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We employ direct numerical simulations to study the mixing of two passive scalars in stationary,
homogeneous, isotropic turbulence. The present work is a direct extension of that of Eswaran and
Pope1 from one scalar to two scalars and the focus is on examining the evolution states of the scalar
joint probability density function~jpdf! and the conditional expectation of the scalar diffusion to
motivate better models for multi-scalar mixing. The initial scalar fields are chosen to conform
closely to a ‘‘triple-delta function’’ jpdf corresponding to blobs of fluid in three distinct states. The
effect of the initial length scales and diffusivity of the scalars on the evolution of the jpdf and the
conditional diffusion is investigated in detail as the scalars decay from their prescribed initial state.
Also examined is the issue of self-similarity of the scalar jpdf at large times and the rate of decay
of the scalar variance and dissipation. ©1996 American Institute of Physics.
@S1070-6631~96!03108-X#

I. INTRODUCTION

An important feature of turbulent motion is its ability to
mix and to transport passive scalars at rates much higher
than those due to molecular diffusion. Often, more than one
scalar is involved in the mixing process. Examples of this
can readily be seen in natural or engineering flows such as
the dispersion of pollutants in the atmosphere, salinity and
temperature fluctuations in the ocean, and the mixing of spe-
cies in turbulent reactive flows. While the turbulence under-
lying the above flows is essentially time dependent and in-
homogeneous, a detailed study of these complex flows does
not highlight any one physical concept or mechanism be-
cause there are so many interacting processes at work. In-
deed, it is of great interest to investigate simple flows which
clearly elucidate the basic mechanisms involved in turbulent
mixing without the added complications of inhomogeneity,
complex flow geometries or decaying turbulence. Over the
last couple of decades, direct numerical simulations~DNS!
of the Navier-Stokes equations have emerged as a leading
research tool for examining the physics of turbulence at
moderate Reynolds numbers because of their unique ability
to provide fully resolved spatio-temporal evolution of the
flow fields without any modeling or approximations. Conse-
quently, the present work employs DNS to study the mixing
of two decaying scalar fields with a prescribed initial joint
probability density function~jpdf! in statistically stationary,
homogeneous, isotropic turbulence.

A significant amount of experimental and computational
effort has been exerted to study the mixing of a single pas-
sive scalar in turbulent flows. A number of researchers have
studied the evolution of one-point and two-point quantities
of scalar fields in grid turbulence~see, e.g., Refs. 2 and 3!.
Laser Induced Flouresence~LIF! techniques have been used
to obtain and study images of instantaneous scalar fields in
turbulent flows4,5 and Dahmet al.6 have developed a method
for acquiring a sequence of planar LIF images sweeping a

volume to get four-dimensional experimental data on scalar
mixing. On the other hand, Eswaran and Pope1 employed
DNS to examine the evolution of the probability density
function of a single scalar from an initial double-delta func-
tion distribution, while Kerr7 used DNS to examine the small
scale structure of the passive scalar. Blaisdellet al.8 have
carried out simulations to assess the effects of compressibil-
ity on the mixing process, and Pumir9 has studied the case
with a mean scalar gradient. Chasnov10 also used DNS to
present results for the similarity states of a passive scalar
field transported by isotropic and buoyancy generated turbu-
lence. Theoretical approaches which have been applied to the
mixing of a single scalar with some success include probabil-
ity density function~pdf! methods,11 mapping closures12 and
the linear eddy model.13

In contrast, data on the mixing of multiple scalars is
relatively scarce. Sirivat and Warhaft14 measured the corre-
lation between passive helium and temperature measure-
ments in grid generated turbulence. Warhaft15 also developed
an inference technique to study the covariance of thermal
fluctuations introduced in decaying turbulence at different
locations. Yeung and Pope16 employed DNS to examine the
differential diffusion of two scalars having different diffu-
sivities starting from an identical field for the two scalars,
while experimental studies of differential diffusion have
been reported by Saylor17 among others. The extension of
the theoretical approaches to multi-scalar mixing is far from
straightforward, and is further hampered by the lack of ex-
perimental or numerical data which can aid in model com-
parison and development.

Research on turbulent mixing processes is especially in-
structive in turbulent-reactive flow problems. Here, in the
limit of fast chemistry, one of the vital factors limiting the
rate of reaction is the mixing of initially segregated scalar
fields at the smallest scales at which the chemical reaction
takes place. Pdf formulations have had considerable success
in modeling reactive flow problems.11 These methods have
the important advantage of treating the effects of advection
and the nonlinear reaction rates exactly: however the process
of molecular mixing needs to be modeled. We consider non-
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reactive scalar fieldsfa(x,t),a51,2, which evolve by
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2fa , ~1!

whereu(x,t) is the velocity andD (a) is the diffusivity of the
scalar a. ~Suffixes in parentheses are excluded from the
summation convention.! For the statistically homogeneous
case under consideration, the one-point one-time joint prob-
ability density function~jpdf! of the two scalars is denoted
by P(c;t), wherec5(c1 ,c2) are the sample space vari-
ables corresponding tof5(f1 ,f2). This jpdf evolves by
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where the conditional diffusiong(c,t) is defined to be the
conditional expectation,

ga~c,t !5^D ~a!¹
2fauf~x,t !5c&. ~3!

In the present work, we examine the evolution of the scalar
jpdf P and the conditional diffusiong for the mixing of two
scalars starting from a prescribed initial state~triple-delta
function jpdf!. The work is in essence an extension of that
presented in Eswaran and Pope~hereafter EP! and it is hoped
that the present results will provide the necessary impetus for
the development of better mixing models for the multi-scalar
case.

A parallel implementation of Rogallo’s pseudospectral
algorithm18 for the IBM SP2 is used to carry out direct nu-
merical simulations of the governing equations in a cubic
domain with periodic boundary conditions. The low wave-
number modes are forced using the scheme described in Es-
waran and Pope19 to preserve statistical stationarity in the
velocity fields. The scalar fields are allowed to decay from
their prescribed initial state and we examine the evolution of
the scalar jpdf and the conditional diffusion in detail. The

effect of varying the initial length scales and the Prandtl
number of the two scalars on the mixing process is investi-
gated. Also examined is the tendency of the scalar jpdf to
reach a statistically self-similar state at large times as well as
the rate of decay of scalar variance and the mean scalar dis-
sipation rate. Nearly all the simulations were carried out on a
1923 grid at a Taylor-scale Reynolds number ofRel592,
excepting a few requiring the extraction of statistics at large
times which were performed on a smaller 963 grid at a
Taylor-scale Reynolds number ofRel548 in order to keep
the overall computational costs low. This also gave an op-
portunity to qualitatively compare the mixing process at dif-
ferent Reynolds numbers.

The remainder of the paper is organized as follows. In
Sec. II we provide a brief overview of the simulations in-
cluding the numerical method, parallel implementation and
the input flow conditions. In Sec. III we describe the method
for initializing the two scalar fields. The results from the
simulations are presented in Sec. IV. We conclude the paper
with a summary in Sec. V.

II. OVERVIEW OF THE SIMULATIONS

A. The numerical method

For incompressible flows, the equations governing the
evolution of the velocity and scalar fields can be written as

TABLE I. Summary of specified quantities for initial velocity fields.

Vel. field R92 R48

N 192 96
n 0.008 0.025
KF 2A2 2A2
Re* 14.4 14.4
TF* 0.15 0.15
CN 0.8 0.8

TABLE II. Summary of derived quantities for initial velocity fields.

Vel. field R92 R48

u 2.06 2.16
k0l 1.10 1.05
k0l 0.35 0.51
k0h 0.02 0.04
kmaxh 1.65 1.78
D* 0.49 0.49
T 0.52 0.50

th /T 0.08 0.14
Rel 92.4 48.6

TABLE III. Summary of input parameters for scalar fields.

Scalar field A B C D E

(ks /k0)1 4 8 2 2 4
(ks /k0)2 4 8 2 4 4
Pr1 0.7 0.7 0.7 0.7 0.7
Pr2 0.7 0.7 0.7 0.7 0.35
lf1

0.38 0.16 0.62 0.62 0.38
lf2

0.37 0.18 0.58 0.40 0.37
^f1f2& 20.0006 0.0025 0.001 20.009 20.0006

FIG. 1. A schematic for the initialization of the scalar fields. The composi-
tion plane represented byc1-c2 is divided into three sectors by the two
dashed lines and the negativec2 axis. The filled circles correspond to the
three initial states for the two scalar fields.~The evolution of the conditional
diffusion in Fig. 5 is shown along the two axes and the two dotted lines.!
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whereui is the component of the velocity in thei th direction.
A modified version of the pseudo-spectral method developed

FIG. 2. Contour plots of a planar slice through the initial scalar fields,f1(x,0) ~left column! andf2(x,0) ~right column! for cases A~top row!, B ~middle
row! and D ~bottom row!.
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by Rogallo18 for homogeneous turbulent flows was used to
solve the above equations numerically on a uniform three-
dimensional grid. In physical space, this corresponds to a
cube of sideL52p with the N3 grid points located at
x5( l 1D,l 2D,l 3D), wherel 1 , l 2 and l 3 are integers between
0 andN21 and the grid spacingD is equal toL/N. The
nodes in wavenumber space are located atk5(m1 ,m2 ,m3)
wherem1 , m2 and m3 are integers between 12N/2 and
N/2. ~The smallest wavenumber isk051 owing toL being
equal to 2p.) The use of Fourier representation imposes
periodic boundary conditions on the velocity and scalar
fields.

Briefly, the pseudo-spectral method solves the above
equations in spectral space because of the associated higher
accuracy in computing the spatial derivatives. However, the
bilinear products required for the convective terms are com-
puted in physical space to avoid the costly operation of con-
volutions in Fourier space. The aliasing errors introduced by
the transformation of these products back to Fourier space
are greatly reduced by a combination of phase shifts and
truncation. The viscous terms are treated exactly and are thus
eliminated as a stability constraint. The time advance of the
Fourier transformed equations is performed using an explicit
second-order Runge-Kutta method.

The numerical simulations are forced using the method
described in Eswaran and Pope.19 It consists of the addition
of a random term to the velocity time derivative in Fourier
space, at every time step, for each non-zero wavenumber
nodek lying within the spherical shell of radiusKF . The
random term is determined using a combination of indepen-
dent Uhlenbeck-Ornstein processes. The forcing scheme in-
troduces three nondimensional quantities in the form of a
forcing Reynolds numberRe* , a forcing time scaleT* and
the ratioKF /k0 ~see Ref. 19 for details!. Each of these pa-
rameters is kept constant for all the simulations presented
herein.

Numerical accuracy depends on both the spatial and the
temporal resolution. The former requires that the smallest
dynamically significant scales of motion characterized by the
Kolmogorov length scaleh be well resolved by the physical
grid. It is customary to characterize the spatial resolution of a
simulation by the dimensionless parameterkmaxh where
kmax is the highest resolvable wavenumber of the simulation.
It has been suggested that a value ofkmaxh51.0 is adequate
for low-order velocity statistics, but a value of at least 1.5 is
needed for higher-order quantities such as the dissipation and
derivative statistics.20 In order to determine the resolution
requirements for the evolution of the scalar field, we carried
out test simulations with one passive scalar~Prandtl number,
Pr50.7) on 643, 963 and 1283 grids at a Taylor-scale Rey-
nolds number ofRel550 corresponding tokmaxh being ap-
proximately equal to 1.1, 1.6 and 2.2, respectively. It was
found that the evolution of̂¹2f& and^¹4f& was very simi-
lar for the two finer grids in contrast to the coarser grid.
Hence we concluded thatkmaxh>1.5 provides sufficient
resolution for the accurate calculation of higher-order scalar
statistics as well. The accuracy of the time integration, on the
other hand, is determined by the Courant number defined as
CN5( i51

3 (uui u/D)maxDt, whereDt is the size of the time
step. The Courant number was kept constant at a value of
CN50.8 in our simulations in accordance with earlier
suggestions19 that it should be less than one for time stepping
errors to be negligibly small.

B. Parallel implementation

The simulations were carried out on the 512-node IBM
SP2 at the Cornell Theory Center. The programming model
employed was the single-program multiple data~SPMD! ap-
proach where the same version of the program runs on all
nodes. However, the work arrays are distributed across pro-
cessors so that each node performs the same operation on its

FIG. 3. The evolution of the scalar r.m.s (f8) and the mean scalar dissipation (^ef&) from the R92A simulations.t* represents the time normalized by the
eddy-turnover timeT. The filled symbols correspond tof1 while the hollow symbols are forf2 .
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FIG. 4. The evolution states of the scalar jpdf,P, ~a1-j1! and the corresponding conditional diffusion,g, ~a2-j2! from the R92A simulations. The plots are
shown at fixed values ofF corresponding to 1.0 for~a!, 0.9 for ~b!, 0.8 for ~c!, 0.7 for ~d!, 0.6 for ~e!, 0.5 for ~f!, 0.4 for ~g!, 0.3 for ~h!, 0.2 for ~i! and 0.1
for ~j!, respectively. BothP and ugu have been normalized by their respective maximum values at that time in each sub-plot, so that the greyscale in the
contour plots corresponds to eight equispaced shades between 0~white! and 1~black!.
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FIG. 4. ~Continued.!
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section of arrays. Node specific computations can also be
carried out by ascertaining the node identification number.
Such a programming model is inherently suited to the
distributed-memory message-passing parallel architecture of
the SP2, as the associated data parallelism allows the solu-
tion of a larger problem~more grid points! on extra proces-
sors without any appreciable degradation of the parallel effi-
ciency.@Parallel efficiency is defined as the ratio of observed
speedup in the execution time of the code on P processors to
the ideal speedup~P!.#

The bulk of the computational effort in a pseudo-spectral
algorithm involves the use of Fast Fourier Transforms~FFT!
to transform the data interchangeably between the physical
and the Fourier space. Consequently, we performed several
tests to determine the best way of distributing data among
processors which would yield the highest parallel efficiency
for the FFT computations. Our conclusion was the same as
that arrived at by Yeung and Moseley21 namely that the data
should be stored in planar slabs among processors with some
transfer of data involved to compute the FFT in the third
direction as follows: while in physical space, the data are
stored iny-slabs~i.e., partitions of data in which the nodes
have completex-z planes of data for a particulary extent!
and thex and thez transform of the data is computed. Then
using a collective communications procedure, the data are
transferred across processors such that each node now con-
tains z-slabs of data, and they transform is computed to

complete the transformation to Fourier space. The inverse
procedure is followed for transforming the data from Fourier
to physical space. For all other computations in the DNS
code requiring the transfer of data~such as the computation
of the spectra, forming the histograms for the jpdf’s!, each
processor first does the computation on its share of data, and
the results are then binned together at the master node for
output. This can be achieved with relatively high parallel
efficiencies of greater than 90% since the amount of data
transfer across processors is small. As for the complete DNS
code, for simulations on a 1923 grid on 32 processors, we
consistently achieved parallel efficiencies of greater than
75% based on the wallclock time required for the execution.

C. Flow field characteristics

Two grid sizes and Reynolds numbers are used in the
simulations. The larger grid calculations (N5192) are la-
beled R92~indicatingRel592), while the smaller grid cal-
culations (N596) are labeled R48~i.e.,Rel548). The input
parameters are given in Table I. For each case a pre-
simulation is performed in which, starting from random ini-
tial conditions, the velocity fields are advanced in time~for
about six eddy-turnover times! until a statistically stationary
state is achieved. The resulting velocity fields are then stored
and used as initial conditions for the mixing simulations. The
characteristics of the turbulence in the statistically stationary

FIG. 4. ~Continued.!

2167Phys. Fluids, Vol. 8, No. 8, August 1996 A. Juneja and S. B. Pope

Downloaded¬22¬Sep¬2004¬to¬140.121.120.39.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp



Color Plate 1: Results from the R92A simulations. The top row shows an arbitrary planar slice through the initial scalar fields,f1 ~left! andf2 ~right!, while
the second through fifth rows show the evolution states of the scalar jpdf~left! and conditional diffusion~right! atF51.0, 0.8, 0.6, and 0.4, respectively.~See
also the caption for Fig. 4.!
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state are given in Table II. The root mean square velocity
~averaged over the three components! is denoted byu. The
three length scales characterizing the energy-containing
scales, the dissipation scales and the mixed energy-
dissipation scales, respectively, are the integral scale,

l5
p

2u2E0
kmax

k21E~k!dk; ~7!

the Kolmogorov microscale,

h5~n3/e!1/4; ~8!

and the Taylor microscale,

l5
1

3(i51

3 F u~ i !
2

^~]u~ i ! /]x~ i !!
2&

G1/2, ~9!

whereE(k) is the energy spectrum function at scalar wave-
numberk5(k•k)1/2, and e is the volume averaged energy
dissipation rate andD* is its non-dimensionalized value
(D*[e/u3k0). The time scale of the energy-containing ed-
dies is the eddy-turnover timeT5 l /u and the time scale of
the dissipation range eddies is the Kolmogorov timescale
th5(n/e)1/2. The Reynolds number characterizing the simu-
lations isRel5ul/n.

III. INITIAL SCALAR FIELDS

Eswaran and Pope1 studied the mixing of a single scalar
(f1) with an initial ~approximate! double-delta-function pdf
corresponding to blobs of fluid in two distinct states,
f1'21 andf1'1. Here we extend these ideas to study the
mixing of two scalars with an initial~approximate! triple-

FIG. 5. The evolution of the normalized values ofg1 andg2 from the R92A simulations. Each column represents a fixed line in the composition plane and
each row a fixed time from the simulations. Column 1 corresponds to thec150 line, column 2 to thec2520.5 line, column 3 toc250.0 line, and column
4 toc250.5 line~see Fig. 1!. The values ofg1 ~filled squares! andg2 ~hollow squares! along these lines are plotted atF51.0 ~row 1!, F50.8 ~row 2!, F50.6
~row 3!, andF50.4 ~row 4!, respectively.
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FIG. 6. Same as Fig. 4, but for R92B simulations.
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FIG. 6. ~Continued.!
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delta-function jpdf, corresponding to blobs of fluids of three
distinct states. As depicted in Fig. 1, in thec1-c2 sample
space, the three states correspond to the vertices of an equi-
lateral triangle, and lie on the unit circle around the origin.
Each initial state has equal probability, so that the means
^f1& and^f2& are zero. This ensures that in the composition
space the initial state has a three-way symmetry, and even
though the two scalar fields are not interchangeable, a 120°
rotation maps one onto the other. The initialization scheme
employed is analogous to the procedure followed in EP such
that the initial fields@f1(x,0),f2(x,0)# conform closely to a
triple-delta function jpdf, are resolved by the grid, and have
a specified length scale. This is accomplished by a three-step
procedure.

In the first step, two independent fields are defined in
Fourier space with random phases for each of the Fourier
coefficients. The respective amplitudes are determined such
that the resultant scalar energy spectrum function is given by
a specified functionf f(k). This can be equivalently stated as
follows:

f1,2~k,0!5F f f~k!

4pk2Gexp@2p iu~k!#, ~10!

wherek is the magnitude of the wavenumberk andu(k) is a
uniformly distributed random number between 0 and 1~in-
dependent of the wavenumberk). The functionf f(k) is cho-
sen to be a ‘‘top hat’’ function of widthk0 and centered on a
selected wavenumberks , i.e.,

ff~k!5H 1, if ks2k0/2<k<ks1k0/2,

0, otherwise.
~11!

As shown in EP, the parameterks /k0 essentially determines
the integral length scale of the scalar fields. Higher values of
ks /k0 yield smaller length scales for the scalar fields and
vice versa. Further, the value ofks /k0 for the first scalar
@hereafter (ks /k0)1] can be different from the value of
ks /k0 for the second scalar@hereafter (ks /k0)2].

In the second step, the two scalar fields are transformed
to physical space and the composition planec1-c2 is divided
into the three sectors shown in Fig. 1. If at pointx, the scalar
valuesf1(x),f2(x) ~obtained from the first step! lie in the
first sector of thec1-c2 composition plane, then the values
are reset to the first state, i.e., (f1(x),f2(x))5(0,1). Simi-
larly, if f(x) lies in the second or third sector, it is reset to
(2A3/2,21/2) or (A3/2,21/2), respectively. This opera-
tion yields the desired joint probability density function for
the two scalar fields, but causes the scalar value to change
abruptly between adjacent nodes, thereby causing significant
high-wavenumber components in the scalar fields which are
poorly resolved in the simulations.

The third and final step in the initialization scheme
therefore seeks to smooth out the scalar fields just enough so
that they are well resolved for the given grid size of the
simulation. This is achieved by transforming the fields de-
fined at the end of the second step back to Fourier space and
then multiplying them by a filter functionF(k), defined by

FIG. 6. ~Continued.!
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FIG. 7. Same as Fig. 4, but for R92D simulations~the plots atF50.2 and 0.1 are not shown!.
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FIG. 7. ~Continued.!
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FIG. 8. Same as Fig. 4, but for R92E simulations.
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FIG. 8. ~Continued.!
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F~k!5H 1, if k<kc,

~k/kc!
22, if k.kc ,

~12!

kc being the specified cutoff wavenumber. Therefore the sec-
ond parameter in the specification of the initial scalar field is
kc /ks . As explained in EP, it can be shown that beyond a
value ofkc /ks equal to 2, the effect of this parameter is not
significant, as it only affects the smaller scales where the
consequent variation is shortlived. Therefore we set the value
of kc to be twice the value of (ks)max, where (ks)max refers
to theks value of the scalar field with smaller initial length
scale.

It is clear that the procedure described above allows the
generation of two independent scalar fields whose initial
length scales can be varied together or relative to one an-
other. Hence this allows us to highlight the effect of initial
length scales of the scalar fields on the mixing process. In
addition, we also assess the effects of differential diffusion
by varying the Prandtl number of one scalar relative to the
other. Five different cases denoted by A, B, C, D and E are
studied, which differ in the specified wavenumbers
(ks /k0)1 and (ks /k0)2 used in the initialization, and the
Prandtl numbersPr (a)[n/D (a) . These values are given in
Table III. Also listed are the values of the covariance
(^f1f2&) and the integral length scales,lfa

for the initial
scalar fields generated on a 1923 grid, where

lfa
5
1

3(i51

3 S p

2^fa
2& D Eifa

~0!, ~13!

and Eifa
(k) is the initial one-dimensional scalar-energy

spectrum. Relative to the base case A, cases B and C have
smaller and larger initial lengthscales, respectively. For these
three cases the two scalars and the three initial states are
statistically identical, and so the jpdf has six-way symmetry.
Relative to the base case, in case D scalar 1 has approxi-
mately twice the initial lengthscale; while in case E, scalar 2
has twice the diffusivity~half the Prandtl number!. In cases
D and E the jpdf is symmetric about thec2 axis. A contour
plot of an arbitrary planar section through the scalar fields is
shown in Fig. 2. It can be seen that the two scalars are pre-
dominantly in one of the three possible states with sharp
gradients in between, thus conforming closely to a triple-
delta function jpdf. The simulations presented in the next
section are labeled according to the convention that R92B
indicates a simulation of case B atRel592, and so on.

IV. RESULTS

The primary focus of the current simulations is to study
the evolution of the scalar jpdf and the conditional diffusion
for the different initial scalar fields described in Table III.
These results are presented in Sec. IV A. Other issues of

FIG. 8. ~Continued.!
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interest which are studied involve whether or not the scalar
fields reach a self-similar state~Sec. IV B! and the rate of
decay of the scalar variance and dissipation at large times
~Sec. IV C!. We shall present detailed results from the R92A
simulations, where the initial length scales and the diffusivity
for the two scalar fields are the same. For the other cases, we
shall highlight the differences~if any! in the scalar mixing
process caused by a change in either the initial length scale
or the diffusivity. Except where noted, the results are from
simulations utilizing the 1923 grid atRel592, i.e., R92.

It has been observed in some of the prior simulations
~for example, EP! and experiments that for the mixing of a
single scalar with varying initial length scales~but the same
initial pdf!, the evolution states of the scalar pdf are approxi-
mately invariant if they are computed at fixed values of
f8/f08 . Here f8 represents the root mean square~r.m.s.!
value of the scalar at the given time andf08 is the r.m.s.
value at timet50 ~initial state!, the r.m.s. values being com-
puted by taking the square root of the volume averaged sca-
lar variance. Hence in the present simulations, we output the

various statistics at fixed values of the r.m.s.F[(f8/f08)1
where the subscript 1 denotes that the ratio is computed for
the first scalar. Figure 3 shows a plot of the evolution of the
scalar r.m.s (f8) and volume averaged scalar dissipation
@^ef&[D^¹f(x,t).¹f(x,t)&# from the R92A simulations.
Time is normalized by the large eddy-turnover time, i.e.
t*5tu/ l . It can be seen that, in this case where the initial
length scales of the two scalars are identical, the evolution of
f8 and ^ef& are also quite similar—the differences being
entirely due to statistical variability.

A. Evolution of scalar jpdf and conditional diffusion

The scalar joint probability density function,P(c;t), is
computed at specified timest by dividing thec1-c2 sample
space into 60360 intervals and then forming a histogram
using the values of the two scalars at each grid point. As
there are about seven million grid points, the jpdf can be
expected to have relatively small statistical errors. The jpdf
is easily represented as a contour plot in the two-dimensional
sample space.

FIG. 9. The evolution states of the marginal pdf of~a! f1 and~b! f2 for simulation R92A. The corresponding conditional expectations of the scalar diffusion
are shown in~c! for f1 and ~d! for f2, respectively.
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As mentioned earlier, for homogeneous scalar fields in
homogeneous turbulence, the primary quantity determining
the evolution of the scalar jpdf is the expectation of the dif-
fusion conditioned on the scalar value@see Eq.~2!#. This
conditional expectation is estimated by generating a histo-
gram of the scalar values weighted by the diffusion of each
of the two scalars at the same point. The value of each com-
ponent of this vector function is then divided by the un-
weighted histogram value of the scalar fields in the appropri-
ate interval to yield the estimate ofg(c,t). The conditional
diffusion ga(c,t)5^D (a)¹

2fauf(x,t)5c& is the expected
rate of change offa , conditioned onf5c, and hence
g5(g1 ,g2) corresponds to a ‘‘velocity’’ in composition
space. The results are shown as contour plots of the ‘‘speed’’
ugu and of the ‘‘streamlines,’’ which are lines in thec1-c2

plane that are everywhere parallel tog. The jpdf evolves by
probability flowing along the ‘‘streamlines’’ at the ‘‘speed’’
ugu.

Figure 4 shows the scalar jpdf and the conditional diffu-
sion for the base case R92A simulations at r.m.s.
F51.0,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2 and 0.1, respectively.
~Plate 1 shows the same plot in color atF51.0,0.8,0.6, and
0.4 along with contour plots of a planar slice through the
initial scalar fields.! It may be seen from Figs. 4~a1!–4~d1!
that at early times the jpdf evolves by probability flowing
from the three delta functions along the lines joining them.
This picture is confirmed by the streamline patterns on Figs.
4~a2!–4~d2!. The streamlines accounting for the bulk of
probability flow are nearly coincident with the sides of the
triangle. Note that except for Fig. 4~a2! which is an artifact
of the initial condition, the contour plot of the ‘‘speed’’ugu
has maxima along the three edges of the triangle; and that,
by symmetry, there is a straight streamline from each delta
function to the origin for all time. In physical space, it is the
mixing across the initial interfaces betweenpairs of blobs

FIG. 10. The jpdf of the standardized scalar values atF equal to~a! 0.15 and~b! 0.1. The plots in~c! and~d! show the marginal pdf of the standardized values
of the two scalars atF50.2, 0.15, and 0.1~superposed lines! from simulation R92A.
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that accounts for the triangular shape of the pdf at early
times. It is worth noting that for a single-scalar case, a dif-
fusive layer betweenf1521.0 andf151.0 with an error
function profile has a maxima ofu¹2f1u atc1560.68. This
can be qualitatively observed in the contour plots in Figs.
4~b2!–4~d2! in the present case. As time evolves~e.g.
F50.7! the interior of the triangular jpdf fills in, and at
F50.6 the jpdf is remarkably uniform. Eswaran and Pope1

also observed an approximately uniform pdf in the single-
scalar case. Subsequently the peak of the jpdf is at the origin,
and the triangular shape gradually changes to a circle at large
times.

It is interesting to observe that if the jpdf decays as a
joint normal distribution~as it approximately does for large
times,F<0.1 say, see Sec. IV B!, then the streamlines are
radii, and the speed is linearly proportional to the distance
from the origin. The simplest possible mixing model~IEM22

or LMSE23! predicts this behavior at all times. Clearly, for
the times shown in Fig. 4, both in direction and magnitude,
the conditional diffusion is very different from this predic-
tion. To provide a better guide for modeling efforts and to
provide quantitative information on the evolution of condi-

tional diffusion, we plot the normalized value of its indi-
vidual components in Fig. 5 along four lines in thec1-c2

plane as a function of time; the normalization ofg1 andg2 is
performed by dividing its value byef /2f8 for the first sca-
lar at the given time.

Figure 6 shows the same plot as Fig. 4 from the R92B
simulations. The evolution of the scalar jpdf and conditional
diffusion look quite similar to Fig. 4 even though the initial
length scales of the scalar fields B are different from those in
A. We also carried out simulations employing the initial sca-
lar field C (ks /k052 and Pr50.7 for both scalars!. The
plots ~not shown here! are again very much like Figs. 4 and
6 and it can be concluded that, if the scalar initialization
scheme described in Sec. III is employed, then as long as the
initial length scales of the two scalars fields are the same
relative to one another, it does not matter whether the value
of the length scale itself is varied between simulations, if one
is interested in the evolution states of the scalar jpdf and
conditional diffusion at fixed values ofF.

In order to assess the effect of varying the initial length
scales of the scalar fields relative to one another, we next

FIG. 11. The evolution of the skewness@S3(f)# ~dashed lines! and the flatness@S4(f)# ~solid lines! of the two scalars from~a! R48A, ~b! R48B, ~c! R48D,
and ~d! R48E simulations. Here and in subsequent plots, filled symbols are used forf1 and hollow symbols are used forf2 .
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present the results from R92D simulations employing the
initial scalar field D in which (ks /k0)152 and (ks /k0)254
while Pr50.7 for both scalars. Figure 7 shows the evolution
of the scalar jpdf and the conditional diffusion for this case.
It is seen that the mixing is faster in thec2 direction. This is
to be expected as the scalar with a smaller initial length scale
tends to mix more rapidly. In this case, the jpdf spreads
much more slowly along the edge of the triangle aligned
with the c1 axis when compared to the other two edges of
the triangle. Again the trend is explained by looking at the
the plots for the conditional diffusion. Most of the stream-
lines indicate a faster initial mixing along thec2 axis which
dictates the evolution of the scalar jpdf.

If, on the other hand, the diffusivity of the second scalar
is set to twice the value of that for the first scalar while
keeping the initial length scales to be the same~scalar field
E!, a similar albeit much less pronounced effect on the evo-
lution of the jpdf can be observed~Fig. 816!. The second
scalar again tends to mix a little faster than the first scalar
and this causes the edge of the triangle parallel to thec1 axis
to bend more towards the origin near the center than the
other two edges. The resulting concave shape of the edge of
parallel to thec1 axis and the convex nature of the other two
edges is best seen in Figs. 8~c1! and 8~d1!. It is worth noting
that the increase in diffusivity causes the scalar jpdf at early

times to stretch outside the triangle described by the initial
state jpdf, unlike the previous cases. Once again, the jpdf has
a somewhat flat distribution atF50.6, before it begins to
lose its triangular shape. The corresponding plots for the
conditional diffusion show much more clearly the effect of
changed diffusivity, when compared to those for scalars with
equal diffusivity and equal length scales. It is also useful to
note that changing the length scale and the diffusivity of the
scalars are two completely different issues even though their
effects in the present case are somewhat similar. The effect
due to the change in length scale is expected to be present
even as the Reynolds number goes to infinity, whereas the
effect due to increased diffusivity should gradually disappear
as the Reynolds number is increased.

We also independently computed the marginal pdf’s of
the two scalars, P1(c1 ,t) and P2(c2 ,t) and the
conditional expectation of diffusion for the individual
scalars @g1(c1 ,t)5^¹2f1uf15c1& and g2(c2 ,t)
5^¹2f2uf25c2&] by forming histograms using 100 sam-
pling intervals. Figure 9 shows the respective plots from the
R92A simulations. It can be observed from Figs. 9~a! and
9~b! that, even though the initial shape for the marginal pdf’s
for the two scalar are quite different from one another, they
assume a similar near-Gaussian shape by the timeF50.3.
Also, the plots of the individual conditional scalar diffusion

FIG. 12. The decay of the scalar r.m.s. values from~a! R48A, ~b! R48B ~squares! and R48C~circles!, ~c! R48D, and~d! R48E simulations.
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indicate a linear region in the center at larger times~i.e.,
smaller values ofF!, as has been observed before both nu-
merically and experimentally. As a final remark, we exam-
ined the evolution of the scalar jpdf and conditional diffusion
on the smaller 963 grid at a Taylor scale Reynolds number of
Rel548. The results look very similar and this suggests that
the mixing process is not strongly influenced~at least quali-
tatively! by the Reynolds number in the range considered.

B. Self-similarity at later times

Next, we address the issue of the self-similarity of the
scalar fields at larger times. This is done by examining the
standardized joint and the marginal pdf’s of the two scalars -
i.e., the pdf’s of the two scalars normalized by their respec-
tive r.m.s. values at the given time. The plots of the standard-
ized jpdf’s atF50.15 and 0.1 are shown in Figs. 10~a! and
10~b!. These results have been extracted from the R92A
simulations. The shapes of the two jpdf’s are quite similar,
and in general it was found that the standardized jpdf’s have
a statistically self-similar shape which is close to a joint-
normal for F<0.25. It should however be noted that for
cases D and E, this jpdf has different variances for the two
scalars at all times, i.e.f18 is greater thanf28 ~see Fig. 12!.
The plot of the standardized marginal pdf’s of the two scalars

~once again normalized by the respective r.m.s. values! at
three different values ofF equal to 0.20, 0.15, and 0.1 are
shown superimposed on each other in Figs. 10~c! and 10~d!.
The different curves seem to lie on top of each other indicat-
ing that a self-similar state has been reached.

Another way of examining the self-similar state of a pdf
is to plot the value of the normalized moments of the pdf as
a function of the time. Since this self-similarity will be evi-
dent only at larger times, we ran simulations for about twelve
large-eddy turnover times, but on a smaller 963 grid in order
to keep computational costs low. Figure 11 shows the evo-
lution of the normalized third and fourth moments~skewness
and flatness respectively! of the marginal scalar pdfs.~Here
Sm@q# denotes themth normalized central moment of the
random variableq.) It is seen that at the initial time, the first
scalar has zero skewness and the second scalar has a positive
skewness of around 0.75 while the flatness for both is close
to 1.8 in all cases. As the simulation progresses, the second
scalar loses its positive skewness, and after a while the skew-
ness of both scalars is found to oscillate around zero,
whereas the flatness initially rises and then fluctuates around
a value close to 3.5 independently of the choice of the initial
scalar fields employed in the simulations.~The statistical

FIG. 13. The evolution of the scalar dissipation rate from~a! R48A, ~b! R48B ~squares! and R48C~circles!, ~c! R48D, and~d! R48E simulations.
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variability precludes precise statements concerning any de-
parture from Gaussianity.!

C. Evolution of scalar variance and dissipation

In the case of a single scalar with a specified initial pdf,
the initial decay rate of the scalar variance and dissipation is
known to depend on the initial length scale of the scalar.24

However, at large times, these decay rates may become simi-
lar ~in stationary turbulence!1,25 leading to a universal value
of the mechanical-to-scalar time-scale ratio defined by
r[(^ef&/^f2&)/@e/(3u2)#. Hence it is of interest to inves-
tigate the decay rates for the present problem where the mar-
ginal pdf’s of the two scalars are also significantly different
from one another. Again, the results are extracted from the
simulations performed on the smaller 963 grid atRel548 to
facilitate longer runs. The decay of the r.m.s. values of the
two scalars for different initial scalar fields is plotted in Fig.
12. It is seen that for initial scalar fields A, B, C@Figs. 12~a!
and 12~b!#, where the length scales of the two scalars are
equal relative to one another, the initial rate of decay off18
and f28 is almost indistinguishable. At large times, there
seems to be some difference in the decay rate but we can
attribute that to statistical variability~see Fig. 8 in EP!. In

case of simulations employing different initial length scales
for the scalars~D! or different diffusivities~E!, it is seen that
the scalar with the smaller initial length scale@Fig. 12~c!# or
higher diffusivity @Fig. 12~d!# decays faster, at least initially,
than the other scalar. Similar trends are observed in the evo-
lution of the mean scalar dissipation rate^ef& as shown in
Fig. 13. In Fig. 14 we plot the evolution of the time-scale
ratio r with time. It was found in EP that for the case with
one scalar, this ratior evolves to a universal value in the
vicinity of 2.5 independent of the initial length scale. This
observation is also confirmed by the current simulations as
r seems to relax to a universal value between 2 and 3 for the
different initial scalar fields employed in the present work.

V. CONCLUSIONS

We have studied the mixing of two passive scalars in
stationary, homogeneous, isotropic turbulence using direct
numerical simulations on a 1923 grid at a Taylor-scale Rey-
nolds number ofRel592. The initial scalar fields are chosen
to conform closely to a ‘‘triple-delta function’’ jpdf corre-
sponding to blobs of fluids in three distinct states. We study
the effect of initial length scales and diffusivity of the scalars
on the mixing process, as the scalars are allowed to decay

FIG. 14. The evolution of the mechanical-to-scalar time-scale ratior from ~a! R48A, ~b! R48B ~squares! and R48C~circles!, ~c! R48D, and~d! R48E
simulations.
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from their prescribed initial state. In all the cases considered,
the scalar jpdf initially tends to spread mainly along the
edges of the triangle formed by the three delta functions. In
physical space this corresponds to the mixing between adja-
cent pairs of blobs. Further, the decay of the scalar fields
causes the triangle to shrink slowly towards the origin. When
plotted at fixed values of the r.m.s.F, the evolution states of
the jpdf do not depend on the initial length scale of the
scalars, as long as they are the same for both. The effect of
changing the length scale or diffusivity of one scalar relative
to the other manifests itself in the form of faster mixing in
the direction of the scalar with the smaller length scale or the
higher diffusivity, respectively. Another notable feature is
that the scalar jpdf assumes a relatively flat triangular distri-
bution, before it loses the inherited triangular shape from the
initial state and starts evolving to a near joint-normal form.
These trends in the evolution of the jpdf are explained by
examining the corresponding plots for the conditional scalar
diffusion, which can be used to formulate better mixing
models for the multi-scalar case.
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