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A posteriori analysis of the statistics of two large-eddy simulation (LES) solutions de-
scribing a piloted methane–air (Sandia D) flame is performed on a series of grids with
progressively increased resolution reaching about 10.5 million cells. Chemical compo-
sitions, density and temperature fields are modelled with a steady flamelet approach
and parametrised by the mixture fraction. The difference between the LES solutions
arises from a different numerical treatment of the subgrid scale (SGS) mixture fraction
variance – an important quantity of interest in non-premixed combustion modelling. In
the first case (model I), the variance transport equation is solved directly, while in the
second (model II), an equation for the square of the mixture fraction is solved, and the
variance is computed from its definition. The comparison of the LES solutions is based
on the convergence properties of their statistics with respect to the turbulence resolution
length scale. The dependence of the LES statistics is analysed for velocity and the mix-
ture fraction fields, and tested for convergence. For the most part, the statistics converge
for the finest grids, but the variance of the mixture fraction shows some residual grid
dependence in the high-gradient regions of the jet near field. The SGS variance given
by model I exhibits realisability everywhere, whereas in regions of the flame model II is
non-realisable, predicting negative variances. Furthermore, the LES statistics of model
I exhibit superior convergence behaviour.

Keywords: subgrid-scale variance; mixture fraction; large-eddy simulation; Sandia
flame D; non-premixed turbulent combustion

1. Introduction

Large-eddy simulation (LES) has proved to be an effective simulation approach for a wide
range of turbulent flows including chemically reactive turbulent flows [1,2]. This latter class
of flows adds an extra set of challenges to LES modelling. In addition to accounting for the
effects of the unresolved dynamic scales, the small-scale molecular mixing and chemical
reaction processes, which usually occur on scales much smaller than the LES grid, have to
be modelled as well. A number of successful applications of LES have demonstrated the
attractiveness of the approach not only for canonical geometries like laboratory jet flames
but also for complex ones like gas-turbine combustors [3–6].

LES focuses on the explicit simulation of the large (resolved) scales of the turbulent
motion where the effects of the unresolved scales are represented by a model. The resolved
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612 K.A. Kemenov et al.

LES field, say for example for the mixture fraction, ξ̃ (x, t), is very often associated with
spatial filtering of the underlying turbulent field ξ (x, t). While such a definition of the
resolved fields can be helpful in the derivation of the LES equations, albeit under very
restrictive conditions of the uniformity of filter width and commutativity between filtering
and differentiation, generally it appears to be somewhat misleading since the LES field of
interest is always a solution of the LES equations [7]. Furthermore, invoking the concept of
filtering in deriving LES equations is at least debatable since these equations arise naturally
in multiscale formulations [8] or in regularisation of the Navier–Stokes equations [9]
without making use of filters. In addition, as a solution of the LES equations, the LES
field depends on an artificial parameter �(x) – the filter width or, more appropriately, the
turbulence resolution length scale [7].

In practical LES, the turbulence resolution scale �(x) is often taken to be equal to (or a
multiple of) the characteristic length scale of an LES cell which, in turn, can be prescribed in
a non-unique way. Furthermore, the turbulence resolution scale �(x) usually enters various
models for the unclosed subgrid scale (SGS) terms which implies that the LES solutions
become dependent on �(x). Because of the inherent randomness the predictive capabilities
of LES are judged based on comparison of the LES derived statistics Qm to the ‘true’
statistics Q obtained from the high-resolution experiments or, for low Re-number flows,
from DNS. Generally, the LES derived statistics will depend on the SGS models as well
as on the specification of �(x). For example, these statistics can be mean values of the
resolved and full mixture fractions, i.e. Qm = 〈ξ̃ (x, t)〉 and Q = 〈ξ (x, t)〉 derived from an
LES solution and from the full turbulent field, respectively. The objective of an LES is then
to produce an accurate estimate Qm(�) = QW (�) + Qr (�) for the true statistics Q, i.e.
Qm(�) ≈ Q. Here, QW (�) and Qr (�) denote the contributions to the modelled statistics
from the resolved and subgrid fields, respectively. As the turbulence resolution scale goes
to the DNS limit (� → 0) the LES solution tends to the DNS solution as the contribution
from the subgrid terms vanishes. For a consistent LES model its total LES statistics Qm(�)
are supposed to converge to the true DNS statistics Q while the residual parts Qr (�) tend
to zero. As pointed out by Pope [7], different LES models can then be compared in terms
of overall accuracy and cost based on the convergence of their statistics, i.e. how fast and
how well the total LES statistics Qm(�) approximate the true DNS statistics Q with respect
to �. Consequently, a comparison that is based on a single value of �, i.e. a single LES
realisation, cannot be deemed satisfactory.

The sensitivity of LES statistics to � gains more importance for the LES of combustion
systems. In turbulent combustion, the rate-controlling processes such as reactant mixing
and chemical reactions occur on small scales that are usually much smaller than �. As
a result, the resolved effect of the complex small-scale turbulence/chemistry interactions
is modelled in an affordable way by a combustion model. A question of how a particular
combustion model affects LES statistics with respect to the true statistics Q can be studied
based on the �-dependence of the total LES statistics Qm. Studies of the turbulence
resolution effects on a reactive LES solution are still quite rare in literature [6]. The present
work, therefore, attempts to fill this gap partially by examining the performance of two
LES models based on the convergence of their statistics with respect to � for the case of a
non-premixed jet flame.

Many combustion models centre on a mixture fraction based flamelet approach [10],
where chemical composition, temperature and density are parametrised by one (or a few)
field variables such as the mixture fraction and its scalar dissipation rate, or a spe-
cially constructed progress variable [11]. While such a simplified turbulence/chemistry
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interaction treatment might fall short of representing realistic combustion chemistry, as
opposed to more advanced and technically elaborated approaches such as transported PDF
based methods [12], it provides a useful tool to study particular effects of the SGS or/and
combustion models on the LES solution. Even though the mixture fraction transport equa-
tion does not contain a source term, its solution still only approximates the resolved mixture
fraction field, which necessitates accounting for the unresolved small-scale mixture fraction
fluctuations on the resolved thermochemical quantities in the flamelet parametrisation. The
SGS mixture fraction variance Vξ ≡ ξ̃ 2 − ξ̃ 2 provides such a measure [13]. Usually, it enters
as a parameter of the presumed probability density function such as the beta-PDF [13, 14]
in the statistical representation of the resolved field, or it can be accounted for directly in a
quadratically-approximated flamelet parametrisation [15]. In either case, the SGS variance
requires modelling. The other attractive feature of using the SGS mixture fraction variance
in simulations is that its mean value provides a simple model for the residual statistic Qr (�)
when the statistic of interest Q is the variance.

A number of the SGS variance models have been proposed and evaluated in the past
[13, 16, 17], and recently [18–20] in the context of a priori and a posteriori LES studies of
non-premixed combustion. In the present work, we consider one class of models which is
based on integration of an evolution equation, either for the SGS mixture fraction variance
itself (model I) [17], or for the resolved square of the mixture fraction ξ̃ 2 (model II) [21].
In the latter case, the SGS variance is computed from ξ̃ , ξ̃ 2 and its definition Vξ ≡ ξ̃ 2 − ξ̃ 2.
Even though the inclusion of an extra evolution equation into the LES system adds to
the computational expense, at the same time it avoids some strong assumptions about
the resolved mixture fraction field, which are routinely invoked in more simple algebraic
models, like the scale-similarity assumption based model [13], or the equilibrium model
which assumes an equilibrium between production and dissipation rates [16]. An evolution
equation for ξ̃ 2 is simpler than that for Vξ since it does not contain the production term
and is often viewed as the better choice for SGS variance modelling [18, 20]. Both models
have been used in the past, in several LES-based studies of non-premixed flames. For
example, Ihme and Pitsch [22] employed the variance transport equation (model I) to study
extinction and reignition events in piloted methane–air flames (Sandia flames D and E) using
the extended flamelet/progress variable (FPV) approach, while Raman et al. [21] adopted
the mixture fraction square transport equation (model II) to simulate the methane–hydrogen
bluff-body stabilised flame in the context of the transported filtered-density-function (FDF)
method. Model II was also chosen by Triantafyllidis et al. [23] in an LES study of forced
ignition of a bluff-body methane–air flame using the conditional moment closure (CMC)
method. As both models appear to be equivalent at the continuous level, the rational
choice of which one is better is not straightforward and depends on incurred numerical
errors. Based on a priori analysis of the DNS data, Kaul et al. [20] showed that employing
the variance transport equation tends to underpredict the SGS variance due to numerical
errors associated with the chain-rule approximation. It is remarked here that, while a priori
analysis based on the explicit filtering of the DNS data might provide some useful insights,
it falls short of fully evaluating the model performance since the resolved LES fields are
the solutions of the LES evolution equations and do not coincide with the filtered DNS
fields [7].

Therefore, an objective of the present paper is to compare the performance of two
transport equation based models for the SGS scalar variance with respect to convergence
of their LES statistics on different grids for a realistic flame – Sandia flame D. This
piloted non-premixed methane–air flame has been studied experimentally by Barlow and
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614 K.A. Kemenov et al.

Frank [24] and by Schneider et al. [25], which makes it a popular choice for testing LES
models in studies of non-premixed turbulent combustion [22,26–31]. Another rationale for
choosing the Sandia flame D configuration is the virtual non-existence (or absence) of re-
ignition/extinction or auto-ignition events that are challenging to predict accurately in LES
but which, on the other hand, allows much simpler chemistry models to be used and less
sensitivity to numerical errors in the SGS variance prediction to be expected. For example,
in their recent LES study of the Cabra flame, a lifted methane–air jet flame in a vitiated
co-flow experimentally studied by Cabra et al. [32], Domingo et al. [33] demonstrate
that the LES solution exhibits a great deal of sensitivity to the modelling of the SGS scalar
dissipation rate which is usually modelled proportionally to the SGS variance and appears as
a source term in the SGS variance evolution equations (see Section 2.2). In this lifted flame,
autoignition, which was identified to be a primary mechanism for flame stabilisation [34],
is more likely to occur in regions with low levels of the scalar dissipation rate. As a result,
numerical errors associated with computation of the SGS variance could strongly affect the
location of the stabilisation point and the lift-off height of the flame producing potentially
different LES solutions depending on which model, I or II, is employed to compute the
SGS scalar variance. It is, therefore, plausible to compare the effects of different numerical
treatments of the SGS scalar variance first by considering flame configurations that provide
the least expected difference in the predicted LES fields.

In the present work, we simplify the chemistry treatment by employing a single mildly-
strained steady flamelet obtained from the integration of one-dimensional counter-flow
diffusion flame equations with the detailed GRI-Mech 3.0 chemical mechanism. The OP-
PDIF module of the CHEMKIN package is used to obtain a flamelet solution. Molecular
transport properties, such as viscosity and diffusivity, are also obtained from CHEMKIN
and are fitted to a power law form in temperature. Instead of forming a flamelet table,
we use quadratic B-splines to approximate the flamelet solution for density and tempera-
ture [15]. Mean and root mean square values are chosen to be representative statistics since
corresponding experimental data are readily available for comparison [24, 25]. We focus
mainly on the mixture fraction because of its importance in non-premixed combustion
modelling. Many flamelet-based approaches involve the mixture fraction which is used to
parametrise chemical composition, molecular properties and enthalpy. And therefore, for
accurate predictions of the thermochemical variables, it is a minimal requirement to predict
the mixture fraction accurately.

2. Governing equations

2.1. LES equations

In the flamelet-based LES approaches for variable-density turbulent flows, the large-scale
evolution equations for the resolved density, the density-weighted velocity and the mixture
fraction fields are integrated. With a little abuse of notation, these quantities are denoted
as ρ̄, ũi and ξ̃ , respectively. Here, the common Favre notation for the density-weighted re-
solved quantity is used, i.e. ξ̃ = ρξ/ρ̄, and the bar symbol stands for the resolved (filtered)
quantities. The combustion model can be specified through nonlinear functional relation-
ships between the resolved density and thermochemical variables (temperature, species
mass fractions) on the one hand, and the resolved mixture fraction ξ̃ and the SGS mixture
fraction variance Vξ on the other. The latter accounts for the effect of the subgrid scale
fluctuations of the mixture fraction on the resolved thermochemical variables.
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Combustion Theory and Modelling 615

The system of governing equations for the LES model I is written as

∂ρ̄

∂t
+ ∂ρ̄ũj

∂xj

= 0, (1)

∂ρ̄ũi

∂t
+ ∂ρ̄ũi ũj

∂xj

= − ∂p̄

∂xi

+ 2
∂

∂xj

[
(µ̄ + µT )

(
S̃ij − 1

3
S̃kkδij

)]
, (2)

∂ρ̄ξ̃

∂t
+ ∂ρ̄ũj ξ̃

∂xj

= ∂

∂xj

[
ρ̄(D̃ + DT )

∂ξ̃

∂xj

]
, (3)

∂ρ̄Vξ

∂t
+ ∂ρ̄ũjVξ

∂xj

= ∂

∂xj

[
ρ̄(D̃ + DT )

∂Vξ

∂xj

]
− 2ρ̄χ̃ξ + 2ρ̄(D̃ + DT )

∂ξ̃

∂xj

∂ξ̃

∂xj

, (4)

µ̄ = µ̄(T̃ ), ρ̄D̃ = ρ̄D̃(T̃ ), µT = ρCS�
2(2S̃ij S̃ij )1/2, ρ̄DT = µT /ScT (5)

ρ̄ = ρ̄(ξ̃ , Vξ ), T̃ = T̃ (ξ̃ , Vξ ), (6)

where p̄, S̃ij and χ̃ξ are the resolved pressure, strain rate and scalar dissipation rate,
respectively. In the LES momentum equation (Equation 2), the Smagorinsky model is
employed to obtain the deviatoric part of the unclosed SGS stress τij = ρ̄ũi ũj − ρ̄ũiuj ,
i.e. τij − δij τkk/3 = 2µT (S̃ij − δij S̃kk/3). Here, µT is the turbulent eddy viscosity with a
model constant CS which is computed according to the Germano dynamic procedure [35]
with Lilly’s modification [36]. In addition, a commonly used averaging operation in the
periodic direction is employed for the numerator and denominator in the expression for CS .
In both scalar equations (Equations 3 and 4), the unclosed subgrid scalar flux is modelled
by a standard gradient diffusion hypothesis with the same subgrid diffusivity ρ̄DT for
both scalar fields, for example ρ̄ũi ξ̃ − ρ̄ũiξ = ρ̄DT ∂ξ̃ /∂xi . The subgrid diffusivity ρ̄DT

is specified based on the eddy viscosity and the subgrid Schmidt number as shown by
Equation (5), with a commonly used value of ScT = 0.4 [26]. Finally, the unclosed scalar
dissipation rate term 2ρ̄χ̃ξ requires modelling as well.

A standard way to model the scalar dissipation rate term is to decompose it into
resolved and SGS parts where the latter is taken to be proportional to the SGS mixture
fraction variance [22, 33]:

2ρD|∇ξ |2 = 2ρ̄χ̃ξ = 2ρ̄D̃ ∂ξ̃

∂xj

∂ξ̃

∂xj

+ C
ρ̄DT Vξ

�2
, (7)

where C is a model constant chosen to be C = 2, and � is the characteristic turbulence
resolution scale. Substitution of Equation (7) into Equation (4) results in the final form of
the governing equations for the SGS variance.

2.2. SGS variance equations

To distinguish further between the two models we denote by V I
ξ a solution of the SGS vari-

ance equation (Equation 4) (model I), and by V II
ξ the SGS variance that is obtained from

model II. Introducing for brevity the operator L defined as L(·) ≡ D̃(·)/D̃t − ∂/∂xj (ρ̄(D̃ +
DT )∂(·)/∂xj ) with the total derivative D̃/D̃t ≡ ρ̄∂/∂t + ρ̄ũj∂/∂xj , it follows from
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616 K.A. Kemenov et al.

Equations (4) and (7) that V I
ξ evolves by

L (
V I

ξ

) = 2ρ̄DT

(
∂ξ̃

∂xj

)2

− Cρ̄DT

�2
V I

ξ . (8)

In model II, instead of solving the transport equation (Equation 4) for Vξ , we solve an
equation for Sξ ≡ ξ̃ 2 directly [21], and then compute V II

ξ from ξ̃ and Sξ as V II
ξ = Sξ − (ξ̃ )2.

The equation for Sξ can be readily deduced from the corresponding continuity and mixture
fraction equations and, with the scalar dissipation rate model given by Equation (7), it can
be written as

L(Sξ ) = −2ρ̄D̃
(

∂ξ̃

∂xj

)2

− Cρ̄DT

�2
V II

ξ , (9)

with

V II
ξ = Sξ − (ξ̃ )2. (10)

We note that Equation (4) is equivalent to Equations (9) and (10) at the level of partial
differential equations, and thus they have identical solutions V I

ξ and V II
ξ given a consistent

set of the corresponding boundary and initial conditions. Furthermore, it is seen that both
equations appear to be in the same functional form. In particular, both equations contain
the squared-gradient source term on the right-hand side, which differs in terms of the sign
and the diffusivity coefficient. In model I the positive squared-gradient term 2ρ̄DT |∇ ξ̃ |2
is responsible for the production of the SGS variance, while in model II the corresponding
term −2ρ̄D̃|∇ ξ̃ |2 is negative and results in dissipation of the SGS variance.

In the LES literature, model II is often viewed as the better alternative due to the absence
of the production term, which can be a potential source of numerical errors stemming
from an underresolved discrete representation of the squared-gradient term in practical
LES [18,20]. However, as may be seen from Equation (9), model II would also be subject to
numerical errors associated with the underresolution of the squared-gradient term as soon
as the resolved dissipation rate is represented by any model which employs decomposition
and contains the dissipation rate of the resolved field 2ρ̄D̃|∇ ξ̃ |2 as in Equation (7). On
the other hand, the sensitivity effect due to underpredicting the squared-gradient term is
opposite for models I and II, which can be seen from the following equivalent form of
model II written as

L (
V II

ξ

) = −2ρ̄D̃
(

∂ξ̃

∂xj

)2

− L(ξ̃ 2) − Cρ̄DT

�2
V II

ξ . (11)

Qualitatively, since the dissipation term on the right-hand side of Equation (11) appears
with a negative sign, the underprediction of the squared-gradient term tends to increase
values of V II

ξ due to less dissipative action. In model I this results in the underprediction of
the production term, which decreases the SGS variance V I

ξ .
The arguments in favour of model II usually involve an appeal to coarse grids (i.e.

large filter widths) and high Reynolds numbers, so one could assume that the values of the
subgrid diffusivity are much higher compared to the values of its molecular counterpart.
In such situations, it might be reasonable to treat the resolved dissipation term of model II

D
ow

nl
oa

de
d 

by
 [

C
or

ne
ll 

U
ni

ve
rs

ity
] 

at
 1

2:
05

 1
8 

A
ug

us
t 2

01
2 



Combustion Theory and Modelling 617

(2ρ̄D̃|∇ ξ̃ |2) as a rather unimportant source of errors contrary to that role of the production
term of model I (2ρ̄DT |∇ ξ̃ |2). In this regard, we remark that in combustion problems molec-
ular transport properties are greatly enhanced by the exothermicity of chemical reactions
so the molecular diffusivity could be locally comparable to or exceed the corresponding
subgrid diffusivity. In addition, in practical combustion LES, it is often a necessity to use
relatively fine grids and small filter widths in some parts of the computational domain to
capture the important flow features (for example, the development of jet mixing layers).
This is certainly the case for high-fidelity LES. Therefore, as the LES grid becomes finer
and the turbulent subgrid diffusivity values decrease on the one hand, and the values of
the molecular diffusivity increase on the other, traditional arguments based on the relative
importance of the production and resolved dissipation terms become less convincing.

Another frequently invoked argument in favour of model II is the ability to recover the
exact maximum value of the SGS variance when the scalar dissipation rate is neglected [20].
It can be seen from Equation (9) that if the scalar dissipation rate is set to zero then the
resolved square of the mixture fraction ξ̃ 2 and the resolved mixture fraction ξ̃ both satisfy
the same transport equation, i.e. L(ξ̃ 2) = 0 and L(ξ̃ ) = 0. As a result, one might conclude
that ξ̃ 2 and ξ̃ evolve identically (ξ̃ 2 = ξ̃ ), which formally leads to the maximum value of the
SGS variance, Vξ = ξ̃ 2 − ξ̃ 2 = ξ̃ − ξ̃ 2 = ξ̃ (1 − ξ̃ ) = V max

ξ [20]. However, this reasoning
appears to be fallacious. First, from the basic property of the mixture fraction field, i.e.
0 ≤ ξ ≤ 1, it follows that ξ̃ 2 ≤ ξ̃ . In particular, the equality takes place only when ξ̃ = 0
or ξ̃ = 1. Second, despite the exact functional form of the transport equations for ξ̃ 2

and ξ̃ the corresponding solutions would still be different because there are always different
boundary conditions for these fields which have to be prescribed for consistency (except
for the trivial cases of zero and unity values). As a result, when the scalar dissipation rate
is neglected model II reproduces the trivial result of zero SGS variance.

At the discrete level, however, the solutions V I
ξ and V II

ξ differ because the numerical
approximation errors involved in the two approaches differ. To identify the origin of these
errors it is convenient to rewrite Equation (11) in yet another equivalent form which enables
term-by-term comparison with model I:

L (
V II

ξ

) = 2ρ̄DT

(
∂ξ̃

∂xj

)2

−
[
L(ξ̃ 2) + 2ρ̄(D̃ + DT )

(
∂ξ̃

∂xj

)2
]

− Cρ̄DT

�2
V II

ξ . (12)

Before proceeding with the analysis it is remarked that this form of the SGS variance
equation is not actually solved at the discrete level in model II, it is invoked here to
delineate the differences between the two models. It is seen that models I and II are indeed
identical if the second term on the right-hand side of Equation (12) is equal to zero. This is
always true at the continuous level since it represents a conservation law for the square of
the resolved mixture fraction:

L(ξ̃ 2) + 2ρ̄(D̃ + DT )

(
∂ξ̃

∂xj

)2

= 0. (13)

At the discrete level the situation is different. While for model I the discrete version of
this conservation law is always satisfied by virtue of the formulation, it is not the case for
model II. Clearly, adopting model II would be equivalent to the evaluation of the expression
L(ξ̃ 2) + 2ρ̄(D̃ + DT )|∇ ξ̃ |2 directly at the discrete level by the substitution of (ξ̃ )2 obtained
from the discrete mixture fraction (a solution of the discrete version of the mixture fraction
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618 K.A. Kemenov et al.

equationL(ξ̃ ) = 0). Thus, the expressionL(ξ̃ 2) + 2ρ̄(D̃ + DT )|∇ ξ̃ |2 would not necessarily
need to be zero. As a result, if one adopts model II then a conservation law for (ξ̃ )2, i.e.
Equation (13), is not enforced at the discrete level which leads to an additional source of
numerical errors. In other words, a visible disadvantage in the formulation of model II
stems from the implied lack of conservation of the square of the resolved mixture fraction
field (Equation 13) caused by the subtraction of (ξ̃ )2 in Equation (10) at the discrete level.

To fix these ideas it is instructive to consider the discrete versions of Equations (8) and
(12). Let �h,τ be the temporal–spatial discretisation of the computational domain � × T

where an LES problem (Equations 1–6) is considered, i.e. �h,τ = {(xm, tn) : xm ∈ Gh; tn ∈
Tτ }. Here, Gh ≡ {x1, . . . , xM} and Tτ ≡ {0 ≤ t1, . . . , tN ≤ T } are spatial and temporal
grids, respectively. Let us further denote by Lh and Gh the discrete representations of
the operator L(·) and the gradient operator ∇(·), which depend on the adopted numeri-
cal/discretisation scheme. Thus, as the discrete analogue of Equation (8) we solve for the
approximate solution V I

h defined on �h,τ the following equation:

Lh

(
V I

h

) = 2ρ̄hDT ,h

(
Gh(ξ̃h)

)2 − Cρ̄hDT ,h

�2
V I

h, (14)

where ρ̄h, DT ,h are the discrete density and turbulent diffusivity, respectively, and a discrete
approximation of the mixture fraction ξ̃h is a solution of Lh(ξ̃h) = 0. Note that all discrete
variables are functions of not only the local grid resolution h but also the turbulent resolution
scale �, i.e. ξ̃h(�), ρ̄h(�), and so on. In this work � is taken to be equal to h, or h/� = 1
which is a standard choice in practical LES, so the dependence on h is two-fold. If the exact
LES fields on the discrete domain �h,τ are denoted by ξ̃m,n = ξ̃ (xm, tn), ρ̄m,n = ρ̄(xm, tn),
V I

m,n = V I
ξ (xm, tn), ξ̃m,n = ξ̃ (xm, tn), etc., then one can define the discretisation (local) error

RI
h for model I by substitution the exact discrete variance V I

m,n into Equation (14) to obtain

RI
h = 2ρ̄hDT ,h

(
Gh(ξ̃h)

)2 − Cρ̄hDT ,h

�2
V I

m,n − Lh

(
V I

m,n

)
. (15)

For the second-order scheme considered in this work RI
h = O(h2 + τ 2) with τ being a time

step. Note that the approximation error for the SGS variance of model I εI
h, which is defined

according to V I
h = V I

m,n + εI
h, satisfies

Lh

(
εI
h

) = RI
h − Cρ̄hDT ,h

�2
εI
h, (16)

which follows from its definition and Equations (14) and (15). Similarly to Equation (14),
the discrete analogue of model II (Equation 12) can be written as

Lh

(
V II

h

) = 2ρ̄hDT ,h

(
Gh(ξ̃h)

)2 − rh − Cρ̄hDT ,h

�2
V II

h , (17)

where rh is defined as

rh ≡ Lh

(
ξ̃ 2
h

) + 2ρ̄h(D̃h + DT ,h)
(
Gh(ξ̃h)

)2
, (18)

and represents the difference between the discrete variance equations of models I and II.
Clearly, it is not equal to zero since (ξ̃h)2 being evaluated directly from the solution of
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Lh(ξ̃h) = 0 does not satisfy to the discrete analogue of Equation (13), which is given by

Lh(sh) + 2ρ̄h(D̃h + DT ,h)
(
Gh(ξ̃h)

)2 = 0. (19)

Here, the solution sh is the discrete representation of the square of the resolved mixture
fraction sξ ≡ (ξ̃ )2. We further note that the term rh does not involve the constant C used
in modelling the subgrid part of the resolved scalar dissipation rate (Equation 7), which
suggests that the difference between models I and II is not related to a particular form of
the scalar dissipation rate model, as long as it is represented by the decomposition into
the resolved and subgrid parts. Clearly, one could prescribe an ideal dissipation rate model
by choosing some general coefficient C(x, t) in such a way that Equation (7) is satisfied
exactly. Nevertheless, it would affect neither rh nor, as a result, the differences between the
discrete SGS variances.

From comparison of Equations (14) and (17) we observe that given an identical set
of the corresponding boundary and initial conditions both discrete variances will evolve
identically if rh is zero, i.e.

V II
h = V I

h, if Lh

(
ξ̃ 2
h

) + 2ρ̄h(D̃h + DT ,h)
(
Gh(ξ̃h)

)2 = 0. (20)

Furthermore, qualitatively it is seen that locally and for small times, the difference between
the discrete SGS variances V I

h and V II
h will be governed by the sign of rh according to

V II
h > V I

h, if Lh(ξ̃ 2
h ) + 2ρ̄h(D̃h + DT ,h)

(
Gh(ξ̃h)

)2
< 0, (21)

V II
h < V I

h, if Lh(ξ̃ 2
h ) + 2ρ̄h(D̃h + DT ,h)

(
Gh(ξ̃h)

)2
> 0. (22)

In particular, it is noted that even if initially both variances coincide and the discrete mixture
fraction ξ̃h is such that rh equals zero, a small underprediction in the values of the resolved
gradient Gh(ξ̃h) would result in negative values of rh which, in turn, would promote higher
values of the discrete SGS variance V II

h compared to those of V I
h due to less dissipation

provided by the extra source term rh. A similar trend was observed by Kaul et al. [20] in a
priori analysis of the DNS data of homogeneous and isotropic turbulence and attributed to
the underprediction of V I

h due to numerical errors caused by the chain-rule approximation.
The extra numerical error source term rh of the discrete model II can be further

simplified by subtracting Equation (19) from Equation (18). If we denote by εh = ξ̃h − ξ̃m,n

and εs
h = sh − ξ̃ 2

m,n, the corresponding approximation errors of the mixture fraction and the
square of the mixture fraction, respectively, then rh takes form

rh = Lh

(
ξ̃ 2
h − sh

) = Lh

(
ξ̃ 2
m,n + 2ξ̃m,nεh + ε2

h − ξ̃ 2
m,n − εs

h

)
= Lh

(
2ξ̃hεh − ε2

h

) − Lh

(
εs
h

)
. (23)

From this equation it is seen that the discrete solution V II
h will be affected non-trivially by

the extra source term rh which evolves (to the leading order) as rh ≈ Lh(2ξ̃hεh) − Lh(εs
h).

This is not the case for the discrete SGS variance of model I. Specifically, this inability to
enforce the conservation of the square of the resolved mixture fraction at the discrete level
makes model II less attractive on pure formulation grounds.

It is well appreciated that the accuracy of an LES solution depends on (i) the grid
resolution, (ii) the numerical/discretisation method, and (iii) the SGS models. There is
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620 K.A. Kemenov et al.

always a trade-off between numerical resolution h and resolution of the turbulent motions
�. Larger values of � allow better numerical resolution but worse resolution of the smaller-
scale turbulent motions. The more ‘optimal’ choice of the turbulent resolution scale �,
such as the one taken in this work (h/� = 1), could lead to simulations that are subject
to significant numerical errors. Furthermore, both numerical and SGS modelling errors
interact non-trivially and are difficult to separate; so it may or may not be that there is a
cancellation between them (for example, between rh and errors originating from the SGS
part of the scalar dissipation rate model given by Cρ̄hDT ,hV

II
h /�2), but it is the overall

observable error which is important.
Hence, it is appropriate to study models in the presence of the numerical errors, and

the purpose of the present paper is to study how the numerical difference between the two
models rh(�) affects the SGS variances V I

h(�) and V II
h (�) and, as a result, the overall LES

solution with respect to the turbulence resolution scale �. Thus, in this study we pursue a
rather narrow objective by focusing on the different implementations of the SGS variance,
rather than studying the effects of the SGS models themselves which are chosen to be quite
standard and widely used. As a result, we use the word ‘model’ in a general sense here
since at the continuous level both models are described by the equivalent set of partial
differential equations and, therefore, their exact solutions are identical. In summary, we
refer to Equations (1)–(3), (5), (8) as model I and Equations (1)–(3), (5), (9), (10) as model
II, respectively.

2.3. Combustion model equations

A combustion model and transport properties given by Equations (5) are obtained from
a steady laminar flamelet solution with the detailed GRI-Mech 3.0 chemical mechanism.
A mildly-strained flamelet solution with a nominal strain rate of a = 50 s−1 is computed
in a 1D counter-flow configuration by the OPPDIF module of CHEMKIN 4.1. The full
details of the combustion model specification can be found elsewhere [15]. Here, we briefly
summarise the main assumptions and resulting equations.

The specific volume v = ρ−1 is approximated by fitting a quadratic B-spline vs(ξ )
to the flamelet solution v(ξ ). In its simplest form a quadratic B-spline approximation
is represented by a single quadratic function vo(ξ ) = a + bξ + cξ 2 which translates to
the following expression for the resolved specific volume ṽo(ξ̃ , Vξ ) = a + bξ̃ + cξ̃ 2 =
a + bξ̃ + c(ξ̃ 2 + Vξ ). Here, the coefficients a, b and c can be found by fitting to the
CHEMKIN flamelet data for specific volume. In this work, we consider a quadratic B-
spline approximation vs(ξ ) consisting of three parabolic pieces to approximate the flamelet
solution v(ξ ), and define the resolved specific volume, and therefore the resolved density,
as

ṽ(ξ̃ , Vξ ) = vs(ξ̃ )
ṽo(ξ̃ , Vξ )

ṽo(ξ̃ , 0)
, ρ̄(ξ̃ , Vξ ) = ṽ−1(ξ̃ , Vξ ). (24)

This model yields the relations

ṽ(ξ̃ , 0) = vs(ξ̃ ), (25)

ṽ(ξ̃ , Vξ )

ṽ(ξ̃ , 0)
= ṽo(ξ̃ , Vξ )

ṽo(ξ̃ , 0)
, (26)
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Combustion Theory and Modelling 621

and indeed these relations are the motivation for the model. Note that ṽo(ξ̃ , Vξ ) is known
in terms of ξ̃ and Vξ , whereas the exact value of ṽ depends on the PDF of the mixture
fraction, not solely on its mean and variance. Similar expressions are applied to other
thermochemical variables [15].

The functional dependence of the mixture molecular viscosity and mixture fraction
diffusivity on temperature are also computed from CHEMKIN and its thermal and transport
databases, and then cast in a power-law form given by

µ(T ) = 1.75 × 10−5

(
T

T0

)0.69 kg

m · s
, ρD(T ) = 2.48 × 10−5

(
T

T0

)0.72 kg

m · s
, (27)

with T0 = 298 K.

2.4. LES derived statistics

Following the framework introduced by Pope [7], the LES generated statistics can be
decomposed into two components Qm(�) = QW (�) + Qr (�), where QW (�) is defined
solely by the resolved LES fields, while Qr (�) estimates the contribution from the resid-
ual (subgrid) fields and can depend on both resolved and residual LES fields. Then, the
predictive capabilities of LES models can be estimated in terms of overall accuracy and
cost based on how good Qm(�) approximates the true DNS statistic Q, and how fast
Qm(�) converges to its asymptotic value with respect to �. Note that if the experimental
statistic Qexp is available, say from high-resolution experiments, it still may differ from
the true statistic Q due to experimental uncertainties on the one hand and combustion
modelling limitations (flamelet assumption, simplified molecular transport, etc.) on the
other.

The specification of Qr is challenging because of the unknown residual fields. It also
depends on the particular statistics considered. In the present work we employ and test
two simple estimates of Qr when the statistic of interest Q is taken to be the mean or
the variance of the mixture fraction field. If Q is the statistical mean, i.e. Q = 〈ξ 〉, then
Q = 〈ξ 〉 = 〈ξ̃ 〉 + 〈ξ ′′〉, where ξ ′′ is defined by the decomposition ξ = ξ̃ + ξ ′′. Thus, one can
take QW as the mean of the resolved mixture fraction field QW = 〈ξ̃ 〉 and Qr = 〈ξ ′′〉 = 0.
This leads to the following estimate – Q ≈ Qm = QW + Qr = QW = 〈ξ̃ 〉. Note that the
approximation Qr = 〈ξ ′′〉 ≈ 0 is reasonable in free-shear flows if the LES grid provides an
adequate resolution. If an LES grid is not fine enough then a model for Qr = 〈ξ ′′〉 has to
be specified.

In the case where the variance Q = 〈ξ 2〉 − 〈ξ 〉2, the residual contribution is important
and can be modelled by the mean SGS variance Qr = 〈Vξ 〉. This follows from the expansion
of Q in terms of ξ̃ and ξ ′′ and the assumption that 〈ξ ′′〉 ≈ 0, and leads to Q ≈ 〈(ξ̃ )2〉 −
〈ξ̃ 〉2 + 〈2ξ̃ ξ ′′ + ξ ′′2〉. The first two terms produce the resolved LES variance while the
last ones can be approximated by 〈Vξ 〉. Thus, the LES-based estimation for the variance
is written as Qm = QW + Qr = [〈(ξ̃ )2〉 − 〈ξ̃ 〉2] + 〈Vξ 〉. Note that the present model is a
reasonable estimation for the variance as soon as the mean mixture fraction is adequately
resolved, i.e. the assumption that 〈ξ ′′〉 ≈ 0 is valid throughout the flow domain.

In summary, a primary objective of the present work is to study how the ‘minimally’
different, i.e. at the discrete level, LES models I and II affect both components of the total
LES statistics with respect to the turbulence resolution scale �.
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622 K.A. Kemenov et al.

Figure 1. Geometrical configuration of Sandia flame D visualised by instantaneous temperature
contours on different grids G1, G2, G4 and G5. The cold (blue) methane–air mixture jet that
emanates from the bottom is ignited, stabilised by the hot pilot products (red), and then burns further
downstream. The colour bar gives the temperature in Kelvin.

3. Computational configuration

Sandia flame D has been studied quite extensively in the experimental works of Barlow
and Frank [24] and Schneider et al. [25], and is visualised in Figure 1 by temperature
contours on several grids with increased resolution. Qualitatively, it is readily seen that
as the grid resolution increase the finer scale structures become more and more apparent,
thus showing the dependence of the LES solution on the turbulence resolution scale. The
fuel jet consists of a mixture of 25% methane and 75% air (by volume) and emanates
from a nozzle (located at the bottom in Figure 1) with diameter D = 7.2 mm at a bulk
velocity of Ub = 49.6 m s−1 and temperature of 294 K. The nozzle is surrounded by a
coaxial pilot nozzle with diameter of 2.62D. The hot pilot flow is a lean burnt mixture of
C2H2, air, CO2, H2 and N2 corresponding to a mixture fraction value of ξ = 0.271, with
a bulk velocity of 11.4 m s−1 and temperature of 1880 K. The coaxial burner is further
surrounded by co-flowing air with a bulk velocity of 0.9 m s−1 and temperature of 291 K.
A characteristic Reynolds number of Re = 22,400 is defined based on the fuel jet velocity,
kinematic viscosity (ν = 1.58 × 10−5 m2 s−1) and the nozzle diameter. At this Reynolds
number the flame is characterised by a minimal level of local extinction due to moderate
strain rates exerted by the velocity field.

In this work the computational and geometrical configurations follow closely those
reported in a recent study of Sandia flame D by Kemenov and Pope [15]. Here, for com-
pleteness we briefly highlight the main parameters and conditions used in the performed
simulations. The computational domain is a cylinder with an extent of 120.3D × 20D × 2π

represented in cylindrical coordinates (x, r, θ ). The jet and pilot nozzles have a small axial
extension of 0.3D upstream of the nozzle exit plane, which is taken as the origin of the
axial coordinate, x. The dimensions of the computational domain as well as flow variables
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Combustion Theory and Modelling 623

are non-dimensionalised by the characteristic jet parameters (i.e. diameter, bulk velocity,
density).

An accurate specification of the inflow boundary condition is notoriously difficult for
this type of flame configuration. Vreman et al. [30], for example, observed a significant
decrease in the centreline mixture fraction if the experimental values of the mean and rms
fields are specified at the nozzle exit plane (x = 0). As a result, the authors proposed to use
the inflow conditions at the x = D inlet plane that demonstrated an accurate match between
the computed mean centreline mixture fraction and the corresponding experimental data,
even though the mean centreline velocity appeared to be quite overpredicted downstream.
This trend manifested by overprediction of the mean centreline velocity downstream, after
x = 20D, was observed in other LES flame D studies [26, 27] which employed different
methods for specification of the inflow condition. Clayton and Jones [31], on the other
hand, advocated the use of turbulence-free inflow conditions with zero fluctuations on the
grounds that the measured turbulent intensities of the jet (∼3%) are much smaller than
those generated in the jet mixing layers further downstream.

In this work, following Ihme and Pitsch [22], we generate the turbulent jet inflow velocity
condition by separately running a high resolution LES of the stationary turbulent pipe flow
where the experimental mean and rms axial velocity profiles as measured by the TU
Darmstadt group [25] are enforced. The turbulent pipe flow simulation has been conducted
on a 192 × 96 × 96 grid with periodic boundary conditions in the streamwise direction.
Accumulated velocity field data are saved and used to generate inflow conditions by linear
interpolation onto the LES grid at the jet inlet plane (x = −0.3D). It was also observed
that shifting the inlet plane further upstream leads to excessive velocity fluctuations on
the jet centreline, especially for coarse grids, and, as a result, to an inability to match the
mean velocity experimental profiles at the nozzle exit plane in the centreline region. The
inflow velocity condition for the pilot is based on the measured mean with superimposed
uncorrelated random noise fluctuations of low intensity (∼1%) according to the measured
rms profiles, while in the co-flow region the measured bulk values with zero turbulent
intensity are used. The mixture fraction field is prescribed as a step function according to
an experimental value of ξ̃ = 0.271 for the pilot, and ξ̃ = 1 and ξ̃ = 0 for the jet and co-flow,
respectively. Finally, convective boundary conditions are employed for velocity and scalar
fields on the outflow boundary including the entrainment boundary of the computational
domain.

A structured Stanford LES code is employed to solve the variable-density LES equations
written in cylindrical coordinates [11]. The numerical method is second-order accurate in
space and time and adopts an energy-conserving discretisation scheme for the momentum
equation. Scalar transport equations are discretised using the QUICK scheme [37] and
solved employing a semi-implicit iterative technique, which has proven to be effective for
typical low-Mach combustion problems [11, 22]. Domain decomposition is used for the
LES code parallelisation.

It is seen from Equations (1)–(5) that the LES solution is a function of the turbulent
resolution scale �(x). As is customarily done in practice, we associate the turbulent reso-
lution scale with the local numerical grid resolution h(x), thus enforcing h(x)/�(x) = 1.
In this work we employ five grids G1, . . . , G5 with a progressively increasing resolution
from about 0.2 to 10.5 million cells as detailed in Table 1. All grids are stretched in the
axial direction as well as in the radial direction, with clustering in the jet nozzle and pilot
annulus regions, while remaining uniformly spaced in the circumferential direction. Grid
resolution parameters for the jet nozzle and the pilot are given in Table 2. The dependence
of the grid cell sizes with respect to distance in the radial and axial directions is shown

D
ow

nl
oa

de
d 

by
 [

C
or

ne
ll 

U
ni

ve
rs

ity
] 

at
 1

2:
05

 1
8 

A
ug

us
t 2

01
2 



624 K.A. Kemenov et al.

Table 1. Grid parameters and the minimum/maximum cell width in the non-dimensionalised axial
and radial directions x̂ ≡ x/D, r̂ ≡ r/D.

Resolution
Grid (x̂, r̂, θ ) Cells, 106 �x

min �x
max �r

min �r
max

G1 96 × 64 × 32 0.196 12. × 10−2 4.78 2.8 × 10−2 1.96
G2 160 × 96 × 64 0.983 7.3 × 10−2 2.89 1.8 × 10−2 1.33
G3 256 × 128 × 64 2.097 4.5 × 10−2 1.81 1.4 × 10−2 1.01
G4 256 × 192 × 96 4.719 4.5 × 10−2 1.81 9.4 × 10−3 0.67
G5 320 × 256 × 128 10.485 3.6 × 10−2 1.45 7.0 × 10−3 0.51

in Figures 2(a) and (b) and compared to the spatial resolution size of 0.75 mm achieved
in the scalar measurements [24]. It is seen that the finest grid G5 provides the resolution
comparable to the experimental one, or better, only in the near-field region of x ≤ 6.5D

and r ≤ 4.5D which rapidly shrinks with grid coarsening. Due to approximately linear
stretching, the axial grid spacing grows downstream. For example, at an axial location of
x = 15D, the axial resolution is approximately twice the experimental resolution on the
G5 grid and as high as seven times the experimental value on the coarsest G1 grid. At
that location the jet’s edge is at about 3D in the radial direction so the radial grid spacing
of the first three grids G1–G3 is larger than the experimental resolution with G1’s being
the largest and approximately two and a half times larger than the size of the experimental
probe volume.

In all simulations, with the exception of the finest grid G5, a zero state is employed as
the initial condition for all scalar variables except the axial velocity field, which is taken
to be uniform and equal to the co-flow velocity in the whole domain. For the finest grid,
the initial fields are interpolated from a statistically-stationary solution on the preceding
grid G4. Time integration is performed with a variable time step corresponding to a
CFL number of 0.3–0.35. Statistics are accumulated after the simulation has reached a
statistically-stationary state which is verified by convergence in the rms statistics. This
corresponds to about 10 flow-through times based on the jet averaged centreline velocity
and the characteristic length of L = 75D (tf l = ∫ L

0 dx/〈Ũ 〉(x, 0)). Such a defined flow-
through time is about twice as large as a time computed one based on the bulk velocity value
(tB = L/UB). After that, the simulation is continued for approximately five flow-through
times to accumulate statistics. LES statistics Qm are computed by averaging in time and the
circumferential direction and, thus, are functions of x and r . These averages are denoted
by angular brackets, e.g. Qm = 〈Ũ 〉(x, r). The specific objective of the present work is to
study the influence of �(x) on statistics of the resolved velocity and mixture fraction fields

Table 2. Grid resolutions for the jet nozzle and the pilot.

Cells in x̂ Cells in r̂ Cells in r̂ Cells in Cells in
Grid for x̂ < 0 for jet nozzle for pilot jet nozzle wall pilot wall

G1 3 10 15 2 2
G2 5 15 22 3 3
G3 8 20 30 3 4
G4 8 30 45 4 6
G5 9 40 50 5 7
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Figure 2. Grid resolutions for G1–G5 grids in the axial (a) and radial (b) directions compared with
spatial resolution of the scalar measurements equal to 0.10416D [24], and shown by a horizontal line.
Two minima in the radial resolutions correspond to grid clustering near the jet nozzle and pilot walls.

with respect to two different ways of treating the SGS variance Vξ expressed by models I
and II, respectively.

4. Results and discussion

4.1. Resolved velocity field

Axial profiles of the mean centreline streamwise velocity for models I and II on different
grids are shown in Figures 3(a) and (b), respectively. The velocities shown in these figures
are normalised by the jet bulk velocity. It is seen that both models exhibit convergence to
almost the same asymptotic state starting with the G3 grid, while slightly overpredicting the
mean velocity after axial location of x/D = 20. This is further evident from radial profiles
of the mean and rms streamwise velocity shown in Figures 4 and 5 for axial locations of
x/D = 7.5, 15, 30 and 45. For both variance models the mean and rms velocity fields
demonstrate convergence at the same rate and to the same state, which is well described by
the G3 grid solution. Overall, the mean and rms velocities for the converged state (G3–G5)
are in good agreement with the experimental values, except a small overprediction of the
mean streamwise velocity near the centreline at axial locations of x/D = 30 and 45.

The rms velocity fields from both models are characterised by the convergence ‘from
above’, where the higher rms values are observed on the coarser grids. This is probably
due to the fact that finer grids tend to resolve velocity gradients better, resulting in higher
values of the resolved strain rate which diminish the rms velocity fluctuations because of
the higher dissipation rate, and in spite of the lower values of the turbulent eddy viscosity.

The dependence of the resolved velocity statistics on � at particular axial and radial
locations is shown in Figure 6. Here, the mean and rms of the streamwise velocity are
plotted versus the grid spacing measure h (∼�). Since all grids are non-uniform, the grid
spacing measure h is taken to be the inverse of the number of cells in the jet in the radial
direction. The particular choice of these location points is related to the convergence of
the mixture fraction variance and is discussed in the next section. Figure 6 demonstrates
convincing convergence of the resolved velocity statistics for both variance models. Thus,
density changes due to the SGS mixture fraction variance which happen to attain higher
values for model II seem to have a marginal effect on the resolved rms velocity as it is
almost identical for both models. Finally, we can conclude that as far as the statistics of the
resolved velocity is concerned, both variance models produce equivalent results.
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Figure 3. Axial profiles of the centreline mean streamwise velocity (a, b) and mean mixture fractions
(c, d) for models I and II for different grids G1–G5 compared with the experimental data (circles)
[24, 25]. The error bars on the experimental velocity profiles show the statistical uncertainties as
reported in [25].

It is further remarked here that comparison with experimental data assists the present
discussion only marginally. For example, it is interesting to note that the coarsest G1 grid
provides the best approximation to the experimental values of the rms of the streamwise
velocity at x/D = 45 as well as a reasonably good approximation to the experimental mean
streamwise velocity on the centreline, which, nevertheless, does not make this LES solution
satisfactory. It is also the case that experimental data contains some errors and uncertainty.
But however imperfect, it is better to make comparison with experimental data than not to
do so.

4.2. Resolved mixture fraction field

Figures 3(c) and (d) show axial profiles of the mean mixture fraction for models I and II,
respectively. On the jet centreline, both models approximate the experimental data quite
well showing convergence for the three finest grids. The results obtained are comparable
to those of Ihme and Pitsch in their recent study [22] which employs the same code, a grid
close to G3 but a different combustion model – the extended flamelet/progress variable
model. It is interesting to note that a simple combustion model adopted here leads to the
overprediction of the axial experimental values of the mean temperature field (not shown
here and discussed in [15]) by about 100 K at downstream locations, which is similar to a
trend reported by Ihme and Pitsch, and by other authors [30], and which can be linked to
not accounting for the radiation effects in the flamelet models [38]. Radial profiles of the
mean mixture fraction as well as the resolved variance QW = ξ̃ 2

rms = [〈(ξ̃ )2〉 − 〈ξ̃ 〉2], SGS
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Figure 4. Radial profiles of mean and rms of streamwise velocity for models I (a, b, e, f ) and II
(c, d, g, h) at axial locations of x/D = 7.5 and 15 compared with the experimental data (circles).
Results are obtained on grids: G1 – grey line, G2 – dashed thin line, G3 – solid thin line, G4 –
dashed line and G5 – solid line. Note that the mean profiles on the G3–G5 grids become indis-
tinguishably close. The error bars on the experimental profiles show the statistical uncertainties as
reported in [25].
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II: ũ , x/D = 30 II: ũrms, x/D = 30
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Figure 5. Radial profiles of mean and rms of streamwise velocity for models I (a, b, e, f ) and II
(c, d, g, h) at axial locations of x/D = 30 and 45 compared with the experimental data (circles).
Results are obtained on grids: G1 – grey line, G2 – dashed thin line, G3 – solid thin line, G4
– dashed line and G5 – solid line. Note that the mean profiles on G3–G5 grids become indistin-
guishably close. The error bars on the experimental profiles show the statistical uncertainties as
reported in [25].
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Figure 6. Convergence of the resolved velocity statistics 〈ũ〉 (squares) and ũrms (circles) with grid
spacing h (∼�) for model I (a, c) and model II (b, d) at axial locations of x/D = 7.5 and 15. Each
statistics is shown at two radial locations: r/D = 0.7 (upper line) and r/D = 0.9 (lower line) for
x/D = 7.5 and r/D = 0.8 (upper line) and r/D = 1.2 (lower line) for x/D = 15.

variance Qr = 〈Vξ 〉 and total variance Qm = QW + Qr of the mixture fraction are shown
in Figures 7–10 at axial locations of x/D = 7.5, 15, 30 and 45. In these figures, top and
bottom rows correspond to models I and II, respectively.

The mean mixture fraction fields from both models demonstrate convergence to the
same solution on G3, G4 and G5 grids in most of the domain. In general, this convergent
behaviour also characterises the resolved mixture fraction variances, but it is somewhat
more complicated. It is seen from Figure 7 that in the near-field at x/D = 7.5 the resolved
variances exhibit a visible sensitivity to the turbulent resolution scale � at the locations of
their maxima (r/D ∼ 0.5–0.75), i.e. in a mixing layer between cold jet fuel and hot pilot
products. This can be related to a strong decrease of the turbulent subgrid diffusivity ρ̄DT in
this region as grids are more and more refined, while the molecular diffusivity ρ̄D̃ remains
unchanged and smaller than its peak values because of temperature. Therefore, changes
in turbulent subgrid diffusivity are contributing more to changes in the total diffusivity
which results in less dissipation for finer grids and promotes higher values of the resolved
mixture fraction variance. Further downstream at x/D = 15 and 30, the resolved mixture
fraction variance shows less sensitivity to � and reaches an approximate convergent state
on all G3–G5 grids (Figures 8 and 9). Here, the peak locations of the resolved variance are
around r/D = 1, where the temperature is the highest and so is the molecular diffusivity,
which dominates the subgrid diffusivity. At far field locations, for example at x/D = 45
(Figure 10), the convergence in variance is less convincing, especially for model II. The
reason for this could be two-fold: first, the far field locations clearly require longer runs
to accumulate an equivalent statistically representative ensemble (compared to near-field
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Figure 7. Radial profiles of mean (a, d), resolved variance – QW (b, e) and total variance (c, f )
Qm = QW + Qr of the mixture fraction for models I (top row) and II (bottom row) at an axial location
of x/D = 7.5 for grids: G1 (grey), G2 (dashed), G3 (thin), G4 (bold dashed) and G5 (bold). Insets
in (c, f ) show residual variance profiles, Qr = 〈Vξ 〉. Experimental data – circles [24].
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Figure 8. Radial profiles of mean (a, d), resolved variance – QW (b, e) and total variance (c, f )
Qm = QW + Qr of the mixture fraction for models I (top row) and II (bottom row) at an axial location
of x/D = 15. Insets in (c, f ) show residual variance profiles, Qr = 〈Vξ 〉.
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Figure 9. Radial profiles of mean (a, d), resolved variance – QW (b, e) and total variance (c, f )
Qm = QW + Qr of the mixture fraction for models I (top row) and II (bottom row) at an axial location
of x/D = 30. Insets in (c, f ) show residual variance profiles, Qr = 〈Vξ 〉.
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Figure 10. Radial profiles of mean (a, d), resolved variance – QW (b, e) and total variance (c, f )
Qm = QW + Qr of the mixture fraction for models I (top row) and II (bottom row) at an axial location
of x/D = 45. Insets in (c, f ) show residual variance profiles, Qr = 〈Vξ 〉.
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locations); second, the increase in cell size due to stretching in the axial direction may be
excessive.

Comparing the resolved mixture fraction variance profiles of models I and II with the
experimental data, it is seen that they overpredict the experimental values in the near field
(x/D = 7.5), they are in general agreement with the experimental values at x/D = 15, and
they start consistently underpredicting the experimental maximum values from x/D = 30.
This suggests a non-constant value of the coefficient in a model for the SGS dissipation
rate given by Equation (7). Model II is characterised by slightly higher levels of the
resolved mixture fraction variance up to x/D = 7.5. These differences, however, become
negligible as the jet develops further downstream. The major noticeable difference between
the considered variance models comes from the mean values of the SGS mixture fraction
variance as is evident from Figures 7–10. In the case of the mixture fraction square equation
(model II) the SGS variance in the near-field (for x/D < 15) attains two to three times
higher values compared to that obtained in model I. It is seen from Figure 7 that closer to
the jet nozzle the SGS variance given by model II is even larger than the corresponding
resolved variance on the first two grids while being comparable in magnitude for the G3–
G5 grids. This leads to a gross overprediction of the total variance for axial location of
7.5 compared to the results of model I. The higher levels of the SGS variance obtained in
model II can be attributed to negative values of the extra source term rh, possibly, due to
underprediction of the scalar gradient values as discussed earlier in Section 2.2. Further
downstream (for x/D ≥ 15), as the scalar gradient becomes weak, the SGS mixture fraction
variance decreases rapidly and provides the smaller contribution to the total variance, but
is still significant (about 30% on the G5 grid) in case of model II. Beyond an axial location
of x/D = 30 the contribution of the SGS mixture variance is negligible.

An important difference between the two models is highlighted in Figures 9 and 10,
which show that the mean SGS variance computed with model II develops negative values
as the grid becomes more refined and one moves downstream. Thus, in this region model
II loses the physical realisability property. In contrast, the SGS variance computed with
model I monotonically decreases but always stays positive. One possible reason for that
stems from the fact that the discrete (ξ̃ )2 does not satisfy the corresponding discrete
conservation equation (Equation 19). Qualitatively, when the turbulence resolution scale
� decreases towards the DNS limit, Sξ tends to sξ (sξ ≡ (ξ̃ )2) while always satisfying its
governing equation (Equation 9). This convergence is from above since one has Sξ ≥ sξ

because of Sξ = sξ + Vξ and non-zero SGS variance Vξ which is supposed to vanish in the
DNS limit. On the other hand, since (ξ̃ )2 in the discrete version of Equation (10) is directly
obtained from the discrete mixture fraction field it does not satisfy Equation (13) for the
square of the resolved mixture fraction at the discrete level. As a result, there is no reason
to expect that both terms on the right-hand side of the discrete version of Equation (10), i.e.
V II

ξ = Sξ − (ξ̃ )2, would experience convergence to their DNS values at the same rate as �

goes towards the DNS limit. In particular, on the finer grids the first-order statistics of (ξ̃ )2

can be found converged earlier than that of Sξ . In other words, there exists some resolution
scale �∗ starting from which the mean values of (ξ̃ )2 would exhibit a ‘zero’ convergence
rate while the mean of Sξ would continue to converge. Thus, it cannot be ruled out that
for smaller values of the SGS variance the mean values of Sξ catch up with those of (ξ̃ )2

and even become smaller resulting in the appearance of negative regions of the mean SGS
variance V II

ξ .
This scenario seems to receive some confirmation from the inset to Figure 9(f ), which

shows a negative region in 〈V II
ξ 〉 between radial locations of r/D = 1.7 and 4, approximately.

D
ow

nl
oa

de
d 

by
 [

C
or

ne
ll 

U
ni

ve
rs

ity
] 

at
 1

2:
05

 1
8 

A
ug

us
t 2

01
2 



Combustion Theory and Modelling 633

Simultaneously, Figures 9(d) and 9(e) show that both the mean mixture fraction 〈ξ̃ 〉 and
the resolved mixture fraction variance ξ̃ 2

rms are fully converged there on the G3–G5 grids,
hence the sum 〈ξ̃ 2〉 = 〈ξ̃ 〉2 + ξ̃ 2

rms is converged also. Therefore, 〈V II
ξ 〉 = 〈Sξ 〉 − 〈ξ̃ 2〉 may

become negative since the last term is nearly independent of � because of the convergence,
while the first term continues to decrease because the DNS limit has not been reached
yet. Note that non-decreasing of the first term would be equivalent to the existence of
non-vanishing variance at the DNS limit, which is undesirable and leads to inconsistent
formulation. To make the convergence rate of the mean (ξ̃ )2 consistent with that of the
mean Sξ at the discrete level and towards the DNS limit, one needs to make (ξ̃ )2 satisfy the
governing equation for sξ at the discrete level, which is equivalent to employing model I
with V I

ξ defined by Equation (8). Finally, we would like to point out that while the results
obtained clearly prove that model II is not realisable they are not sufficient to prove that
model I is always realisable.

The dependence of the LES statistics on the turbulence resolution scale is further
highlighted in Figures 11, 12 and 13. Here, the mean values of the mixture fraction are
plotted versus the grid spacing measure h in Figure 11. The resolved, SGS and total
variances of the mixture fraction are shown in Figures 12 and 13. These profiles correspond
to two radial locations for each of the two axial locations considered (x/D = 7.5 and 15).
The first radial location is taken to be around the maximum of the resolved variance, and
the second location is shifted towards the lean side, i.e. r/D = 0.7, 0.9 and r/D = 0.79,
1.2 for x/D = 7.5 and 15, respectively. Figure 11 demonstrates convincing convergence of
the mean mixture fraction 〈ξ̃ 〉 almost everywhere for both models on grids G3–G5, albeit
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Figure 11. Convergence of the mean mixture fraction 〈ξ̃〉 with grid spacing h (∼�) for model I
(a, c) and model II (b, d) at axial locations of x/D = 7.5 and 15. Each plot shows 〈ξ̃〉(h) at two radial
locations: r/D = 0.7 (upper line) and r/D = 0.9 (lower line) for x/D = 7.5 and r/D = 0.8 (upper
line) and r/D = 1.2 (lower line) for x/D = 15.
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Figure 12. Convergence of the mixture fraction variances QW , Qr and Qm with grid spacing h (∼�)
for model I (a, c) and model II (b, d) at two radial locations of r/D = 0.7 and 0.9 at x/D = 7.5.
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Figure 13. Convergence of the mixture fraction variances QW , Qr and Qm with grid spacing h (∼ �)
for model I (a, c) and model II (b, d) at two radial locations of r/D = 0.8 and 1.2 at x/D = 15.
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with a slight decrease on grid G5. Figures 12 and 13 clearly reveal significant differences
in the calculations of mixture fraction variance provided by the two models. For model
I there is good convergence of the total modelled variance Qm on grids G3–G5 (albeit
with variation for grid G5 at x = 7.5D and r = 0.9D); and the residual contribution Qr is
relatively small. For model II, the residual contribution is much larger; and it appears to be
too large, in that Qm generally decreases as the grid is refined. At the inner radial location,
Qm given by model II appears to converge for grids G3–G5, but to a larger value than given
by model I. Note that QW given by model II agrees with the model I asymptote, and it is
plausible that the higher values of Qm for model II are due to spuriously large contributions
from Qr . Simulations on yet finer grids would be needed to confirm this hypothesis. It
is also interesting to note that at the inner locations the total variance Qm appears to be
better converged on the three finer grids than the resolved variance QW for both models.
Thus, the residual variance Qr properly compensates for slow convergence of the resolved
variance QW .

From calculations of the mixture fraction presented above, we conclude that model
I is distinctly advantageous over model II. This is based on (i) the superior convergence
properties of model I exhibited in Figures 12 and 13, and (ii) the fact that model I is
realisable, whereas model II yields negative variances in some parts of the flow (insets in
Figures 9 and 10). It should be appreciated that the difference between the two models is
in their numerical implementations, and hence this conclusion pertains to the numerical
schemes employed in the current LES code. However, as follows from the discussion in
Section 2.2, this conclusion could be relevant for a rather wide class of numerical schemes
for which the extra numerical source term rh assumes non-negligible negative values.

5. Conclusions

LES of the piloted non-premixed Sandia flame D has been performed on a series of grids
with progressively increasing resolution from 0.19 to 10.4 million cells, with the purpose
of studying the sensitivity of LES statistics to the turbulence resolution scale � and to
modelling the mixture fraction variance. A simple combustion model has been adopted
to parametrise reacting density and temperature in terms of the mixture fraction and its
subgrid variance, which utilises a quadratic B-spline approximation. Spline coefficients for
quadratic analytic approximations of specific volume and temperature have been obtained
based on a flamelet CHEMKIN simulation with a detailed chemistry mechanism. Simplicity
and analytic representation eliminates the effect of the flamelet table interpolation errors
on an LES solution and its statistics.

Two approaches to modelling the SGS variance were analysed. The first one (model
I) adopts a transport equation for the SGS variance, while in the second one (model II),
a transport equation for the square of the mixture fraction is used. These models are
equivalent in the continuous sense with the only difference arising from different numerical
approximation errors. The observed differences between the two models are attributed to
numerical errors arising from not enforcing the conservation property in model II for the
square of the mixture fraction at the discrete level. It manifests itself as the appearance of
an extra numerical source term when the discrete governing equations for both models are
written in the equivalent form. However, due to the relative insensitivity of the considered
flame configuration to the incurred errors in the SGS variance, the obtained statistics
of the resolved LES fields are quite comparable and reproduce the essential features of
Sandia flame D well. It is anticipated that in more challenging flame regimes involving
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auto-ignition, flame stabilisation and dilution by burnt products the models would exhibit
appreciable differences in LES solutions.

The results obtained demonstrate that the LES statistics exhibit clearly identifiable
convergence regions with respect to �. However, these regions are different and depend
on the type of LES statistics (mean or variance) and flow variables (velocity or mixture
fraction) considered. In the jet near-field (x/D ≥ 15) the mean LES velocity exhibits
convergence at the larger turbulence resolution scale than the corresponding variance field
does. Overall, the LES velocity statistics are shown to be convergent throughout the flow
domain on the three finest grids for both models. Both statistics (mean and variance) of the
resolved mixture fraction demonstrate consistent convergence on the three finest grids, the
only exceptions being small regions of high scalar gradients where the resolved mixture
fraction variance is found to converge more slowly.

To analyse the total LES variance the residual variance contribution has been estimated
as the mean SGS variance based on models I and II. The results obtained show that the total
LES variance exhibits better convergence properties than the resolved variance irrespective
of the model chosen for the residual variance, emphasising the importance of accounting
for the residual contribution in LES statistics. Thus, the total LES statistics Qm can be used
for an approximate identification of convergent/non-convergent regions of flow which is
important in developing an adaptive LES implementation [7].

While in model I the mean SGS variance exhibits physical realisability everywhere
(〈V I

ξ 〉 ≥ 0), its square mixture fraction counterpart (model II) is characterised by the ex-
istence of negative regions (〈V II

ξ 〉 ≤ 0) in the far field of the jet (x/D ≥ 30) on the finer
grids. Model II always predicts higher values of the SGS variance. Moreover, given statisti-
cal errors, it is plausible that the model I total variances on grids G3–G5 are within a small
neighbourhood (say 5%) of the asymptotic value. Overall, due to (i) convincingly better
convergence properties with respect to the turbulence resolution scale �, (ii) observed
physical realisability everywhere, and (iii) the formulation which facilitates conservation
at the discrete level, model I provides a clear advantage over model II pertaining to the
conducted LES of Sandia flame D.

Furthermore, more generally, the approach adopted in this work also provides a frame-
work for examining the consistency of the LES statistics at the DNS limit by drawing a
comparison between the total and resolved LES statistics estimated at � → 0. An LES
model is deemed to be consistent at the DNS limit if both statistics are equal.
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