A DNS study of turbulent mixing of two passive scalars
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We employ direct numerical simulations to study the mixing of two passive scalars in stationary,
homogeneous, isotropic turbulence. The present work is a direct extension of that of Eswaran and
Popé from one scalar to two scalars and the focus is on examining the evolution states of the scalar
joint probability density functior(jpdf) and the conditional expectation of the scalar diffusion to
motivate better models for multi-scalar mixing. The initial scalar fields are chosen to conform
closely to a “triple-delta function” jpdf corresponding to blobs of fluid in three distinct states. The
effect of the initial length scales and diffusivity of the scalars on the evolution of the jpdf and the
conditional diffusion is investigated in detail as the scalars decay from their prescribed initial state.
Also examined is the issue of self-similarity of the scalar jpdf at large times and the rate of decay
of the scalar variance and dissipation. 1®96 American Institute of Physics.
[S1070-663(96)03108-X

I. INTRODUCTION volume to get four-dimensional experimental data on scalar
mixing. On the other hand, Eswaran and Popeployed

An important feature of turbulent motion is its ability to DNS to examine the evolution of the probability density
mix and to transport passive scalars at rates much highéunction of a single scalar from an initial double-delta func-
than those due to molecular diffusion. Often, more than ongion distribution, while Kerf used DNS to examine the small
scalar is involved in the mixing process. Examples of thisscale structure of the passive scalar. Blais@¢lal® have
can readily be seen in natural or engineering flows such agarried out simulations to assess the effects of compressibil-
the dispersion of pollutants in the atmosphere, salinity andgty on the mixing process, and Purhinas studied the case
temperature fluctuations in the ocean, and the mixing of spewith a mean scalar gradient. ChasiHbalso used DNS to
cies in turbulent reactive flows. While the turbulence underpresent results for the similarity states of a passive scalar
lying the above flows is essentially time dependent and infield transported by isotropic and buoyancy generated turbu-
homogeneous, a detailed study of these complex flows dogence. Theoretical approaches which have been applied to the
not highlight any one physical concept or mechanism bemixing of a single scalar with some success include probabil-
cause there are so many interacting processes at work. lity density function(pdf) methods:! mapping closuré< and
deed, it is of great interest to investigate simple flows whichthe linear eddy modéf
clearly elucidate the basic mechanisms involved in turbulent  |n contrast, data on the mixing of multiple scalars is
mixing without the added complications of inhomogeneity, relatively scarce. Sirivat and Warh#fmeasured the corre-
complex flow geometries or decaying turbulence. Over thdation between passive helium and temperature measure-
last couple of decades, direct numerical simulatiddslS)  ments in grid generated turbulence. Warkadiso developed
of the Navier-Stokes equations have emerged as a leadirgh inference technique to study the covariance of thermal
research tool for examining the physics of turbulence afluctuations introduced in decaying turbulence at different
moderate Reynolds numbers because of their unique abilitycations. Yeung and Poffeemployed DNS to examine the
to provide fully resolved spatio-temporal evolution of the differential diffusion of two scalars having different diffu-
flow fields without any modeling or approximations. Conse-sivities starting from an identical field for the two scalars,
quently, the present work employs DNS to study the mixingwhile experimental studies of differential diffusion have
of two decaying scalar fields with a prescribed initial joint been reported by Sayfdramong others. The extension of
probability density functior(jpdf) in statistically stationary, the theoretical approaches to multi-scalar mixing is far from
homogeneous, isotropic turbulence. straightforward, and is further hampered by the lack of ex-

A significant amount of experimental and computationalperimental or numerical data which can aid in model com-
effort has been exerted to study the mixing of a single pasparison and development.
sive scalar in turbulent flows. A number of researchers have Research on turbulent mixing processes is especially in-
studied the evolution of one-point and two-point quantitiesstructive in turbulent-reactive flow problems. Here, in the
of scalar fields in grid turbulencesee, e.g., Refs. 2 and.3  limit of fast chemistry, one of the vital factors limiting the
Laser Induced Flouresen¢klF) techniques have been used rate of reaction is the mixing of initially segregated scalar
to obtain and study images of instantaneous scalar fields ifields at the smallest scales at which the chemical reaction
turbulent flow4= and Dahmet al® have developed a method takes place. Pdf formulations have had considerable success
for acquiring a sequence of planar LIF images sweeping & modeling reactive flow problerr?é.These methods have
the important advantage of treating the effects of advection

dPresent address: Department of Mechanical Engineering, The Pennsylvar?and the non"ne_a'r reaction rates exactly: however th_e process
State University, University Park, Pennsylvania 16802. of molecular mixing needs to be modeled. We consider non-
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TABLE |. Summary of specified quantities for initial velocity fields.
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Vel. field R92 R48 Y,
N 192 96
v 0.008 0.025 . ’
Ke 242 22 I
Re* 14.4 14.4
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Cy 0.8 0.8
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reactive scalar field#® ,(x,t),a=1,2, which evolve by ] ]]
Ay  Ib, .l 05k ..
_ 2 -
ot +ui &Xi _D(a)v d)ai (1) . .

whereu(x,t) is the velocity and , is the diffusivity of the

scalar «. (Suffixes in parentheses are excluded from theriG. 1. A schematic for the initialization of the scalar fields. The composi-

summation conventiop.For the statistically homogeneous tion plane represented by,-i, is divided into three sectors by the two

case under consideration. the one-point one-time joint probqashed lines and the negatiyg axis. The filled circles correspond to the
bility d ity f . . Cif fth | is d d three initial states for the two scalar field$he evolution of the conditional

ability density unctlon(Jp ) of the two scalars is eno'[e. diffusion in Fig. 5 is shown along the two axes and the two dotted lines.

by P(i;t), where ¢=(i1,4,) are the sample space vari-

ables corresponding t= (¢, ,$,). This jpdf evolves bt

effect of varying the initial length scales and the Prandtl

IP(t) a e o :
— = —[P(g) y ()], (2)  number of the two scalars on the mixing process is investi-
ot Y gated. Also examined is the tendency of the scalar jpdf to
where the conditional diffusion{,t) is defined to be the reach a statistically self-similar state at large times as well as
conditional expectation, the rate of decay of scalar variance and the mean scalar dis-
) sipation rate. Nearly all the simulations were carried out on a
Yo ) =(D(V bl p(x,1) = ). (3 192 grid at a Taylor-scale Reynolds number R, =92,

In the present work, we examine the evolution of the scalaexcepting a few requiring the extraction of statistics at large
jpdf P and the conditional diffusiory for the mixing of two ~ times which were performed on a smaller®ogrid at a
scalars starting from a prescribed initial stdtdple-delta  Taylor-scale Reynolds number 8¢, =48 in order to keep
function jpdf. The work is in essence an extension of thatthe overall computational costs low. This also gave an op-
presented in Eswaran and Pdpereafter EPand it is hoped  portunity to qualitatively compare the mixing process at dif-
that the present results will provide the necessary impetus fderent Reynolds numbers.
the development of better mixing models for the multi-scalar ~ The remainder of the paper is organized as follows. In
case. Sec. Il we provide a brief overview of the simulations in-

A parallel implementation of Rogallo’s pseudospectralcluding the numerical method, parallel implementation and
algorithm'® for the IBM SP2 is used to carry out direct nu- the input flow conditions. In Sec. lll we describe the method
merical simulations of the governing equations in a cubicfor initializing the two scalar fields. The results from the
domain with periodic boundary conditions. The low wave-Simulations are presented in Sec. IV. We conclude the paper
number modes are forced using the scheme described in Egith a summary in Sec. V.
waran and Popé to preserve statistical stationarity in the
velocity fields. The scalar fields are allowed to decay fromll. OVERVIEW OF THE SIMULATIONS
their prescribed initial state and we examine the evolution of, ,
the scalar jpdf and the conditional diffusion in detail. TheA' The numerical method

For incompressible flows, the equations governing the

evolution of the velocity and scalar fields can be written as
TABLE Il. Summary of derived quantities for initial velocity fields.

Vel. field R92 R48 TABLE Ill. Summary of input parameters for scalar fields.
u 2.06 2.16 Scalar field A B c D E
kol 1.10 1.05
Ko\ 0.35 0.51 (Ks/Kg)1 4 8 2 2 4
ko7 0.02 0.04 (ks/Ko)2 4 8 2 4 4
Kna?? 1.65 1.78 Pr, 0.7 0.7 0.7 0.7 0.7
D* 0.49 0.49 Pr, 0.7 0.7 0.7 0.7 0.35
T 0.52 0.50 lg, 0.38 0.16 0.62 0.62 0.38
T, 1T 0.08 0.14 I¢2 0.37 0.18 0.58 0.40 0.37
Re, 92.4 48.6 (P16b2) —0.0006 0.0025 0.001 —0.009 —0.0006
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FIG. 2. Contour plots of a planar slice through the initial scalar fiedeigx,0) (left column) and ¢,(x,0) (right column) for cases Atop row), B (middle

row) and D (bottom row.
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whereu; is the component of the velocity in thgh direction.
A modified version of the pseudo-spectral method developed
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FIG. 3. The evolution of the scalar r.m.g/() and the mean scalar dissipatiofe)) from the R92A simulationst* represents the time normalized by the
eddy-turnover timel. The filled symbols correspond b, while the hollow symbols are fogp, .

by Rogalld® for homogeneous turbulent flows was used to  Numerical accuracy depends on both the spatial and the
solve the above equations numerically on a uniform threetemporal resolution. The former requires that the smallest
dimensional grid. In physical space, this corresponds to @ynamically significant scales of motion characterized by the
cube of sideL=27 with the N® grid points located at Kolmogorov length scale; be well resolved by the physical
x=(11A,1,A,13A), wherel, |, andl; are integers between grid. It is customary to characterize the spatial resolution of a
0 andN—1 and the grid spacind is equal toL/N. The  simulation by the dimensionless parametgf,,n where
nodes in wavenumber space are located=a{m; ,m,,ms) Kmaxis the highest resolvable wavenumber of the simulation.
where m;, m, and m; are integers between-IN/2 and It has been suggested that a valu&kgf,»= 1.0 is adequate
N/2. (The smallest wavenumber k=1 owing toL being for low-order velocity statistics, but a value of at least 1.5 is
equal to 2r.) The use of Fourier representation imposesneeded for higher-order quantities such as the dissipation and
periodic boundary conditions on the velocity and scalarderivative statisticd’ In order to determine the resolution
fields. requirements for the evolution of the scalar field, we carried
Briefly, the pseudo-spectral method solves the aboveut test simulations with one passive scdRrandtl number,
equations in spectral space because of the associated higher=0.7) on 64, 96° and 128 grids at a Taylor-scale Rey-
accuracy in computing the spatial derivatives. However, theolds number oRe, =50 corresponding t&,,,,7 being ap-
bilinear products required for the convective terms are comproximately equal to 1.1, 1.6 and 2.2, respectively. It was
puted in physical space to avoid the costly operation of confound that the evolution ofV2¢) and(V*¢) was very simi-
volutions in Fourier space. The aliasing errors introduced byar for the two finer grids in contrast to the coarser grid.
the transformation of these products back to Fourier spacklence we concluded thék,,.,7=1.5 provides sufficient
are greatly reduced by a combination of phase shifts andesolution for the accurate calculation of higher-order scalar
truncation. The viscous terms are treated exactly and are thistatistics as well. The accuracy of the time integration, on the
eliminated as a stability constraint. The time advance of thether hand, is determined by the Courant number defined as
Fourier transformed equations is performed using an expliciCy=32_,(|ui|/A)maAt, WhereAt is the size of the time
second-order Runge-Kutta method. step. The Courant number was kept constant at a value of
The numerical simulations are forced using the methodCy=0.8 in our simulations in accordance with earlier
described in Eswaran and Popdt consists of the addition suggestion’ that it should be less than one for time stepping
of a random term to the velocity time derivative in Fourier errors to be negligibly small.
space, at every time step, for each non-zero wavenumber
nodek lying within the spherical shell of radiukg. The B. parallel imol .
random term is determined using a combination of indepen-"- arallel implementation
dent Uhlenbeck-Ornstein processes. The forcing scheme in- The simulations were carried out on the 512-node IBM
troduces three nondimensional quantities in the form of &P2 at the Cornell Theory Center. The programming model
forcing Reynolds numbeR€*, a forcing time scald* and employed was the single-program multiple deg@&MD) ap-
the ratioKg /k, (see Ref. 19 for detailsEach of these pa- proach where the same version of the program runs on all
rameters is kept constant for all the simulations presentedodes. However, the work arrays are distributed across pro-
herein. cessors so that each node performs the same operation on its
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FIG. 4. The evolution states of the scalar jpBf, (al-j1) and the corresponding conditional diffusiop, (a2-j2 from the R92A simulations. The plots are
shown at fixed values aP corresponding to 1.0 fafa), 0.9 for (b), 0.8 for(c), 0.7 for(d), 0.6 for (e), 0.5 for (f), 0.4 for(g), 0.3 for (h), 0.2 for (i) and 0.1

for (j), respectively. BotHP and | have been normalized by their respective maximum values at that time in each sub-plot, so that the greyscale in the
contour plots corresponds to eight equispaced shades betw@érit€) and 1(black).
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FIG. 4. (Continued)

section of arrays. Node specific computations can also beomplete the transformation to Fourier space. The inverse
carried out by ascertaining the node identification numberprocedure is followed for transforming the data from Fourier
Such a programming model is inherently suited to theto physical space. For all other computations in the DNS
distributed-memory message-passing parallel architecture ade requiring the transfer of datsuch as the computation
the SP2, as the associated data parallelism allows the solof the spectra, forming the histograms for the jpdfisach
tion of a larger problenfmore grid pointy on extra proces- processor first does the computation on its share of data, and
sors without any appreciable degradation of the parallel effithe results are then binned together at the master node for
ciency.[Parallel efficiency is defined as the ratio of observedoutput. This can be achieved with relatively high parallel
speedup in the execution time of the code on P processors #fficiencies of greater than 90% since the amount of data
the ideal speedufP).] transfer across processors is small. As for the complete DNS
The bulk of the computational effort in a pseudo-spectralcode, for simulations on a 192yrid on 32 processors, we
algorithm involves the use of Fast Fourier TransfofeET) consistently achieved parallel efficiencies of greater than
to transform the data interchangeably between the physical5% based on the wallclock time required for the execution.
and the Fourier space. Consequently, we performed several
tests to determine the best way of distributing data amon% Flow field characteristics
processors which would yield the highest parallel efficiency™
for the FFT computations. Our conclusion was the same as Two grid sizes and Reynolds numbers are used in the
that arrived at by Yeung and Moseféynamely that the data simulations. The larger grid calculation®l€192) are la-
should be stored in planar slabs among processors with sonieled R92(indicatingRe, =92), while the smaller grid cal-
transfer of data involved to compute the FFT in the thirdculations N=96) are labeled R48.e.,Re, =48). The input
direction as follows: while in physical space, the data argparameters are given in Table |. For each case a pre-
stored iny-slabs(i.e., partitions of data in which the nodes simulation is performed in which, starting from random ini-
have complete-z planes of data for a particular exteny  tial conditions, the velocity fields are advanced in tifhar
and thex and thez transform of the data is computed. Then about six eddy-turnover timgsintil a statistically stationary
using a collective communications procedure, the data arstate is achieved. The resulting velocity fields are then stored
transferred across processors such that each node now camd used as initial conditions for the mixing simulations. The
tains z-slabs of data, and thg transform is computed to characteristics of the turbulence in the statistically stationary
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Color Plate 1: Results from the R92A simulations. The top row shows an arbitrary planar slice through the initial scala, fildtts,and ¢, (right), while
the second through fifth rows show the evolution states of the scalaigitjfand conditional diffusioriright) at ®=1.0, 0.8, 0.6, and 0.4, respective(ee

also the caption for Fig. #.
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FIG. 5. The evolution of the normalized valuespf and y, from the R92A simulations. Each column represents a fixed line in the composition plane and
each row a fixed time from the simulations. Column 1 corresponds t¢{he0 line, column 2 to the),= —0.5 line, column 3 ta},=0.0 line, and column
4 to ,=0.5 line(see Fig. 1 The values ofy, (filled squaresandy, (hollow squaresalong these lines are plotteddt=1.0 (row 1), #=0.8 (row 2), =0.6

(row 3), and®=0.4 (row 4), respectively.

state are given in Table Il. The root mean square velocitywhereE(k) is the energy spectrum function at scalar wave-

(averaged over the three componegrnssdenoted byu. The

numberk=(k-k)'2 ande is the volume averaged energy

three length scales characterizing the energy-containindissipation rate and* is its non-dimensionalized value
scales, the dissipation scales and the mixed energyD*=e/uk,). The time scale of the energy-containing ed-
dissipation scales, respectively, are the integral scale,

kmax
— -1 .
=5pz) kK E(kdk

I
the Kolmogorov microscale,
= ( V3/6)1/4;
and the Taylor microscale,
2 1/2
Uiy }

((augiy19x))%)

13

)\:_
3=
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()

)

©)

dies is the eddy-turnover timeé=1/u and the time scale of
the dissipation range eddies is the Kolmogorov timescale
7,= (vl €)% The Reynolds number characterizing the simu-
lations isRe, =u\/v.

III. INITIAL SCALAR FIELDS

Eswaran and Popetudied the mixing of a single scalar
(¢4) with an initial (approximate double-delta-function pdf
corresponding to blobs of fluid in two distinct states,
¢1~—1 and¢,~1. Here we extend these ideas to study the
mixing of two scalars with an initialapproximate triple-
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delta-function jpdf, corresponding to blobs of fluids of three 1, if ke—Ko/2<k=ks+ky/2,
distinct states. As depicted in Fig. 1, in thig-¢, sample fu(k)= 0 otherwise (11)

space, the three states correspond to the vertices of an equi-
lateral triangle, and lie on the unit circle around the origin.As shown in EP, the parametkg/k, essentially determines
Each initial state has equal probability, so that the meanghe integral length scale of the scalar fields. Higher values of
(¢1) and(¢,) are zero. This ensures that in the compositionk/k, yield smaller length scales for the scalar fields and
space the initial state has a three-way symmetry, and eveyice versa. Further, the value &k/k, for the first scalar
though the two scalar fields are not interchangeable, a 12Qhereafter ks/ky);] can be different from the value of
rotation maps one onto the other. The initialization scheme_/k, for the second scaldhereafter kq/ko)-].
employed is analogous to the procedure followed in EP such |n the second step, the two scalar fields are transformed
that the initial fieldd ¢,(x,0),¢,(x,0)] conform closely to a  to physical space and the composition planey, is divided
triple-delta function jpdf, are resolved by the grid, and haveinto the three sectors shown in Fig. 1. If at pomthe scalar
a specified length scale. This is accomplished by a three-steglues ¢,(x), #,(x) (obtained from the first stggie in the
procedure. first sector of they;-¢, composition plane, then the values

In the first step, two independent fields are defined inare reset to the first state, i.e¢{(x), d,(x))=(0,1). Simi-
Fourier space with random phases for each of the Fouridarly, if ¢(x) lies in the second or third sector, it is reset to
coefficients. The respective amplitudes are determined suqh- \/§/2,_1/2) or (\/§/2,_1/2), respectively. This opera-
that the resultant scalar energy spectrum function is given byion yields the desired joint probability density function for
a specified functiorf ,(k). This can be equivalently stated as the two scalar fields, but causes the scalar value to change
follows: abruptly between adjacent nodes, thereby causing significant

f 4(K) high-wavenumber components in the scalar fields which are

¢1,z(k,0)=[m exd 2mi 6(k)], (10 poorly resolved in the simulations.
The third and final step in the initialization scheme
wherek is the magnitude of the wavenumbeand (k) isa  therefore seeks to smooth out the scalar fields just enough so
uniformly distributed random number between 0 an@int  that they are well resolved for the given grid size of the
dependent of the wavenumidey. The functionf ,(k) is cho-  simulation. This is achieved by transforming the fields de-
sen to be a “top hat” function of widtlk, and centered on a fined at the end of the second step back to Fourier space and
selected wavenumbé;, i.e., then multiplying them by a filter functiofr (k), defined by
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‘ 1, if kskg, 1 3 -
F(k)= (k/kc)fz, if k>k, (12 I‘%: 521 (m) Ei¢a(0), (13

k. being the specified cutoff wavenumber. Therefore the secand Eig (k) is the initial one-dimensional scalar-energy
ond parameter in the specification of the initial scalar field isspectrum. Relative to the base case A, cases B and C have
ke/ks. As explained in EP, it can be shown that beyond asmaller and larger initial lengthscales, respectively. For these
value ofk./ks equal to 2, the effect of this parameter is notthree cases the two scalars and the three initial states are
significant, as it only affects the smaller scales where thetatistically identical, and so the jpdf has six-way symmetry.
Consequent variation is shortlived. Therefore we set the VaIURe|ative to the base case, in case D scalar 1 has approxi_
of k; to be twice the value ofk) max, Where Ks)max refers  mately twice the initial lengthscale; while in case E, scalar 2
to thekg value of the scalar field with smaller initial length has twice the diffusivity(half the Prandtl numbegrin cases
scale. D and E the jpdf is symmetric about thi axis. A contour

Itis clear that the procedure described above allows thgot of an arbitrary planar section through the scalar fields is
generation of two independent scalar fields whose initiakhown in Fig. 2. It can be seen that the two scalars are pre-
length scales can be varied together or relative to one atominantly in one of the three possible states with sharp
other. Hence this allows us to h|gh||ght the effect of initial gradients in between, thus Conforming C|Ose|y to a trip]e_
length scales of the scalar fields on the mixing process. Ijelta function jpdf. The simulations presented in the next
addition, we also assess the effects of differential diffusiorsection are labeled according to the convention that R92B

by varying the Prandtl number of one scalar relative to thangicates a simulation of case B Rie, =92, and so on.
other. Five different cases denoted by A, B, C, D and E are

studied, which differ in the specified wavenumbers
(k/ko); and (ke/ko), Used in the initialization, and the 'V- RESULTS

Prandtl number®r,=v/D(,) . These values are given in The primary focus of the current simulations is to study
Table Ill. Also listed are the values of the covariancethe evolution of the scalar jpdf and the conditional diffusion
((¢142)) and the integral length scalely, for the initial  for the different initial scalar fields described in Table Iil.
scalar fields generated on a £agid, where These results are presented in Sec. IV A. Other issues of
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FIG. 9. The evolution states of the marginal pdf(af ¢, and(b) ¢, for simulation R92A. The corresponding conditional expectations of the scalar diffusion
are shown in(c) for ¢, and(d) for ¢,, respectively.

interest which are studied involve whether or not the scalavarious statistics at fixed values of the r.mIs=(¢'/ ()1
fields reach a self-similar stat&ec. IV B) and the rate of where the subscript 1 denotes that the ratio is computed for
decay of the scalar variance and dissipation at large timethe first scalar. Figure 3 shows a plot of the evolution of the
(Sec. IV Q. We shall present detailed results from the R92Ascalar r.m.s ¢’) and volume averaged scalar dissipation
simulations, where the initial length scales and the diffusivity[ (e,)=D(V ¢(x,1).V ¢(x,t))] from the R92A simulations.

for the two scalar fields are the same. For the other cases, ildme is normalized by the large eddy-turnover time, i.e.
shall highlight the differencegf any) in the scalar mixing t*=tu/l. It can be seen that, in this case where the initial
process caused by a change in either the initial length scalength scales of the two scalars are identical, the evolution of
or the diffusivity. Except where noted, the results are from¢’ and(e,) are also quite similar—the differences being
simulations utilizing the 192grid atRe, =92, i.e., R92. entirely due to statistical variability.

It has been observed in some of the prior simulation
(for example, EPand experiments that for the mixing of a
single scalar with varying initial length scaldsut the same The scalar joint probability density functioR(;t), is
initial pdf), the evolution states of the scalar pdf are approxi-computed at specified timésby dividing the ¢,-¢, sample
mately invariant if they are computed at fixed values ofspace into 6& 60 intervals and then forming a histogram
@'l y. Here ¢’ represents the root mean squdren.s) using the values of the two scalars at each grid point. As
value of the scalar at the given time awg is the r.m.s. there are about seven million grid points, the jpdf can be
value at time =0 (initial state, the r.m.s. values being com- expected to have relatively small statistical errors. The jpdf
puted by taking the square root of the volume averaged scas easily represented as a contour plot in the two-dimensional
lar variance. Hence in the present simulations, we output theample space.

S . : . o
A. Evolution of scalar jpdf and conditional diffusion
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FIG. 10. The jpdf of the standardized scalar value$ a&qual to(a) 0.15 andb) 0.1. The plots ir(c) and(d) show the marginal pdf of the standardized values
of the two scalars a®=0.2, 0.15, and 0.1superposed lingsrom simulation R92A.

As mentioned earlier, for homogeneous scalar fields in  Figure 4 shows the scalar jpdf and the conditional diffu-
homogeneous turbulence, the primary quantity determiningion for the base case R92A simulations at r.m.s.
the evolution of the scalar jpdf is the expectation of the dif-$=1.0,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2 and 0.1, respectively.
fusion conditioned on the scalar valligsee Eq.(2)]. This  (Plate 1 shows the same plot in colord=1.0,0.8,0.6, and
conditional expectation is estimated by generating a histog 4 along with contour plots of a planar slice through the
gram of the scalar values weighted by the diffusion of eachiiial scalar fields. It may be seen from Figs.(d1)—4(d2)

of the two scalars at the same point. The value of each COMpat at early times the jodf evolves by probability flowing

ponent of .thls vector function is then .d'V'd?d by the UN" from the three delta functions along the lines joining them.
weighted histogram value of the scalar fields in the appropri:

ate interval to yield the estimate of#,t). The conditional This picture is confirmed py the stream_line patterns on Figs.
diffusion "ya(t/t,t)=<D(a)V2¢a|¢(X,t)=a/t) is the expected 4(a2)—4(q2). The streamlmes. agcounthg for the bulk of
rate of change ofp,, conditioned ong=, and hence probabmty flow are nearly com.udent WIFh the S|des.of the
y=(y1,7,) corresponds to a “velocity” in composition triangle. Note that except for Fig(&2) which is an artifact
space. The results are shown as contour plots of the “speed®f the initial condition, the contour plot of the “speed#|

|4 and of the “streamlines,” which are lines in thg -, has maxima along the three edges of the triangle; and that,
plane that are everywhere parallel$o The jpdf evolves by by symmetry, there is a straight streamline from each delta
probability flowing along the “streamlines” at the “speed” function to the origin for all time. In physical space, it is the
[ mixing across the initial interfaces betwegpairs of blobs
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FIG. 11. The evolution of the skewngsS;(¢)] (dashed linesand the flatnesgS,( )] (solid lineg of the two scalars fronga) R48A, (b) R48B, (c) R48D,
and (d) R48E simulations. Here and in subsequent plots, filled symbols are used md hollow symbols are used far, .

that accounts for the triangular shape of the pdf at earlyional diffusion, we plot the normalized value of its indi-
times. It is worth noting that for a single-scalar case, a dif-vidual components in Fig. 5 along four lines in thig-y,
fusive layer betweerp;=—1.0 and¢,=1.0 with an error  plane as a function of time; the normalizationygfandy, is
function profile has a maxima ¢¥2¢,| aty,==0.68. This  performed by dividing its value by, /24’ for the first sca-
can be qualitatively observed in the contour plots in Figsyar at the given time.

4(b2)-4(d2) in the present case. As time evolves.g. Figure 6 shows the same plot as Fig. 4 from the R92B
®=0.7) the interior of the triangular jpdf fills in, and at gjmylations. The evolution of the scalar jpdf and conditional
©=0.6 the jpdf is remarkably uniform. Eswaran and I-jope diffusion look quite similar to Fig. 4 even though the initial
also observed an approximately uniform pdf in the Slngle'Iength scales of the scalar fields B are different from those in

scalar case. Subsequently the peak of the jpdfis at the origirk We also carried out simulations employing the initial sca-
9&r field C (ks/kg=2 and Pr=0.7 for both scalags The

and the triangular shape gradually changes to a circle at lar
lots (not shown hereare again very much like Figs. 4 and

times.

It is interesting to observe that if the jpdf decays as a , . S
joint normal distril?ution(as it approximatelyj/pdoes forylarge 6 and it can F’e cgncluded '.[hat, if the scalar initialization
times, ®<0.1 say, see Sec. IV)Bthen the streamlines are §gheme described in Sec. Il is employed., then as long as the
radii, and the speed is linearly proportional to the distancdnitial length scales of the two scalars fields are the same
from the origin. The simplest possible mixing modeEM?2 relative to one another, it does not matter whether the value
or LMSE?) predicts this behavior at all times. Clearly, for Of the length scale itself is varied between simulations, if one
the times shown in Fig. 4, both in direction and magnitude/s interested in the evolution states of the scalar jpdf and
the conditional diffusion is very different from this predic- conditional diffusion at fixed values @p.
tion. To provide a better guide for modeling efforts and to  In order to assess the effect of varying the initial length
provide quantitative information on the evolution of condi- scales of the scalar fields relative to one another, we next
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FIG. 12. The decay of the scalar r.m.s. values fi@nR48A, (b) R48B (squaresand R48C(circles, (c) R48D, and(d) R48E simulations.

present the results from R92D simulations employing thdimes to stretch outside the triangle described by the initial
initial scalar field D in which ks/kg)1=2 and Ks/kg),=4  state jpdf, unlike the previous cases. Once again, the jpdf has
while Pr=0.7 for both scalars. Figure 7 shows the evolutiona somewhat flat distribution ab=0.6, before it begins to
of the scalar jpdf and the conditional diffusion for this case.lose its triangular shape. The corresponding plots for the
It is seen that the mixing is faster in thle direction. Thisis  conditional diffusion show much more clearly the effect of
to be expected as the scalar with a smaller initial length scalehanged diffusivity, when compared to those for scalars with
tends to mix more rapidly. In this case, the jpdf spreadsqual diffusivity and equal length scales. It is also useful to
much more slowly along the edge of the triangle alignednote that changing the length scale and the diffusivity of the
with the ¢/; axis when compared to the other two edges ofscalars are two completely different issues even though their
the triangle. Again the trend is explained by looking at theeffects in the present case are somewhat similar. The effect
the plots for the conditional diffusion. Most of the stream- due to the change in length scale is expected to be present
lines indicate a faster initial mixing along thi, axis which  even as the Reynolds number goes to infinity, whereas the
dictates the evolution of the scalar jpdf. effect due to increased diffusivity should gradually disappear
If, on the other hand, the diffusivity of the second scalaras the Reynolds number is increased.
is set to twice the value of that for the first scalar while ~ We also independently computed the marginal pdf's of
keeping the initial length scales to be the saisealar field the two scalars, Pi(#4,t) and P,(#,,t) and the
E), a similar albeit much less pronounced effect on the evoeonditional expectation of diffusion for the individual
lution of the jpdf can be observe(Fig. 8©). The second scalars [y,(¢1,t)=(V2di|d1=41) and  y,(i,,t)
scalar again tends to mix a little faster than the first scalar=(V2¢,|$,=t,)] by forming histograms using 100 sam-
and this causes the edge of the triangle parallel to/thexis  pling intervals. Figure 9 shows the respective plots from the
to bend more towards the origin near the center than th®92A simulations. It can be observed from Fig$a)Sand
other two edges. The resulting concave shape of the edge 6tb) that, even though the initial shape for the marginal pdf's
parallel to they; axis and the convex nature of the other two for the two scalar are quite different from one another, they
edges is best seen in Figgc® and 8d1). It is worth noting  assume a similar near-Gaussian shape by the @m®.3.
that the increase in diffusivity causes the scalar jpdf at earlyAlso, the plots of the individual conditional scalar diffusion
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FIG. 13. The evolution of the scalar dissipation rate fr@nR48A, (b) R48B (squaresand R48C(circles, (c) R48D, and(d) R48E simulations.

indicate a linear region in the center at larger tinfes.,  (once again normalized by the respective r.m.s. valag¢s
smaller values ofP), as has been observed before both nuthree different values o equal to 0.20, 0.15, and 0.1 are
merically and experimentally. As a final remark, we exam-shown superimposed on each other in Figgciland 1@d).
ined the eV0|uti0n Of the Scalar ]pdf and Conditional diffusion The different curves seem to ||e on top Of each other indicat_
on the smaller 96grid at a Taylor scale Reynolds number of ing that a self-similar state has been reached.

Re,=48. The results look very similar and this suggests that Another way of examining the self-similar state of a pdf

thg miXing process s not strongly.mfluenc@j least quall- is to plot the value of the normalized moments of the pdf as
tatively) by the Reynolds number in the range considered. . . . . o . .
a function of the time. Since this self-similarity will be evi-

dent only at larger times, we ran simulations for about twelve

large-eddy turnover times, but on a smalle? 6id in order
NeXt, we address the issue of the Self-Similarity of theto keep Computationa| costs low. Figure 11 shows the evo-

scalar fields at larger times. This is done by examining thgtion of the normalized third and fourth momeriskewness

standardized joint and the marginal pdf's of the two scalars 3,4 flatness respectivélyf the marginal scalar pdf¢Here

i.e., the pdf's of the two scalars normalized by their respec—sm[q] denotes themth normalized central moment of the

tive r.m.s. values at the given time. The plots of the standard- . . o .
ized jpdf's at®=0.15 and 0.1 are shown in Figs.(@band random variabley.) It is seen that at the initial time, the first

10(b). These results have been extracted from the R92 A%calar has zero skewness and the second scalar has a positive
simul.ations The shapes of the two jpdf's are quite Similarskewness of around 0.75 while the flatness for both is close

and in general it was found that the standardized jpdf's hav&® 1.8 in all cases. As the simulation progresses, the second
a statistically self-similar shape which is close to a joint-Scalar loses its positive skewness, and after a while the skew-

normal for ®<0.25. It should however be noted that for Ness of both scalars is found to oscillate around zero,

cases D and E, this jpdf has different variances for the twavhereas the flatness initially rises and then fluctuates around
scalars at all times, i.ep; is greater thanp, (see Fig. 12 a value close to 3.5 independently of the choice of the initial

The plot of the standardized marginal pdf's of the two scalarscalar fields employed in the simulation§he statistical

B. Self-similarity at later times
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simulations.

variability precludes precise statements concerning any desase of simulations employing different initial length scales

parture from Gaussianity. for the scalarg¢D) or different diffusivities(E), it is seen that
the scalar with the smaller initial length scaleg. 12c)] or
C. Evolution of scalar variance and dissipation higher diffusivity[Fig. 12d)] decays faster, at least initially,

than the other scalar. Similar trends are observed in the evo-
In the case of a Single scalar with a Specified initial pdf,|uti0n of the mean scalar dissipation rqteq» as shown in

the initial decay rate of the scalar variance and dissipation iﬁig_ 13. In Fig. 14 we plot the evolution of the time-scale
known to depend on the initial length scale of the sc&lar. ratio r with time. It was found in EP that for the case with
However, at large times, these decay rates may become simine scalar, this ratio evolves to a universal value in the
lar (in stationary turbuleng&?® leading to a universal value yicinity of 2.5 independent of the initial length scale. This
of the mechanical-to-scalar time-scale ratio defined byypservation is also confirmed by the current simulations as
r=((eg)/(¢$%))/[€/(3u?)]. Hence it is of interest to inves-  seems to relax to a universal value between 2 and 3 for the

tigate the decay rates for the present problem where the magifferent initial scalar fields employed in the present work.
ginal pdf's of the two scalars are also significantly different

from one another. Again, the results are extracted from th

simulations performe% on the smaller’agrid atRe, =48 to % CONCLUSIONS

facilitate longer runs. The decay of the r.m.s. values of the =~ We have studied the mixing of two passive scalars in
two scalars for different initial scalar fields is plotted in Fig. stationary, homogeneous, isotropic turbulence using direct
12. It is seen that for initial scalar fields A, B,[Eigs. 12a)  numerical simulations on a 192yrid at a Taylor-scale Rey-
and 12b)], where the length scales of the two scalars arenolds number oRe, =92. The initial scalar fields are chosen
equal relative to one another, the initial rate of decaypf to conform closely to a “triple-delta function” jpdf corre-
and ¢; is almost indistinguishable. At large times, there sponding to blobs of fluids in three distinct states. We study
seems to be some difference in the decay rate but we cahe effect of initial length scales and diffusivity of the scalars
attribute that to statistical variabilitysee Fig. 8 in ER In  on the mixing process, as the scalars are allowed to decay
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