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In this paper a new particle-finite-volume hybrid algorithm for the joint velocity-
frequency-composition PDF method for turbulent reactive flows is presented. This
method is a combination of a finite-volume scheme and a particle method. The finite-
volume scheme is used to solve the Reynolds averaged Navier—Stokes equations and
the particle method to solve the joint PDF transport equation. The motivation is to
reduce the bias and the statistical error and to have an algorithm which is more effi-
cient than stand-alone particle-mesh methods. Therefore, in the particle method we
use the smoother mean densjp) and Favre averaged velocifyfields computed
by the finite-volume scheme: This scheme is an Euler solver for compressible flow
with the turbulent fluxes and the reaction term, which are computed by the particle
algorithm, as source terms. Since some of the quantities are computed twice (i.e.,
the mean densityp) and the Favre averaged sensible internal enépyby the
finite-volume scheme and by the particle method, the hybrid algorithm is redun-
dant. Although the model differential equations are consistent, it was difficult to
satisfy consistency numerically, and an accurate particle tracking algorithm is cru-
cial. Therefore a new scheme to interpolate the Favre averaged velocity has been
developed which is second-order accurate and quasi conservative; i.e., it is based on
the fluxes at the volume interfaces. Another important issue is the coupling between
the finite-volume scheme and the particle method. A new time-averaging technique
adds stability to the hybrid algorithm, and it also reduces the bias and the statistical
error enormously. The properties of the new algorithm are demonstrated by results for
a nonpremixed piloted-jet flame test case. First it is shown that the solution becomes
statistically stationary and that it is internally consistent. Studies of the asymptotic
behavior show that, for a given error tolerance, the new hybrid algorithm requires
much less computer time than the stand-alone particle-mesh method (for this piloted-
jet flame test case a factor of 20 times less). Finally, grid convergence studies verify
that the scheme is second-order accurate in spageoo1 Academic Press
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1. INTRODUCTION

The calculation of complex turbulent reactive flows is of great importance for mal
engineering applications. The accuracy of such calculations depends mainly on turbule
models, combustion models, and the numerical algorithm. The task of turbulence mode
is to make the flow computations feasible without a great loss of accuracy. Reduced reac
mechanisms do the same for the chemistry. To solve the resulting set of equations acc
numerical algorithms are required. In the contextpadbability density functio(PDF)
methods, less attention has been paid to the last point, which is the motivation for this pa

Traditional turbulence models, including two-equation models [20, 48] and secor
moment closures [19], are based on Reynolds averaging techniques and yield moc
equations for statistical moments. In comparison to these models, PDF methods act
closure through a modeled transport equation for the one-point, one-time PDF of cer
fluid properties in a turbulent flow [8, 30, 31]. The advantage of PDF methods is tt
both convection and reaction are represented exactly without modeling assumptions.
tremendous amount of statistical information contained in the PDFs obviously provide
fuller description of turbulent flows than two-equation models or second-moment closul
An overview of turbulence theory and modeling approaches is given in [38]. During tl
past decade, progress in PDF methods has been made from several aspects: adopting
advanced joint velocity-frequency-composition PDF method which provides a model
the turbulent time scale [39, 45]; incorporating modeling techniques developed for secc
moment closures [10, 32, 33, 46]; and developing a computationally efficient schemetot
detailed reaction chemistry [36]. These models have been successfully applied to mode
several inert flows [1, 6, 25], reactive flows, and turbulent flames [24, 27, 41].

Different numerical solution algorithms are required for turbulence models of differe
levels. Moment closures result in a set of partial differential equations. These equations
usually solved numerically by finite-difference or finite-volume methods [17]. In contra
to moment-closure model equations, the modeled PDF transport equation has a compl
different structure. It is a high-dimensional scalar transport equation, and it is infeasi
to solve it with a finite-volume or a finite-difference method. From early times in th
development of PDF methods, Monte Carlo techniques in which the PDF is represente
an ensemble of particles have been employed R@fchastic differential equatioSDES)
are constructed to model the particle properties, e.g., velocity, composition, and freque
such that the particles exhibit the same PDF as in turbulent flows.

Monte Carlo methods are widely used in computational physics [18] to solve hig
dimensional problems since the computational costs increase only linearly with the nun
of dimensions. Their application in PDF methods has progressed through different sta
In the first method, the particles are located at grid nodes in physical space [29]. P
[30] then suggested that it is preferable to use a method in which the particles are c
tinuously distributed. Later a hybrid method was implemented in the &wE2DSin
which composition PDFs are calculated by Monte Carlo methods while a finite-volur
method is applied to solve for the mean velocity, dissipation, and mean pressure fields [
27]. More recently, a stand-alone particle-mesh algorithm has been developed for the |
velocity-frequency-composition PDF model [35]. This method is implemented in the co
PDF2DV [34]. This is a code to calculate statistically stationary two-dimensional (plar
or axi-symmetric) turbulent reactive flows using the joint velocity-frequency-compositic
PDF method. It has been applied in several published calculations [1, 7, 9, 41, 47].
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The motivation for the current work was to develop an algorithm for the joint velocity
frequency-composition PDF model which has less statistical and bias error than the pr
ously developed stand-alone particle-mesh algorithms and is, therefore, more efficien
the new method a finite-volume scheme is applied to solve the Reynolds averaged Nav
Stokes equations. The way the thermodynamic coupling is done is crucial, and the pre
approach was inspired by that of Coluetal.[4]. The quantities extracted from the particle
field and fed into the finite-volume scheme are the turbulent fluxes, the Favre averaged
ergy source term, and the ratio of the Favre averaged sensible enthalpy to the Favre avel
sensible internal energy. The particles in the particle method evolve accordingjéinthe
PDF (JPDF) transport equation.

This work is contemporaneous with the parallel study of Muradeglal. [26]. A dis-
tinction between these works is the coupling method. Muradeigili use a loose coupling
approach in which each outer iteration consists of many iterations of the finite-volur
solver followed by many time steps of the particle method. Here, in contrast, we use a ti
coupling approach in which each outer iteration consists of a single finite-volume iterati
and a single step of the particle method. This tightly coupled algorithm has been imf
mented in the cod®DF-2D-FV.Opposed to the studies in [26], this paper deals with al
axi-symmetric test case of a nonpremixed piloted-jet flame and major improvements of
algorithm were necessary:

e Sinceitis crucial to achieve consistency between the finite volume data and the part
data a novel interpolation scheme for the mean velocity field has been developed ar
described in Section 5.7 and Appendix A.

e To ensure that the mean of the fluctuating components of the particle velocities
~0 (and is numerically consistent with the model) it is necessary to correct the fluctuat
components of the particle velocities. The correction algorithm is explained in Section &

e The bias error can be reduced to an acceptable level by applying very large numt
of particles. This is a feasible approach if there are not too many cells, as in most
applications. In multidimensions, however, the sensitivity of the bias error on the numl
of particles determines mainly the efficiency of the PDF algorithm for a given level
numerical accuracy. Therefore a novel time-averaging technique has been developec
has proved to reduce the bias error dramatically (not only the statistical error as most o
time-averaging schemes do). The time-averaging scheme is presented in Section 5.¢
explained in detail in Appendix B.

e In a systematic study the hybrid algorithm is carefully compared with an establish
particle mesh method in terms of numerical accuracy and efficiency (Section 6).

Like PDF2DV, the hybrid algorithm presented here simulates statistically stationary tw
dimensional (plane or axi-symmetric) turbulent reactive flows. The computational dom:
is divided intoMy x My, cells, and the total number of particlesNg. The modeled SDEs
for the particle properties are solved by a pseudo-time marching scheme with timststep
The primary numerical parametersRIDF-2D-FV calculations aréV, x My, At, andN,.

Since the focus of this work was to demonstrate the numerical behavior of the hyk
algorithm, the accuracy of the turbulence model and that of the combustion model have
been studied here. A flamelet model is used for the chemistry, but more detailed chern
reaction mechanisms have been used for PDF modeling studies, e.g., in [50].

In the next section the thermo-chemistry is explained. Section 3 introduces the P
transport equation and shows how it is related to the Navier—Stokes equations and
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Reynolds averaged Navier—Stokes equations. Section 4 explains how the unclosed ter
the JPDF transport equation are modeled, and in Section 5 the new algorithm to solve
modeled PDF transport equation is described. Finally results of a nonpremixed piloted
flame test case (in Section 6) demonstrate the numerical properties of the algorithm. Ir
appendices some of the numerical issues are explained in detail; in particular, in Append
the velocity interpolation scheme and in Appendix B the time-averaging technique
described.

2. THERMO-CHEMISTRY

We consider reactive and nonreactive flow of ideal gas mixtures. In this section
thermo-chemistry of an ideal gas mixture is described. Some nonstandard quantities
introduced to re-express the equation of state in a form suitable for the hybrid approac

The thermo-chemical state of the fluid is characterized by the prepstire temperature
T, and the mass fractions = (Y1, Yo, ..., Yn,)T of the Ns species. The molecular weight
of speciesx is W, and its gas constant is

R = 1)

R
W, ’
whereR is the universal gas constant.

The thermodynamic datababermdatf the CHEMKIN package is used giving for each
speciesy the values of the specific enthalpy of formatich at the reference temperature

To = 29815 K and the constant-pressure specific fegatT) as polynomial function of
T. The specific sensible enthalpy is given by

T
e (1) = [ (T AT = (T, 2
0
where the (nonstandard) mean specific fogg(T) is defined by Eq. (2) to be
_ 1 /7
6T = 7 / Con (T AT, @®)
0
The specific sensible internal energy is given by
s (T) = (Cpa(T) — R)T = Cua(T)T, (4)
wherec,, is defined similarly tap,. For the mixture, the specific sensible enthalpy is

Ns
hs(Y. T) = Yahe(T) )
a=1

and similar equations defime(Y, T), Cp(Y, T), ¢, (Y, T), andR(Y). Furthermore, wittJ
being the fluid velocity, the total sensible enthalpy is

Hs(Y, T) =hs(Y, T) + %Uiui (6)
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and the total sensible energy is
1
Es(Y, T) =es(Y’T)+§UiUi- (7
The ideal gas law
p=pRT, (8)

wherep is the density, is applied. The above definitiorcgfandc, allows the equation of
state to be written in terms &f rather tharl as

& Cy—_C, ,
p=pRZ = pcfpes= (v = Dpes, (9)
wherey’ is defined by
C, C,
YTy =L =", 10
y (.1 ¢, Cp—R (10)

Note that ifc, is independent of , theny’ = y = cp/c,.
The net chemical reaction rate for speaies S,, defined so that, for a homogeneous
mixture, the mass fractions evolve by

dy,
g =S(0.pT). (11)

Finally the reaction energy source tefpnis

Ns
Q=->_S(Y.,p.Th. (12)
a=1
For the present calculations we assume fadoes not depend on the pressure.

3. JOINT PDF FORMULATION

In this section the JPDF transport equation and its relation to the Navier—Stokes ec
tions and to the Reynolds averaged Navier—Stokes equations are explained. The |
idea of PDF methods is to describe the state of the flow at the locatiox, Xo, X3)
at the timet in terms of a one-point one-time Eulerian mass-weighted probability densi
function f'(V, ®; x, t) of the velocityU = (U, U, U3)T and the composition variables
® = (¢1, 2. ....dn+1) ' (SPecies mass fractions and sensible enthalpy). The sample sp
variable corresponding tdisV = (V1, V», V3)T and the sample space variable correspond
iNngto® is ¥ = (Y1, Yo, ..., ¥n.+1)' . The transport equation fdr' (V, ¥; x, t)

af af’  apyaf 9 -,
vV, f
or T ) iax; ~ ax; 9V, + 8%(00)5@ )

3 dt;  ap - 3 (/33
= (- Py e ) |
3Vj X 3Xj 0Vy X

(p)

Vv, x1:> F’) (13)
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has been derived from the Navier—Stokes equations [30] and is edacigfes mass (Favre)
averaged quantities arid denotes volume (Reynolds) averaged quantities). Equation (13)
a scalar transport equation and must be solvédi i 8 dimensions (velocity-composition-
physical space plus time). The first term is the time derivativé’ pfhe second term is for
the evolution off’ in the physical space),(p)/dx; is for the acceleration because of the
mean pressure gradient, and the last term on the left-hand side e¥6lngle composition
sample space due to chemical reactions. It is remarkable that all these terms are in cl
form and do not have to be modeled. The terms which still have to be modeled in orde
close Eq. (13) are those on the right-hand side, i.e., the effects of the viscous stresgjtens
and of the fluctuating pressure gradiedps/ax; and the effect of the molecular diffusion
fluxes J* (of the scalaw in directionx;). Notice that these are conditional probabilities.

For later explanationsitis importantto mention thatthe Reynolds averaged Navier—Stc
equations

0 ol ~
Gt 5 (00D =0

0 ~ 0 ~ o~ a __
ﬁ((P)Ui)-i-anj((P)Uin+<p)5ij)=—a((p>uiuj) (14)

d ~ 9~ ~
ﬁ(m)ES) + 8—Xi(Ui ({(p)Es +(p)))

. ) — a [(p) o o~
— _ h = — | Zuuiu | = — (U 1.
(pQ) axl(<,0>u| <) % ( 2 U|UJU]> 3Xi( j{p)uiuj)
can be derived from (13) by integration. Because only high-Reynolds-number flow rem
from walls is considered here, the molecular effects in the conservation equations
neglected. By definitioh] = hs — hs andu = U — U. Finally the mean equation of state
is given by

<p’>=<ﬁ/—1>(<p>és—%><0i0i +lm>), (15)

where

(16)

4. MODELED JPDF EQUATION

To model also the turbulence frequenefx, t) a modeled transport equation of the mass
weighted joint velocity-frequency-composition POFs solved [12, 45].

We define thenass density functiofmdf) F and the one-point one-time Eulerian mass-
weighted joint velocity-frequency-composition POFof U(x, t), ®(x, t) andw (X, t) by

Py TV, ®,0:x,1) = F(V, ®,0;x, 1) = p(&)(§(U — V)§(® — B)5(w — ), a7)

wheref is the sample space variablewf
Because of the high-dimensional space in whi¢levolves (together with the number
of dimensions idNs + 8; e.g., in 3D with 20 species the number of dimensions is 28) it i
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infeasible to solve the modeled transport equationffaising a finite-difference or finite-
volume scheme. Fortunately with the Monte Carlo approach (Lagrangian view; parti
method) the computational costs increase only linearly with the number of sample sp
dimensions, and therefore PDF simulations are feasible.

From a Largrangian viewpoint, the flow is represented by a set of particles which evo
by stochastic differential equations. This is done so that the particles exhibit the same JI
as the solution of the modeled JPDF transport equation. Each particle has a set of prope
{m*, X*, U*, ®*, »*}, wherem* represents the mass of the particlé,its coordinatelJ*
the velocity,®* the composition vector, and* the particle’s turbulence frequency (the
superscript denotes that the quantity is a particle property). For the evolutidh afiodel
equations have been developed, using the modeling theories for turbulent reactive flc
Models are required only for the pressure-strian-rate correlation, mixing, and dissipati
Models for particle velocity, turbulence frequency, and molecular mixing are describ
in the following subsections. These are not the most sophisticated models, but serv
illustrate the coupling issues addressed here.

4.1. Velocity Model

In PDF methods, the fluid particle velocity' (t) is represented by the stochastic particle
velocity U*(t) and various Langevin models have been developed to model the evolut
of the particles in the velocity-sample-space [10, 30, 32, 46]. Here we use the simplest ¢
thesimplified Langevin mod€ELM),

dur(t) = _%g dt — (% + Zc())sz(ui*(t) —Uj)dt + (Cok)Y2dW, (18)

where

o= CQM, (19)
(p)

is the conditional Favre averaged turbulence frequency;

Uit
k= —— 20
5 (20)
is the turbulence kinetic energy; af@g andCg are model constants (Table I). Diffusion

process is represented by a Wiener prod&gs), whered W (t) = Wi (t + dt) — Wi(t) is

TABLE |
Model Constants
Constant Value Used in

Co 21 SLM

Cq 0.6893 Definition of2

Co1 0.56 Turbulence frequency model
C.» 0.9 Turbulence frequency model
Cs 1.0 Turbulence frequency model
C, 0.25 Turbulence frequency model

C, 2.0 IEM mixing model
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normally distributed withld W (t)) = 0 and(dW (t)d W, (1)) = dt§;;. The SLM is equiva-
lent to Rotta’s model at the second-moment-closure level.

In the numerical algorithm (presented in Section 5) a modeled transport equation
(v, ¥, 0; X, t) is solved. The functio is the JPDF in the fluctuating velocity-frequency-
composition space, andis the sample space variable of the fluctuating (Favre) velocit
u. In place ofU*(t) the fluctuating parti*(t) of the particle velocity becomes a particle
property. The following modified Langevin equation,

LTIV LT (3 + ZCO> QUE(t) dt + (Cok)V2dW,

du(t) = ;
(21)

(o) X 1 ax;

has been derived from (18). In contrastftpthe modified JPDE contains no information
about the mean velocity, but f andg are otherwise equivalent.

4.2. Model for the Turbulence Frequency

To close Eq. (21) or (18) a model for the conditional turbulence frequency is need
In many PDF codes a model for the mean dissipation (e.g.k the model) is used to
estimate2. In the joint velocity-frequency-composition model the turbulence frequenc
w* is a particle property, and to account for external intermittency effects, Eq. (19) is uc
to estimate2. The model constar@g (Table I) is chosen such th& equalsw for fully
devolped homogeneous turbulence. Using this approach the Favre averaged turbul
dissipation can be defined as

§ = ke. (22)
The stochastic model fas*(t) is
do*(t) = —C3(0* — ®)Qdt — S,Q*(t) dt + (2C3C40Qw* (1))Y2dW,  (23)

whereC3; andC,4 are model constants (Table 1) [12, 45], aMdt) is a Wiener process,
independent of that in the velocity model. In Eq. (28), is the source of turbulence
frequency. Here it is modeled as

P
=Cu2—Cp1—, 24
S 2 g (24)
whereP is the turbulence production
U,
P=—-uuj—, 25
T (25)

andC,; andC,, are further model constants (Table I).

4.3. Mixing Model

The Lagrangian approach is also used to model the scalar progefties i.e., Ns mass
fractionsY,, and the sensible enthalpy, following a particle. That is@™ (t) is modeled
by a stochastic procesB*(t). The effects of molecular diffusion are accounted for by ¢
mixing model. Here the simplest model, the IEM or LMSE model [8], is applied, so th
the particle composition evolves by

et 1

= —5CeR(@ ) — &) + S@ (W), (26)
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where the standard model constaytis used (Table I), an8 is the source term due to the
chemical reactions. Mixing models ae crucial in PDF calculations of turbulent nonpremix
flames with finite-rate kinetics. The IEM model is problematic in this respect [37, 43
however, good results are obtained when itis used in conjuction with equilibrium or flame
models for near equilibrium nonpremixed flames [49], as is the case here.

For the species(= 1, 2, ..., Ns) the sourceS, in Eq. (26) is the reaction rate; for
enthalpy ¢ = Ns + 1) the source is

Ns
Swi1=—)_ Shp.
a=1

5. NUMERICAL SCHEME

Although the Monte Carlo technique has proven to be an effective tool for solving tl
modeled JPDF evolution equation (Section 4), and JPDF methods are successfully ap
to many flow problems of practical relevance, they are relatively expensive because m
particles are required to keep the bias and the statistical error small. In the past, var
strategies have been applied to solve the modeled JPDF transport equation (see Fi
The idea of using a hybrid algorithm to reduce the statistical and the bias error is not n
Previous schemes are either only composition PDF methods or the modeled equation
inconsistent (e.g., iIPDF2DSthere are two values of the turbulent kinetic enekgypne
computed by thé& — ¢ model and one computed by the PDF model)PDF2DV, which
is the implementation of a stand-alone particle-mesh method, the joint velocity-frequen
compositon PDF transport equation is solved, and there are no internal inconsistenc
Numerical issues of this stand-alone particle-mesh method are the following.

e Many particles per cell are required to keep the bias and statistical error small. T
makes simulations expensive.

e A Poisson equation has to be solved for the mean pressure and contains damping
smoothing terms that make it quite complicated.

The goal of the present work was to devlop a hybrid scheme that solves for the joint veloc
frequency-composition PDF, is internally consistent, and is more efficient than stand-al

Navier-Stokes equations

) modeled

Y

JPDF transport equation

additional model

Y

JPDF tranport equation

Reynolds averaged

(for the fluctuating Poisson equation

Navier-Stokes equations velocity components) for the pressure

b= i~V o

i Hybrid algorithm ! E Hybrid algorithm ! E Stand alone particle algorithm !
to solve the modeled E ! to solve the modeled 2 ) to solve the modeled '

JPDF tranport equation ! E JPDF tranport equation ! E JPDF tranport equation '
(e.g. PDF2DS) ) ! (new algorithm PDF-2D-FV) | ' (e.g. PDF2DV) '

FIG. 1. Different PDF algorithms.
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particle-mesh methods. The new algorithm is implemented in the E&de2D-FV and
has the following properties:

e The joint velocity-frequency-composition PDF evolution equation for turbulent rea
tive flow is solved.

e Itis a combination of a finite-volume scheme and a particle method.

e The modeled equations solved by the two methods are consistent.

¢ Internal consistency is approximately satisfied on the numerical level.

e The bias and statistical errors are much smaller than those for stand-alone particle-n
methods (for a given number of particles per cell).

¢ No Poisson equation for the mean pressure has to be solved.

e Itis much more efficient than stand-alone particle-mesh methods.

In this section a general description of tRBF-2D-FV code is given. LikePDF2DV the
code is designed to model statistically stationary two-dimensional (plane or axisymmet
turbulent reactive flows.

5.1. Basic ldea

On an empirical basis it has been found that in stand-alone particle-mesh methods
second term on the right-hand side of Eq. (18) is one of the main sources of the bias e
This term causes the particle velocity componestgo relax toward the meald; which
is extracted from the particle field itself. The present method does not have this prob
since (21) is solved instead, where the fluctuating particle velocity compoungmnédax
toward zero. In fact, we solve for the modeled JRI¥, ¥, 6; x, t), which is equivalent to
fov, ®,0:x,1), except that it contains no information abdiit The mean velocity field
is computed separately by a finite-volume scheme which solves the Reynolds avere
Navier—Stokes equations (14) (the right-hand side is computed by the particle code). Nc
that f(V, ®,0;x,t) = g — U, ¥, 6; x,t) and that the hybrid scheme is consistent or
the level of the modeled equations. To have a stable, accurate, and consistent schem
crucial to satisfy this consistency numerically (notice that the coupled scheme is redund
i.e., the mean density and the Favre averaged sensible internal energy are computed tv
Next a sketch of the hybrid algorithm is given, the properties of our finite-volume schel
are outlined, the particle method is explained, and some important coupling issues
discussed.

5.2. Hybrid Algorithm

Here a short outline of the new hybrid algorithm is given (Fig. 2). At the beginnin
the finite-volume and the particle data are initialized. Then the finite-volume scheme
advanced one pseudo time step (Section 5.3), and the Favre averaged velocity fielc
the mean density field are fed into the particle method. These mean fields are estim
at each particle position using an interpolation scheme (Section 5.7). In the particle c
(Section 5.4), the particles evolve in the physical space, in the velocity sample space
the frequency sample space, and in the composition sample space. To evolve the par
in the composition sample space as a result of chemical reactions, a chemical interfa
called for each particle. From the new particle field the turbulent fluxes, the reaction ene
source term, ang’‘are extracted (Section 5.4.1), and a time-averaging technique is appl
(Section 5.9) to reduce the statistical and the bias error. Then the new time-averaged v
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Initialize FV
and particle code

Advance FV code
Favre averaged velocity field Chemistry interface

and mean density field
Compositi(;n vector
for each particle

( Advance particle code

Energy source term,
turbulent fluxes and
A
Y

Evaluate particle fields
and time average

Global convergence

FIG. 2. Flow chart of the hybrid algorithm.

are fed into the finite-volume scheme (they are also used for the next particle method t
step) and another time step starts. This loop is repeated until the solution has converg

5.3. Finite-Volume Scheme

To solve the Reynolds averaged equations (14) a cell-centered finite-volume sche
for the inhomogeneous compressible Euler equations with source terms was implemer
It is a 2D (plane or axisymmetric) code which uses rectangular grids with the(cells
(Fig. 3). The cell centers are located &t (x;), and the grid nodes are located at
(X, X2;,a2)- The size of celli( j) in the x; and x; directions is given byAx; =
(K = X1i_qn) ANAAXy = X2, — X2;_4,» FESPECtively. We use explicit local time
stepping (the pseudo time step sixéis chosen according to the CFL stability criterion
with a Courant number of 0.5) and a characteristic based Riemann solver is used for
computation of the fluxes at the volume interfaces [13, 42]. This solver is based on
idea of linearizing the Riemann invariants along the characteristics. For low-Mach-num|
flow, in spite of its simplicity, it is as accurate as more complicated and more expens
scheme such as Roe’s approximate Riemann solver [40] (which does a much better
for high-Mach-number flows). Second-order spatial accuracy is obtained by applying
MUSCL scheme in combination with the minmod limiter [44]. All the other terms beside
the inviscid fluxes are source terms extracted from the particle field. To avoid nonphysi
oscillations in regions with nonconstapt (10) a correction scheme [13, 15, 28] is ap-
plied. In order to overcome the stiffness problem at low Mach numbers a precondition
technique, based on artificial reduction of the speed of sound, is used [13, 14].



A HYBRID ALGORITHM FOR THE JOINT PDF EQUATION 229

X2

i

X

'

1

il

'

)
j+172 X
S aE tEEE EEEE EEEER N
(i.)) J

X1
X
Livin

FIG. 3. Grid used in the finite-volume scheme and in the particle method.

5.4. Particle Method

Inthis sectionitis shown how mean fields are extracted from the particle data, how the |
ticles evolve in the physical space, how the SDEs (21) and (23) are solved, and how the |
ing model (26) is implemented. All this is done in the same way as in theRD&2DV[34].

5.4.1. Estimation of Means from the Particle Data
Mean fields are used for three purposes:

e Some of the coefficients in the SDEs are mean fields.
e The source terms in the finite-volume scheme are cell averages of mean fields.
e Mean fields represent the results.

To represent mean fields we use the same rectangular grid with theic¢)ls$ for the
finite-volume method (Fig. 3). For the estimation and interpolation of mean fields we L
different basis functions:

o To estimate mean particle properties at the grid node with the location {, X2, ,,,)
the bilinear basis functiogw%,j%(x) is used (Fig. 4).

e The same bilinear basis functi@nr%,”%(x) is used to interpolate properties from the
grid nodes to the particle positions.

e To estimate mean particle properties in cellj) the top-hat functior@iyj (x) is used,
whichis 1 forx in cell (i, j) and O otherwise.

Itis important to mention that at any locatigmvithin the computational domain the sum of

all components of each basis functic@na(ndﬁ, respectively) is one. Table Il shows which

means are extracted from the particle field. Favre averaged means at the grid nodes st
U, Ui are estimated from the particle field as

Np /a4
N Zn:pl(gi+%,j+% (X*)m*uﬁuﬁ)n

(mk)i+l il ~
J No /A
T Zn:pl(gi+%,i+%(x*)m*)n

(27)
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FIG. 4. Bilinear basis functior@w%“% for kernel estimation and interpolation.

and for mean quantities at the cell centers suctp&¥ the approximation

Np /2 * * *
_ n:pl(gi,j(x ym hg%Ya)n

r':l=pl(ai,j (XHyme)

(PQij ~ (28)

is used. Derivatives at the grid nodes suchdé&)u,Uy)/0x; are obtained by central
differences as follows:
(3((p)lm)

9%q )i+1/2,j+1/2 Xl i1z ~ Xy

~

_ (P)UUK)i 4372, 1172 — ((P)ljzﬁk)i—l/z,ﬁl/z. (29)

The Reynolds stressesu;, the scalar fluxesﬂTg, 7', and the energy source terfnQ)
have to be estimated to close the system (14). All the other quantities in Table Il, i.e.,

1 9(p)aT))

, Q, & k and ®,
o) o,

are used to close the particle evolution equations.

TABLE Il
Means Extracted from the Particle Field
Quantity Location Equation Purpose
U Grid node 27 Finite-volume scheme, particle method
Jﬁg Grid node 27) Finite-volume scheme
@ Grid node 27) Particle method
Q Grid node (27) Particle method
k Grid node 27) Particle method
W;:L“j Grid node (29) Particle method
(pQ) Cell center (28) Finite-volume scheme
iR Cell center (28) Finite-volume scheme
& Cell center (28) Finite-volume scheme
> Grid node (48) Particle method
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5.4.2. Particle Motion
A particle with the coordinatX* evolves according to

dXx*(t)
dt

= U(X*(), 1) + u*(t), (30)

whereU is computed by the finite-volume scheme at the volume interfaces and then
terpolated to the particle positio&* (Section 5.7). To achieve second-order accuracy w
apply the midpoint rule [34]. The first half step

1
32

X=X SO X) +u) (31)

n+(1/2)

is performed to approximate the midpoit . The superscriph denotes the old time
level andn + 1 the new time level. Then*""" is computed at the midpoint and used to
perform the time step

X*n+1 _ X*n + At (0” (x*n+(1/2)) + %(u*n + u*n+1)> (32)

to get the new particle positiok*" ™.

5.4.3. Simplified Langevin Model

Defining
_ 1 adpum)
(o) ox;
a0; /1 3
= (5 N Zco) s, and (33)
C= COQk,
Eg. (21) becomes
dur(t) = adt + byju? dt + cV2dW. (34)

To solve (34) numerically we apply the following second-order scheme [10, 34]

Auf = (& +bjul’) At + (At

sn+1

Ui

n 1
=Uu" + AU+ ébij AUTAL

where§; is a random variable with standard normal distribution. The coefficiants;,
andc are evaluated at the midpoint.
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5.4.4. Turbulence Frequency Model

With
A = C3oQ2
B=(Cs+8,)R (35)
C = 2C3C4a%2,
we write (23) as
do* = Adt — Bw*dt + (Co*)Y2dW. (36)

For the numerical integration of Eq. (36) the coefficieAtsB, andC are considered to be
frozen during one time step (evaluated at the midpoint) [34]. Then exact expressions for
mean and variance af*(t + At) conditioned onv*(t) = »*" are

. A
X = o*"e BAL 4 52— e BAY (37)
and
CAt )
2 *
-2 (X _ 38
7 2(1+BAt)( +o) (38)

Thus the new particle frequency is set to

L+

0" = max0, X + &), (39)

whereé& is a random variable with standard normal distribution, independent of that
the velocity model. The max-function in (39) is to guarantee realizability, and, as may
verified, it does not prevent the convergence of the methaskt dsnds to zero.

5.4.5. IEM Mixing Model
The ideal implementation of the IEM mixing model (26) has the following properties:

1. It guarantees realizability (boundedness).
2. It conserves the mean.

3. Itis accurate in time.

4. ltis spatially accurate.

The implementation described here (which follows [34]) is ideal with respectto 1, 2, a
3, and it has the spatial accuracy @bud-in-cell (CIC) [11]. For theith particle with
composition vecto®;' (t), positionX: and massn;, the IEM model is

d®’

Tmix

1 ~
= —EC¢Qi (‘I’;k — @) dt, (40)

where; is the mean conditional frequency (24)Xt, and®; is the Favre averaged#
at X;*. Additionally to (40) the particles evolve in the composition sample space becal
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of chemical reactions. The essence of the implementation is to specify a valid numer
approximation®; to ®; such that the implementation of (40) has the properties listed abo\
With Q; and®; frozen, the exact increment & over a timeAt is

5bF = —d (B — &), (41)
where
= 1— e 2Rt (42)

Let F, be the value ofb at the grid nodex and letd, (X;) be the linear basis function
coefficient, so that interpolation from the cornerto the particle positioX;" yields

& = 8 (X)Fe, (43)
where
1= 6. (44)
Thus
5B} = —d («In* -3 ga<xi*>Fa). (45)

Now the global change @P is
5G =) misd =—> md (q>i* - Zga(xi*)l:a>. (46)
i i o

Using (44), the right-hand side can be rewritten

8G = za: (- (Z 8, (X)Midy @ﬁ) +F, ( Z go,(Xi*)mi*di)>. (47)

Evidently a sufficient definition foF, to satisfysG = 0, i.e., to have a conservative imple-
mentation, is given by

b _ Db XDmd @)
>, &M

(48)

This is the CIC mean with particle weightimg‘d; [34]. A
In summary, IEM is implemented via Eq. (41), with, ®;, andF, being defined by
Eq. (42), (43), and (48).
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5.5. Consistency Issues

It has already been mentioned that the new algorithm is consistent at the level of
modeled equations. That is, if these equations were solved exactly (without numer
error), then the fields that are represented in both the finite-volume and particle meth
would be identical. But it is difficult to satisfy consistency numerically. The mean densi
and the Favre averaged sensible internal energy fields are computed twice and therefor
algorithm is redundant (Section 5.1). First we define the mean particle mass density,

. t) = <Z My} (1) — x)> .

Sinceq represents the mean fluid densfp) it is a consistency requirement tteat= (p).

In addition to an accurate interpolation (Section 5.7L)~Jdifom the finite-volume data to the
particle positions, it is required thét" | x) = 0 everywhere (Section 5.8). An additional
consistency requirement is that the Favre averaged sensible internal énemyputed
by the finite-volume scheme corresponds well to the one computed by the particle mett
Therefore, besides tracking the particles accurately, the scalar flui¥&8 | x), which are
fed into the finite-volume scheme, have to be accurate.

5.6. Coupling

In Section 5.2, a sketch of the new hybrid algorithm was shown; in Section 5.3, t
properties of the finite-volume scheme were outlined; and in Section 5.4, it was descril
how mean quantities are extracted from the particle data and how the particle evolut
equations are solved. Here we discuss the coupling of the two schemes, the finite-vols
scheme to solve the Reynolds averaged Navier—Stokes equations and the particle mett
model the evolution ofj. Table Il shows which information has to be exchanged betwee
the two parts of the algorithm. Next it is described how the Favre averaged velfbtsity
interpolated from the finite-volume data to the particle positions and how it is achieved tl
(u* | X) remains zero.

5.7. Velocity Field Interpolation

In Section 5.5 it was pointed out that an accurate scheme for the interpolatibfiah
the finite-volume data to the particle positions is required in order to have good agreen
between the mean particle mass dengiand the mean fluid density) which is computed

TABLE IlI
Information Exchange Between the Particle
System and the Finite-Volume Scheme

Information flow direction Information

From the particle method uuj, uTﬁg,ﬁ(p Q),
to the finite-volume scheme y = g

From the finite-volume scheme 0, (p)

to the particle method
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by the finite-volume scheme. We have developed an interpolation scheme which is b
on the fact that in a flow with a velocity field(x, t) the volumedV (t) of an infinitesimal
material volume evolves by

d
—IndvVt) =V .U 49
g ndve : (49)
and the fluid density by
Dinp _ ¢ 4. (50)
Dt
Similarly, the expected mass densifpf particles evolves by
(§t+0-v)|nq:_v.0. (51)

Thus the dilatation field” - U experienced by the particles is of fundamental importanc
in particle methods. Our particles move with velodﬁw u*. For such particles it can be
shown that (51) applies [30, 38].

For constant density flow - U is zero, and in the steady-state for variatie we have
V - ((p)0) = 0, which is satisfied in a weak form using cell centered finite-volume methoc
Therefore it makes most sense to use the mean velocities at the volume interfaces (com
by the flux solver) for the interpolation to the particle positions.

Our new interpolation scheme has the following properties:

e Within one cell the representation of is guadratic inx; and linear inx,, and corre-
spondingly the representation 0§ is quadratic inx, and linear inx;.

e The dilatation fieldv - U varies bilinearly withx; andx, within each cell.

e For constant density flow in the steady state the interpolated Favre averaged velc
field fulfills exactly v - U = 0 everywhere.

e The interpolated componeh} is continuous in the; direction, but in general not
continuous in the; direction, ifj # i. This is a compromise necessary to avoid oscillation
and to satisfy other requirements.

All these issues are discussed further in Appendix A, where the interpolation schem
explained.

5.8. Velocity Correction in the Nondeterministic Case

With the velocity interpolation scheme presented in Appendix A we approximate
achieve consistency between the mean particle mass depaity the mean fluid den-
sity (p), if the flow is laminar, i.e., if the particle property is zero for all particles. In
the nondeterministic case, i.e. uf is not zero for all particles, an additional requirement
besides an accurate interpolation of the Favre averaged velocity field is that the expect:
of the fluctuating velocity componeriisi.e., (u* | X), remains zero everywhere. To achieve
this we correcu* by subtracting the time average of the precorrected niig€Ar) (time
averaging is explained in Section 5.9) after each time step.

5.9. Time Averaging

To achieve a stable scheme and to reduce the statistical and the bias error of a guant
which stands, for example, faru, uihZ, (0 Q), ory’, we use the following time-averaging
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technique,
B = up"+ 1 — wpt with O<u<D), (52)
where
K-1 . .
p= with the time-averaging factd€ > 1. (53)

The significance of the time-averaging factdris that K At is the characteristic time-
averaging time, and thukK expresses this time as a number of steps. The subscript
indicates the instantaneous value, and the supersarigptsin + 1 denote the old and new
time levels, respectively. The new valg&t! is determined from the old valy# weighted
with the factory and the instantaneous valﬁé*1 weighted with 1— u. In Appendix B a
model system for studying the coupled system is analyzed. It is important to mention t
the time-averaged quantities are also used in the SDEs.

6. TEST CASE: NONPREMIXED PILOTED-JET FLAME

This test case is an axisymmetric nonpremixed piloted-jet flame for which there ex
experimental data [21, 22] and results from other PDF simulations [49]. The purpose i
compare the new hybrid scheme (implemented in the &ddle-2D-FV) with the stand-
alone particle-mesh method (implemented in the d@d&2DV[34]) in terms of accuracy
and efficiency. We chose the same grids, the same initial and boundary conditions, the s
turbulence models, and the same flamelet model used by Xu and Pope for their simulat
[49]. It is important to mention here that the conclusions from the numerical studies :
likely to be independent of the combustion model. An accurate description of the numers
test case is given in their paper.

A sketch of the burner used in the experiments on this flame is published in [22]. /
axisymmetric jet of methane fuel with radit: = 3.6 mm is centered in an annular pilot
(Ryilot = 9 mm). The pilot burns a mixture of stoichiometric composition and provides a he
source to stabilize the main jet at the exit plane. The flame is accompanied by an unconf
coflow stream of air. The bulk velocity in the jet is specified tdg = 41 m/s, the pilot has
a velocity Upiler = 24 m/s, and the coflow velocity idconow = 15 m/s. These conditions
correspond to the flamk in Masri et al. [23]. Measurements have been performed for
temperatures using thermocouples, velocity by LDA, and compositions by sample prol
Experimental data are published by Maatrial. [22] and are also available at the FTP site
(Internet) of the University of Sydney [21].

Although the agreement between the experimental data and the computational re:
is not emphasized in this study, the Favre averaged velocity and mixture fraction profi
40R¢; downstream of the nozzle are shown in Fig. 5 and compared with experimental d
by Masriet al.[22] and with results of a simulation with the coB®F2DV [34, 49]. For
both simulations the same 4040 grid has been used, and in comparison to the previot
computations [3, 24, 41] these results are quite satisfactory considering the simple velo
model, mixing model, and thermo-chemistry used.

6.1. Convergence Results

Numerical experiments are conducted to isolate the statistical, the time stepping, the |
and the discretization error. The statistical error in the results is reduced by time averag
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FIG.5. Comparison of Favre averaged velocity and mixture fraction profirs-atOR,, (experimental data
[21, 22], numerical results witRDF2DV [34, 49], and numerical results withDF-2D-FV, for the simulations
the same 4G 40 grid has been used).

The particle time stepat fulfill the criterion At < min(Axy/U;, Axo/U3, 1/2)/2,and no
differences in the results of simulations with smaller particle time steps could be obsen
Also Xu and Pope [49] showed that the time-stepping error is negligible if the time step s
satisfies the CFL condition and is smaller than the turbulence time scale. The numei
parameter for studying the bias error is the average number of particles ppgiglicom-
bination with the time-averaging factét. For the spatial discretization error the relevant
parameter is the number of ceNs?: The grid spacings vary asx ~ M~%, Ay~ M1,

The stationarity of numerical solutions is firstinspected. Nextthe bias error is investigat
and finally the spatial discretization error is analyzed.

6.2. Stationary Solution

Like PDF2DV, the new hybrid cod®DF-2D-FV is designed to treat statistically sta-
tionary flows, such as the piloted-jet flame. In Fig. 6 the residual of the finite-volume p:
of the code is shown as a function of time steps for two different numbers of particles
cell Ny and for two different time-averaging factols (for the piloted-jet flame test case
with a 40x 40 grid). The two lowest curves represent the convergence histories of t
simulations with the sam€ias = NpcK =4000 (the bias error is the same for the same
Coias; Section 6.4), but witiNpc =10 andNp =40, respectively. It may be seen that in
each case the residual generally decreases over the first 3000—6000 time steps, and 1
achieves statistical stationarity. In the statistically stationary state, the levels of the resid
are determined by the statistical fluctuations arising from the particle code. The simula
with Npc = 10 reaches the statistically stationary state in 6000 time steps (about 1 hou
a 400-MHz Pentium machine), and the simulation Wt = 40 requires 4000 time steps
(almost 3 hours on a 400-MHz Pentium machine).

6.3. Internal Consistency

Here itis shown that the mean densijpy field from the finite-volume data and the mean
particle mass density field are approximately consistent. In Fig. 7 contour lines of thes
two fields are shown in the same plot, and a very good agreement can be observed.
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FIG.6. PDF-2D-FVwitha40x 40 grid: Residuals in the finite-volume code as a function of time for different

time averaging factork and numbers of particles per cél|..

6.4. Bias Error

The bias error is the deterministic error caused by using a finite number of particl
Simulations using the same 4040 grid, but with differentN,c have been performed. In
Fig. 8 Favre averaged velocity and mixture fraction profiles &4@ownstream of the
nozzle are plotted (witk = 100 andNpc = 10, 40, 160). One can see that there is a fixed
point in each plot where the three lines cross each other. The vertical lines in Fig. 8 m
two locations 1 and B3R away from the symmetry axis (left and right of the fix-points)
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FIG. 7. PDF-2D-FV with a 40x 40 grid, K = 800, andN,. = 10: Mean density contour plots from the
finite-volume data (lines) and extracted from the particle field (symbols).
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FIG. 8. PDF-2D-FVwith a 40x 40 grid andK = 100: Comparison of Favre averaged velocity and mixture
fraction profiles ak = 40Ry, for different values oN,,..

which we chose to study the asymptotic behavior of the algorithiNass increased. The
same points have been chosen by Xu and Pope [49] to study the bias error of the stand-
particle-mesh algorithm.

Figure 9 shows the asymptotic behavior (at these two points) of the quabltiti&ofiow,
the Favre averaged mixture fractidq(,Ufoﬂow, andwRiet/ Ucofiow. ON thex axis 1/ Ny is
shown, and the points represent the val(t¢s= 100 andNp = 10, 20, 40, 80, 160). The
long lines are the least-squares lines (using these data points), and the short lines ai
corresponding least-squares lines of the studies with the stand-alone particle-mesh me
PDF2DV. The intersection of these lines with the ordinate is the extrapolatiNgjo: 0,
i.e, the bias-free result corresponding to an infinite number of particles. The slopes of
lines indicate the magnitude of the bias error. One can see that the short lines are n
steeper, which shows that, for a givi. (andK =100), the new hybrid scheme leads to
a much smaller bias error.

Also shown are the least-squares lines of the results obtained by incréasirggead
of increasingNpe (Npe=10 andK =100 200, 400, 800, 1600. These lines are almost
identical with the least-squares lines using the values of the resultsknvtl00 and
Npc =10, Npc =20, Npc =40, Ny = 80, andNpc = 160, which shows that multiplyini
by a factorb has the same effect on the bias error as multiplyifyg by b. The vertical
line in the last plot in Fig. 9 shows how many particles are needed to obtain less tt
5% bias error (notice that the relative bias errok @ larger than the bias error of the first
moments). This can be achieved with= 100 andN,c = 55 or withK =550 andNpc = 10.
For the same error tolerance at the same locations more than 1400 particles are nece
with the stand-alone particle-mesh method. WAtk= 550 andN . = 10 the hybrid scheme
converges in about 7000 time steps, which means that 70,000 particle time steps pel
have to be performed. The stand-alone particle-mesh method was shown to converg
about 1000 time steps, and therefore 1,400,000 particle time steps have to be compute
each cell. From this and the required CPU time (about 1 hour for the hybrid scheme
a 400-MHz Pentium machine) we conclude that the new algorithm is more than 20 tin
more efficient than the stand-alone particle-mesh method (for this test case). No atte
has been made yet to optimize the choicé&aiind N for a givenCpias= NpcK.
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FIG. 9. Bias convergence studies: Mean quantities agaig$tat different locations foPDF2DVandPDF-
2D-FV.

6.5. Spatial Discretization Error

The spatial discretization error is the deterministic error caused by using a finite num
of grid cells. Here we show that the hybrid algorithm is second-order accurate in space
that its asymptotic behavior is comparable to that of the stand-alone particle-mesh metl
Simulations withK =100 andNpc = 10, Npc = 20, Ny =40, andN, = 80 have been per-
formed on grids with 20« 20, 30 x 30, 40 x 40, and 50x 50 cells. The same quantities
and the same locations as for the convergence studies of the bias error are used he
study the asymptotic behavior of the scheme as the grid is refinedx 8kes in Fig. 10
representdM 2, and the data points represent the asymptotic valueNfer— oo on
the different grids. The long lines are the least-squares lines of these data points or
grids with 30x 30, 40 x 40, and 50x 50 cells. The short lines are the corresponding least
squares lines of the studies with the stand-alone particle-mesh method. We see thatthe h
algorithm (like the stand-alone particle method) is second-order accurate in space and st
grid convergence rates comparable to those of the particle method. For the mean quan
U, andé, there is good agreement between the extrapolated valjgs—> oo, M — 00)
obtained with the two codes. This shows that, although the numerical errors in the two co
have quite different behaviors, they converge to the same resujt@ndM tend to infinity.
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FIG. 10. Grid convergence studies: Mean quantities agast at different locations foPDF2DV and
PDF-2D-FV.

For @ andk the agreement is less satisfactory. Possible reasons for these discrepar
are:

e On each grid the bias free result is an extrapolated value (and hence subject to e’
polation error).

e The grid converged results are extrapolated values of the bias free results on diffe
grids (and hence subject to extrapolation error).

e The results still contain statistical error.

7. CONCLUSIONS

A new hybrid algorithm for solving the joint velocity-frequency-composition PDF trans
port equation has been developed and implemented in theRidBE2D-FV. The important
aspects of this algorithm are:

e Itsolvesthe jointvelocity-frequency-composition PDF evolution equation for turbule
reactive flow.
e Itis a combination of a finite-volume scheme and a particle method.
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The modeled equations are consistent.
It is internally consistent and robust.

It reaches a statistically stationary state.
It converges foNpe — oo.

It converges foM — oo.

Some of the issues which had to be addressed are listed below.

e Internal consistency: The interpolation of the Favre averaged velocityJiédoim the
finite-volume data to the particle positions, such tatU behaves properly, is crucial to
obtaining consistento) andg; fields.

e Stable coupling between the finite-volume scheme and the particle method: Thi
achieved by using a time-averaging technique.

 Reduction of the statistical and bias error: Instead of th@ndU fields extracted from
the particles, the corresponding smoother fields, computed by the finite-volume sche
are used in the particle method. Furthermore the bias and statistical errors are redi
enormously because of a time-averaging technique.

The computational effort is considered in two parts: that required directly in computir
the composition change because of reactions, and that required in the remainder o
PDF particle method. For the latter part, both the work and the storage scale linearly v
the number of species. For the reaction part, the work depends on the complexity of
chemistry, its stiffness, and how it is implemented.

Numerical experiments of a nonpremixed piloted-methane-jet flame have been perfort
to compare the accuracy and efficiency of the new algorithm with the established stand-a
particle-mesh methodDF2DV. (Studies of a bluff-body stabilized flow with different PDF
algorithms, including the new hybrid algorithm, can be found in [16].) The conclusior
from these studies are the following:

e The converged resultdNGc — oo andM — oo) with PDF-2D-FVare in good agree-
ment with those oPDF2DV.

e For a given error tolerand@DF-2D-FVis much more efficient thaRDF2DV (more
than 20 times faster for the nonpremixed piloted-methane-jet flame test case). This is me
due to the smaller bias error.

These results are very encouraging for joint velocity-frequency-composition PDF methe
to be applied for complex 3D flow in the future.

APPENDIX A: VELOCITY FIELD INTERPOLATION

In Section 5.7 it has been pointed out that the dilatation field) experienced by the
particles is of fundamental importance in particle methods and that it makes most se
to use the mean velocities at the volume interfaces (computed by the flux solver) for
interpolation to the particle positions.

Next the 2D interpolation scheme used in our algorithm is derived. First we transfo
the rectangular cells into unit squares. The axes of the new coordinate system are der
by x; andx; and their origin is at the bottom left corner of the transformed cell (Fig. 11]
Consider a representationldf that is quadratic irx; and linear inx, and correspondingly
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X2

X1

FIG. 11. For velocity field interpolation: Transformed volume.
a representation df, that is quadratic irx5 and linear inx;:
’ ’ a /1 1b 1 / n1e
Ui(X1, X2) = (1 —X5) [ (1 —xpU7 + x3U7 — 5xl(l — XpU7
/ / c r11d 1 / A f
+ X5 | (L= XUy + XU — 5xl(l — XU (54)
and
/ ’ a /11€ 1 / N9
Ua(Xg, X2) = (L1 —x) [ (1 —x5)U5 + x5U;5 — Exz(l —Xx)U5
’ ’ b 711d 1 ’ /N1 h
+ X1 | (1 —x%xx)U37 +xU; — éx2(1—x2)U2 . (55)
The gradient®U; /dx; anddU,/9x, are then given by

au 1\ -
AXlil =(1- Xé)(—Uf + Uf + (XJ,_ — Z)Ui)

90Xy
’ c d ’ 1 A f
+X( —U7 +U7 + -5 U, (56)
and
Uz , , 1\ -
, b, qyd ;1\ an

These representations have the following properties:

1. At nodea, Uj(xg, X2) = U2 andU;,(x1, X2) = UZ, and similarly for the other three
corners.

2. The velocities normal to the cell faces (i}, at the east and west facés; at the
north and south faces) are independerii&f U, U9 andU}.
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To determine the coefficients¢, U, U9, and0 !} we require tha¥ - U vary linearly within

the cell. At the four corners we have
1~
(V-U)az(—Uf+Uf /AX1+< U2 +U§—2Ug)/AX2

20 )
b a b 1 d_ Lin

(V-U)" = _Ul +U1 E AXy + U2 +U2 —EUZ AXo
1. 1 (58)

(V.U)°=<—Uf+uf—2 )/Ax1+< U2+U2°—202)/Ax2
- 1.

(V-0 = (—Uf+Uf+EU{)/AX1+ ( Uy +Ug — 5 2>/Ax2.

Note that the average of the above four expressions is
J(UPUf - UF -Uf) | B(Ug U3 - Us - U) )

AX Ay
independent 08¢, U, U2 andU}. Our algorithm to determine the velocity components
at the volume corners and the coefficiedty U 1f ,UgandU} is:

1. To make (59) consistent with the FV part of the code, the velocity components at
corners of the volumes are chosen such that

%(U§‘+U£’) =U3"
%(U§+U§) =3

60
1 . (60)
E(Uf +Ur) =Ur
1
5(Ur+Uf) = ure,

whereU ¢ is thex; velocity component of the mean flux (used in the finite-volume scheme
at the corresponding volume interface, and similarly for the other component and the of
interfaces.

2. There are different possible choices for the velocity components at the volume corr
to fulfill (60). To avoid oscillations we allow different values at a specific volume corne
i.e., we use a linear interpolation technique combined with the minmod limiter (Fig. 1
such that (60) is fulfilled:

For example, for volumei { j),

up = (61)

a,b a,b
UZ‘ I AX:I-i,j mland U2|+1| l'J2| j , lJ2| j Uzi—l,j ,
2 X1 — Xy Xy — Xy

and for volumei(+ 1, j),

AX Ua,b _p1ab a,b a,b

a __11ab Lisaj o 242, 241 241 2 i

Uz, =Yz, — Tmlnmod < — - — . (62)
Livaj Livaj Lt 1
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u ab ab
2 § |
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Do

i+2

_________________________

X
2iv12

FIG. 12. For velocity field interpolation: MUSCL with minmod limiter; squares indicate velocities obtainec
from fluxes computed by the finite-volume scheme and circles indicate extrapolated values; ""@,‘EH‘@‘E ug ,
although they are defined at the same location.

The minmod limiter is defined as

A if A-B>0 and |A <|B]|
minmod(A, B) = ¢ B if AA-B>0 and |A| > |B| (63)
0 if A-B<0.

Note that in generalugﬂj #+ Ugi,j although corner a of volume ¢ 1, j) has the same
location as corneb of volume {, j), but the di1’“ference§J§}+Lj — Ugi is proportional to
1/M? when the velocity field is smooth [44].

3. Atthe cornem, d? is defined as the average G- U over the four incident cells and
is used as an initial estimate fov ( 0)a. Similarly,d’®, d’¢, andd® are defined at the other
three corners.

4. For a given cell the additive adjustment

_UPH+Uf-Uf-UP  US+US-US—Up  d®+dP+d°+de

8 64
ZAX]_ 2AX2 4 ( )

ismadetoV - U)avb@d in order that the average of the modified values
(V- D)a,b,c,d — ga&bcd _ gabed +5 (65)

0.6

X}

0 0.6

FIG. 13. Particle tracking test case: To test the accuracy of the velocity interpolation scheme.
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satisfies (59). Notice thatandd®¢9 are only used for the derivation of coefficietds
but not for the implementation.

5. GivenU2%? from Egs. (61) and (62) and/(- U)2><d from Eq. (65), the linearity
of V- U (58) imposes three independent constraints on the four remaining coefficie
0e, U/, 09, andUY. We specify these coefficients as the least-squares solution

(=2 dP — d° 4 d9 2% 4 (dP — d?) Axg AXE

0 =
AXZ 4+ AX3
_Ax b c d
sz (U2 U, —U, + U2)
f _ (CdR AP —de 4 a5 4 @ - a9 Axa
re AXZ 4+ AX3
AX
—sz(uf—uf—uf+Ug)
(66)
L’Jg B (_d/a _ d/b de + d/d) 2 + (d/c d/a)AXQAXf
2= AXZ + sz
AX
~ e T - UPHUE U
gh_ (C4R—dP 4 a4 a9 5L 4 (@ — dB) AxAx
2 AXZ + AX3
AXo b d
- R(Uf— Uy — U7 +U;),
which satisfies (58) and minimizes
~ev2 L N2 L aN2 iy 2
(U9)+(01)"+ (09)" + (03)". (67)

In our case this scheme is applied in order to interpolate the mean velocityfietd
summary, within each cell, the mean velocity is given by (54) and (55), with the coefficier
determined from the finite-volume cell-face velocities from (61), (62), and (66). Within ea

cell, v - Uvaries bilinearly with, andx, (for constant density flow - U = 0 everywhere).

At the cell faces, the longitudinal velocity is discontinuous (because of the use of t
minmod limiter and because the coefficiedts U, U2, and0} are different in each cell).
For a smooth field, these velocity discontinuities tend to zertes

Across cell faces7 - U is discontinuous because of the adjustme(®4), which also
decreases asx?.

Test Case: Particle Tracking

This case was to test the spatial accuracy of the velocity interpolation scheme. A nun
of particles are tracked in a given flow field (nhonconstant density). All variables are non
mensionalized by a reference value of one in the corresponding Sl units. The domain is
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position error
T

0.0001
0.01

0.1 1
cell size

FIG. 14. Accuracy of the velocity interpolation scheme: Particle position error as a function of grid cell size

2D plane withx, > —2, the velocity field is given by

01 _ 1 —X2
(0) <02> = (Xf—i-X%)l/z ( X1 ) (68)

and the density field is
(p) =2+ xo. (69)

The streamlines are circles, and the continuity equation is satisfied. For the interpola
we used the mean velocities and the mean densities at the volume interfaces of a uni
rectangular grid. Ittakes & + r?(1 — coS«)) seconds for a particle with the initial position
(r, 0) to get to the positiokr cos(@), rsin(e)). We tracked 50 particles, initially uniformly
distributed on the line from (0.6, 0) to (0.65, 0), and chose the timgch that the most
inner particle, i.e., the particle with the initial position (0.6, 0), has the final positidng,

0). In Fig. 14 the mean position errors for three different grids are shown (with cell size C
0.1, and 0.05, respectively). The dashed line is for reference of exactly second oder.

APPENDIX B: TIME AVERAGING

The purpose of this appendix is to analyze a time-averaging technique for coupl
the finite-volume scheme with the particle method such that the overall scheme is sta
Furthermore this time-averaging technique reduces the statistical error, and since al
terms in the SDEs and in the finite-volume scheme which are extracted from the part
field are time averaged, the bias error also is reduced.

For the finite-volume scheme we expect the mean resiefiah thenth step to decay as

o™ =vo" (for stable schemes@ v < 1). (70)

Now we consider the model system, which at time stép characterized by" (which
represents the finite-volume data) a#fdwhich represents the the time-averaged extracte
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particle method data)

y" =y 4 B (72)

B = B+ (L— B with (0 < pu < 1), (72)
where Bi” is the instantaneous extracted particle method data. Equation (71) repres
the finite-volume scheme, and Eq. (72) is the time-averaging scheme (52) with the fa

n = £=1, whereK is the time-averaging factor. Defining = y"** — »" and using (71)
we can write

a™t = v + (Bn+1 _ Bn) (73)
anddefiningd"™ = a + ba" 4 cé"1ands" = a — 4" (the expectation g8 converges to-
ward a constard, has a statistical error which is proportional to a constaand is linear-
ly dependent or"), one can write

8" = (=b(1 — w)a" + pd" — oL — wWEM (74)
Finally we get the model system
s\ _( n —ba-mw \[(s)" —1) pnet
(a> - (1_M bl (o) Fea—m (e @)

A

Neglecting the nondeterministic term (i.e., setting: 0) we have a linear system with
|A| = u(v —b) + b. The eigenvalues; , of A are

1 1
o= S(n+b—butv)E §(u2+6bu — 2bu? — 2pv + b?
— 2b2 4 2vb 4 b2 — 2buv + v? — 4b)? (76)

and can be complex or real. In Figs. 15, 16, and|14,(the greater of the absolute values
of the two eigenvalues) is plotted as a functiorpofor v = 0.99 and different values of

1

0.998 |

0.996

0.994

0.992

0.99 L L N L
0.99 0.992 0994 0.996 0.998 1

FIG. 15. Model system (75){x,| as a function ofx for v = 0.99 andb < 0.
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0.998 +

0.996

0.994

0.992 +

099 = 1 ] L 1
0.99 0.992 0.934 0.996 0.998 1

FIG. 16. Model system (75)[2,| as a function ofx for v = 0.99 and O< b < v.

b<0,v>b>0and > v, respectively. Furthermore, for referenggs;| = 1 is shown. It
can be seen that the critical family is the one shown in Figh1¥ ¢). In that family the best
choice ofu is the value for which the eigenvalugg, change their nature from complex
to real. One can think about different strategies for finding the optimal time-averagi
factor K = ﬁ At the moment, we make no attempt in this direction. We choose
appropriate value fgr which is smaller than one, but large enough to have a stable scher
To illustrate the convergence behavior of the model system (75), Fig. 18 shoye€'og
for b =1.5,¢ = 0.0001 v = 0.99, and three different values of. While the system is
unstable fop. = 0.97, the best convergence rate is foundifor 0.9979795896. The third
convergence plot is obtained with= v = 0.99. For reference the convergence history
line of the system wittB" = 0 is shown. The horizontal lines represent the valde— 1)

for © = 0.9979795896 ang. = 0.99. This is the statistical error where the convergenci
stalls.

Unfortunately the coupled finite-volume/particle method algorithm is much more cot
plex than the studied model system. It is in general not straightforward to determine
parameters andb, and therefore it is difficult, if not impossible, to find the optimal choice
for the factoru. However, we can learn the following from the previous studies:

e The question of how well the coupled system converges (and if stable or not) depe
not on the amplitude of noise (parametén the model system (75)), but on the convergence
ratev of the stand-alone finite-volume scheme, on the sensitivif§; @n y (parameteb
in the model system (71), (72)), and on the choice of the time-averaging féctorléﬂ.

0.998

0.996 -

0.994 -

0.992 +

099 o i 1 1 1
0.99 0992 0994 0.996 0.998 1

FIG. 17. Model system (75)[x,| as a function ofx for v = 0.99 andb > v.
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FIG. 18. Convergence histories of the model system (78)(steepest descending line; stand-alone finite-
volume) and lodga"| for b = 1.5, ¢ = 0.0001, v = 0.97 (climbing curve; unstable),= 0.99 (dashed line; stable,
but not optimal), ang. = 0.9979795896 (solid line; optimal). The lowest two horizontal lines represent the valu
c(1— p) for u = 0.9979795896 ang = 0.99 (statistical error where the convergence stalls).

e One can always find a value farsuch that the overall convergence raggrai (| 12|
in the model system (75)) is less than one.
e The convergence stalls, if the residual reachés(1 — w)).
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