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Abstract The explicit dependence of LES fields on the turbulence resolution scale
� implies that LES statistics usually vary with � and exhibit different convergence
behaviors for different types of statistics, flow variables and subgrid LES models.
The present work compares the performance of two popular subgrid models—the
dynamic Smagorinsky model and the Vreman model—based on the convergence of
their LES statistics with respect to � for a piloted methane-air (Sandia D) flame. The
�-dependence of the LES statistics is studied based on five grids with progressively
increased resolution ranging from 3 × 105 to about 10.4 × 106 cells. The simulation
results show that the resolved velocity statistics converge for the finest grids with
some weak �-dependence observed in the variance fields. The mixture fraction
statistics are found to be more sensitive to the turbulence resolution scale upstream
in the flame signifying the importance of the estimation of the �-invariant LES
statistics at the DNS limit. For the considered flame the Vreman subgrid model
exhibits good performance with the statistics being very close to those given by the
dynamic Smagorinsky model, and being rather insensitive to a choice of the model
constant.

Keywords LES · Piloted diffusion flame · Subgrid-scale modeling ·
Turbulence resolution scale

1 Introduction

Large-eddy simulation (LES) of turbulent combustion flows is challenging because
some important rate-controlling processes are acting at the small-scales that are out
of reach for a typical LES grid in computationally feasible simulations [1]. The effects
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of these unresolved processes that are strongly coupled to the unresolved turbulent
motions require modeling. Accounting for these effects on the large (resolved) scales
of the turbulent motion results in the appearance of the subgrid scale (SGS) modeling
terms which presumably regularize the original governing (Navier-Stokes) equations
[2], and leads to the LES governing equations for the resolved flow at some turbulent
resolution scale �. In the traditional interpretation of LES as a filtering approach,
and which we do not take in the present work, � is viewed as the characteristic
filter width.

The practical importance of the LES methodology as a prospective engineering
tool for combustion devices has been well appreciated and demonstrated in growing
numbers of research simulations of real-life combustor geometries [3–7]. Among the
most important issues that need to be addressed as LES matures as an effective
predictive tool for complex engineering flows is the quality assessment and quan-
tification of uncertainty of the LES solution [8].

It has been widely recognized that in LES the discrete solution at a particular
turbulent resolution scale � is affected by the grid resolution h, the numerical
discretization scheme and the adopted SGS models. In practical LES the turbulent
resolution scale � is typically associated with the grid resolution, i.e., � = h, as there
is a need for the better resolution of the turbulent motion and its interaction with
physical processes of interest. On the other hand, this might lead to the significant
effects of the numerical errors on the discrete LES solution [9, 10]. The non-trivial
interactions between the numerical and SGS modeling errors make it difficult to sep-
arate them and, as a result, to unambiguously assess the quality of the SGS models. In
[11] Meyers et al. introduced a computational “error-landscape” procedure to study
the combined simulation error by systematically varying both the grid resolution and
the modeling (Smagorinsky) constant and comparing the LES based global measure,
such as the spatially averaged resolved kinetic energy, with the reference explicitly
filtered DNS counterpart for a case LES of decaying isotropic turbulence with the
Smagorinsky SGS model. It was demonstrated that such a defined simulation error
resembles a “valley”-shaped surface (landscape) when it is viewed as a function
of the grid resolution and the Smagorinsky constant. The existence of the valley
region suggests an optimal functional relationship between the Smagorinsky constant
and the grid resolution which minimizes the adopted simulation error measure
and allows one to qualitatively assess the effect of different discretization schemes
[12, 13].

In practically relevant LES studies, however, (1) the reference flow data obtained
with a help of the DNS or high-resolution experiments are usually not available,
(2) there is an ambiguity in identifying a suitable global variable to define the
error measure due to inhomogeneity of flow and usage of non-uniform grids, and
(3) systematic grid dependency studies are typically not viable due to significant
computing expenses. In addition, it is remarked here that a procedure of comparison
of the LES solution with the filtered DNS solution represents a highly questionable
practice due to several reasons [14, 15], among others are the fact that the filtered
DNS realization does not constitute a solution of the LES equations and the lack
of ability to represent a distribution of DNS fields corresponding to a given LES
solution. Furthermore, it should be appreciated that an ultimate objective of LES
is not obtaining the LES solution (statistics) at a particular resolution scale �, but
producing a reliable estimate for the statistics of the total (unfiltered) DNS flow field
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of interest [14]. Even if a particular LES model could lead to the solution that is
arbitrarily close to the corresponding filtered DNS solution (in a statistical sense) it
still can be an inadequate estimate for the statistics of the full flow field, especially in
the light of using rather coarse LES grids.

Other attempts to formulate a general error estimating approach for LES that
involve several LES calculations include the grid/model variation approach of Klein
[16] and the LES quality index approach of Celik et al. [17]. Essentially, both
approaches center on the assumption that the residual fields can be taken equal
to an additive sum of exponential terms, i.e., an�

n + am�m, which represent the
contributions from the discretization and modeling errors, respectively. Then, it is
formally possible to obtain the unknown model coefficients and exponents from a
number of LES calculations employing grids with different resolutions [8]. A number
of less computationally intensive approaches recently proposed in the literature and
characterized by a single LES calculation have been recently reviewed by Gant [18],
and they are not the focus of the present work. In this paper, we are primarily
concerned with the �-dependence of the LES statistics and its sensitivity to different
SGS models along with the approach introduced by Pope in [14].

At the continuous level the resolved LES solution is a function of the turbulence
resolution length scale �(x) because of its explicit appearance in the modeled
subgrid-scale terms. In the DNS limit, when �/L → 0 for some characteristic length
L, the LES solution tends to the DNS solution as the subgrid-scale terms vanish.
Further discretization and numerical integration of the LES equations introduce
additional dependence on � through the dependence on sizes of an LES grid cell
with respect to the corresponding coordinate directions, i.e., (�x1, �x2, �x3). In
practical LES, the characteristic length scale of an LES cell h = h(�x1, �x2, �x3)

is usually specified (for example, as a grid cell volume) and associated with � = h.
The different specifications of �(x) lead to the different LES governing equations
resulting in presumably different LES solutions. In addition, the discrete approxi-
mations of these LES solutions are subject to a complex interplay among various
types of errors defined by a choice of the discretization scheme (numerical errors),
SGS models (modeling errors) and LES grids (numerical and modeling errors).
Therefore, it is practically relevant to study the LES models under the influence of
the overall simulation error.

In this paper, we view the LES solution, say for example the mixture fraction
field ξ̃ (x, t), as a class of functions {ξ̃�} parametrized by �(x) and represented as a
collection of LES fields {ξ̃�} = {. . . , ξ̃�1 , ξ̃�2 , ξ̃�3 , . . . } with respect to monotonically
decreasing sequence of the turbulent resolution scales {· · · > �1 > �2 > �3 > . . . }.
The LES class {ξ̃�} has a limiting point ξ◦ given by the DNS solution when �i/L → 0.
The limiting point ξ◦ is rarely available or computationally prohibitive to obtain even
for modest Re-number flows and simple geometries. Moreover, due to enormous
computational cost such a class is never fully known, and as it is customarily done in
practice a practitioner usually deals with one or two members from the LES class.
A potential pitfall of such an approach is that knowing one or two members of the
LES class might not be sufficient to unambiguously characterize the flow physics of
a problem in hand [14]. Analogously, the corresponding class of the residual mixture
fraction fields {ξ ′′

�} = {. . . , ξ ′′
�1

, ξ
′′
�2

, ξ
′′
�3

, . . . } can be defined such that ξ
′′
�i

= ξ◦ − ξ̃�i .
Note that the present point of view on the LES solution is conceptually different
from the explicit filtering LES approach that aims to produce the grid-independent
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LES solution for the particular SGS model and filter by separating the modeling and
numerical errors [19].

Because of the random character of LES it is appropriate to assess the LES
solution based on the LES derived statistics. For example, if the statistical mean of
the LES solution {ξ̃�} is the statistic of interest then the corresponding LES statistic is
represented by QW(�) = {. . . , 〈ξ̃�1〉, 〈ξ̃�2〉, 〈ξ̃�3〉, . . . } with a limiting point Q = 〈ξ◦〉
denoting the true mean of the DNS solution. Similarly, the residual based statistic
is then defined as Qr(�) = Q − QW(�) = {. . . , 〈ξ ′′

�1
〉, 〈ξ ′′

�2
〉, 〈ξ ′′

�3
〉, . . . }. The practical

objective of LES is to produce accurate estimates Qm(�) = QW(�) + Qr(�) for the
true statistics Q, i.e., Qm(�) ≈ Q. Then, the predictive capabilities of a particular
LES are assessed based on how close the total LES statistics Qm(�) approximate
the true DNS statistics Q as well as how fast Qm(�) converges to Q with respect
to � [14].

Thus, our error-assessment LES procedure includes the following components:

(a) A model specification for the residual statistics Qr;
(b) An estimation of the total LES statistics for several turbulence resolution

scales (grids) �i, Qm(�) = QW(�) + Qr(�), and an identification of possible
convergence of the statistics with respect to �;

(c) An assessment of the overall simulation error ε(�) = Q − Qm(�) as a function
of �, if the true statistics Q (Q ≡ QW(0)) are available from DNS. Note
that employing the experimental statistics Qe, say from the high-resolution
experiments, as Q could introduce extra sources of errors due to (i) the
inherited uncertainties in the measurements on one hand, and (ii) the simplified
treatment (physical modeling errors) of combustion and molecular diffusion
processes on the other, i.e., Q 	= Qe;

(d) Generally, since the true statistics Q are not available a procedure to estimate
Q is required based on the fact that Qm(�) → Q (i.e., (Qm(�) − QW(�)) → 0)
if Qr(�) → 0 as � → 0. In this case, an LES model is deemed to be consistent
at the DNS limit. This is not always the case, however, and it could be that
Qr(�) 	= 0 as � → 0. Clearly, the DNS limit consistency is a desirable property
for an LES model.

The present work focuses on items (a), (b) and partially on (c). Item (d) is the most
challenging to address and requires a model for Qm = Qm(�) for the turbulence
resolution length scales that are smaller than those employed in LES calculations, i.e.,
� < �i. Other computationally important questions are how to choose �i optimally,
i.e., as large are possible, and how many �i (thus, a number of LES calculations) are
sufficient to accurately describe the functional dependence of Qm(�). These issues
are also left out of scope of the the present paper.

The present approach allows one to compare SGS models based on how they
affect the total LES statistics with respect to �. These type of studies which focus
on the turbulence resolution effects on the statistics of LES solution are still rare
in the combustion LES literature [7, 20]. The present study, therefore, aims to fill
this gap partially by examining the performance of two popular SGS models—the
dynamic Smagorinsky SGS model [21] and the Vreman SGS model [22], for a case
of the non-premixed methane-air jet flame (Sandia flame D). This piloted flame has
been extensively studied experimentally [23, 24] and computationally [25–32].
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2 Governing Equations

2.1 LES equations

A common way to reduce the complex combustion chemistry in LES of non-
premixed flames is the mixture fraction based flamelet approach [33, 34], which we
follow in this paper. In the flamelet approach chemical composition, temperature and
density are parameterized by one (or a few) variables such as the mixture fraction
and its scalar dissipation rate, or a progress variable which is usually constructed as a
linear combination of specially chosen chemical species [35].

In the present work, we employ a single mildly-strained steady laminar flamelet
where thermochemical variables and density depend on the mixture fraction only
and are represented by non-linear functional relationships. In variable-density LES
the �-resolved quantities, i.e. density ρ̄(�), velocity ũi(�) and mixture fraction fields
ξ̃ (�), are of importance. Here, the common Favre notation for the density-weighted
resolved quantity is adopted, i.e., ξ̃ (�) = ρξ(�)/ρ̄(�) and the bar symbol stands for
the resolved (filtered) quantities. Because of the non-linear flamelet parametrization
the resolved density and thermochemical quantities require accounting for the
small-scale (unresolved) mixture fraction fluctuations which is achieved through
dependence on the SGS mixture fraction variance Vξ (�) ≡ ˜ξ 2(�) − (ξ̃ (�))2 [36].

Thus, the LES system of the governing equations for the resolved density, velocity,
mixture fraction and the SGS mixture fraction variance takes the following form:

∂ρ̄

∂t
+ ∂ρ̄ũ j

∂x j
= 0, (1)

∂ρ̄ũi

∂t
+ ∂ρ̄ũiũ j

∂x j
= − ∂ p̄

∂xi
+ 2

∂

∂x j

(

(μ̄ + μT)

(

˜Sij − 1
3
˜Skkδij

))

, (2)

∂ρ̄ξ̃

∂t
+ ∂ρ̄ũ jξ̃

∂x j
= ∂

∂x j

(

ρ̄
(

˜D + DT
) ∂ξ̃

∂x j

)

, (3)

∂ρ̄Vξ

∂t
+ ∂ρ̄ũ jVξ

∂x j
= ∂

∂x j

(

ρ̄
(

˜D + DT
) ∂Vξ

∂x j

)

− 2ρ̄χ̃ξ + 2ρ̄
(

˜D + DT
)

(

∂ξ̃

∂x j

)2

(4)

Here, p̄, ˜Sij and χ̃ξ are the resolved pressure, strain rate and scalar dissipation rate,
respectively. The scalar dissipation rate is decomposed into the resolved and SGS
parts and is modeled in a standard way as [29, 37]:

2ρD|∇ξ |2 = 2ρ̄χ̃ξ = 2ρ̄ ˜D ∂ξ̃

∂x j

∂ξ̃

∂x j
+ C

ρ̄DT Vξ

�2 , (5)

where C is a model constant chosen to be C = 2 [32]. The closure of the subgrid
terms is based on the subgrid eddy viscosity μT(�) as detailed in Section 2.2. The
subgrid diffusivity ρ̄DT(�) is specified based on the eddy viscosity and the subgrid
Schmidt number ρ̄DT = μT/ScT , with a commonly used value of ScT = 0.4 [25].
Finally, to close the system of Eqs. 1–4 the flamelet model equations (ρ̄ = ρ̄(ξ̃ , Vξ ),
˜T = ˜T(ξ̃ , Vξ )) and molecular transport properties (μ̄ = μ(T), ρ̄ ˜D = ρ̄ ˜D(T)) are
specified in Section 2.3.
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2.2 SGS models

In this section we describe the subgrid scale models needed to relate the unknown
subgrid stresses and fluxes to the known resolved quantities.

In both scalar equations, Eqs. 3 and 4, the unclosed subgrid scalar fluxes are
modeled by a standard gradient diffusion hypothesis with the same subgrid diffusivity
ρ̄DT for both ξ̃ and ˜ξ 2 fields:

(ρ̄ũ jξ̃ − ρ̄˜u jξ) = ρ̄DT
∂ξ̃

∂x j
, (6)

(ρ̄ũ j
˜ξ 2 − ρ̄ ˜u jξ 2) − 2ξ̃ (ρ̄ũ jξ̃ − ρ̄˜u jξ) = ρ̄DT

∂Vξ

∂x j
. (7)

In this paper, we study the SGS stress models that are based on the eddy-viscosity
assumption. Accordingly, the deviatoric part of the unclosed SGS stress τij = ρ̄ũiũ j −
ρ̄ũiu j in the LES momentum equation, Eq. 2, is modeled as

τij − δijτkk/3 = 2μT(˜Sij − δij˜Skk/3), (8)

where μT is the SGS eddy viscosity. The first SGS model considered is the standard
dynamic Smagorinsky (DSMG) model with μT taken to be:

μT = ρ̄Cμ�2(2˜Sij˜Sij)
1/2, (9)

Here, μT involves a model constant Cμ which is computed according to the Germano
dynamic procedure [21] with Lilly’s modification [38]. In addition, a commonly used
averaging operation in the periodic homogeneous direction is employed for the
numerator and denominator in the expression for Cμ.

The second SGS model considered in the paper is the recently proposed eddy-
viscosity model due to Vreman [22] which is given by

μT = ρ̄Cv

√

Bβ

αmlαml
, αml = ∂ũl

∂xm
, (10)

with Bβ being the second invariant of a tensor quantity βij defined as

βij = �2
mαmiαmj, Bβ = β11β22 + β22β33 + β11β33 − β2

12 − β2
23 − β2

13, (11)

where �m is the resolution scale in the xm coordinate direction. The model constant
Cv can be related to the Smagorinsky constant Cv = 2.5C2

S for the case of homoge-
neous and isotropic turbulence (CS = 0.17) [22].

The Vreman SGS model has been constructed to produce the vanishing SGS
dissipation for a quite wide class of laminar shear flows and to be fully realizable.
It does not require any ad-hoc procedures such as clipping, averaging or explicit
filtering. The model has demonstrated encouraging results not only for simple wall-
bounded and transitional shear flows [22], but also for complex respiratory flows
(with CS = 0.065) [39] and turbulent diffusion flames (with CS = 0.1) [30]. Non-
universality of the model constant Cv has been recognized by Park et al. [40]
who proposed a procedure for evaluating the global model constant based on the
Germano dynamic approach.
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In this paper, we consider the Vreman SGS model with two values of the constant
Cv : a standard value of Cv = 0.025 (Vreman-I) which corresponds to CS = 0.1, and
twice this value, i.e., Cv = 0.05 (Vreman-II). Note that for the latter case (Vreman-
II) the modeling constant C in Eq. 5 needs to be halved to guarantee the same SGS
dissipation rate sχ in Eq. 4 for both cases, as dictated by:

sχ = C
μT Vξ

ScT�2 = CCv

ρ̄Vξ

ScT�2

√

Bβ

αmlαml
(12)

Thus, for Vreman-II model, we set Cv and C to be equal to 0.05 and 1.0, respectively.

2.3 Combustion model

The specification of the combustion model equations and transport properties
follows closely to that of [32]. Here, we briefly summarize the main assumptions and
resulting equations.

The functional relationships between the mixture fraction on the one hand and
density and thermochemical variables on the other, are obtained from a steady
laminar flamelet solution using CHEMKIN 4.1. A mildly-strained flamelet solu-
tion with a nominal strain rate of a = 50 s−1 is computed in a 1D counter-flow
configuration using the detailed GRI-Mech 3.0 chemical mechanism. The flamelet
solutions obtained are then approximated by quadratic B-spline functions. For exam-
ple, the specific volume v(ξ) = ρ−1(ξ) is represented by a quadratic B-spline vs(ξ).
In its simplest form a quadratic B-spline approximation is represented by a single
quadratic function vo(ξ) = a + bξ + cξ 2 with the specified constant coefficients a, b
and c obtained from fitting to the CHEMKIN flamelet data. Note that this single
quadratic representation allows to express the resolved specific volume directly
(without introducing an assumed PDF) as:

ṽo(ξ̃ , Vξ ) = a + b ξ̃ + c˜ξ 2 = a + b ξ̃ + c(ξ̃ 2 + Vξ ) = ṽo(ξ̃ , 0) + cVξ , (13)

with ṽo(ξ̃ , 0) = vo(ξ̃ ). However, as it is evident from Fig. 1 a single quadratic
function gives a rather crude approximation of the flamelet profile overpredicting the
specific volume (i.e., underpredicting density) for rich mixtures. Clearly, the spline
approximation vs(ξ) can be made arbitrarily close to the flamelet solution by con-
sidering a general piece-wise quadratic approximation based on quadratic B-splines
written as:

vs(ξ) =
n

∑

i=1

ci Bi,2(ξ). (14)

Here, {Bi,2}n
i=1 are quadratic B-splines and (ci)

n
i=1 is a set of control points. The j-th

B-spline of degree d = 2 (quadratic), B j,d(ξ), is fully defined by its knots sequence
(ξ j)

n+d+1
j=1 as:

B j,d(ξ) = ξ − ξ j

ξ j+d − ξ j
B j,d−1(ξ) + ξ j+1+d − ξ

ξ j+d+1 − ξ j+1
B j+1,d−1, (15)
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Fig. 1 Specific volume (a) and density (b) vs. mixture fraction for the CHEMKIN flamelet solu-
tions and quadratic B-spline approximations s1(ξ) and s3(ξ) employing 1 and 3 parabolic pieces,
respectively. The quadratic B-spline approximation s3(ξ) is defined by the control points (ci)

5
i=1 =

(0.834, 5.543, 6.131, 3.801, 0.947) and the knot sequence (ξ j)
8
j=1 = (0, 0, 0, 0.39, 0.474, 1, 1, 1)

with

B j,0(ξ) =
{

1, if ξ j ≤ ξ < ξ j+1

0, otherwise.
(16)

In this work, to approximate the flamelet solutions, we consider quadratic B-spline
approximations consisting of three parabolic pieces (n = 5) as shown in Fig. 1 for the
specific volume. This figure also shows the corresponding knot sequence (ξ j)

8
j=1 and

control points (ci)
5
i=1 used to define the piece-wise quadratic B-spline approximations

vs(ξ). Once the approximation for the flamelet solution is available, we define the
resolved specific volume ṽ(ξ̃ , Vξ ) (and therefore the resolved density ρ̄ = ṽ−1) as:

ṽ(ξ̃ , Vξ ) = vs(ξ̃ )
ṽo(ξ̃ , Vξ )

ṽo(ξ̃ , 0)
. (17)

This model is equivalent to the following relations

ṽ(ξ̃ , 0) = vs(ξ̃ ),
ṽ(ξ̃ , Vξ )

ṽ(ξ̃ , 0)
= ṽo(ξ̃ , Vξ )

ṽo(ξ̃ , 0)
, (18)

and indeed these relations are the motivation for the model. They show that in
the absence of the subgrid fluctuations the resolved specific volume coincides with
the flamelet approximation. On the other hand, when the subgrid fluctuations are
present (non-zero variance) the change of the resolved specific volume with respect
to the zero variance state is equal to the same change computed based on single
quadratic approximation. Note that ṽ(ξ̃ , Vξ ) is known in terms of ξ̃ , Vξ and the
approximated flamelet profile vs(ξ̃ ), whereas the exact values of ṽ depends on the
PDF of the mixture fraction, not solely on its first moments. Similar expressions
can be applied to other thermochemical variables [32]. An advantage of the present
approach is that it allows to completely exclude the flamelet table look-up procedure
and, as a result, associated with it interpolation errors, while a disadvantage being
that a PDF corresponding to Eq. 17 is not explicitly known and surely not unique.
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The functional dependences of the mixture molecular viscosity and mixture
fraction diffusivity on temperature are also computed from CHEMKIN and are
represented in a power-law form given by:

μ(T) = 1.75 × 10−5
( T

T0

)0.69 kg
m · s

, ρD(T) = 2.48 × 10−5
( T

T0

)0.72 kg
m · s

, (19)

with T0 = 298 K. Thus, the molecular Schmidt Sc = μ̄/ρ̄ ˜D number shows only a mild
dependence on temperature and is equal to 0.7, approximately.

3 Computational Setup

3.1 Sandia flame D

Sandia flame D has been extensively studied in the experimental works of Barlow
and Frank [23] and Schneider et al. [24]. This piloted flame is characterized by a
minimal level of local extinction due to moderate strain rates exerted by the velocity
field, and therefore, is assessable for studies using relatively simple combustion
models.

The fuel jet consists of a mixture of 25% methane and 75% air (by volume) and
emanates from a nozzle with diameter D = 7.2 mm at a bulk velocity of Ub = 49.6
m/s and temperature of 294 K. The nozzle is surrounded by a coaxial pilot nozzle
with diameter of 2.62D. The hot pilot flow is a lean burnt mixture of C2H2, air,
CO2, H2 and N2 corresponding to a mixture fraction value of ξ = 0.271, with a
bulk velocity of 11.4 m/s and temperature of 1,880 K. The coaxial burner is further
surrounded by co-flowing air with a bulk velocity of 0.9 m/s and temperature of 291
K. A characteristic Reynolds number of Re = 22,400 is determined based on the fuel
jet velocity, kinematic viscosity (ν = 1.58 × 10−5m2/s) and the nozzle diameter.

3.2 Numerical discretization and modeling

A version of the structured Stanford LES code [35] with the modified discretization
of the momentum convective terms due to Wang and Caughey (manuscript in prepa-
ration) is employed to solve the variable-density LES equations written in cylindrical
coordinates (x, r, θ). The numerical method is second-order accurate in space and
time. For the momentum equation, it adopts a discretization scheme which is energy-
conserving on uniform grids. Scalar transport equations are discretized using the
QUICK scheme [41] and solved employing a semi-implicit iterative technique, which
has proven to be effective for typical low-Mach combustion problems [29, 35].
Domain decomposition is used for the LES code parallelization.

In this work, we perform the flow simulations in a cylindrical computational
domain of extent 100.3D × 20D × 2π . The jet and pilot nozzles have a small axial
extension of 0.3D upstream of the nozzle exit plane, which is taken as the origin of
the axial coordinate, x. The dimensions of the computational domain as well as flow
variables are non-dimensionalized by the characteristic jet parameters (i.e., diameter,
bulk velocity, density).

The jet inflow boundary condition for velocity is generated separately [29] by
running a high resolution LES of the incompressible stationary turbulent pipe
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Table 1 Grid resolutions, the minimum/maximum cell width, and the maximum (smax
x , smax

r ) and
averaged (〈sx〉, 〈sr〉) cell stretch parameters in the non-dimensionalized axial and radial directions
x̂ ≡ x/D, r̂ ≡ r/D

Grid Resolution �min
x �max

x �min
r �max

r stretch, (%) stretch, (%)
(x̂, r̂, θ) smax

x , 〈sx〉 smax
r , 〈sr〉

M1 108 × 72 × 40 10. × 10−2 3.93 2.3 × 10−2 1.52 4.2, 3.5 11, 9.8
M2 144 × 96 × 48 7.5 × 10−2 2.89 1.7 × 10−2 1.27 3.0, 2.6 9.5, 8.8
M3 180 × 120 × 60 6.0 × 10−2 2.30 1.6 × 10−2 1.03 2.4, 2.0 7.4, 5.7
M4 216 × 156 × 80 5.0 × 10−2 1.92 1.2 × 10−2 0.80 2.0, 1.7 6.2, 4.7
M5 360 × 240 × 120 3.0 × 10−2 1.19 6.8 × 10−3 0.53 1.3, 1.0 4.6, 3.3

flow where the experimental mean and rms axial velocity profiles as measured by
Schneider et al. [24] are enforced. An LES of the turbulent pipe flow has been
conducted on a 192 × 96 × 96 grid with periodic boundary conditions in the stream-
wise direction. Accumulated velocity field data are saved in a database and used
to generate inflow conditions by linear interpolation of a 2D cross-sectional slice
onto the coarser LES grids at the jet inlet plane for the flame simulations. The
inflow velocity condition for the pilot is based on the measured mean velocity with
the superimposed uncorrelated random noise fluctuations of low intensity (∼ 1%)
according to the measured rms profiles, while in the co-flow region the measured
bulk values with zero turbulent intensity are used. The mixture fraction field is
prescribed as a step function according to an experimental value of ξ̃ = 0.271 for
the pilot, and ξ̃ = 1 and ξ̃ = 0 for the jet and co-flow, respectively. Finally, the
convective boundary conditions are employed for velocity and scalar fields on the
outflow boundary including the entrainment boundary of the computational domain.

To study the dependence of the LES statistics on the turbulence resolution scale �

we employ five grids M1, . . . , M5 with progressively increasing resolution from about
0.3 to 10.4 million cells as detailed in Table 1. All grids are non-uniformly stretched
in the axial direction as well as in the radial direction, with clustering in the jet nozzle
and pilot annulus regions, while remaining uniformly spaced in the circumferential
direction. Grid resolution parameters for the jet nozzle and the pilot are given in
Table 2.

In this paper, we consider a case when the turbulence resolution scale � is equal
to the local numerical grid spacing measure h(x), i.e., h(x)/�(x) = 1. We define the
grid spacing measure, and therefore �, based on the differential length of a curve
segment associated with an LES grid cell �(x) = (�2

x + �2
r + (r�θ)

2)1/2 rather than
on the more traditional definition which is based on a volume of an LES grid cell, i.e.,

Table 2 Grid resolutions details for the jet nozzle and the pilot

Grid Cells in x̂ Cells in r̂ Cells in r̂ Cells in jet Cells in Cells in r̂
for x̂ < 0 for jet nozzle for pilot nozzle wall pilot wall total

M1 3 10 17 1 2 72
M2 4 14 25 2 3 96
M3 5 18 30 2 3 120
M4 7 23 39 3 4 156
M5 10 35 60 5 7 240
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Fig. 2 Dependence of the non-dimensionalized turbulence resolution scales �Mi with respect to
(a) the axial coordinate direction at the centerline, and (b) the radial coordinate direction at an axial
location of x=3D. The non-dimensionalized spatial resolutions of the experimental measurements
for scalar (�S

exp =0.104D [23]) and velocity (�U
exp =0.139D [24]) fields are shown by horizontal lines

�(x) = (�x�rr�θ)
1/3. Here, �x, �r and �θ denote grid spacings in the corresponding

coordinate directions. Such an adopted definition of the turbulence resolution scale
avoids the vanishing values of � on the jet centerline, or in cases where the grid
resolution in a particular coordinate direction becomes very small (DNS-like). It is
further remarked that the grids {M1, . . . , M5} are “monotonic” with respect to �.
In other words, for every spatial point of the computational domain the following is
true: �M5 < �M4 < �M3 < �M2 < �M1 , i.e., a particular grid Mi resolves more than
the preceding grid Mi−1 does. Figure 2 illustrates the dependence of �(x, r) on the
radial coordinate at x = 3D and on the axial coordinate at the centerline for all five
grids. The experimental spatial resolutions for velocity and scalar fields [23, 24], �U

exp

and �S
exp, are also shown by horizontal lines for comparison. It is seen that in the

small near-field region (x � 5D and r � 1.5D) almost all grids, except the coarsest
M1, provide resolutions comparable with the experimental ones, or even better. For
example, the finest grid M5 achieves better resolution than that of the experiments up
to the distances of x = 8D and r = 2D in the axial and radial directions, respectively.

In all simulations, with an exception of the finest grid M5, a zero state is employed
as the initial condition for all scalar variables except the axial velocity field, which is
taken to be uniform and equal to the co-flow velocity in the whole domain. For the
finest grid, the initial fields are interpolated from a statistically-stationary solution
on the preceding grid M4. Time integration is performed with a variable time step
corresponding to a CFL number of 0.18–0.36.

3.3 Estimation of the LES statistics

The LES based estimation of the total statistic Q can be represented as a sum
of two components Qm(�) = QW(�) + Qr(�), where QW(�)) is defined solely by
the resolved LES fields, while Qr(�) estimates the contribution from the residual
fields [14]. In case of the statistical mean, for example the mean mixture fraction
Q ≡ 〈ξ 〉 = 〈ξ̃ 〉 + 〈ξ ′′ 〉, the residual contribution is 〈ξ ′′ 〉 can usually be neglected in
free-shear flows and if the LES grid provides an adequate resolution, say � < �∗

M.
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Here, the appropriate averaging is denoted by angular brackets. This gives the
following estimation for the mean quantities:

Q ≈ Qm(�) = QW(�) + Qr(�) = 〈ξ̃ 〉 + 0 = 〈ξ̃ 〉, (20)

in other words QW ≡ 〈ξ̃ 〉 and Qr ≡ 〈ξ ′′ 〉 = 0.
In case of the variance Q ≡ 〈ξ 2〉 − 〈ξ 〉2, the residual contribution is important and

has to be accounted for. The most general decomposition of the scalar variance into
the resolved and residual components was recently proposed and studied by Vervisch
et al. [42] employing the DNS data of a turbulent premixed round jet (Bunsen) flame.
It was shown that the mean SGS variance 〈Vξ 〉 does not always represent an accurate
estimation for the residual component and extra residual terms would arise unless
the LES resolution is adequate to neglect them. Here, we follow the same ansatz for
Q (as in work of Vervisch et al., but without introduction of the mass-weighted time
averaging) which is expressed (by adding and subtracting the same terms) as:

Q ≡ 〈ξ 2〉 − 〈ξ 〉2 = 〈ξ̃ 2〉 − 〈ξ̃ 〉2
︸ ︷︷ ︸

QW

+ (〈˜ξ 2〉 − 〈ξ̃ 2〉)
︸ ︷︷ ︸

〈Vξ 〉

− (〈ξ 〉2 − 〈ξ̃ 〉2)

︸ ︷︷ ︸

RI

+ (〈ξ 2〉 − 〈˜ξ 2〉)
︸ ︷︷ ︸

RII

, (21)

where RI(�) and RII(�) denote additional residual terms. Clearly, the modeling
of these terms is undesirable in LES since it would imply the modeling of the
fluctuating fields ξ

′′
and (ξ 2)

′′
, or their time averages, in addition to the modeling

of the mean SGS variance which depends solely on the resolved quantities. Thus,
the LES turbulence resolution scale should be sufficiently small, say � < �∗

V , to
guarantee that (1) both RI(�) and RII(�) are negligible, or (2) RI(�) = RII(�),
so the mean SGS variance can be used as a measure of the residual statistics. In [42],
Vervisch and co-workers proposed such an LES resolution criterion which verifies
the first case:

RI = (〈ξ − ξ̃ 〉)(〈ξ + ξ̃〉) = 〈ξ ′′ 〉2 + 2〈ξ ′′ 〉〈ξ̃ 〉 = 0 ⇔ 〈ξ ′′ 〉 = 0, (22)

RII = 〈ξ 2〉 − 〈˜ξ 2〉 = 0 ⇔ 〈(ξ 2)
′′ 〉 = 0. (23)

The first equation here shows that RI = 0 is satisfied automatically if one assumes
that the mean mixture fraction is modeled according to Eq. 20 as the resolved
mean field, which assumes � < �∗

M. The second equation, RII = 0, on the other
hand, necessitates that the time average of the residual fluctuations of the mixture
fraction square is negligible which would most likely happen at even smaller scales,
� < �∗

V < �∗
M, since the square of the mixture fraction contains a wider range of

scales than the mixture fraction field itself. Note that in the second case, i.e., when
RI(�) = RII(�) together with the assumption of Eq. 20, the mean SGS variance
becomes the sole and exact representative of the residual statistic.

Finally, it should be appreciated that even if the LES resolution allows to neglect
RII(�) it does not guarantee that the sum of the resolved QW(�) and SGS 〈Vξ (�)〉
parts becomes independent of the turbulence resolution scale � which calls for a
convergence study for Qm(�) and modeling its limit at � = 0. As a result, in the
present work, the residual statistic Qr(�) is modeled as the mean SGS variance 〈Vξ 〉
according to:

Q ≈ Qm(�) = QW(�) + Qr(�) = [〈(ξ̃ )2〉 − 〈ξ̃ 〉2] + 〈Vξ 〉, (24)

where the first bracketed term represents the resolved mixture fraction variance.
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In this paper, the LES statistics are accumulated after the simulation has reached
a statistically-stationary state which was verified by the convergence in the rms
statistics. This corresponds to the non-dimensional time of tUB/D = 690 which
is about 10 flow-through times based on the bulk velocity and the characteristic
length of 70D. After that, the simulation is continued for approximately twelve
flow-through times (until tUB/D ≈ 1500) to accumulate statistics. The LES statistics
are computed by averaging in time and the circumferential direction, for example
Qm(x, r) = 〈˜U〉(x, r). Thus, the convergence of the LES statistics is represented
locally by Qm(�(x)) = L(�(x)), where L(�) are different functions at each point of
the computational domain �. On the other hand, employing a global relation based
an integral norm, ‖Qm‖2 = G(‖�‖2), i.e., where the norm is defined as ‖Qm‖2 =
1/|�|( ∫

�
Qm2dx

)1/2, is expected to produce more robust statistical estimates with
less variation in ‖�‖2. However, this approach would not allow to identify local flow
regions which would require more (or less) resolution, and therefore, it has not been
pursued in the current work.

4 Results

In this section we analyze the effect of three SGS models (the dynamic Smagorinsky
model (DSMG), the standard Vreman model (Vreman-I) and the Vreman model
where the model constant doubled (Vreman-II) on the LES statistics of the velocity

Fig. 3 Radial profiles of the normalized subgrid eddy viscosity 〈μT 〉 at x = 3D and 7.5D: DSMG
(a, d), Vreman-I (b, e), Vreman-II (c, f), and for grids M1—gray line, M2—thin dashed line, M3—
thin solid line, M4—dashed line, M5—solid line
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and mixture fraction fields. Here, we primarily focus on the spatial convergence
of first two moments, i.e., the statistical mean and variance, with respect to the
resolution scale �(x). But first, we start with a brief discussion of the results obtained
on the subgrid viscosity.

4.1 Subgrid viscosity

It is well known that while the subgrid eddy-viscosity models provide a simple way to
account for the mainly dissipative action of the unresolved sales they sometimes, and
DSMG model in particular, require an introduction of additional, and very often
ad-hoc, procedures involving explicit filtering, averaging and clipping to prevent
negative values of the subgrid eddy viscosity which could lead to unstable LES
calculations. In the present work, the test filtering operation required for evaluation
of the dynamic constant Cμ in DSMG model is performed only in the axial and
circumferential directions. Furthermore, the instantaneous values of Cμ are obtained
by employing averaging in the homogeneous (circumferential) direction, and as a
result, they depend on the axial and radial directions only, Cμ(x, r). In addition, the
negative values of Cμ is then clipped to zero enforcing μT ≥ 0. The Vreman SGS
model, on the other hand, guarantees non-negative values of μT by formulation and
does not involve explicit filtering and averaging.

The radial profiles of the time averaged subgrid eddy viscosity (normalized by
the jet reference values) are shown in Figs. 3, 4, and 5 for all three models. In

Fig. 4 Radial profiles of the normalized subgrid eddy viscosity 〈μT 〉 at x = 15D and 30D: DSMG
(a, d), Vreman-I (b, e), Vreman-II (c, f)
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Fig. 5 Radial profiles of the normalized subgrid eddy viscosity 〈μT 〉 at x = 45D and 60D: DSMG
(a, d), Vreman-I (b, e), Vreman-II (c, f)

the jet near-field (x/D ≤ 7.5) the subgrid eddy-viscosity of DSMG model is seen
to be comparable in magnitude with that of Vreman-I model with an exception of
the coarsest grid M1, where it is too dissipative in the transitional region between
pilot products and co-flow air. As the jet develops and spreads outward, the subgrid
viscosity grows and overcomes the corresponding values obtained with both Vreman
models for all five grids. Figures 4d and 5a, d also show that the DSMG model pro-
duces somewhat excessive values of the subgrid eddy viscosity close to the centerline
at farther downstream locations (x/D ≥ 30). This can be related to the test filtering
procedure employed in the current computation of Cμ which excludes filtering
in the radial direction. Here, the resolved velocity gradients show small changes
in magnitude when they are computed at the test filter level. The denominator
in the definition of Cμ depends on the difference between test-filtered resolved

strain rate ̂|˜S|˜Sij and the test-filtered strain rate |̂˜S|̂˜Sij (multiplied by the square of
the ratio of the test to grid level filters). This difference becomes small near the
centerline which results in high values of Cμ and, correspondingly, the subgrid eddy
viscosity.

A comparison of two Vreman models shows that Vreman-II model is character-
ized by approximately 60–90% higher values of the subgrid viscosity than those of
Vreman-I model for most of the flow domain, except the near field (x/D < 7.5)
where the ratio of the corresponding viscosities becomes approximately equal to
two. This is expected because of the doubled value of Cv used in Vreman-II case.
Note that non-monotonic behavior of the subgrid viscosity for r/D ≤ 1.5 is the
consequence of the radial grid stretching close to the pilot and nozzle walls.
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Fig. 6 Radial profiles of 〈ũ〉 and ũrms at x = 3D: DSMG (a, d), Vreman-I (b, e), Vreman-II
(c, f). M1—gray line, M2—thin dashed line, M3—thin solid line, M4—dashed line, M5—solid line,
experiment—circles [24]

Fig. 7 Radial profiles of 〈ũ〉 and ũrms at x = 7.5D: DSMG (a, d), Vreman-I (b, e), Vreman-II (c, f)
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4.2 Resolved velocity field

Figures 6, 7, 8, 9, 10, and 11 show profiles of the mean and rms of the streamwise
velocity (normalized by the bulk jet velocity) at six axial locations of x/D = 3, 7.5,
15, 30, 45 and 60 for DSMG, Vreman-I and Vreman-II models. It is seen that all
three SGS models demonstrate a good level of approximation of the experimental
data with the highest discrepancy observed in the rms fields and on the coarsest M1

grid. The mean LES velocity is characterized by the consistent convergence at all
axial locations and exhibits little sensitivity to a choice of the employed SGS model.

The rms of LES velocity is also found to be convergent for the most part of the
flow with a noticeable exception of axial locations of x/D = 30 and 45 (Figs. 9 and
10) where the sensitivity to the grid resolution can be observed in a small region of
0 < r/D < 2.0, i.e., around the peak value of the rms profile. Here, the rms of the
resolved velocity is the highest on the coarsest grid and experiences the convergence
“from above”, thus attaining the lower values on the finer grids. This sensitivity to the
grid resolution gradually decays downstream and becomes weak at x/D = 60. This is
most likely caused by the better resolution of velocity gradients on finer grids which,
in turn, increases the viscous dissipation rate, thus resulting in lower values of the
rms velocity fluctuations. Beyond a radial location of r/D ≈ 1.7 the rms of resolved
velocity is seen to be convergent as shown in Fig. 9d, e, f. It is interesting to note
that this location approximately corresponds to the location of the stoichiometric
mixture fraction ξ̃st, which means that the highest �-dependence is observed on the
fuel-rich side of the jet. Figures 6 and 7 show another region where the velocity rms is

Fig. 8 Radial profiles of 〈ũ〉 and ũrms at x = 15D: DSMG (a, d), Vreman-I (b, e), Vreman-II (c, f)
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Fig. 9 Radial profiles of 〈ũ〉 and ũrms at x = 30D: DSMG (a, d), Vreman-I (b, e), Vreman-II (c, f)

Fig. 10 Radial profiles of 〈ũ〉 and ũrms at x = 45D: DSMG (a, d), Vreman-I (b, e), Vreman-II (c, f)
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Fig. 11 Radial profiles of 〈ũ〉 and ũrms at x = 60D: DSMG (a, d), Vreman-I (b, e), Vreman-II (c, f)

Fig. 12 Convergence of 〈ũ〉 and ũrms at the axial and two radial locations—closer to (dark lines)
and farther from (light lines) the centerline: (a, d) x = 3D, r1 = 0.54D, r2 = 0.63D; (b, e) x = 7.5D,
r1 = 0.65D, r2 = 0.9D; (c, f) x = 15D, r1 = 0.7D, r2 = 1.2D, and for: DSMG (�), Vreman-I (�),
Vreman-II (�) and experiment (�). Each point (from right to left) corresponds to grids M1 − M5.
The experimental values correspond to the resolution �U

exp = 0.139D
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visibly dependent on �. This region corresponds to a mixing layer between hot pilot
products and cold co-flow air (0.8 < r/D < 1.6 at x/D = 3). Here, the turbulence is
very weak and the mixing layer is dominated by coherent vortical structures which
can be sensitive to the grid resolution due to the specification of the pilot inflow
velocity fluctuations and incurred numerical errors.

The dependence of the resolved velocity statistics on � at particular axial and
radial locations are shown in Figs. 12 and 13. For each axial locations the two radial
locations are considered, one on the left side of the location of the rms velocity
maximum and the other on the right side, closer to the lean side of the jet. In addition,
the experimental values as measured by Schneider et al. [24] are shown by horizontal
lines with the experimental resolution scale corresponding to a square symbol. For
all three SGS models the mean of the resolved velocity demonstrates negligible
dependence on the turbulence resolution scale starting with �2 (M2 grid) with the
highest dependence observed at the near-field location of x/D = 3, r/D = 0.54. This
is shown in Fig. 12a where the mean velocity weakly increases with a decrease in � in
approximately linear fashion. Note that at this location the experimental resolution
scale is only little better than that of grid M2. Overall, at all considered locations the
mean of the resolved velocity exhibits the linear dependence on � for the four finest
grids. Similarly, with the exception of the coarsest grid M1, the rms velocity statistics
are also characterized by approximately linear behavior with respect to � for most
locations as can be seen from Figs. 12 and 13d, e, f. The �-dependence of the rms
velocity statistics is more pronounced but still relatively weak. Nevertheless, Fig. 13d

Fig. 13 Convergence of 〈ũ〉 and ũrms at the axial and two radial locations—closer to (dark lines) and
farther from (light lines) the centerline: (a, d) x = 30D, r1 = 0.9D, r2 = 1.4D; (b, e) x = 45D, r1 =
1.5D, r2 = 3D; (c, f) x = 60D, r1 = 2D, r2 = 3D, and for: DSMG (�), Vreman-I (�), Vreman-II (�)
and experiment (�). Each point (from right to left) corresponds to grids M1 − M5. The experimental
values correspond to the resolution �U

exp = 0.139D
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shows that at x/D = 30, r/D = 0.9 the extrapolated value of the rms velocity at
� = 0 (ũrms◦ ≈ 0.155) is approximately 12% less than that on M5 grid (ũrms

M5
≈ 0.175)

and is approximately 20% less than that on M2 grid (ũrms
M2

≈ 0.195). Thus, a procedure
for estimating the DNS limiting values of the statistics is important for assessment of
the solution quality.

Figures 12 and 13 show that the Vreman SGS model produces resolved velocity
statistics which are very close to that of DSMG model, thus confirming the findings
of the original Vreman’s paper obtained for simpler turbulent flows [22]. From these
figures it is seen that the effect of the Vreman model constant Cv on the resolved
velocity statistics is almost negligible, especially for the mean velocity and on the
four finer grids. Generally, the higher value of Vreman constant (as in Vreman-II
model) tends to decrease the rms velocity fluctuations due to the higher level of the

Fig. 14 Radial profiles of 〈ξ̃ 〉 (top row), QW = (ξ̃ rms)2 (middle row) and total variance Qm (bottom
row) at x = 3D: DSMG (a, d, g), Vreman-I (b, e, h), Vreman-II (c, f, i). Insets show residual variance,
Qr = 〈Vξ 〉. M1—gray line, M2—dashed thin line, M3—solid thin line, M4—dashed line, M5—solid
line, experiment—circles [23]
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subgrid eddy viscosity, but this effect is very small for M2 − M5 grids as can be seen
from Fig. 12d, e, f. Thus, the relative insensitivity of the velocity statistics to the value
of Vreman constant suggests that requirements for its dynamic evaluation procedure
[40] can be somewhat eased once an LES grid is sufficiently fine.

4.3 Resolved mixture fraction field

Radial profiles of the mean mixture fraction as well as the resolved variance QW =
〈ξ̃ 2〉 − 〈ξ̃ 〉2, mean SGS variance Qr = 〈Vξ 〉 and total variance Qm = QW + Qr of the
mixture fraction are shown in Figs. 14, 15, 16, 17, 18, and 19 at six axial locations of
x/D = 3, 7.5, 15, 30, 45 and 60. In these figures the experimental data of Barlow and
Frank [23] are also depicted for comparison.

Fig. 15 Radial profiles of 〈ξ̃ 〉 (top row), QW = (ξ̃ rms)2 (middle row) and total variance Qm (bottom
row) at x = 7.5D: DSMG (a, d, g), Vreman-I (b, e, h), Vreman-II (c, f, i). Insets show residual
variance, Qr = 〈Vξ 〉
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Fig. 16 Radial profiles of 〈ξ̃ 〉 (top row), QW = (ξ̃ rms)2 (middle row) and total variance Qm (bottom
row) at x = 15D: DSMG (a, d, g), Vreman-I (b, e, h), Vreman-II (c, f, i). Insets show residual
variance, Qr = 〈Vξ 〉

The mean mixture fraction fields demonstrate approximate convergence on M2 −
M5 grids in most of the domain for all three SGS models being in good agreement
with the experimental data. There is, however, a small region near the centerline at
the downstream location of x/D ≥ 30 where some dependency on � is visible, as can
be seen from Figs. 17–19a–c. This can be related to the corresponding dependence
observed in the resolved velocity field (Figs. 9–11a–c) which suggests the inadequate
grid resolution in the streamwise direction at this axial location as might be inferred
from the axial dependence of �(x, 0) shown in Fig. 2a.

In general, it is expected that the variance fields are more susceptible to the
influence of the turbulence resolution scale � [20], which finds confirmation in
Figs. 14–19d–i. From these figures it is seen that in the near-field the resolved
variances exhibit a visible sensitivity to � at the locations of their maxima, i.e.,
in a mixing layer between cold jet fuel and hot pilot products. Here, the resolved
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Fig. 17 Radial profiles of 〈ξ̃ 〉 (top row), QW = (ξ̃ rms)2 (middle row) and total variance Qm (bottom
row) at x = 30D: DSMG (a, d, g), Vreman-I (b, e, h), Vreman-II (c, f, i). Insets show residual
variance, Qr = 〈Vξ 〉

variance is found to be overpredicting the experimental values on the finer grids.
As the jet develops, the resolved variance becomes in general agreement with the
experimental values at x/D = 15, and eventually it underpredicts the experimental
values downstream starting with x/D = 30. In the near-field region the resolved
variance is characterized by the convergence from below where the higher variance
values are attained on the finer grids. This can be related to a strong decrease of
the turbulent subgrid diffusivity ρ̄DT as grids are more and more refined, while
the molecular diffusivity ρ̄ ˜D remains relatively unchanged and smaller than its
peak values because of temperature [32]. Therefore, changes in turbulent subgrid
diffusivity is contributing more to changes of the total diffusivity which results in less
dissipation for finer grids and causes higher values of the resolved mixture fraction
variance. Farther downstream, for example at x/D = 30, the resolved mixture frac-
tion variance shows less sensitivity to � and is closer to an approximate convergent
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Fig. 18 Radial profiles of 〈ξ̃ 〉 (top row), QW = (ξ̃ rms)2 (middle row) and total variance Qm (bottom
row) at x = 45D: DSMG (a, d, g), Vreman-I (b, e, h), Vreman-II (c, f, i). Insets show residual
variance, Qr = 〈Vξ 〉

state on all M1 − M5 grids (Fig. 17). Here, some weak dependence on � is still
present which resembles the behavior of the rms velocity and shows convergence
from above. Figures 18 and 19d–f show that for the farthest downstream locations
of x/D = 45 and 60, the resolved variance again exhibits a significant sensitivity
to � in a region of 0 < r/D < 3.0, similar to the mean mixture fraction field. In
addition to the above mentioned reason of the insufficient resolution (due to the
axial grid stretching), it is remarked that these far field locations also require longer
computational runs to accumulate an equivalent statistical data compared to near-
field locations.

Figures 14–19g–i show the radial profiles of the SGS Qr(�) = 〈Vξ 〉 and total
Qm(�) variances of the mixture fraction field. It is seen that in the near-field, the SGS
variance contribution can be quite substantial. For example, at an axial location of
x/D = 3 it ranges approximately from 70% (on M1 grid) to 10% (on M5 grid) of the
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Fig. 19 Radial profiles of 〈ξ̃ 〉 (top row), QW = (ξ̃ rms)2 (middle row) and total variance Qm (bottom
row) at x = 60D: DSMG (a, d, g), (ii) Vreman-I (b, e, h), (iii) Vreman-II (c, f, i). Insets show residual
variance, Qr = 〈Vξ 〉

corresponding peak values of the resolved variance. Note, however, that would be
equivalent to only 30% and 5% contribution to the corresponding values of the rms
of the resolved mixture fraction, respectively. On the other hand, the SGS variance
rapidly decreases downstream and becomes an order of magnitude smaller than the
resolved variance already at x/D = 30 for the coarsest M1 grid. Its contribution to
the total variance appears to be not sufficient to compensate the underprediction of
the experimental values by the resolved variance QW . This suggests a non-constant
value of the model coefficient C in the SGS dissipation rate model given by Eq. 5,
which can be achieved, for example, by employing a dynamic procedure [43]. It is
further noted that while a model for Qm could be, in principle, improved for some
resolution levels (� > �∗

V) by accounting for extra residual terms (as outlined in
Section 3.3), an ultimate goal of LES is to estimate the limiting value of Qm(�) at
� = 0. Therefore, the simpler residual models for Qr could be more advantageous
and robust as long as they ensure that Qr(�) vanishes at � = 0.
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Fig. 20 Convergence of 〈ξ̃ 〉 at the axial and two radial locations—closer to (dark lines) and farther
from (light lines) the centerline: a x = 3D, r1 = 0.54D, r2 = 0.63D; b x = 7.5D, r1 = 0.65D, r2 =
0.9D; c x = 15D, r1 = 0.7D, r2 = 1.2D; d x = 30D, r1 = 0.9D, r2 = 1.4D; e x = 45D, r1 = 1.5D,
r2 = 3D; f x = 60D, r1 = 2D, r2 = 3D, and for: DSMG (�), Vreman-I (�), Vreman-II (�) and
experiment (�). Each point (from right to left) corresponds to grids M1 − M5. The experimental
values correspond to the resolution �S

exp = 0.104D

The dependence of the resolved mixture fraction statistics on the turbulence
resolution scale is further shown in Figs. 20, 21, and 22. Here, the mean values
of the mixture fraction as well as the resolved, SGS and total variances of the
mixture fraction are plotted versus � for particular axial and radial locations. For
comparison purposes, the corresponding experimental mean and variance values are
also visualized at the experimental resolution scale �S

exp [23]. Figure 20a–b shows
that in the near-field (for x/D = 3 and 7.5) the mean mixture fraction experiences
clear dependence on �. The largest differences between the extrapolated value
of the mean mixture fraction 〈ξ̃◦〉 (at � = 0) and its values on M2 and M5 grids,
respectively, are observed at the location of x/D = 7.5, r/D = 0.65. Here, as can be
seen from Fig. 20b, the extrapolated value (〈ξ̃◦〉 ≈ 0.5 ) is about 28% less than that
on M2 grid (〈ξ̃M2〉 ≈ 0.7) and 14% less than that on M5 grid (〈ξ̃M5〉 ≈ 0.58). As the
jet develops downstream this �-dependence becomes weaker and the mean mixture
fraction profiles become more flat, suggesting proximity to the converged state. For
example, at axial locations of x/D = 15 and 30 the corresponding differences in the
mean mixture fractions decrease to 21% and 10% (for M2 and M5 grids) and to 17%
and 9%, respectively (Fig. 20c, d). Farther downstream at x/D = 60 and r/D = 2, in
spite of the larger resolution scales the mean mixture fraction retains approximately
the similar �-convergence rate as can be seen from Fig. 20f, where the extrapolated
value 〈ξ̃◦〉 is about 30% and 11% less than the corresponding values computed on
M2 and M5 grids, respectively. Overall, Fig. 20 shows that similarly to the mean
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Fig. 21 Convergence of the mixture fraction variances: QW(�), Qr(�) and Qm(�) at the axial and
two radial locations—closer to (dark lines) and farther from (light lines) the centerline: (a, d, g) x =
3D, r1 = 0.54D, r2 = 0.63D; (b, e, h) x = 7.5D, r1 = 0.65D, r2 = 0.9D; (c, f, i) x = 15D, r1 = 0.7D,
r2 = 1.2D, and for: DSMG (�), Vreman-I (�), Vreman-II (�) and experiment (�). Each point (from
right to left) corresponds to grids M1 − M5. The experimental values correspond to the resolution
�S

exp = 0.104D

resolved velocity, the mean mixture fraction is characterized by (1) an approximate
linear dependence on � starting from M2 grid, (2) very little dependence on the SGS
models, and (3) negligible sensitivity to a value of Vreman constant (for Vreman SGS
models).

Figures 21a–c and 22a–c show profiles of the resolved mixture fraction variance
QW(�). The fuel-rich side locations are characterized by a strong dependence on
� which becomes approximately linear downstream at axial locations of x/D = 7.5
and 15 for M2 − M5 grids. At these locations the extrapolated values of the resolved
mixture fraction variance (QW◦ ) are almost two times higher than those computed
on M2 grid (QW

M2
) (see Fig. 21b, c). On the finest grid M5 the differences are less,

but still significant, as the extrapolated value of the resolved variance (QW◦ ≈ 0.04)
is approximately 26% higher than that on M5 grid (QW

M5
≈ 0.0317) at the location of

x/D = 7.5, r/D = 0.65 and 23% higher (QW
M5

≈ 0.0325) at the location of x/D = 15,
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Fig. 22 Convergence of the mixture fraction variances: QW(�), Qr(�) and Qm(�) at the axial and
two radial locations—closer to (dark lines) and farther from (light lines) the centerline: (a, d) x =
30D, r1 = 0.9D, r2 = 1.4D; (b, e) x = 45D, r1 = 1.5D, r2 = 3D; (c, f) x = 60D, r1 = 2D, r2 = 3D,
and for: DSMG (�), Vreman-I (�), Vreman-II (�) and experiment (�). Each point (from right to
left) corresponds to grids M1 − M5. The experimental values correspond to the resolution �S

exp =
0.104D

r/D = 0.7, respectively. At the fuel-lean locations the resolved variance appears to
be more converged as the corresponding profiles are more flat as can be seen from
Figs. 21a–c and 22a–c. At the downstream location of x/D = 30 the resolved mixture
fraction variance depends on � very weakly and is approximately converged. As
the resolution scale grows downstream, due to the grid stretching, QW(�) starts to
exhibit some considerable dependence on � as shown in Fig. 22c for x/D = 60. Here,
the extrapolated value of the resolved variance QW◦ is about 28% and 50% less than
that on M5 and M2 grids, respectively. Note, however, that the corresponding mix-
ture fraction rms ξ̃ rms◦ = √

QW◦ would demonstrate significantly weaker dependence
on � with the value (ξ̃ rms◦ ≈ 0.0444) which is about 15% (ξ̃ rms

M5
≈ 0.0525) and 28%

(ξ̃ rms
M2

≈ 0.0624) less than the values computed on M2 and M5 grids, respectively.
It is interesting to note that the dependence on an SGS model is minimal. Both
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Vreman models produce essentially the same results that are independent of the
model constant Cv suggesting that a role of the SGS model is of minor importance
and the results are strongly dominated by numerics.

The �-dependence of the mean SGS variance Qr is shown in Figs. 21d–f and
22d–f. While the mean SGS variance generally decreases with �, as expected, its
functional dependence on � is complicated. In the near-field, for axial locations of
x/D = 3 and 7.5, Qr decreases in approximately linear fashion on the four finest grids
M2 − M5, but farther downstream at axial locations of x/D ≥ 15 the dependence
appears to be weakly quadratic as it is evident from Figs. 21f and 22d–f. This
suggests that there is no universal scaling and the �-dependence for the mean SGS
variance can be generally expressed as Qr(�) = a�p, with a and p being some
functions of spatial coordinates. The mean SGS variance is quite significant at the
upstream locations and is at least about 15% (on the finest grid M5), or more, of the
corresponding resolved variance value at x/D = 3. On the other hand, Qr rapidly
decreases downstream and becomes an order of magnitude smaller that the resolved
variance starting from x/D = 30. This indicates that even if there are regions where
the �-dependence of Qr deviates from a linear functional form they might not
contribute significantly to the total mixture fraction variance Qm.

Figures 21d–f and 22d–f demonstrate that the mean SGS variance strongly de-
pends on the Vreman model constant Cv (for Vreman SGS models). In particular,
Qr for the Vreman-II SGS model is significantly larger than Qr for the Vreman-I
SGS model for all axial locations considered, i.e., Qr

II > Qr
I . Such behavior can be

qualitatively understood from a governing equation for the SGS variance (Eq. 4).
Note that after the substitution of a model for the scalar dissipation rate (Eq. 5) into
Eq. 4 it becomes an equation of the advection-diffusion type where the forcing term
2ρ̄DT(Vξ /�

2 − |∇ξ |2) is subtracted on the right hand side. The larger positive forcing
term would provide more dissipative action and tend to decrease the SGS variance.
On the other hand, the negative forcing term would act as the source term and
promote higher values of the SGS variance. Since the subgrid diffusivity (DT ≥ 0)
is proportional to the Vreman constant it assumes higher values for Vreman-II SGS
model. Thus, the higher values of Qr

II in the near-field can be related to the negative
forcing term due to high values of the scalar gradient (i.e., Vξ /�

2 < |∇ξ |2). Farther
downstream (for x/D > 15), as the scalar gradient becomes weak and � continues
increasing in magnitude the difference (Vξ /�

2 − |∇ξ |2) appears to retain its sign,
thus leading to Qr

II > Qr
I .

5 Conclusions

The sensitivity of LES statistics to the turbulence resolution scale � and to different
SGS models has been studied for the piloted non-premixed Sandia flame D. Five
grids (M1 − M5) with progressively increasing resolution from 0.3 to about 10.4
million cells have been employed to generate the LES statistics. A steady laminar
flamelet combustion model has been adopted to parameterize reacting density and
temperature in terms of the mixture fraction and its subgrid variance based on a
flamelet CHEMKIN simulation with a detailed chemistry mechanism.
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The dependence of the LES statistics on the turbulence resolution scale � has
been analyzed for two eddy-viscosity based SGS models—the standard dynamic
Smagorinsky model and the Vreman SGS model [22]. As the representative LES
statistics of interest, the mean and rms of the streamwise velocity as well as the mean
and variances of the mixture fraction have been chosen, respectively. In addition,
the effect of the Vreman model constant on the convergence of the LES statistics
has been studied to assess a potential need for a procedure allowing a dynamic
determination of the constant, by considering two cases—one with the standard value
of the Vreman constant and the other where the value is twice as large.

The results obtained demonstrate that all models perform well and reproduce the
essential features of the Sandia flame D satisfactorily. The Vreman model is found
to be capable of producing the LES statistics that are negligibly different from that
of the dynamic Smagorinsky model. This makes it a preferable choice in practical
LES of similar type of flows taking into account the inherent absence of the ad-
hoc procedures such as clipping and averaging. Furthermore, it was found that the
effect of the model constant on the the resolved variance and mean of both velocity
and mixture fraction fields is minimal. On the other hand, the mean SGS variance
is strongly affected by a choice of the model constant in the jet near-field where the
larger constant value leads to the higher levels of the SGS variance. This suggests,
however, that a choice of the model constant might have stronger effects in flame
configurations which are more sensitive to the modeling of the SGS variance such as
lifted flames. Overall, the �-dependence of the mean and resolved variance shows
that the results are rather insensitive to SGS modeling and mostly influenced by
numerics.

The mean velocity field has been found convergent with respect to � throughout
most of the domain on the four finest grids, while the mean mixture fraction has
been shown to be sensitive to � and to have an approximate linear dependence on �

for these grids. The rms of velocity is characterized by the weak and approximately
linear dependence on � for M2 − M5 grids which is the highest in the near-field.
Similarly, the resolved mixture fraction variance exhibits strong dependence on � in
the near-field and on the fuel-rich side of the jet which gradually decreases upstream
and becomes linear.

In summary, the results obtained show that the convergence of the LES statistics
may differ significantly depending on the type of the statistics and the considered
flow variables. Moreover, this convergence may not be uniform in space even for
a particular statistic type and a particular flow variable which makes the results
obtained on one LES grid, or even on several grids, potentially susceptible to high
levels of uncertainty. This, therefore, necessitates a procedure which allows one to
remove the �-dependence from the LES statistics, for example, through a limiting
process to the DNS limit, to be an essential part of an LES study.
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