time T = 100τ e. The statistically stationary state is achieved
well before t = T/2. Between t = T/2 and t = T , extracted statistics are time averaged.

The flame speed, s, in the stationary period is extracted in two ways. The first value,
denoted sx , is obtained as the slope of the linear fit to xc(t) over the stationary period. The
second value, denoted sY , is the consumption speed obtained as the time-average of

lp
∑

�Y/�t ≈
∫ ∞

−∞
W (x) dx, (81)

where �Y denotes the change in Y for the particle over the time step. It has been verified
that the values of sx and sY obtained from the simulations are extremely close to each other.

For each case considered, M statistically independent identical simulations are per-
formed in order to reduce the statistical errors, and to estimate confidence intervals. The
value of M is at least 4, and at most 200, or the number needed to reduce the confidence
interval in s to 4% of its value (whichever is less).

5.2. Continuum diffusive regime

The continuum diffusive regime considered here corresponds to D 	 1, K 	 1. We now
present results on the flame speed s and the flame thickness �x obtained from simulations
in the continuum diffusive regime.

Figure 2 shows the appropriately scaled flame speed (i.e. S/
√
D = s/(u∗

√
D)) against

D for a range of values of K . As may be seen, as D decreases, there is little dependence
on D for D < 10−2. There is, however, a more appreciable dependence on K , which is
more clearly revealed in Figure 3. The picture is similar for the flame thickness shown in
Figures 4 and 5. The normalised flame thickness is defined by�x̃ = �x/l∗ and is denoted
by L in the figures (i.e. L ≡ �x̃). This is consistent with the equations of Section 3.

In the extreme continuum diffusive limit (D → 0, K → 0), we expect to recover the
Fisher–KPP value of the flame speed S = 2

√
D. It is evident from Figure 3 that S/

√
D

increases quite slowly as K decreases, and it is not clear that the limiting value of two is
attained. To examine this matter more closely, in Figure 6 we plot (2 − S/

√
D) against

K . As may be seen, the results are consistent with the Fisher–KPP limit being approached
slowly, as S ∼ √

D(2 −K1/4). (Since the number of particles in the simulation varies
inversely with K , simulations for small values of K are expensive.)

5.3. Rarefied diffusive regime

The rarefied diffusive regime is defined by D 	 1, K 
 1. Assuming that the diffusivity
D∗ and the particle spacing lp are the only relevant parameters, dimensional analysis then
leads to the scalings S ∼ √

D/K ∼ √
R and L ≡ �x̃ ∼ K/

√
D ∼ 1/

√
R (see Section 3).

As shown in Figures 7 and 8 these scalings are clearly confirmed by the simulations.
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Figure 2. Scaled flame speed S/
√
D versus Damkohler numberD in the continuum diffusive regime.

The curves (from bottom to top) are for Knudsen number K = 10−k/2 for k = 0, 1, . . . , 6.

5.4. Continuum convective regime

The continuum convective regime is defined by D 
 1, K 	 1. Assuming that the
velocity u∗ and the mixing frequency ωm are the only relevant parameters, dimen-
sional analysis then leads to the scalings S ∼ 1 and L ≡ �x̃ ∼ 1/D. These scalings are
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Figure 3. Scaled flame speedS/
√
D versus modelling Knudsen numberK in the continuum diffusive

regime. The curves (from bottom to top) are for Damkohler numberD = 10−k/2 for k = 0, 1, . . . , 6.
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Figure 4. Scaled flame thickness L
√
D versus modelling Damkohler number D in the continuum

diffusive regime. The curves (from bottom to top) are for Knudsen number K = 10−k/2 for k =
0, 1, . . . , 6.

investigated in Figures 9 and 10. As may be seen, S and DL become independent of
D for D greater than 1000, say. However, as further examined in Figures 11 and 12, a
weak dependence onK remains. Qualitatively these results are similar with the analysis of
Section 4.
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Figure 5. Scaled flame thickness L
√
D versus modelling Knudsen number K in the continuum

diffusive regime. The curves (from bottom to top) are for Damkohler number D = 10−k/2 for k =
0, 1, . . . , 6.
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Figure 6. Variation with modelling Knudsen number of the departure of the flame speed from the
Fisher–KPP value, for D = 2 × 10−6. The line is K1/4.

In Figure 11, the lower and upper dashed lines show the estimated maximal propagation
speed (Equation 66) for CK = 1 and CK = 50, respectively. As may be seen, the observed
speed S is very similar to umax(50/K), and considerably larger than umax(1/K). A large
value ofCK may be related to the fact that the leading particle zone is asymptotically longer
than the main transformation zone and thus contains more particles.

10
−3

10
−2

10
−1

0

2

4

6

8

10

12

14

16

18

20

D

S
 K

 / 
D

1/
2

Figure 7. Scaled flame speed SK/
√
D versus modelling Damkohler number D in the rarefied

diffusive regime. The curves are for Knudsen number K = 10k/2 for k = 3, 4, 5, 6.
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Figure 8. Scaled flame thickness L
√
D/K versus modelling Damkohler number D in the rarefied

diffusive regime. The curves are for Knudsen number K = 10k/2 for k = 3, 4, 5, 6.

6. The convective regime De � 1 with phase-space localisation of mixing

In this section, the case of localisation of mixing in the phase (i.e. x–u) space is considered.
The distance x and velocity u are scaled by l∗ and u∗ for the purpose of localisation
of mixing. Since localisation does not have much effect on the diffusive regime (see
Section 3), only the convective regime (both continuum and rarefied) needs to be analysed
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Figure 9. Normalised flame speed S versus modelling Damkohler number D in the continuum
convective regime. The curves are for Knudsen number K = 10−k/2 for k = 0, 1, 2, 3, 4, 5, 6.
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Figure 10. Scaled flame thickness LD versus modelling Damkohler number D in the continuum
convective regime. The curves are for Knudsen number K = 10−k/2 for k = 0, 1, 2, 3, 4, 5, 6.

autonomously. Equation (30) is now written in the form

∂ĝ

∂t̃
+ U

∂ĝ

∂x̃
+ U

∂ĝ

∂U
− ∂2ĝ

∂U 2
= −De�ĥĝ, (82)
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Figure 11. Normalised flame speed S versus modelling Knudsen number K in the continuum
convective regime. The solid curves are for Damkohler number D = 10k for k = 0, 1, 2, 3, 4, 5, 6.
The lower and upper dashed lines are for ûmax(1/K) and ûmax(50/K), respectively.
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Figure 12. Scaled flame thickness LD versus modelling Knudsen number K in the continuum
convective regime. The curves are for Damkohler number D = 10k for k = 0, 1, 2, 3, 4, 5, 6.

or equivalently

∂ĥ

∂t̃
+ U

∂ĥ

∂x̃
+ U

∂ĥ

∂U
− ∂2ĥ

∂U 2
= De�ĥĝ, (83)

where

t̃ = t

τ ∗
, x̃ = x

τ ∗u∗
, U = u

u∗
, De = 2w0τ ∗,

and, generally, � = �(U ). With the use of Lagrangian time

∂

∂t̃◦
= ∂

∂t̃
+ U

∂

∂x̃

we can write

∂ĥ

∂t̃◦
+ U

∂ĥ

∂U
− ∂2ĥ

∂U 2
= De�ĥĝ, (84)

where ĝ = 1 − ĥ.WhenDe → ∞, the steady wave solution of Equation (84) is represented
by a thin (in velocity space) flame �U ∼D−1/2

e . The flame position in velocity space is
denoted by Uf |(t̃◦) and we introduce υ̃ = U − Uf |. At the leading order, the flame is then
controlled by the KPP–Fisher equation

−A∂ĥ

∂υ̃
− ∂2ĥ

∂υ̃2
= De�(Uf |)ĥ(1 − ĥ),
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706 A.Y. Klimenko and S.B. Pope

where A = Uf | − dUf |/dt̃◦. This equation represents the steady wave form of the KPP–
Fisher Equation (3) with the propagation speed A in the velocity space given by (compare
with Equation 4)

A(Uf |) = 2
√
De�(Uf |).

Note that the minimal speed is selected here in accordance with the KPP theory. The
definition of A can now be rewritten as a differential equation for the flame position in the
velocity space

dUf |
dt̃◦

= Uf | − A(Uf |).

In a steady wave propagating in the physical space with normalised velocity S the La-
grangian derivative is given by

dUf |
dt̃◦

= (Uf | − S)
∂Uf |
∂x̃

= Uf | − A(Uf |). (85)

Solvability of this equation requires that Uf | = A(Uf |) when Uf | = S, hence S = A(S) or

S = 2
√
De� (S). (86)

Note thatA(U ) is either constant or a decreasing function of U, and soA(U ) = U has only
a single solution. Equation (85) can be integrated to determine the location of the flame
front in phase space: if A is constant, the flame is located on a straight line.

6.1. Rarefied regime

In this case the effective mixing frequency is determined by the collision frequencyωe = ωc.
The collision frequency is inversely proportional to the mean square distance between par-
ticles, which, in two-dimensional x–u space, is inversely proportional to the concentration
of Pope particles. Hence we can write according to (45)

ωe = ωc(U ) = ωc0 exp

(
−U

2

2

)
.

With ωe = ωc0, Equation (86) takes the form

S = 2

√
Dc exp

(
−S

2

2

)
. (87)

The leading order approximation of this equation is given by the estimate

Dc exp

(
−S

2

2

)
∼ 1,
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Combustion Theory and Modelling 707

yielding

s

u∗
= S ∼

√
C2 + 2 ln(Dc) =

√
C2 + 2 ln(2ωc0τ ∗). (88)

Note the similarity with Equation (73) although the constants C1 and C2 may be different.
According to (45), the leading order term for the speed is given by S2 ∼ ln(R).

6.2. Continuum regime

In this case the effective mixing frequency is determined by the mixing rate ωe = ωm =
const and � = 1. Hence Equation (86) takes the form

s

u∗
= S = 2D1/2 = 2

√
2ωmτ ∗. (89)

Note the similarity with Equation (56). The speed S = 2D1/2 specified by Equation (89)
cannot exceed the speedS2 ∼ ln(R) predicted by (88). When the continuum case is observed
at u ∼ u∗, the situation at the fringes u ∼ s 
 u∗ may still be rarefied and the fringes
control the propagation speed by Equation (88). Hence the transition between the power
law and logarithmic regimes occurs at the line specified by 4D ∼ ln(R) or R ∼ exp(4D)
and not at the line De ∼ 1 as in the case of the physical-space localisation of mixing. This
point is illustrated in Figure 1, which shows the location of the line R ∼ exp(4D) on the
regime diagram. Note that the phase-space localisation of mixing extends the power-law
dependence s ∼ D1/2 from the diffusive to the convective regimes, which is not the case
for the localisation of mixing in physical space where the convective regime corresponds
to the logarithmic dependence (72) of s on D.

7. How fast can we burn?

First we note that in the diffusional regime (De 	 1) the burning velocity (56) is typically
well below u∗. Although Equation (56) is consistent with the Damkohler limit s/u∗ ∼ Da1/2

as Da → 0 [29] assuming that the mixing frequency is linked to the reaction rate by
ωm = 1/τ r (note that ωm = 1/τ r is used only for small Da) this behaviour is a general
property of the diffusion–reaction equations and does not indicate that the reaction source
term can be (or needs to be) incorporated into competitive mixing as in the present model.
In this section, we continue using s for the turbulent flame speed and u∗, l∗ and τ ∗ for
the corresponding macro-scales of turbulence. Here, we are interested in the question of
maximal wave speeds and these speeds s/u∗ = S � 1 are achieved in the convective regime.
We note that, for both localisations considered here, the wave speed is restricted by the
equation S2 � ln(R). This restriction indicates that there should be a sufficient number of
particles that move with velocity u ∼ s, otherwise there would not be a sufficient number of
agents that can carry the wave front forward at speed s. The number of particles decreases
exponentially with increasing u, imposing this constraint on the speed s.

We now consider the speed of propagation of turbulent premixed flames while leaving
aside the effects of the Lewis and Markstein numbers. Bradley et al. [30] suggested that
the Karlovitz number Ka is the key parameter that can be used for parametrisation of
turbulent premixed burning velocities. Since the definition of the Ka number is based
on the Kolmogorov scales of turbulence, the importance of Ka implies that Kolmogorov
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708 A.Y. Klimenko and S.B. Pope

scaling of turbulence is not changed by the flame even in the vicinity of the flame. This
assumption is not trivial since the complex interaction of density and viscosity jumps and
turbulence may, in principle, alter the fundamental properties of turbulence. If the flame
velocities have the same scaling as turbulence and the fluctuations of the smallest scales
are represented by Kolmogorov quantities, we can write

s

u∗
∼ sL

uK
∼ Ka −1/2, (90)

where sL is the laminar flame speed and the subscript ‘K’ is used to indicate Kolmogorov
scales. Here, we assume that burning velocities associated with different scales follow
the conventional turbulent cascade. Equation (90) does not approximate experimental data
particularly well overestimating the dependence of s on Ka. This apparent discrepancy can
be explained by the effect of flame-generated turbulence. At large scales, flame propagates
in intrinsic turbulence while at the smallest scales flame propagates in both intrinsic tur-
bulence and turbulence generated by flame (here we consider the generation of large-scale
fluctuations by alterations of the flame speed and direction and not the small-scale fluctua-
tions generated by flame instabilities which exist in a laminar flame). The flame-generated
turbulence would affect the value of the Kolmogorov scales, specifically uK needs to be
replaced by the effective Kolmogorov scale, which can be estimated as u◦

K ∼ uK(u◦
∗/u∗)3/4

where u◦
∗ is the new effective large-scale intensity of turbulence. Here we take into ac-

count that uK ∼ u∗ Re−1/4 and u◦
K ∼ u◦

∗(Re◦)−1/4, where the effective Reynolds number is
specified by Re◦ ∼ (u◦

∗/u∗) Re implying that the integral length scale of turbulence l∗ does
not change. Assuming that flame-generated turbulence is dominant we estimate u◦

∗ ∼ s,
substitute u◦

K for uK in (90) and obtain the ‘4/7 power law’ suggested by Klimenko [31]

s

u∗
∼ sL

u◦
K

∼ sL

uK

(u∗
s

)3/4
,

that is s/u∗ ∼ (sL/uK)4/7 and

s

u∗
= a

(
Da

Re1/2

)b
∼ Ka−b, b = 2/7. (91)

This dependence is strongly supported by experimental evidence: with a = 1.5 Equa-
tion (91) produces a very good match for the data correlation by Bradley et al. [30], who
suggested an empirical value of b = 0.3. Conventional representations of the flame prop-
agation velocity s in terms of the parameters of the laminar flame and turbulence are not
affected by a small change in b and are consistent with [30]. Lipatnikov and Chomiak [19]
determined that other experimental databases for turbulent premixed flames are consistent
with the results in [30]: the value of b typically falls within the range of 1/4 ≤ b ≤ 1/3,
although the largest detected value of b was anomalously high (b = 0.44, as can be inferred
from [19]).

If the Reynolds number Re is large, approximation (91) allows for s 
 u∗ 
 sL 
 uK

raising questions about how the leading points in the flame can move with the speed s if
all other velocities in the flow are much smaller. Probabilities of large velocity fluctuations
are exponentially small and the top velocities are likely to be restricted by ln(Re). Hence,
it is possible that the asymptote given by (91) is intermediate and, for large Re, the flame
speed may be restricted by logarithmic terms which can be relevant to the logarithmic
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Combustion Theory and Modelling 709

terms obtained in the present work. We note that the theory suggested by Kuznetsov and
Sabelnikov [16] explicitly predicts logarithmic dependence of the effective propagation
speed on Re . The data of Bradley et al. [30] indicate that s/u∗ can be of the order of 10 and
still compliant with (91), although the Re number is not particularly high for these cases.

The model under consideration needs specification of the rate of competitive mixing
ωm = τ−1

m . Application of the hypothesis of Kolmogorov cascade to ωm indicates that

τm ∼ τ r
τ ∗
τK
, (92)

since mixing is determined by large-scale processes while in the flamelet regime the chem-
ical reactions are linked to the processes at the smallest (Kolmogorov) scales. Substitution
of this hypothesis into Equations (73) and (89) results in s2/u2

∗ ∼ ln(Ka−1) + const and
s/u∗ ∼ Ka−1/2 correspondingly. Note that here we consider only continuum regimes and
presume that a sufficient number of particles is present in the simulations. The model based
on localisation of mixing in physical space significantly underpredicts the dependence of s
on Ka while the model based on localisation in the phase space is consistent with (90). The
effects of flame-generated turbulence can be taken into account by replacing τK in (92) by
the effective Kolmogorov time τ ◦

K = l◦K/u
◦
K

τm ∼ τ r
τ ∗
τ ◦

K

∼ τ r
τ ∗
τK

(
s

u∗

)3/2

, (93)

where the effective Kolmogorov scale is given by l◦K ∼ (u∗/s)3/4lK assuming, as in
the derivation of (91), that the length macroscale does not change l◦∗ ∼ l∗ and u◦

K ∼
uK(u◦

∗/u∗)3/4. When the approximation of s specified by (91) is used in Equation (93),
this equation relates the value of modelling scale τm to turbulence and reaction scales. This
determines the value of the modelling Damkohler number D, which is not to be confused
with the physical Damkohler number Da. Substitution of scaling (93) into Equation (89)
results in s/u∗ ∼ Ka−2/7 (and in ωm ∼ τ−1

∗ Ka−4/7) coinciding with the ‘4/7 power law’
specified by (91) and producing a very good match for the speeds of turbulent premixed
flames observed in experiments. It should be noted, however, that the present model is a
constant-density model – it does not simulate directly turbulence generated by flame but
simply allows for enforcing of scaling induced by this process.

The present consideration may also be relevant to the fact that traditional invasion
theory based on the KPP–Fisher equation may grossly underestimate the speed of invasion
observed in some cases. For example, the very fast rate of invasion of plant species after
the onset of the current interglacial period is known as the Reid paradox (see Clark et al.
[32]), which was discovered by Clement Reid more than a hundred years ago. Without
drawing any conclusions, we note that velocities associated with movements of species
can have many components of different magnitudes and with different correlation times.
The existence of longer correlations can, as discussed in the present work, significantly
contribute to faster propagation of the species.

8. Conclusions

The particles with random walk, properties and mixing – the Pope particles – can be
used to simulate various realistic processes stochastically. Pope particles with competitive
mixing give an alternative stochastic formulation for the model specified by the KPP–Fisher
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710 A.Y. Klimenko and S.B. Pope

equation – this equation is conventionally used to model invasions, simple epidemics and
the propagation of turbulent premixed flames (the BML model). The present work focuses
on the effects of finite correlation time of particle motions and considers two types of
localisation of competitive mixing: localisation in physical (x) space and localisation in the
phase (x–u) space. Changes between continuum and rarefied regimes, which is determined
by the number of particles used in simulations, is considered. Major asymptotes for the
propagation speed of steady waves are analysed and stochastic simulations confirming the
analysis are performed.

When the correlation time is small (the diffusive regime), the model is shown to repro-
duce the KPP–Fisher equation at the leading order. When the correlation time is large (the
convective regime), the model behaviour depends on localisation: phase-space localisa-
tion of mixing tend to produce faster propagation speeds. A summary of the computational
regimes is given in Appendix B. With the mixing frequency that follows scaling derived from
the ‘4/7 power law’, the model based on the phase-space localisation of mixing produces
results that are consistent with existing experimental evidence for the propagation speed of
turbulent premixed flames in the flamelet regime. Simulations based on the physical-space
localisation can be expected to underestimate the propagation speed for this regime.
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712 A.Y. Klimenko and S.B. Pope

Appendix A. Brownian relay

In this section we consider the speed of propagation of disturbances by a large number
of Brownian particles (or Wiener processes) whose distribution along coordinate x is
statistically uniform. Particle markers can be relayed from one particle to another when
their trajectories intersect selecting the particle that progresses forward faster, i.e. leads
after the intersection. The propagation speed of the marker (that is of the leading marked
particle) is the quantity of interest. The average distance between the particles is lp and the
diffusion coefficient of particle random walk is D. Dimensional arguments result in the
following equation for the propagation speed:

s = C0
D

lp
, (A1)

where C0 is a constant. This equation is consistent with Equation (57). The variance of the
flame position is expected to increase with time. The particles can relay information to each
other only when their trajectories intersect. ‘Brownian relay’ corresponds to competitive
mixing with two states Y = 0 and Y = 1 among Pope particles that randomly walk in
a single dimension x. Mixing, which is specified by the rules specified in Table 1, is
fully localised and occurs when and only when particle trajectories intersect. If at time t
the particles are segregated so that Y = 1 for all particles with x ≤ xf |(t) and Y = 1 for
all particles with x > xf |(t), this segregation persists at future times. The identity of the
leading particle – the rightmost particle with Y = 1 located at x = xf |(t) – changes when
it is overtaken by another Y = 1 particle from the left or possibly when it intersects with
another particle from the right which immediately converts from Y = 0 to Y = 1. The
purpose of the present analysis is to determine the constant C0. Brownian relay can be
considered as the limit of a simple random walk. Let np particles be distributed between nb

bins; each bin has a size of �xb so that

lp = �xb
nb

np
. (A2)

At each time step �t each particle moves right or left one bin with equal probability and
independently of anything else. The diffusion coefficient associated with this random walk is

D = 1

2

�x2
b

�t
(A3)

since the variance of particle positions is increased by �x2
b every time step. The discrete

random walk converges to Brownian trajectories with the diffusion coefficient D at the
limit �xb, �t → 0, preserving the value of D in (A3). While a weak convergence (i.e.
convergence of probability distributions) follows from the Central Limit and Donsker
theorems [33], we need a stronger version of the convergence theorem – the result that was
recently proved by Kjos-Hanssen and Szabados [34] and represents strengthening of the
conditions of the Asarin theorem [35]. The strong convergence theorem [34] demonstrates
a strong, almost sure convergence of the simple random walk to Brownian paths and the rate
of convergence is given by (�x)ns ∼ (ns)−1/2 ln(ns), where (�x)ns is the deviation of the
random walk approximation from the Brownian trajectory and ns = ts/�t is the number
of time steps defined as the length of the time interval under consideration ts divided by
�t . We assume that all particles are initially distributed between even bins with equal
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Combustion Theory and Modelling 713

probability. In this case, only odd bins can be occupied by particles at odd time steps and
only even bins can be occupied at even time steps. The discrete trajectories of particles can
intersect only if two particles are in the same bin at one of the time steps. Without loss
of generality, we assume that the relay propagates from left to right. We call the rightmost
(maximal x) particle(s) with Y = 1 ‘the leading particle(s)’ and the bin where the leading
particle(s) are located is ‘the leading bin’. There could be one or more leading particles but
there is only one leading bin. All particles to the left of the leading bin have Y = 1 while
all particles to the right of the leading bin have Y = 0. The number of bins and number of
particles must be large to investigate the propagation speed. In addition we use nb 
 np, so
that pb ≡ np/(nb/2) 	 1 is the bin selection probability since either even or odd bins are
occupied at every time step. At every time step, particles are randomly distributed between
the even or odd bins and probabilities of having k particles in a bin is given by the Poisson
distributions pk = pkbe

−pb/k!. Hence, on average p0 ≈ 1 − pb + p2
b/2 bins do not have

particles, p1 ≈ pb − p2
b bins have a single particle and p2 ≈ p2

b/2 bins have two particles.
The probability of having threep3 ≈ p3

b/6 or more particles is neglected aspb is small. This
leads to vanishing probability of simultaneous multiple intersections. The total number of
bins nb(p0 + p1 + p2) = nb and total number of particles nb(p1 + 2p2) = nbpb = np are
as expected. The leading bin by definition has at least one particle, hence it has one particle
with probability pb1 ≡ p1/(p1 + p2) ≈ 1 − pb/2 and two particles with probability pb2 ≡
p2/(p1 + p2) ≈ pb/2. If the leading bin has one particle, then the next position of the
leading bin is its either right or left neighbours with probability 50%. If the leading bin has
two particles, then there are four equally probable possibilities for the particles from the
bin to be distributed between the left and right bin neighbours. The particle with larger x
is then selected as the leading particle. Hence in three cases the leading bin moves right
and only in one case it moves left. The average drift velocity for this event is �xb/(2�t )̇.
Multiplication by the event probability pb2 yields the expression for the leading bin speed

s = pb2
�xb

2�t
= np

nb

D

�xb
= D

lp
, (A4)

that is C0 = 1 in (A1). This result has been confirmed by stochastic simulations. The
limit of �xb, �t → 0, and nb, ns → ∞, so that D = const, np = const, ts = const and
lp = const converges to the process of Brownian relay. While convergence to the Brownian
trajectories is discussed above, the convergence of the trajectories’ property of intersecting
each other needs some remarks. In a given time interval (fixed or randomly selected but
not linked to first or last intersection time), two Brownian particle trajectories (i.e. two
Wiener processes) are almost surely either separated by a finite gap or have a finite overlap.
The situation of two trajectories just touching each other (in a fixed time interval or before
the moment of intersecting with a third trajectory) is geometrically possible but has zero
probability. Hence for any two trajectories, as the deviation (�x)ns becomes much smaller
than the gap or overlap (and �t becomes shorter than the overlap duration) the property
of intersecting or not intersecting becomes fixed in the converging sequence.

It is interesting that although the characteristic effective collision frequency is given
by the estimate ωc ∼ D/l2p , the actual number of collisions (i.e. intersections of Brownian
trajectories) become infinite. Indeed, the probability of this event at each time step is
pb2 ∼ s�t/�xb while there are ∼ 1/�t steps; hence the number of intersection events is
∼ pb2/�t ∼ s/�xb → ∞ as �xb → 0. This agrees with a known property of Brownian
trajectories: they either do not intersect in an interval or they have an infinite number of
intersections in that interval. Note that C0 = 1 only if the particles can relay information to
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714 A.Y. Klimenko and S.B. Pope

Table B1. Summary of the major scales and parameters.

τ ∗ Velocity convection time scale
τm ≡ 1/ωm Mixing time scale
τ p ≡ lp/u∗ Particle time scale

τ c =
⎧⎨
⎩
τ p R 
 1
1

2

τ 2
p

τ ∗
R 	 1

Collision time scale

τ e = max(τm, τ c) Effective mixing time scale
D ≡ 2τ ∗/τm Modelling parameter resembling the Damkohler number

R ≡ (
τ ∗/τ p

)2 = (
u∗τ ∗/lp

)2
Modelling parameter resembling the Reynolds number

each other only when their trajectories intersect. If information exchanges were allowed at
finite distances, the speed s would be faster and this would increase C0 so that it becomes
dependent on the details of the mixing process.

Appendix B. Summary of the major parameters and regimes

There are three major time scales in the problem, i.e. τ ∗, τm and τ p, which form two
independent dimensionless parameters D and R. These time scales and parameters are
specified in Table B1. The other dimensionless parameters (such asK) depend onD andR.

We also introduce the effective mixing time τ e and the collision time τ c which are
determined by the major time scales τ ∗, τm and τ p. If τm 	 τ c, than it is the collision time
τ c that determines the effective mixing rate. This property is utilised by introducing the
effective mixing time τ e, although we note that replacement of τm by τ c is approximate
and the effective mixing rate between particles may depend on the particulars of the mixing
scheme. The relative values of the three time parameters imply six different possibilities
that are reduced to four different regimes summarised in Table B2.

The main regimes are denoted in the table as: R – Rarefied, C – Continuum, V – conVec-
tive, D – Diffusive; and modifiers ‘x’ and ‘xu’ indicate localisation of mixing. The regime
diagram is shown in Figure 1. These regimes are investigated in the following sections:

� CD – continuum diffusive: asymptote represented by KPP–Fisher equation (Section 3);
� RD – rarefied diffusive: approximate application of the CD solution (Section 3) and

Brownian relay (Appendix A);
� CVx – continuum convective with x-space localisation (Section 4);
� RVx – rarefied convective with x-space localisation (Section 4);
� CVxu – continuum convective with phase-space localisation (Section 6);
� RVxu – rarefied convective with phase-space localisation (Section 6).

Table B2. Summary of the regimes.

Case Expression for τ c x-localisation x–u-localisation

τm < τ ∗ < τ c I RD RD
τ ∗ < τm < τ c I RD RD
τ ∗ < τ c < τm I CD CD
τ c < τ ∗ < τm II CD CD
τ c < τm < τ ∗ II CVx CVxu
τm < τ c < τ ∗ II RVx RVxu
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