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Three different PDF algorithms have been applied to investigate a constant-density
bluff-body stabilized flow using the same turbulence models and the same boundary
conditions. The objectives of this paper are to compare the three algorithms in terms
of numerical accuracy and efficiency and to demonstrate the ability of PDF methods
to calculate this type of flow accurately. While one of the three algorithms is a stand-
alone particle-mesh method, the other two are consistent hybrid algorithms, i.e., both
are particle methods coupled with finite-volume schemes. The motivation for hybrid
algorithms is to reduce the statistical and bias errors. Since the coupling between the
finite-volume scheme and the particle method is a major numerical issue, different
approaches have been investigated. It is shown that the results obtained from the
three numerical algorithms are in good agreement with each other and with the
experimental data. c© 2001 Academic Press

Key Words:PDF methods; particle methods; Monte Carlo; finite-volume; turbu-
lence modeling; bluff-body stabilized flow.

1. INTRODUCTION

The calculation of complex turbulent flows is of great importance for many engineering
applications, and the accuracy of such calculations depends mainly on turbulence models
and on the numerical algorithm. The task of turbulence modeling is to make the flow
computations feasible without great loss of accuracy. To solve the resulting set of equations
accurate numerical algorithms are required. In the context of probability density function
(PDF) methods, less attention has been paid to the last point.

Traditional turbulence models, including two-equation models [23, 47] and second-
moment closures [22], are based on Reynolds averaging techniques and yield modeled
equations for statistical moments. In comparison to these models, PDF methods achieve
closure through a modeled transport equation for the one-point, one-time PDF of cer-
tain fluid properties in a turbulent flow [11, 32, 33]. The advantage of PDF methods is
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that both convection and reaction are represented exactly without modeling assumptions.
The tremendous amount of statistical information contained in the PDFs obviously pro-
vides a fuller description of turbulent flows than two-equation models or second-moment
closures. An overview of turbulence theory and modeling approaches is given in [38].
During the past decade, progress in PDF methods has been made in several areas: adopt-
ing a more advanced joint velocity-frequency-composition PDF method which provides a
model for the turbulent time scale [39, 44]; and incorporating modeling techniques devel-
oped for second-moment closures [14, 34, 35, 45]. These models have been successfully
applied in modeling several inert flows [1, 9, 27], reactive flows, and turbulent flames
[26, 30, 41].

Different numerical solution algorithms are required for turbulence models of different
levels. Moment closures result in a set of partial differential equations. These equations are
usually solved numerically by finite-difference or finite-volume methods [20]. In contrast
to moment-closure model equations, the modeled PDF transport equation has a completely
different structure. It is a high-dimensional scalar transport equation, and it is infeasible
to solve it with a finite-volume or a finite-difference method. From early times in the
development of PDF methods, Monte Carlo techniques have been employed in which the
PDF is represented by an ensemble of particles [31]. Stochastic differential equations (SDEs)
are constructed to model the particle properties, e.g., velocity, composition, and frequency,
such that the particles exhibit the same PDF as in turbulent flows.

Monte Carlo methods are widely used in computational physics [21] to solve high-
dimensional problems since the computational costs increase only linearly with the number
of dimensions. Their application in PDF methods has progressed through different stages.
In the first method, the particles are located at grid nodes in physical space [31]. Pope
[32] then suggested that it is preferable to use a method in which the particles are con-
tinuously distributed. Later, a hybrid algorithm was implemented in the codePDF2DSin
which composition PDFs are calculated by Monte Carlo methods while a finite-volume
method is applied to solve for the mean velocity, dissipation, and mean pressure fields
[4, 6, 30].

More recently, a stand-alone particle-mesh algorithm has been developed for the joint
velocity-frequency-composition PDF model [37]. This method is implemented in the code
PDF2DV[36]. This is a code to calculate statistically stationary two-dimensional (plane or
axi-symmetric) turbulent reactive flows using the joint velocity-frequency-composition PDF
method. It has been applied in several published calculations [1, 10, 13, 41, 46]; however,
the computational costs are relatively high because of the large number of particles required
to decrease the bias error. Motivated by this deficiency, hybrid methods have been developed
[19, 29], which are, in contrast to other hybrid methods, fully consistent on the level of the
modeled equations. Since the coupling between the finite-volume scheme and the particle
method is crucial, two different approaches have been investigated, i.e., a loosely coupled
algorithm by Muradogluet al. [29] and a tightly coupled algorithm by Jennyet al. [19].
It has been demonstrated [19] that for a nonpremixed piloted jet flame the tightly coupled
algorithm which is implemented inPDF-2D-FV[19] is about 20 times more efficient than
the stand-alone particle-mesh method implemented inPDF2DV.

It is not the focus of this paper to compare different turbulence models. The motivation
for the current work is to compare the stand-alone particle method and the loosely coupled
and the tightly coupled hybrid algorithms in terms of numerical accuracy and efficiency.
Therefore, exactly the same model equations are solved, the same grids are used, and the
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same boundary conditions are applied. The test case is a cold bluff-body stabilized flow.
Besides their practical interest, bluff-body stabilized flows are very challenging test cases
for turbulence models and numerical schemes and have been studied experimentally and
theoretically [6–8, 24, 25, 40]. It is demonstrated that the converged solutions of the three
schemes are in good agreement and that this class of flows can be predicted very well with
PDF methods. Finally, asymptotic studies allow a comparison of the efficiency of the three
PDF algorithms for given numerical error tolerances.

In the next section the basic idea of PDF modeling is outlined; the applied turbulence
models are described in Sections 2.1 and 2.2. In Section 3, the three different solution
algorithms are explained. Convergence results are shown in Section 4.

2. PDF MODELS

In this section, the PDF models applied for these studies are outlined. Since only cold flow
is considered in this paper, everything is explained for constant density. For all simulations
the same joint velocity-frequency PDF model is used which is similar to that used in several
other recent studies [1, 13, 41].

Although the flow considered here is constant density, the equations are presented in
the variable-density form in which they are used in turbulent combustion calculations. The
mass density function (mdf)F and the one-point, one-time Eulerian mass-weighted joint
PDF (JPDF)f̃ of velocityU(x, t), and turbulence frequencyω(x, t) are defined by

〈ρ〉 f̃ (V, θ; x, t) = F(V, θ; x, t) (1)

≡ ρ〈δ(U− V)δ(ω − θ)〉, (2)

where〈 〉 denotes a mean quantity, ˜· denotes a mass-weighted quantity,ρ is the density,
andV andθ are the sample spaces forU andω, respectively (for the constant density flow,
ρ = 〈ρ〉 andŨ = 〈U〉).

Because of the high-dimensionality of̃f (e.g., for the case of axi-symmetric constant
density flow with one species the number of dimensions is 6, but for reacting flow the
number of dimensions can be much higher, depending on the number of species involved), it
is infeasible to solve the modeled transport equation forf̃ using a finite-difference or finite-
volume scheme. Fortunately, the Monte Carlo approach (Lagrangian view; particle method)
makes PDF simulations feasible since the computational costs increase only linearly with
the number of sample space dimensions.

From a Lagrangian viewpoint, the flow is represented by a set of particles which evolve
by stochastic differential equations. This is done in a way such that the particles exhibit
the same JPDF as the solution of the modeled JPDF transport equation. Each particle has a
set of properties{m∗,X∗,U∗, ω∗}, wherem∗ represents the mass of the particle,X∗ is its
coordinate,U∗ the velocity, andω∗ the particle’s turbulence frequency (the superscript ‘∗’
denotes that the quantity is a particle property).

For the evolution ofF , model equations have been developed, using the modeling theories
for turbulent reactive flows [32]. Models are required only for the pressure-strain-rate corre-
lation and dissipation. Models for particle velocity and turbulence frequency are described
in the following sections.
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2.1. Velocity Model

In PDF methods, the fluid particle velocityU+(t) is represented by the stochastic particle
velocity U∗(t) and various Langevin models have been developed to model the evolution
of the particles in the velocity-sample-space [14, 32, 34, 45]. Here we use the simplest one,
the simplified Langevin model (SLM),

dU∗i (t) = −
1

〈ρ〉
∂〈p〉
∂xi

dt −
(

1

2
+ 3

4
C0

)
Ä(U ∗i (t)− Ũ i ) dt + (C0kÄ)1/2 dWi (4)

wherep is the pressure,

Ä ≡ CÄ

〈ρ∗ω∗ | ω∗ ≥ ω̃〉
〈ρ〉 (5)

is the conditional Favre averaged turbulence frequency,

k = ũi ui

2
(6)

is the turbulent kinetic energy, andC0 andCÄ are model constants (Table I). Diffusion
in velocity space is represented as a Wiener processW(t), wheredWi (t) = Wi (t + dt)−
Wi (t) is normally distributed with〈dWi (t)〉 = 0 and〈dWi (t)dWj (t)〉 = dtδi j . The SLM is
equivalent to Rotta’s model at the second-moment-closure level [35].

In the hybrid algorithms (presented in Section 3), a modeled transport equation for
g̃ (v, θ; x, t) is solved. The functioñg is the JPDF in the fluctuating velocity-frequency
space, andv is the sample variable of the fluctuating (Favre) velocityu. In place ofU∗(t),
the fluctuating partu∗(t) of the particle velocity becomes a particle property. The modified
Langevin equation,

du∗i (t) =
1

〈ρ〉
∂(〈ρ〉ũi u j )

∂xj
dt − u∗j

∂Ũ i

∂xj
dt −

(
1

2
+ 3

4
C0

)
Äu∗i (t) dt + (C0kÄ)1/2 dWi ,

(7)

has been derived from (4). In contrast tof̃ , the modified JPDF̃g contains no information
about the mean velocitỹU, but f̃ and g̃ are otherwise equivalent. However, the use of
Eq. (7) instead of Eq. (4) is numerically preferable in hybrid methods [19].

TABLE I

Model Constants

Constant: Value: Used in:

C0 2.1 SLM

CÄ 0.6893 Definition ofÄ

Cω1 0.65 Turbulence frequency model
Cω2 0.9 Turbulence frequency model
C3 1.0 Turbulence frequency model
C4 0.25 Turbulence frequency model
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2.2. Model for the Turbulent Frequency

To close Eq. (7) or (4) a model for the conditional turbulence frequency is needed. In many
PDF codes, a model for the mean dissipation (e.g., thek− ε model) is used to estimateÄ.
In the joint velocity-frequency-composition model, the turbulent frequencyω∗ is a particle
property; and to account for external intermittency effects, Eq. (5) is used to estimateÄ

(the advantage of this approach in intermittent flow is that Eq. (5) accounts only for those
particles which represent turbulent flow). The model constantCÄ (Table I) is chosen such
thatÄ equals ˜ω for fully developed homogeneous turbulence. Using this approach the Favre
averaged turbulence dissipation can be defined as

ε̃ = kÄ. (8)

The stochastic model forω∗(t) is

dω∗(t) = −C3(ω
∗ − ω̃)Ä dt − SωÄω

∗(t) dt + (2C3C4ω̃Äω
∗(t))1/2 dW, (9)

whereC3 andC4 are model constants (Table I) [17, 44], andW(t) is a Wiener process,
independent of that in the velocity model. In Eq. (9),Sω is the source of turbulence frequency.
Here it is modeled as

Sω = Cω2− Cω1
P

kÄ
, (10)

whereP is the turbulence production

P = −ũi u j
∂Ũ i

∂xj
, (11)

andCω1 andCω2 are additional model constants (Table I). It is important to notice that with
this turbulence frequency model and the SLM model all equations are closed and no further
turbulence model is required.

2.3. Reynolds Averaged Euler (RAE) Equations

In the present hybrid algorithms, a finite-volume scheme is applied to solve the Reynolds
averaged Euler (RAE) equations given by

∂

∂t
〈ρ〉 + ∂

∂xi
(〈ρ〉Ũ i ) = 0

∂

∂t
(〈ρ〉Ũ i )+ ∂

∂xj
(〈ρ〉Ũ i Ũ j + 〈p〉δi j ) = − ∂

∂xj
(〈ρ〉ũi u j ) (12)

∂

∂t
(〈ρ〉Ẽ s)+ ∂

∂xi
(Ũ i (〈ρ〉Ẽ s + 〈p〉)) = − ∂

∂xi

( 〈ρ〉
2

ũi u j u j

)
− ∂

∂xi
(Ũ j 〈ρ〉ũi u j ),

with the Favre averaged total sensible energy

Ẽ s = ẽs + 1

2
(Ũ i Ũ i + ũi ui ) (13)

and the Favre averaged sensible internal energyẽs.
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Because only high Reynolds number flow remote from walls is considered here, the
molecular effects in the conservation equations are neglected (wall effect close to the bluff-
body is neglected). The RAE equations are closed by the mean equation of state defined
as

〈p〉 = (γ̂ ′ − 1)

(
〈ρ〉Ẽ s − 〈ρ〉

2
(Ũ i Ũ i + ũi ui )

)
. (14)

Here we simply take ˆγ ′ = 1.4, although this choice does not affect the results.
Notice that the terms on the left-hand side of the RAE equations are in the same form

as the compressible Euler equations written in the conservation form. Since the terms on
the right-hand side represent turbulent effects and are extracted from the particles, the RAE
equations are treated as compressible Euler equations with source terms.

3. NUMERICAL ALGORITHMS

In Section 2, why particle methods are an attractive tool to solve the modeled PDF
transport equation was explained. For such algorithms the numerical error of statistically
stationary results consists of the spatial discretization error, the bias error, the statistical
error, and the particle time-stepping error. The three algorithms used for the studies in this
paper are second-order accurate in space [19, 48] so that the spatial discretization error is
expected to scale with the number of grid cells (denoted byM2) asM−2. The bias error is a
deterministic error caused by the random fluctuations in the mean fields which are used in
the particle equations; and, on the basis of earlier theoretical and numerical studies [19, 37,
48], it is expected to scale with the number of particles per cell (denoted byNpc) asN−1

pc .
The particle time-stepping error has been found to be negligible [48], if the CFL criterion
is fulfilled and therefore it is not further investigated here.

In contrast to the consistent hybrid methods, for the stand-alone particle-mesh method
the bias error is a major cause for the relatively high CPU time requirements of PDF
simulations. In order to keep it small,Npc has to be chosen sufficiently large and therefore
many particles are required to get accurate results. Xu and Pope [48] showed that for a
flamelet calculation of a piloted jet flame test case 1400 particles per cell are required to
keep the bias error smaller than 5% in all quantities; Jennyet al.[19] showed that 55 particles
per cell are required for the same test case and the same error tolerance with the consistent
hybrid methodPDF-2D-FV. The statistical error is proportional toN−1/2

pc and can be further
reduced by time averaging the results in the statistically stationary state or by performing
multiple independent simulations. For the studies in this paper, sufficient time averaging of
the statistically stationary results has been applied to reduce the statistical error to a size
which allowed asymptotic studies of the bias and of the spatial discretization error.

3.1. Stand-Alone Particle-Mesh Method

A stand-alone particle-method which solves the joint velocity-frequency-composition
PDF transport equation has been implemented in the codePDF2DV[36], which is discussed
in detail by Xu and Pope [48]. The particles evolve according to the SDEs (4) and (9) (the
evolution of the particles in the composition sample space is not considered here; the particle
velocityU∗ is used to evolve the particles in the physical space) and to close these equations
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Ũ, k, Ä, 〈ρ〉, andω̃ are extracted from the particle field and represented at the nodes of a rect-
angular grid. To estimate these quantities, linear kernel functions are applied [16], and linear
splines are used to interpolate the values to the particle positions. The details of this cloud-
in-cell (CIC) method can be found in [12, 16]. Additionally, to get the pressure in Eq. (4), a
Poisson equation has to be solved. The codePDF2DVsolves for statistically stationary 2-D
flows (plane or axi-symmetric) and uses rectangular grids. It has been applied successfully
to a variety of reacting and nonreacting turbulent flow problems [1, 10, 13, 41, 46].

3.2. Consistent Hybrid Algorithms

The consistent hybrid method has been developed to overcome the deficiencies of the
stand-alone particle-mesh method, i.e., to reduce the bias error and to avoid the compli-
cated pressure correction algorithm that requires damping and dissipation as implemented
in PDF2DV[19, 29]. For the consistent hybrid approach, a finite-volume or finite-difference
scheme is used to solve the Reynolds averaged Euler Equations (RAE) coupled with the
mean equation of state (14), and a particle-mesh method is applied to solve the mod-
eled transport equation of the JPDF for the fluctuating velocity and turbulence frequency
(Eqs. (7) and (9)). It is emphasized here that all the equations solved by the hybrid method
are directly derived from the modeled transport equation of the JPDF which is the same as
solved by the stand-alone particle-mesh methodPDF2DV. Therefore, unlike some earlier
hybrid methods [2, 4, 6], the present hybrid algorithm is completely consistent at the level
of the modeled equations. To close the particle evolution and the RAE equations, the finite-
volume scheme and the particle method are coupled as follows. The mean velocity field is
supplied to the particle method by the finite-volume scheme, which in turn gets the turbulent
fluxes from the particle method. This way, the statistical error is substantially reduced in the
mean velocity and pressure fields. It has been found that the use of these smooth fields in
the particle equations leads also to a dramatic reduction in the deterministic bias error [19,
29]. Notice that the statistical error in the finite-volume fields comes from the fluctuations
in the turbulent fluxes which are source terms in the RAE equations.

To evolve the particles in the physical space, the Favre averaged velocity field has to be
interpolated from the finite-volume data to the particle positions. The velocity interpolation
scheme used here [19] is second-order accurate, and it guarantees that the mean dilatation
rate∇ · Ũ remains zero everywhere for a constant density flow. It also guarantees that the
mean fluxes at the cell interfaces are consistent with those computed by the finite-volume
flux solver.

As in PDF2DV, it is necessary to extract some fields from the particles to close the
finite-volume scheme and the particle evolution equations, and it is done in the same way.
The extracted particle quantities which are needed in the particle evolution equations are
interpolated from the nodal values of the corresponding cell to the particle locations using
linear splines. The spatial derivatives that appear in the particle equations are evaluated
at the grid nodes using second-order central differences and interpolated to the particle
positions. The kernel estimations, the evaluation of spatial derivatives, and the interpolation
schemes are second-order accurate yielding second-order accuracy in space [12, 36].

In the solution process, the finite-volume scheme and the particle method are periodically
used to solve the corresponding equations. Each period is called an “outer” iteration and
consists of “inner” finite-volume and particle iterations. Different hybrid algorithms are
distinguished from each other by the way the finite-volume schemes and the particle methods
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FIG. 1. Flow chart of the tightly (left) and loosely coupled (right) hybrid algorithms.

are coupled. In a strictly loosely coupled algorithm, an outer iteration is completed by
running the finite-volume scheme until steady state is reached. Then a specified number of
particle method time steps is performed. In a tightly coupled algorithm, on the other hand,
only one finite-volume scheme time step and one particle method time step are performed to
complete an outer iteration. The flow charts of the loosely and the tightly coupled algorithms
are shown in Fig. 1. Notice that the loosely and the tightly coupled algorithms represent two
extreme cases and any other coupling strategy between these two extremes may be used
instead.

3.2.1. Loosely coupled algorithm.A loosely coupled hybrid algorithm for the solution
of the PDF equations has been developed and its numerical features, such as coupling,
convergence, statistical error and deterministic error, have been extensively examined by
Muradogluet al. [29] in the simpler setting of a 1-D stochastic ideal flow case. In the
present study, this loosely coupled algorithm is extended to 2-D (plane or axi-symmetric)
flows and implemented in the codeHYB2D. The particle method inHYB2D is a slight
modification ofPDF2DV, and the finite-volume scheme is a modification of that developed
by Caughey [3]. The method is based on a cell-centered, finite-volume approximation with
added fourth-difference dissipation terms. Several local preconditioning methods includ-
ing those developed by Turkel [42, 43], by Choi and Merkle [15], and by Muradoglu and
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Caughey [28] have been incorporated into the finite-volume scheme in order to remove the
well-known eigenvalue stiffness [43] caused by the large disparity between characteristic
wave speeds at low Mach numbers. It has been found that Turkel’s incompressible precon-
ditioner [42] outperforms the other preconditioners in terms of robustness and efficiency.
Robustness is of essential importance in the context of the hybrid methods because of the
random fluctuations in the turbulent fluxes which are extracted from the particle fields. It
has also been found that Turkel’s incompressible preconditioner is the most robust in the
form of Chorin’s artificial compressibility method [5].

3.2.2. Tightly coupled algorithm.The tightly coupled consistent hybrid algorithm has
been developed by Jennyet al.[19] and implemented in a newly written codePDF-2D-FV.
Extensive bias and grid convergence studies (using a piloted jet flame test case) are presented
in [19]. The particle method is similar to the one used inHYB2D, and the finite-volume
scheme solves for the compressible Euler equations. A second-order upwind solver is used
to compute the inviscid fluxes, and an explicit Runge–Kutta time stepping method with local
CFL number is applied. To overcome the low Mach number stiffness, the preconditioning
method by Jenny and M¨uller [18] is applied and, as for the loosely coupled algorithm,
to reduce the statistical error and the bias error moving time averaging of the quantities
which are extracted from the particle field is applied [19]. Notice that these time-averaged
quantities are used in the finite-volume scheme, in the particle evolution equations, and for
the representation of the results.

4. CONVERGENCE RESULTS

The objectives of the studies shown in this section are to compare the three algorithms
in terms of accuracy and efficiency and to compare the numerical results with experimental
data. For all simulations, the same turbulence models with the same model constants and the
same boundary conditions have been applied. Standard model constants have been applied
(Table I), but it appeared that the value 0.65 forCω1 gives better results thanCω1 = 0.56
used by van Slooten and Pope [46]. The choice of optimal model constants is a subject of
further studies.

Statistical stationarity of the results is demonstrated and convergence studies of the errors
resulting from spatial discretization and bias are presented. To simplify the notation, we
introduce an abbreviation scheme to identify the different runs performed. For example,
a run with the stand-alone particle-mesh algorithm on a 64× 64 grid with Npc = 200 is
denoted byS64:200. Corresponding runs with the loosely coupled and the tightly coupled
algorithms are denoted byL64:200andT64:200, respectively (see also Table II).

TABLE II

Codes, Their Designation, and Their Description

Code Designation Description

PDF2DV S Stand-alone particle-mesh method [36]
HYB2D L Loosely coupled hybrid method [29]
PDF-2D-FV T Tightly coupled hybrid method [19]
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FIG. 2. Sketch of the bluff-body test case with the six selected locations 1–6.

4.1. Test Case: Bluff-Body Stabilized Flow

Bluff-body stabilized flows have been studied experimentally and theoretically [6–8, 24,
25, 40] and in addition to their practical interest they are very challenging test cases for
turbulence models and numerical algorithms. For the flow investigated here, the jet diameter
(2Rj ) is 3.6 mm and the bluff-body diameter (Db) is 50 mm (Fig. 2). Both, the jet and the
co-flow consist of air with constant density. The bulk velocity of the jet is 61 m/s and the
co-flow velocity is 20 m/s. A more complete description of this test case is found in [8] and
experimental data and boundary conditions are found in [24]. For further explanations it is
convenient to introduce the six locations 1–6 defined in Table III and shown in Fig. 2.

TABLE III

Six Selected Locations in the Solution Domain

Axial Distance from Radial Distance from
Location from the Nozzle the Symmetry Axis

1 Db/2 Rj

2 Db Rj

3 Db/2 Mid bluff-body= 13.4 mm
4 Db Mid bluff-body
5 Db/2 Db/2
6 Db Db/2

Note. Db= 50 mm is the Bluff-Body Diameter andRj = 1.8 mm is the Jet radius.
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TABLE IV

The Grids Used for the Different Simulations

Grid Cells in Jet Cells in Bluff-Body

32× 32 3 13
64× 64 5 27

4.2. Solution Domain and Grids

The solution domain is 6Db long in the axial direction and extends to 3Db in the radial
direction (Db = 50 mm is the bluff-body diameter). Table IV shows the girds used for
the simulations. Besides the total number of grid cells, the number of cells (in the radial
direction) located in the jet and bluff-body regions is shown.

4.3. Boundary Conditions

Figure 3 shows the solution domain and the boundaries of the bluff-body test case. Making
the assumption that this flow is dominated by the large recirculation zones, there is no need to
resolve the boundary layer and to apply the Navier–Stokes equations with no-slip boundary
conditions. It is far more important to apply accurate in-flow profiles. Therefore, in the
bluff-body region of the western boundary and at the southern and northern boundaries,
slip boundary conditions are applied. At the eastern boundary, the mean pressure is fixed
(〈p〉 = 1 bar) while the other quantities are extrapolated from the solution domain. In
the jet and co-flow regions of the western boundary, the pressure is extrapolated from
the computational domain and all other quantities are given, i.e.,〈ρ〉 = 1.0 kg/m3, γ ′ =
1.4, Ũ r = 0, and while experimental data is used forŨ x [24] in the co-flow region (̃Ur and

FIG. 3. Solution domain of the bluff-body test case with boundaries.
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Ũ x are the radial and the axial components of the mean velocity, respectively) the function

Ũ x

Ubulk
= cnorm

(
1.01− r

Rj

)1/6

(15)

is used to definẽU x in the jet region (Ubulk is the jet bulk velocity,Rj is the jet radius, and
cnorm is chosen such that the area averaged velocity over the jet equalsUbulk). The profiles
of the r.m.s. velocitiesu′x andu′r are obtained from experimental data [24], and for the shear
stressũxur the relation

ũxur = ρ12(ũxuxũr ur )
1/2 (16)

is used with the correlation coefficientρ12 = −0.4 in the co-flow region andρ12 = 0.5(r/Rj )

in the jet region. The mean turbulence frequency is given by

ω̃ = P

k
= ũxur

k

∂Ũ x

∂r
, (17)

which is based on the assumption of equilibrium between production and dissipation.

4.4. Statistical Stationarity

To demonstrate statistical stationarity of the numerical solutions the time histories of
Ũ x − Ũ converged

x (left plots) andk− kconverged(right plots) from the runsS48:400, L48:25,
andT48:25are plotted in Fig. 4 at location 3 (upper plots) and location 4 (lower plots). It
can be seen that to reach stationarity it takes about 3000 particle method iterations for the
stand-alone particle-mesh methodPDF2DV, and approximately 6000 and 10,000 iterations
for the consistent hybrid algorithmsHYB2DandPDF-2D-FV, respectively.

With none of the methods is it possible to achieve statistical stationarity on much finer
grids (e.g., 100× 100). The reason for this is discussed in the Appendix.

4.5. Quantification of Errors

It has been found by Xu and Pope [48] that the particle time-stepping error is negligible,
and therefore it is not considered in the present study. Furthermore, the statistical error is
sufficiently reduced by time averaging to allow asymptotic studies of the bias error and
the spatial discretization error. For all three algorithms,PDF2DV [48], HYB2D[28], and
PDF-2D-FV [19], it has been shown that the spatial discretization error and the bias error
scale asM−2 andN−1

pc , respectively. Then the errorεQ in the quantityQ can asymptotically
be written as

εQ

Qref
= a

M2
+ b

Npc
, (18)

whereQref is a reference value,M2 is the number of cells, andNpc is the number of particles
per cell. With each code, computations with different values ofNpc andM2 were performed
to verify the behavior of the error given by Eq. (18), and to determine the values ofa andb
(Tables V and VI showa andb for Ũ x andk at the locations 1–6). Note that the reference
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FIG. 4. Time histories ofŨ x − Ũ converged
x (left plots) and ofk− kconverged(right plots) at location 3 (upper plots)

and location 4 (lower plots).

valuesŨ xref andkref have been taken as 61 m/s and 127 m2/s2 which correspond to the jet
bulk velocity and the highest turbulent kinetic energy at the inlet boundary, respectively.

It may be seen from Table V that away from the jet shear layer (locations 3–6) the spatial
discretization errors of the three codes are comparable. But in the shear layer (locations 1
and 2), the level of error inPDF2DV andHYB2D is much larger, whereas that iñU x in
PDF-2D-FVis the same as elsewhere, and that ink is smaller by about a factor of 5 than in
the other codes. The significant difference between the hybrid codes is attributable to the
different differencing schemes used in the finite-volume codes; in particular, an unusually
large amount of fourth-difference dissipation is required to produce converged results on

TABLE V

The Constanta in Eq. (18) for the Three Algorithms

PDF2DV HYB2D PDF-2D-FV

Location Ũ x k Ũ x k Ũ x k

1 −383.2 680.8 447.1 1100.6 −20.8 −81.0
2 −389.6 417.7 −247.9 690.7 −21.4 −134.5
3 −1.8 14.1 −21.7 15.1 20.3 −1.9
4 17.5 27.6 98.4 56.5 31.8 −23.2
5 −33.4 11.2 7.2 24.6 −46.4 −18.1
6 −19.4 12.7 −59.3 0.9 −24.3 0.6
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TABLE VI

The Constantb in Eq. (18) for the Three Algorithms

PDF2DV HYB2D PDF-2D-FV

Location Ũ x k Ũ x k Ũ x k

1 6.8 −40.0 −0.06 0.16 0.13 −0.73
2 32.2 −13.3 −0.06 0.06 0.51 0.11
3 −3.4 −5.9 0.16 −0.02 −0.07 −0.04
4 −9.7 −9.4 −0.11 −0.03 −0.07 −0.12
5 −3.3 −2.4 −0.05 0.12 0.01 −0.03
6 3.1 −0.4 0.01 0.06 0.01 −0.01

the finest grids usingHYB2D(this is conjectured to be due to the instability of the solution
rather than of the differencing scheme; see the Appendix).

Table VI confirms that the hybrid algorithms are successful in reducing the bias dramat-
ically. For example, at location 1, to reduce the bias error ink to 5%, the values ofNpc

required in the three codes is 800 (PDF2DV), 3 (HYB2D), and 15 (PDF-2D-FV).

4.6. Comparison of Extrapolated Results

Here, the first goal was to compare the results of the three algorithms in the limit of
M−2 = 0 andN−1

pc = 0. It is computationally infeasible to compute such solutions directly,
but as shown by Xu and Pope [48], Richardson extrapolation is a useful technique to estimate
grid converged and bias free solutions (see also the Appendix). Therefore, three runs have
been performed with each algorithm, i.e., withPDF2DV S48:400, S48:200, andS64:200;
with HYB2D L32:50, L32:25, andL64:25; and with PDF-2D-FV T32:50, T32:25, and
T64:25, and the results of these runs have been extrapolated toM−2 = 0 andN−1

pc = 0. The
corresponding profiles of̃U x, Ũ r , u′x, u

′
r , andÄ are shown in Figs. 5–9 (lines) at different

axial locations.
For the mean axial velocity (Fig. 5) there is excellent agreement between the codes. The

largest discrepancies in〈Ux〉/Ubulk is 5% on the centerline atx/Db = 1.3. The discrepancy
in the radial velocity〈Ur 〉/Ubulk at x/Db = 1 (Fig. 6) appears to be larger, but is less than
2%. For the r.m.s. velocities,HYB2Dshows some discrepancy on the axis atx/Db = 0.4,
but otherwise the agreement between the codes is good. There is also excellent agreement
for the conditional turbulence frequency (Fig. 9).

The agreement between the three codes gives confidence that each is accurate. The
remaining discrepancies may be due (at least in part) to the higher-order errors that are not
eliminated by the extrapolation scheme.

Since our objective was to compare different numerical algorithms in terms of efficiency
and numerical accuracy, the comparison of the computed results with the experimental data
was not a major part of our studies, but nevertheless, the agreement is very good considering
the challenging test case and results obtained with other models. The numerical results
presented in Figs. 5–8 compare very well with the experimental data by Masri [24] which
are indicated by markers in the same plots showing that the PDF model applied here predicts
this flow accurately. The radial velocity component is much smaller than the axial velocity
component, and therefore it is not surprising that the relative differences in the radial velocity



FIG. 5. Asymptotic bias free and grid converged profiles ofŨ x obtained with the three algorithms (lines)
shown together with experimental data (markers) at the axial locations 0.2Db, 0.4Db, 0.6Db, 0.8Db, Db, and 1.3Db

downstream of the nozzle.

FIG. 6. Asymptotic bias free and grid converged profiles ofŨ r obtained with the three algorithms (lines)
shown together with experimental data (markers) at the axial locations 0.4Db andDb downstream of the nozzle.

15
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FIG. 7. Axial components of the r.m.s. velocity. Asymptotic bias free and grid converged profiles obtained
with the three algorithms (lines) shown together with experimental data (markers) at the axial locations 0.4Db and
Db downstream of the nozzle.

component are much larger. Considering that it is extremely difficult to predict and measure
the r.m.s velocities correctly, the differences in Fig. 7 and 8 are acceptable, if not small. It
should be mentioned that the calculations (e.g., the mean centerline velocity) are found to
be quite sensitive to the model constantcω1, and the value used was chosen with respect to
the experimental data.

4.7. Computational Cost

The computational cost of each particle code can be expressed as

TCPU≈ nconvM
2(cparticleNpc+ coverhead) = nconvM

2cparticle(Npc+ No), (19)

whereTCPU is the required CPU time, andnconv is the number of time steps (in the particle
code) required to reach a statistically stationary state. The quantitycparticle is the CPU time
per particle per step, whilecoverheadis the time per step for nonparticle computation. The
latter can be re-expressed as an equivalent number of particlesNo = coverhead/cparticle. To
determine the constantscparticle andcoverhead, the CPU times for 100 time steps have been

FIG. 8. Radial components of the r.m.s. velocity. Asymptotic bias free and grid converged profiles obtained
with the three algorithms (lines) shown together with experimental data (markers) at the axial locations 20 mm
and 50 mm downstream of the nozzle.
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FIG. 9. Conditional turbulence frequencyÄ. Asymptotic bias free and grid converged profiles obtained with
the three algorithms at the axial locations 20 mm and 50 mm downstream of the nozzle.

measured using a 64× 64 grid. WithNpc = 50 andNpc = 25 for each algorithm the times
T1 andT2 were measured, respectively. Then

cparticle= T1− T2

6422500
(20)

and

coverhead= 2T2− T1

642100
. (21)

The values ofcparticle, coverhead, andNo are shown in Table VII. Basicallycparticle is the CPU
time required per particle per time step andcoverheadis the CPU time for the overhead per
cell per time step. All simulations have been performed on a 400 MHz Pentium machine.
It may be seen that the values ofcparticle are quite similar for all codes.

Finally, making the assumption thatnconv≈ cconvM , the required CPU time to reach a
statistical stationary state can be expressed as

TCPU≈ cconvM
3cparticle(Npc+ No). (22)

The assumption thatnconv≈ nconvM is based on the the CFL criterion for particle time
stepping. The constantcconvcan be obtained from Section 4.4 and is shown for each algorithm
in Table VII. It can be seen that forPDF2DV andPDF-2D-FV the values ofcparticle are
comparable while it is slightly higher forHYB2D. ForPDF2DV the overhead per particle
method iteration corresponds to≈15 particle time steps. ForHYB2DandPDF-2D-FV, this
ratio is≈19 and≈3, respectively. The constantcconv is determined to be 63 forPDF2DV,
125 forHYB2D, and 208 forPDF-2D-FV.

TABLE VII

The Constantscparticle , coverhead and cconv for the Three Algorithms

Algorithm cparticle coverhead N0 = coverhead
cparticle

cconv

PDF2DV 18.5× 10−6 s 274.8× 10−6 s 14.9 ≈63
HYB2D 25.5× 10−6 s 473.6× 10−6 s 18.6 ≈125
PDF-2D-FV 18.7× 10−6 s 55.4× 10−6 s 3.0 ≈208
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4.8. Comparison of Computational Efficiency

As shown above and in [48], Richardson extrapolation is effective in reducing the total
CPU time required to reduce the numerical error below a given threshold. But clearly there
is advantage in being able to obtain accurate results with a single run.

In this section we use the characterization of the error and CPU times obtained in
Section 4.5 and 4.7 to address the computational efficiency of the different codes, i.e.,
the CPU time required to achieve a given error level in a single run. To compare the

FIG. 10. Locations of simulations in theM−2 − N−1
pc plane (markers). First row: stand-alone particle-mesh

method; second row: loosely coupled hybrid algorithm; third row: tightly coupled hybrid algorithm. The straight
lines show where the numerical error is 5% with respect to a reference value (left plots:Ũ x at location 1–6; right
plots:k at location 1–6). The reference value for the velocity is 61 m/s (jet bulk velocity) and fork it is 127 m2/s2

(largest value of the turbulent kinetic energy at the inlet boundary). Along the curved linesTCPU is approximately
constant.
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TABLE VIII

Efficiency of the Three Different PDF Solution Algorithms

for a Given Numerical Error Tolerance of 5%

Code TCPU ntotal

PDF2DV 2600 h 1.23× 109

HYB2D 60 h 2.54× 107

PDF-2D-FV 7 h 2.25× 107

Note.Shown is CPU time (on a 400 MHz pentium machine) for the
worst case from the locations 1–6 of Fig. 10. The values ofntotal show
the total number of particle time steps.

computational efficiency of the three algorithms the results of Section 4.6 and 4.7 are used
to quantifyTCPU of the three algorithms for a given error tolerance.

The markers in Fig. 10 indicate the locations of the runs in theM−2− N−1
pc plane, i.e., in

the first row the runsS48:400, S48:200, andS64:200; in the second row, the runsL32:50,
L32:25, andL64:25; and in the third row, the runsT32:50, T32:25, andT64:25. To show
how large the numerical error is with respect to the reference values (Ũ xref = 61 m/s and
kref = 127) 5% error iso-lines (straight lines) are shown for the quantitiesŨ x (left plots) and
k (right plots) at locations 1–6 (here the values of Table V and VI are used). To compare the
efficiency of the codes for given accuracy, lines of constantTCPU are shown (curved lines)
using Eq. (22) and the values from Table VII. This allows determination of the CPU time
required to get statistically stationary results within a specified numerical error tolerance.
In Table VIII the worst case of the previous studies is shown for the three algorithms. It can
be seen that the bias error is significantly reduced by the hybrid approach. For this test case,
the hybrid methodHYB2Dis≈43 times more efficient thanPDF2DV, andPDF-2D-FV is
≈370 times more efficient thanPDF2DV (Table VIII). Since the total number of particle
time steps required for the hybrid methods is much smaller (Table VIII) than forPDF2DV,
this difference could even be more significant for reacting cases with detailed chemistry.

5. CONCLUSION

A constant-density bluff-body stabilized flow test case is used to compare (in terms of
numerical accuracy and efficiency) three different PDF solution algorithms, which solve the
same modeled JPDF equation. The first algorithm is a stand-alone particle-mesh method,
and the other two are consistent hybrid algorithms. We have shown that we obtain converged
solutions with all the three algorithms in terms of grid refinement and particle numbers.
We could also show that the calculations are in the asymptotic range and therefore that
extrapolation can be applied to minimize the numerical error. The extrapolated results with
the three different algorithms are in very good agreement with each other, and predict the
flow accurately compared to experimental data. This shows that the numerical algorithms
converge to the same solution, and the PDF modeling is a powerful approach to simulate
this type of flow.

Rigorous asymptotic studies have been performed to compare the three solution algo-
rithms in terms of numerical accuracy and efficiency. It is confirmed that both hybrid
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methods are effective at virtually eliminating the bias; and it has been found that the hybrid
methods outperform the stand-alone particle-mesh method. For this test case it is shown
that, for a single run, the consistent hybrid approach can be≈370 times more efficient than
PDF2DV in terms of CPU time for a given numerical error tolerance of 5%.

APPENDIX: STATIONARY SOLUTIONS TO THE PDF EQUATION

Needless to say, given the complexity of the modeled PDF evolution equation, little can
be said with certainty about the existence, uniqueness, and stability of stationary solutions
(in general, or for a particular flow). Nevertheless, from our experience with this flow,
a consistent nontrivial picture emerges, which has profound consequences for the grid-
convergence studies reported in the text.

To describe this picture, we denote byf (t, ε) the PDF at timet calculated by one of the
numerical methods on a grid withM2 = ε−1 cells (this is an abbreviated notation, since the
PDF also depends onx and the sample-space variables). The evolution equation forf (t, ε)
is written simply as

∂

∂t
f (t, ε) = F( f (t, ε), ε). (23)

If a stationary solutionf (t, ε) = f̄ (ε) exists, then it satisfies

F( f̄ (ε), ε) = 0, (24)

and it may be stable or unstable. That is, if the evolution equation, Eq. (23), were solved
from an initial condition very close tōf (ε), the solution f (t, ε) would tend to f̄ (ε) if it
is a stable stationary solution. If the solution is unstable, however, thenf (t, ε) would not
tend to f̄ (ε), but may be instead exhibit chaotic behavior.

Since the numerical methods considered are second-order accurate, for sufficiently small
ε, if a stable solutionf̄ (ε) exists, then it varies linearly withε. This is the basis of the
Richardson extrapolation used to obtain an approximationf̄ R to the exact stationary solution
f̄ (0):

f̄ (0) ≈ f̄ R(ε1, ε2) = ε2 f̄ (ε1)− ε1 f̄ (ε2)

ε2− ε1
. (25)

Note that the different numerical methods are likely to have different dependences onε,
but, if they are consistent, their asymptotic solutionsf̄ (0) are the same.

With this background we can now state our observations, and the consistent picture that
emerges.

1. With each numerical method, stationary solutions are obtained for a range of grids
that are not too fine, i.e., forε greater than some valueε∗.

2. On finer grids, (ε < ε∗) quasi-periodic or chaotic solutions are observed.
3. Over a range ofε for which stationary solutions are obtained, each method exhibits a

linear dependence onε (to a reasonable approximation).
4. The extrapolated solutions for̄f R obtained from the different methods are in reason-

ably good agreement with each other.
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FIG. 11. Sketch of PDF solutions by two methods as a function of theε = M−2 showing stable regions (solid
lines) and unstable (dashed lines).

These observations are consistent with the picture shown in Fig. 11: For allε there is a
stationary solution, but the solution is unstable below a critical value ofε (which depends
on the method).

Two important deductions follow. First, even though stationary fine-grid solutions cannot
be achieved, the Richardson extrapolation yields a consistent estimate of the error-free
(unstable) stationary solution. Second, the large amount of fourth-order dissipation found
necessary inHYB2Dto obtain stationary solutions may well be due to the instability of the
solution, not to inherent instabilities in the numerical method.
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