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Three different PDF algorithms have been applied to investigate a constant-density
bluff-body stabilized flow using the same turbulence models and the same boundary
conditions. The objectives of this paper are to compare the three algorithms in terms
of numerical accuracy and efficiency and to demonstrate the ability of PDF methods
to calculate this type of flow accurately. While one of the three algorithms is a stand-
alone particle-mesh method, the other two are consistent hybrid algorithms, i.e., both
are particle methods coupled with finite-volume schemes. The motivation for hybrid
algorithms is to reduce the statistical and bias errors. Since the coupling between the
finite-volume scheme and the particle method is a major numerical issue, different
approaches have been investigated. It is shown that the results obtained from the
three numerical algorithms are in good agreement with each other and with the
experimental data. © 2001 Academic Press

Key Words:PDF methods; particle methods; Monte Carlo; finite-volume; turbu-
lence modeling; bluff-body stabilized flow.

1. INTRODUCTION

The calculation of complex turbulent flows is of great importance for many engineeri
applications, and the accuracy of such calculations depends mainly on turbulence mc
and on the numerical algorithm. The task of turbulence modeling is to make the fl
computations feasible without great loss of accuracy. To solve the resulting set of equat
accurate numerical algorithms are required. In the context of probability density funct
(PDF) methods, less attention has been paid to the last point.

Traditional turbulence models, including two-equation models [23, 47] and secor
moment closures [22], are based on Reynolds averaging techniques and yield moc
equations for statistical moments. In comparison to these models, PDF methods act
closure through a modeled transport equation for the one-point, one-time PDF of ¢
tain fluid properties in a turbulent flow [11, 32, 33]. The advantage of PDF methods
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that both convection and reaction are represented exactly without modeling assumpti
The tremendous amount of statistical information contained in the PDFs obviously p
vides a fuller description of turbulent flows than two-equation models or second-mom
closures. An overview of turbulence theory and modeling approaches is given in [3
During the past decade, progress in PDF methods has been made in several areas: «
ing a more advanced joint velocity-frequency-composition PDF method which provide
model for the turbulent time scale [39, 44]; and incorporating modeling techniques dev
oped for second-moment closures [14, 34, 35, 45]. These models have been succes:
applied in modeling several inert flows [1, 9, 27], reactive flows, and turbulent flam
[26, 30, 41].

Different numerical solution algorithms are required for turbulence models of differe
levels. Moment closures result in a set of partial differential equations. These equations
usually solved numerically by finite-difference or finite-volume methods [20]. In contra
to moment-closure model equations, the modeled PDF transport equation has a compl
different structure. It is a high-dimensional scalar transport equation, and it is infeasi
to solve it with a finite-volume or a finite-difference method. From early times in th
development of PDF methods, Monte Carlo techniques have been employed in which
PDF isrepresented by an ensemble of particles [31]. Stochastic differential equations (SL
are constructed to model the particle properties, e.g., velocity, composition, and freque
such that the particles exhibit the same PDF as in turbulent flows.

Monte Carlo methods are widely used in computational physics [21] to solve hig
dimensional problems since the computational costs increase only linearly with the num
of dimensions. Their application in PDF methods has progressed through different sta
In the first method, the particles are located at grid nodes in physical space [31]. P
[32] then suggested that it is preferable to use a method in which the particles are ¢
tinuously distributed. Later, a hybrid algorithm was implemented in the &@Ie2DSin
which composition PDFs are calculated by Monte Carlo methods while a finite-volur
method is applied to solve for the mean velocity, dissipation, and mean pressure fi
[4, 6, 30].

More recently, a stand-alone particle-mesh algorithm has been developed for the j
velocity-frequency-composition PDF model [37]. This method is implemented in the co
PDF2DV[36]. This is a code to calculate statistically stationary two-dimensional (plane
axi-symmetric) turbulent reactive flows using the joint velocity-frequency-composition PC
method. It has been applied in several published calculations [1, 10, 13, 41, 46]; howe
the computational costs are relatively high because of the large number of particles requ
to decrease the bias error. Motivated by this deficiency, hybrid methods have been devel
[19, 29], which are, in contrast to other hybrid methods, fully consistent on the level of t
modeled equations. Since the coupling between the finite-volume scheme and the pat
method is crucial, two different approaches have been investigated, i.e., a loosely cou
algorithm by Muradogliet al. [29] and a tightly coupled algorithm by Jensy al. [19].

It has been demonstrated [19] that for a nonpremixed piloted jet flame the tightly coup
algorithm which is implemented iRDF-2D-FV[19] is about 20 times more efficient than
the stand-alone particle-mesh method implementé&DR2DV.

It is not the focus of this paper to compare different turbulence models. The motivati
for the current work is to compare the stand-alone particle method and the loosely couj
and the tightly coupled hybrid algorithms in terms of numerical accuracy and efficienc
Therefore, exactly the same model equations are solved, the same grids are used, ar
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same boundary conditions are applied. The test case is a cold bluff-body stabilized f
Besides their practical interest, bluff-body stabilized flows are very challenging test ca
for turbulence models and numerical schemes and have been studied experimentally
theoretically [6-8, 24, 25, 40]. It is demonstrated that the converged solutions of the th
schemes are in good agreement and that this class of flows can be predicted very well
PDF methods. Finally, asymptotic studies allow a comparison of the efficiency of the th
PDF algorithms for given numerical error tolerances.

In the next section the basic idea of PDF modeling is outlined; the applied turbuler
models are described in Sections 2.1 and 2.2. In Section 3, the three different solu
algorithms are explained. Convergence results are shown in Section 4.

2. PDF MODELS

Inthis section, the PDF models applied for these studies are outlined. Since only cold f
is considered in this paper, everything is explained for constant density. For all simulatif
the same joint velocity-frequency PDF model is used which is similar to that used in seve
other recent studies [1, 13, 41].

Although the flow considered here is constant density, the equations are presente
the variable-density form in which they are used in turbulent combustion calculations. T
mass density function (mdff” and the one-point, one-time Eulerian mass-weighted joir
PDF (JPDF)f of velocity U(x, t), and turbulence frequeney(x, t) are defined by

(p)F(V,0;%,t) = F(V,0; X, t) (1)
= p(8(U —V)8(w —0)), (2)

where( ) denotes a mean quantitydénotes a mass-weighted quantjyis the density,
andV and6 are the sample spaces fdrandw, respectively (for the constant density flow,
p = {p) andU = (U)). N

Because of the high-dimensionality dfe.g., for the case of axi-symmetric constant
density flow with one species the number of dimensions is 6, but for reacting flow t
number of dimensions can be much higher, depending on the number of species involve
is infeasible to solve the modeled transport equatiorf foising a finite-difference or finite-
volume scheme. Fortunately, the Monte Carlo approach (Lagrangian view; particle metf
makes PDF simulations feasible since the computational costs increase only linearly \
the number of sample space dimensions.

From a Lagrangian viewpoint, the flow is represented by a set of particles which evo
by stochastic differential equations. This is done in a way such that the particles exh
the same JPDF as the solution of the modeled JPDF transport equation. Each particle
set of propertiegm*, X*, U*, *}, wherem* represents the mass of the particlg, is its
coordinate U* the velocity, andv* the particle’s turbulence frequency (the supersceipt *
denotes that the quantity is a particle property).

For the evolution ofF, model equations have been developed, using the modeling theor
for turbulent reactive flows [32]. Models are required only for the pressure-strain-rate cor
lation and dissipation. Models for particle velocity and turbulence frequency are descril
in the following sections.



4 JENNY ET AL.

2.1. Velocity Model

In PDF methods, the fluid particle velocity" (t) is represented by the stochastic particle
velocity U*(t) and various Langevin models have been developed to model the evolut
of the particles in the velocity-sample-space [14, 32, 34, 45]. Here we use the simplest ¢
the simplified Langevin model (SLM),

o =~ 20 (1

§ *ey 1] 1/2
(o) 0% 2+4C0>Q(Ui (1) —Uj)dt + (Cok2)7“dW  (4)

wherep is the pressure,

IO =) 5)
(0)

is the conditional Favre averaged turbulence frequency,

Ui Uj
k=—- (6)
is the turbulent kinetic energy, ar€h and C, are model constants (Table ). Diffusion
in velocity space is represented as a Wiener pro@égs, whered W (t) = Wi (t + dt) —
Wi (t) is normally distributed withd W (t)) = 0 and(dW (t)d W, (t)) = dts;;. The SLM is
equivalent to Rotta’s model at the second-moment-closure level [35].

In the hybrid algorithms (presented in Section 3), a modeled transport equation
g (v, 0; x, 1) is solved. The functiorj is the JPDF in the fluctuating velocity-frequency
space, and is the sample variable of the fluctuating (Favre) veloaityn place ofU*(t),
the fluctuating parti*(t) of the particle velocity becomes a patrticle property. The modifie

Langevin equation,

* _ 1 a((iO)u uj ) ~i _ } § % 1/2
duf(t) = o) 78)(] dt —uj —8Xj dt (2 + 4Co> Qu(t) dt + (Cok2)¥<d W,
(7)

has been derived from (4) In contrastftpthe modified JPDRj contains no information
about the mean veI00|tyJ but f and § are otherwise equivalent. However, the use of
Eq. (7) instead of Eq. (4) is numerically preferable in hybrid methods [19].

TABLE |
Model Constants
Constant: Value: Used in:

Co 2.1 SLM

Cqo 0.6893 Definition of2

C.1 0.65 Turbulence frequency model
C.2 0.9 Turbulence frequency model
Cs 1.0 Turbulence frequency model

C, 0.25 Turbulence frequency model
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2.2. Model for the Turbulent Frequency

Toclose Eq. (7) or (4) amodel for the conditional turbulence frequency is needed. In m
PDF codes, a model for the mean dissipation (e.g.kthes model) is used to estimafe.
In the joint velocity-frequency-composition model, the turbulent frequesicg a particle
property; and to account for external intermittency effects, Eq. (5) is used to estilnate
(the advantage of this approach in intermittent flow is that Eq. (5) accounts only for thc
particles which represent turbulent flow). The model constan(Table I) is chosen such
thatQ2 equalsy for fully developed homogeneous turbulence. Using this approach the Fa
averaged turbulence dissipation can be defined as

g =KkQ. (8)
The stochastic model fas*(t) is
do*(t) = —Cs(0* — ®)Qdt — S,Qw*(t) dt + (2C3C4HQw* (t)Y?dW, 9)

whereC3; and C4 are model constants (Table I) [17, 44], av(t) is a Wiener process,
independent of thatin the velocity model. In Eq. ®)]s the source of turbulence frequency.
Here it is modeled as

P
S» = Cw2 - Ca)l—

kQ’ (10)

whereP is the turbulence production

P=—GT; -~ (11)
J

andC,; andC, are additional model constants (Table I). It is important to notice that wit
this turbulence frequency model and the SLM model all equations are closed and no fur
turbulence model is required.

2.3. Reynolds Averaged Euler (RAE) Equations

In the present hybrid algorithms, a finite-volume scheme is applied to solve the Reync
averaged Euler (RAE) equations given by

d a

gmw+&gmwo=o
9 (0D + 2 (0,0 5 O (T 12
a((p) |)+87Xj((p) iUi +(p) .,)——87]((,0) iuj) (12)

3 o~ s 3 /(o) 3 o~
a—Xi(Ui((P)Es+ (p)) = _a_xi(%uiujuj> - a—Xi(UM,O)Uin),

9 ~
— E
P (P Es) +
with the Favre averaged total sensible energy

A
Eszes+§(UiUi+UiUi) (13)

and the Favre averaged sensible internal enésgy
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Because only high Reynolds number flow remote from walls is considered here,
molecular effects in the conservation equations are neglected (wall effect close to the bl
body is neglected). The RAE equations are closed by the mean equation of state def
as

N = (P s
<p>:()//_1)(<,0)Es_7(UiUi+Uiui)>- (14)
Here we simply takes"= 1.4, although this choice does not affect the results.

Notice that the terms on the left-hand side of the RAE equations are in the same fc
as the compressible Euler equations written in the conservation form. Since the term:
the right-hand side represent turbulent effects and are extracted from the particles, the |

equations are treated as compressible Euler equations with source terms.

3. NUMERICAL ALGORITHMS

In Section 2, why particle methods are an attractive tool to solve the modeled P
transport equation was explained. For such algorithms the numerical error of statistic
stationary results consists of the spatial discretization error, the bias error, the statis
error, and the particle time-stepping error. The three algorithms used for the studies in
paper are second-order accurate in space [19, 48] so that the spatial discretization eri
expected to scale with the number of grid cells (denoteMByasM —2. The bias error is a
deterministic error caused by the random fluctuations in the mean fields which are use
the particle equations; and, on the basis of earlier theoretical and numerical studies [19
48], it is expected to scale with the number of particles per cell (denotéd,fyas Np‘cl.
The particle time-stepping error has been found to be negligible [48], if the CFL criteric
is fulfilled and therefore it is not further investigated here.

In contrast to the consistent hybrid methods, for the stand-alone particle-mesh met
the bias error is a major cause for the relatively high CPU time requirements of PI
simulations. In order to keep it small,. has to be chosen sufficiently large and therefore
many particles are required to get accurate results. Xu and Pope [48] showed that f
flamelet calculation of a piloted jet flame test case 1400 patrticles per cell are require
keep the bias error smaller than 5% in all quantities; Jenal/[19] showed that 55 particles
per cell are required for the same test case and the same error tolerance with the cons
hybrid method®DF-2D-FV. The statistical error is proportional N;;Cl/ 2 and can be further
reduced by time averaging the results in the statistically stationary state or by perform
multiple independent simulations. For the studies in this paper, sufficient time averaging
the statistically stationary results has been applied to reduce the statistical error to a
which allowed asymptotic studies of the bias and of the spatial discretization error.

3.1. Stand-Alone Particle-Mesh Method

A stand-alone particle-method which solves the joint velocity-frequency-compositit
PDF transport equation has been implemented in theB#®DV[36], which is discussed
in detail by Xu and Pope [48]. The particles evolve according to the SDEs (4) and (9) (i
evolution of the particles in the composition sample space is not considered here; the par
velocity U* is used to evolve the particles in the physical space) and to close these equat
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U,k 9, {(p), andw are extracted from the particle field and represented at the nodes of a re
angular grid. To estimate these quantities, linear kernel functions are applied [16], and lir
splines are used to interpolate the values to the particle positions. The details of this clc
in-cell (CIC) method can be found in [12, 16]. Additionally, to get the pressure in Eq. (4),
Poisson equation has to be solved. The d@D&2DVsolves for statistically stationary 2-D
flows (plane or axi-symmetric) and uses rectangular grids. It has been applied success
to a variety of reacting and nonreacting turbulent flow problems [1, 10, 13, 41, 46].

3.2. Consistent Hybrid Algorithms

The consistent hybrid method has been developed to overcome the deficiencies o
stand-alone particle-mesh method, i.e., to reduce the bias error and to avoid the cor
cated pressure correction algorithm that requires damping and dissipation as impleme
in PDF2DV[19, 29]. For the consistent hybrid approach, a finite-volume or finite-differenc
scheme is used to solve the Reynolds averaged Euler Equations (RAE) coupled witt
mean equation of state (14), and a particle-mesh method is applied to solve the n
eled transport equation of the JPDF for the fluctuating velocity and turbulence freque
(Egs. (7) and (9)). It is emphasized here that all the equations solved by the hybrid met
are directly derived from the modeled transport equation of the JPDF which is the sam
solved by the stand-alone particle-mesh metR&d2DV. Therefore, unlike some earlier
hybrid methods [2, 4, 6], the present hybrid algorithm is completely consistent at the le
of the modeled equations. To close the particle evolution and the RAE equations, the fir
volume scheme and the particle method are coupled as follows. The mean velocity fiel
supplied to the particle method by the finite-volume scheme, which in turn gets the turbul
fluxes from the particle method. This way, the statistical error is substantially reduced in
mean velocity and pressure fields. It has been found that the use of these smooth fiel
the particle equations leads also to a dramatic reduction in the deterministic bias error
29]. Notice that the statistical error in the finite-volume fields comes from the fluctuatio
in the turbulent fluxes which are source terms in the RAE equations.

To evolve the particles in the physical space, the Favre averaged velocity field has t
interpolated from the finite-volume data to the particle positions. The velocity interpolati
scheme used here [19] is second-order accurate, and it guarantees that the mean dila
rateV - U remains zero everywhere for a constant density flow. It also guarantees that
mean fluxes at the cell interfaces are consistent with those computed by the finite-voll
flux solver.

As in PDF2DV, it is necessary to extract some fields from the particles to close tl
finite-volume scheme and the particle evolution equations, and it is done in the same \
The extracted particle quantities which are needed in the particle evolution equations
interpolated from the nodal values of the corresponding cell to the particle locations us
linear splines. The spatial derivatives that appear in the particle equations are evalu
at the grid nodes using second-order central differences and interpolated to the par
positions. The kernel estimations, the evaluation of spatial derivatives, and the interpola
schemes are second-order accurate yielding second-order accuracy in space [12, 36].

Inthe solution process, the finite-volume scheme and the particle method are periodic
used to solve the corresponding equations. Each period is called an “outer” iteration
consists of “inner” finite-volume and particle iterations. Different hybrid algorithms ar
distinguished from each other by the way the finite-volume schemes and the particle mett
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FIG. 1. Flow chart of the tightly (left) and loosely coupled (right) hybrid algorithms.

are coupled. In a strictly loosely coupled algorithm, an outer iteration is completed
running the finite-volume scheme until steady state is reached. Then a specified numb:
particle method time steps is performed. In a tightly coupled algorithm, on the other ha
only one finite-volume scheme time step and one particle method time step are performe
complete an outer iteration. The flow charts of the loosely and the tightly coupled algorith
are shown in Fig. 1. Notice that the loosely and the tightly coupled algorithms represent 1
extreme cases and any other coupling strategy between these two extremes may be
instead.

3.2.1. Loosely coupled algorithmA loosely coupled hybrid algorithm for the solution
of the PDF equations has been developed and its numerical features, such as couy
convergence, statistical error and deterministic error, have been extensively examine
Muradogluet al. [29] in the simpler setting of a 1-D stochastic ideal flow case. In the
present study, this loosely coupled algorithm is extended to 2-D (plane or axi-symmeti
flows and implemented in the cod¢YB2D The particle method itHYB2Dis a slight
modification ofPDF2DV, and the finite-volume scheme is a modification of that develope
by Caughey [3]. The method is based on a cell-centered, finite-volume approximation w
added fourth-difference dissipation terms. Several local preconditioning methods incl
ing those developed by Turkel [42, 43], by Choi and Merkle [15], and by Muradoglu ar
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Caughey [28] have been incorporated into the finite-volume scheme in order to remove
well-known eigenvalue stiffness [43] caused by the large disparity between characteri
wave speeds at low Mach numbers. It has been found that Turkel’'s incompressible pre
ditioner [42] outperforms the other preconditioners in terms of robustness and efficier
Robustness is of essential importance in the context of the hybrid methods because o©
random fluctuations in the turbulent fluxes which are extracted from the particle fields
has also been found that Turkel’s incompressible preconditioner is the most robust in
form of Chorin’s artificial compressibility method [5].

3.2.2. Tightly coupled algorithm.The tightly coupled consistent hybrid algorithm has
been developed by Jeneyal.[19] and implemented in a newly written coB®F-2D-FV.
Extensive bias and grid convergence studies (using a piloted jet flame test case) are pres
in [19]. The particle method is similar to the one usedHviB2D and the finite-volume
scheme solves for the compressible Euler equations. A second-order upwind solver is
to compute the inviscid fluxes, and an explicit Runge—Kutta time stepping method with lo
CFL number is applied. To overcome the low Mach number stiffness, the precondition
method by Jenny and Miér [18] is applied and, as for the loosely coupled algorithm
to reduce the statistical error and the bias error moving time averaging of the quanti
which are extracted from the particle field is applied [19]. Notice that these time-averac
quantities are used in the finite-volume scheme, in the particle evolution equations, anc
the representation of the results.

4. CONVERGENCE RESULTS

The objectives of the studies shown in this section are to compare the three algorit|
in terms of accuracy and efficiency and to compare the numerical results with experime
data. For all simulations, the same turbulence models with the same model constants ar
same boundary conditions have been applied. Standard model constants have been a
(Table 1), but it appeared that the value 0.65 @)y, gives better results thad,, = 0.56
used by van Slooten and Pope [46]. The choice of optimal model constants is a subje
further studies.

Statistical stationarity of the results is demonstrated and convergence studies of the e
resulting from spatial discretization and bias are presented. To simplify the notation,
introduce an abbreviation scheme to identify the different runs performed. For examj
a run with the stand-alone particle-mesh algorithm on & &% grid with Ny = 200 is
denoted by564:200 Corresponding runs with the loosely coupled and the tightly couple
algorithms are denoted hy64:200andT64:20Q respectively (see also Table I1).

TABLE Il
Codes, Their Designation, and Their Description

Code Designation Description
PDF2DV S Stand-alone particle-mesh method [36]
HYB2D L Loosely coupled hybrid method [29]

PDF-2D-FV T Tightly coupled hybrid method [19]




10 JENNY ET AL.

r ?
—_—
—_—
20m/s
——
-
. @
location 5
location 3@ i
location 1 location 2
Ip [ ®
g 8 >
s |18 ----mmee-- —_— e e memeieeeieeceememeas —
—————
g g 61m/s X

FIG. 2. Sketch of the bluff-body test case with the six selected locations 1-6.

4.1. Test Case: Bluff-Body Stabilized Flow

Bluff-body stabilized flows have been studied experimentally and theoretically [6-8, Z
25, 40] and in addition to their practical interest they are very challenging test cases
turbulence models and numerical algorithms. For the flow investigated here, the jet diam
(2R;) is 3.6 mm and the bluff-body diameteDg) is 50 mm (Fig. 2). Both, the jet and the
co-flow consist of air with constant density. The bulk velocity of the jet is 61 m/s and tt
co-flow velocity is 20 m/s. A more complete description of this test case is found in [8] al
experimental data and boundary conditions are found in [24]. For further explanations i
convenient to introduce the six locations 1-6 defined in Table Il and shown in Fig. 2.

TABLE 11l
Six Selected Locations in the Solution Domain
Axial Distance from Radial Distance from
Location from the Nozzle the Symmetry Axis
1 Db/2 R
2 Dy R
3 Dy/2 Mid bluff-body = 13.4 mm
4 Dy Mid bluff-body
5 Dy/2 Dy/2
6 Dy Dy/2

Note D, =50 mmiis the Bluff-Body Diameter arf@; = 1.8 mmiis the Jet radius.
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TABLE IV
The Grids Used for the Different Simulations

Grid Cellsin Jet Cells in Bluff-Body
32x 32 3 13
64 x 64 5 27

4.2. Solution Domain and Grids

The solution domain isBy long in the axial direction and extends t®gin the radial
direction Op = 50 mm is the bluff-body diameter). Table IV shows the girds used fc
the simulations. Besides the total number of grid cells, the number of cells (in the rac
direction) located in the jet and bluff-body regions is shown.

4.3. Boundary Conditions

Figure 3 shows the solution domain and the boundaries of the bluff-body test case. Mal
the assumption that this flow is dominated by the large recirculation zones, there is no nes
resolve the boundary layer and to apply the Navier—Stokes equations with no-slip bounc
conditions. It is far more important to apply accurate in-flow profiles. Therefore, in tf
bluff-body region of the western boundary and at the southern and northern bounda
slip boundary conditions are applied. At the eastern boundary, the mean pressure is |
({(p) = 1 bar) while the other quantities are extrapolated from the solution domain.
the jet and co-flow regions of the western boundary, the pressure is extrapolated fi
the computational domain and all other quantities are given,(p¢= 1.0 kgim?, ' =
1.4, U, = 0, and while experimental data is usedtfby [24] in the co-flow region|{, and

}

north

9ag

6Dy,

“%‘ PITsse—

i 1Apog-aymg_ moy-00
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iy
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IH*%I

’
solution domain -~

FIG. 3. Solution domain of the bluff-body test case with boundaries.
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U are the radial and the axial components of the mean velocity, respectively) the funct

U, o\ 6
—— = 101- — 15
Upui norm( R]_ ) ( )

is used to defin€l , in the jet region Upui is the jet bulk velocityR; is the jet radius, and
Cnorm IS chosen such that the area averaged velocity over the jet ddgials The profiles

of the r.m.s. velocities, andu; are obtained from experimental data [24], and for the shee
stresqu, U, the relation

UxUr = p12(UxUxUr Up )2 (16)

is used with the correlation coefficignt, = —0.4in the co-flow region angh> = 0.5(r/R;)
in the jet region. The mean turbulence frequency is given by

. P 09U,
w = — =

k k or’

17)
which is based on the assumption of equilibrium between production and dissipation.

4.4. Statistical Stationarity

To demonstrate statistical stationarity of the numerical solutions the time histories
U, — Usenverged(jeft plots) andk — k®™er9ed(right plots) from the run$48:400, L48:25
andT48:25are plotted in Fig. 4 at location 3 (upper plots) and location 4 (lower plots).
can be seen that to reach stationarity it takes about 3000 particle method iterations fol
stand-alone particle-mesh meth®@DF2DV, and approximately 6000 and 10,000 iterations
for the consistent hybrid algorithnk$Y B2DandPDF-2D-FV, respectively.

With none of the methods is it possible to achieve statistical stationarity on much fir
grids (e.g., 100« 100). The reason for this is discussed in the Appendix.

4.5. Quantification of Errors

It has been found by Xu and Pope [48] that the particle time-stepping error is negligib
and therefore it is not considered in the present study. Furthermore, the statistical erre
sufficiently reduced by time averaging to allow asymptotic studies of the bias error a
the spatial discretization error. For all three algorithiPBF2DV [48], HYB2D[28], and
PDF-2D-FV[19], it has been shown that the spatial discretization error and the bias er
scale a2 and Ngcl, respectively. Then the erreg in the quantityQ can asymptotically
be written as

€Q a b

= — + 'NEEE 18
Qref M2 Npc ( )

whereQyef is a reference valudjl? is the number of cells, and,,c is the number of particles
per cell. With each code, computations with different valueNfandM?2 were performed

to verify the behavior of the error given by Eq. (18), and to determine the valuearudb
(Tables V and VI shova andb for U andk at the locations 1-6). Note that the reference
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FIG.4. Time histories ofJ, — Ug””"e’ge"(left plots) and ok — ke™e9ed(right plots) at location 3 (upper plots)
and location 4 (lower plots).

valuesU ,, andk.r have been taken as 61 m/s and 127shwhich correspond to the jet
bulk velocity and the highest turbulent kinetic energy at the inlet boundary, respectively
It may be seen from Table V that away from the jet shear layer (locations 3—6) the spe
discretization errors of the three codes are comparable. But in the shear layer (locatio
and 2), the level of error iPDF2DV andHYB2Dis much larger, whereas that b, in
PDF-2D-FVis the same as elsewhere, and that imsmaller by about a factor of 5 than in
the other codes. The significant difference between the hybrid codes is attributable to
different differencing schemes used in the finite-volume codes; in particular, an unusu
large amount of fourth-difference dissipation is required to produce converged results

TABLE V
The Constantain Eq. (18) for the Three Algorithms

PDF2DV HYB2D PDF-2D-FV

Location U, k U, k J, k
1 —383.2 680.8 447.1 1100.6 —20.8 —-81.0
2 —389.6 417.7 —247.9 690.7 —21.4 —134.5
3 -1.8 14.1 -21.7 15.1 20.3 -1.9
4 175 27.6 98.4 56.5 31.8 —-23.2
5 —33.4 11.2 7.2 24.6 —46.4 —-18.1
6 -19.4 12.7 -59.3 0.9 —24.3 0.6
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TABLE VI
The Constantb in Eq. (18) for the Three Algorithms

PDF2DV HYB2D PDF-2D-FV
Location U, k J, k U, k
1 6.8 —40.0 —0.06 0.16 0.13 -0.73
2 32.2 —-13.3 —0.06 0.06 0.51 0.11
3 -3.4 -5.9 0.16 —-0.02 -0.07 —-0.04
4 -9.7 -9.4 -0.11 —-0.03 -0.07 -0.12
5 -3.3 —2.4 —0.05 0.12 0.01 —-0.03
6 3.1 -0.4 0.01 0.06 0.01 -0.01

the finest grids usinglYB2D(this is conjectured to be due to the instability of the solutior
rather than of the differencing scheme; see the Appendix).

Table VI confirms that the hybrid algorithms are successful in reducing the bias drarr
ically. For example, at location 1, to reduce the bias errdt tn 5%, the values oN,c
required in the three codes is 8RXF2DV), 3 (HYB2D), and 15 PDF-2D-FV).

4.6. Comparison of Extrapolated Results

Here, the first goal was to compare the results of the three algorithms in the limit
M—2=0 ande—Cl = 0. Itis computationally infeasible to compute such solutions directly
but as shown by Xu and Pope [48], Richardson extrapolation is a useful technique to estir
grid converged and bias free solutions (see also the Appendix). Therefore, three runs |
been performed with each algorithm, i.e., WRBDF2DV S48:400, S48:20@ndS64:200
with HYB2D L32:50, L32:25and L64:25 and with PDF-2D-FV T32:50, T32:25and
T64:25 and the results of these runs have been extrapolatdd fo= 0 ande*Cl =0.The
corresponding profiles dd , U, U, u;, and$2 are shown in Figs. 5-9 (lines) at different
axial locations.

For the mean axial velocity (Fig. 5) there is excellent agreement between the codes.
largest discrepancies () / Upuik IS 5% on the centerline at/ D, = 1.3. The discrepancy
in the radial velocity(U; ) /Upuk atx/Dy = 1 (Fig. 6) appears to be larger, but is less thar
2%. For the r.m.s. velocitie$]YB2Dshows some discrepancy on the axig aAD, = 0.4,
but otherwise the agreement between the codes is good. There is also excellent agree
for the conditional turbulence frequency (Fig. 9).

The agreement between the three codes gives confidence that each is accurate
remaining discrepancies may be due (at least in part) to the higher-order errors that are
eliminated by the extrapolation scheme.

Since our objective was to compare different numerical algorithms in terms of efficien
and numerical accuracy, the comparison of the computed results with the experimental
was not a major part of our studies, but nevertheless, the agreement is very good consid
the challenging test case and results obtained with other models. The numerical re:
presented in Figs. 5-8 compare very well with the experimental data by Masri [24] whi
are indicated by markers in the same plots showing that the PDF model applied here pre
this flow accurately. The radial velocity component is much smaller than the axial veloc
component, and therefore itis not surprising that the relative differences in the radial velo
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D, =04 XD, =1

FIG. 7. Axial components of the r.m.s. velocity. Asymptotic bias free and grid converged profiles obtain
with the three algorithms (lines) shown together with experimental data (markers) at the axial locatiy @4
Dy, downstream of the nozzle.

component are much larger. Considering that it is extremely difficult to predict and meas
the r.m.s velocities correctly, the differences in Fig. 7 and 8 are acceptable, if not smal
should be mentioned that the calculations (e.g., the mean centerline velocity) are foun
be quite sensitive to the model constapt and the value used was chosen with respect t
the experimental data.

4.7. Computational Cost

The computational cost of each particle code can be expressed as

TCPU ~ nconVM 2(Cpalrticlel\lpc + Coverheaa = nconv'vI charticle( Npc + No)’ (19)

whereTcpy is the required CPU time, ang,y,, is the number of time steps (in the particle
code) required to reach a statistically stationary state. The quagditye is the CPU time
per particle per step, while,ermeadiS the time per step for nonparticle computation. The
latter can be re-expressed as an equivalent number of pamiglescoveread Cparticle: TO
determine the constantgaricie aNd Coverhead the CPU times for 100 time steps have beer

XD, =04 WD, =1

) Expetimentat Data| o Experimental Data|
POF2DV PDF2DV
==~ Hybrid (Loose) === Hybrid (Looss)
------ Hybed (Tight) ‘== Hybrd (Tight)
1o} 10

FIG. 8. Radial components of the r.m.s. velocity. Asymptotic bias free and grid converged profiles obtair
with the three algorithms (lines) shown together with experimental data (markers) at the axial locations 20
and 50 mm downstream of the nozzle.
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FIG. 9. Conditional turbulence frequengy. Asymptotic bias free and grid converged profiles obtained with
the three algorithms at the axial locations 20 mm and 50 mm downstream of the nozzle.

measured using a 64 64 grid. With N, = 50 andN, = 25 for each algorithm the times
T, andT, were measured, respectively. Then

T1—-T
Cparticle = m (20)
and
2T, — T
Coverhead= 6221001 . (21)

The values 0tparticler Coverhead 2NN, are shown in Table VII. Basicallgparicie is the CPU
time required per particle per time step ankineaqis the CPU time for the overhead per
cell per time step. All simulations have been performed on a 400 MHz Pentium machi
It may be seen that the values@fice are quite similar for all codes.

Finally, making the assumption thatyn ~ CconvM, the required CPU time to reach a
statistical stationary state can be expressed as

TCPU ~ Cconv'vI 3Cparticle( Npc + No)~ (22)

The assumption thatcon ~ NeonvM is based on the the CFL criterion for particle time
stepping. The constaa,n,can be obtained from Section 4.4 and is shown for each algorith
in Table VII. It can be seen that fd#DF2DV and PDF-2D-FV the values 0Cparicle are
comparable while it is slightly higher fadYB2D For PDF2DVthe overhead per particle
method iteration correspondsad.5 particle time steps. FétYB2DandPDF-2D-FV, this
ratio is~19 and~3, respectively. The constat,, is determined to be 63 fa*DF2DV,
125 forHYB2D and 208 foPDF-2D-FV.

TABLE VII
The ConstantsCparticie ; Coverhead @Nd Ceony fOr the Three Algorithms

Algorlthm cpartlcle Coverhead NO = C:verltlead Ceonv
particle
PDF2DV 185x 10°%s 2748 x 106 s 14.9 ~63
HYB2D 255x10°%s 4736 x 10°°%s 18.6 ~125

PDF-2D-FV 187 x 10°%s 554 x 10°%s 3.0 ~208
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4.8. Comparison of Computational Efficiency

As shown above and in [48], Richardson extrapolation is effective in reducing the to
CPU time required to reduce the numerical error below a given threshold. But clearly th
is advantage in being able to obtain accurate results with a single run.

In this section we use the characterization of the error and CPU times obtained
Section 4.5 and 4.7 to address the computational efficiency of the different codes,
the CPU time required to achieve a given error level in a single run. To compare |

PDF2DV
40HoursCPUtime || ko = 40 Hours CPU time
200HoursCPUtime |9 009 . e 200 Hours CPU time | 4
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FIG. 10. Locations of simulations in thin—2 — Npgl plane (markers). First row: stand-alone particle-mesh
method; second row: loosely coupled hybrid algorithm; third row: tightly coupled hybrid algorithm. The straig
lines show where the numerical error is 5% with respect to a reference value (lefijplasiocation 1—6; right
plots:k at location 1-6). The reference value for the velocity is 61 m/s (jet bulk velocity) ardties 127 n?/s?

(largest value of the turbulent kinetic energy at the inlet boundary). Along the curvedipeis approximately
constant.
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TABLE VIII
Efficiency of the Three Different PDF Solution Algorithms
for a Given Numerical Error Tolerance of 5%

Code Tepu Niotal
PDF2DV 2600 h 123 x 1¢°
HYB2D 60 h 254 x 10
PDF-2D-FV 7h 225 x 10

Note.Shown is CPU time (on a 400 MHz pentium machine) for the
worst case from the locations 1-6 of Fig. 10. The valuesff show
the total number of particle time steps.

computational efficiency of the three algorithms the results of Section 4.6 and 4.7 are L
to quantify Tcpy of the three algorithms for a given error tolerance.

The markers in Fig. 10 indicate the locations of the runs irvtheé — N,;Cl plane,i.e., in
the first row the run§48:400, S48:2Q0ndS64:200 in the second row, the runs32:50,
L32:25 andL64:25 and in the third row, the run§32:50, T32:25andT64:25 To show
how large the numerical error is with respect to the reference valij,e,e$ £ 61 m/s and
keef = 127) 5% error iso-lines (straight lines) are shown for the quantitie@eft plots) and
k (right plots) at locations 1-6 (here the values of Table V and VI are used). To compare
efficiency of the codes for given accuracy, lines of constagt, are shown (curved lines)
using Eg. (22) and the values from Table VII. This allows determination of the CPU tin
required to get statistically stationary results within a specified numerical error toleran
In Table VIII the worst case of the previous studies is shown for the three algorithms. It ¢
be seen that the bias error is significantly reduced by the hybrid approach. For this test c
the hybrid methodHYB2Dis ~43 times more efficient thaRDF2DV, andPDF-2D-FVis
~370 times more efficient thaADF2DV (Table VIII). Since the total number of particle
time steps required for the hybrid methods is much smaller (Table VIII) thaPDéi2DV,
this difference could even be more significant for reacting cases with detailed chemistr

5. CONCLUSION

A constant-density bluff-body stabilized flow test case is used to compare (in terms
numerical accuracy and efficiency) three different PDF solution algorithms, which solve
same modeled JPDF equation. The first algorithm is a stand-alone particle-mesh met
and the other two are consistent hybrid algorithms. We have shown that we obtain conve
solutions with all the three algorithms in terms of grid refinement and particle numbe
We could also show that the calculations are in the asymptotic range and therefore
extrapolation can be applied to minimize the numerical error. The extrapolated results \
the three different algorithms are in very good agreement with each other, and predict
flow accurately compared to experimental data. This shows that the numerical algoritt
converge to the same solution, and the PDF modeling is a powerful approach to simu
this type of flow.

Rigorous asymptotic studies have been performed to compare the three solution &
rithms in terms of numerical accuracy and efficiency. It is confirmed that both hybr
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methods are effective at virtually eliminating the bias; and it has been found that the hyk
methods outperform the stand-alone particle-mesh method. For this test case it is sh
that, for a single run, the consistent hybrid approach cam3# times more efficient than
PDF2DVin terms of CPU time for a given numerical error tolerance of 5%.

APPENDIX: STATIONARY SOLUTIONS TO THE PDF EQUATION

Needless to say, given the complexity of the modeled PDF evolution equation, little
be said with certainty about the existence, uniqueness, and stability of stationary solut
(in general, or for a particular flow). Nevertheless, from our experience with this flo
a consistent nontrivial picture emerges, which has profound consequences for the ¢
convergence studies reported in the text.

To describe this picture, we denote byt, ¢) the PDF at time calculated by one of the
numerical methods on a grid with? = ¢~ cells (this is an abbreviated notation, since the
PDF also depends onand the sample-space variables). The evolution equatioh(for)
is written simply as

%f(t,e) =F(f(t, e),e). (23)

If a stationary solutiorf (t, ¢) = f (¢) exists, then it satisfies
F(f(e).e) =0, (24)

and it may be stable or unstable. That is, if the evolution equation, Eg. (23), were sol
from an initial condition very close td (¢), the solutionf (t, &) would tend tof (¢) if it
is a stable stationary solution. If the solution is unstable, however, tlierz) would not
tend tof (¢), but may be instead exhibit chaotic behavior.

Since the numerical methods considered are second-order accurate, for sufficiently s
g, if a stable solutionf_(e) exists, then it varies linearly with. This is the basis of the
Richardson extrapolation used to obtain an approximaftido the exact stationary solution
f(0):

e2f(e1) — e1f(e2)
Er2— &1 ’

f(0) ~ frier, £2) = (25)

Note that the different numerical methods are likely to have different dependenees ol
but, if they are consistent, their asymptotic solutidri®) are the same.

With this background we can now state our observations, and the consistent picture
emerges.

1. With each numerical method, stationary solutions are obtained for a range of gt
that are not too fine, i.e., fargreater than some valué.

2. Onfiner grids,{ < ¢*) quasi-periodic or chaotic solutions are observed.

3. Over arange of for which stationary solutions are obtained, each method exhibits
linear dependence an(to a reasonable approximation).

4. The extrapolated solutions fcﬁ_rR obtained from the different methods are in reason:
ably good agreement with each other.
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FIG.11. Sketch of PDF solutions by two methods as a function ottkeM ~2 showing stable regions (solid
lines) and unstable (dashed lines).

These observations are consistent with the picture shown in Fig. 11: Fothalte is a
stationary solution, but the solution is unstable below a critical value(afich depends
on the method).

Two important deductions follow. First, even though stationary fine-grid solutions canr
be achieved, the Richardson extrapolation yields a consistent estimate of the error-
(unstable) stationary solution. Second, the large amount of fourth-order dissipation fo
necessary itYB2Dto obtain stationary solutions may well be due to the instability of the
solution, not to inherent instabilities in the numerical method.
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