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ABSTRACT

A simple stochastic model is described for the turbulent frequency follow-
ing a fluid particle in turbulent flow. This model is simpler than the log-
normal model of Pope and Chen (1990), and has advantages in regions of
turbulent/non-turbulent intermittent flow. In stationary isotropic turbu-
lence, the model results in the pdf of frequency being a Gamma distribution,
with specified normalized variance; and the autocorrelation is an exponen-
tial with specified timescale. The model is intended for use in PDF methods
based on the joint pdf of velocity, frequency and other fluid variables.

INTRODUCTION

Pope and Chen (1990) and Pope (1991) describe a stochastic model for the
turbulence frequency w(t) following a fluid particle. Though physically ac-
curate (compared to DNS data), the model has proved to have several unde-
sirable features when used in PDF methods. Specifically:

1. the model is complicated (Pope 1995) and computationally expensive
to implement

2. the underlying pdf is the log-normal distribution, whose véry long tails
lead to substantial statistical fluctuations in Monte Carlo implementa-
tions

3. an ad hoc additional term is needed to effect entrainment of non-
turbulent fluid.

The model developed here overcomes these problems.

For inhomogeneous flows, in addition to the mean frequency (w), a con-
ditional mean frequency € is defined. In the intermittent region of free shear
flows, (2 remains appreciable as (w) tends to zero. The use of 2 (rather than
(w)) as the effective rate of turbulent processes is found to improve the model
performance.

In the next section the model is described for stationary turbulence. The
conditional mean  is then defined, and the general form of the model is
given.



This model is incorporated in the code PDF2DV (Pope 1994). It appears
to be extremely robust, and performs (qualitatively) satisfactorily on all tests
performed to date. An illustrative computation is reported. Quantitative
results will be described in subsequent papers.

STATIONARY PROCESS

The starting point for the description of the model is statistically-stationary,
homogeneous turbulence in which w(t) is a stationary process. As in Pope
and Chen (1990), w(t) is modelled as a diffusion process

dw = A(w) dt + 1/ B(w) dW, (1)

where A(w) and B(w) are the drift and diffusion coefficients, and W (¢) is a
Wiener process. The specific forms chosen for A(w) and B(w)—for reason to
be explained—are
Aw) = —(w = ()/T, (2)
and
B(w) = 20*(w)w/T, (3)

where T is a specified time scale, and o2 is the normalized variance

0% = var(w)/(w)?. (4)

Straightforward analysis shows that, according to these equations, (w)
and (w?) are indeed stationary, that the variance is given by Eq. (4), and
that the autocovariance is

(W) = (W)(w(t+s) = (w)) = exp(=|s|/T). (5)

To appreciate the selection of A(w) and B(w), we consider the pdf of
w, f(n), where 7 is the sample-space variable. The Fokker-Planck equation
(Gardiner 1985) corresponding to Eq. (1) is (for this stationary process)

0=~ ismam)+ 32

5l (B (6)



Integrating twice, we obtain the pdf

C 2Adn
s = Fewo{ [ 2571, )
where C is a constant determined by the normalization condition
/_wf(n)dn=1- (8)

For simplicity, for ease of analysis and implementation, and to facilitate
variance reduction techniques, A(w) is taken to be linear in w, i.e., Eq. (2).
This leaves B to determine the shape of the pdf. The choice of B = constant
leads to the Langevin equation, and f being Gaussian.

Since w is non-negative, we want f(n) to increase from zero at = 0, and
for w =0 to be an “unattainable entry boundary” (Karlin and Taylor 1981).
This is achieved with Eq. (3). With A(w) and B(w) given by Eq. (2) and
Eq. (3), the stationary pdf is

o*{w)

For 0 < 0% <1, f(0) =0, and f decay exponentially for large 7.
It may be recognized that Eq. (9) is a Gamma distribution, which is put
in standard form by defining

Fn) = CnP ™ exp {—1} . )

w
X - 0'2<(JJ>’ (10)
and
1
Then the pdf of X, g(x), is
1
z) = ——zP 72, 12
9) = 573 (12)

Note that (X) = var(X) = p. By inverting this transformation, the normal-
ization constant is identified, so that Eq. (9) can be rewritten

s ={r () (")} wen (L), a9
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To yield approximate correspondence with the DNS data of Yeung and
Pope (1989), we take

1
2 —_— =
o = 47 (14)
and
T_l = Cg((d), (15)
with
Cs =1.0. (16)

Figure 1 shows f(7) according to Eqs. (13) and (14).

0.9F

0.8

0.7

0.6

0.5

0.41

0.3

0.1

Figure 1: The pdf of w for stationary turbulence (Eq. 13, with (w) = 1,02 =
1
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CONDITIONAL MEAN FREQUENCY

In an intermittent region of a turbulent flow, with probability v the fluid
is in turbulent motion, and with probability (1 — ) it is in non-turbulent
irrotational motion: < is the intermittency factor. In non-turbulent fluid, w
is zero. Hence, in the intermittent region, the pdf of w, f(n), can be written

f(m) = (1 =)8(n) +vfr(n), (17)

where fr(n) is the pdf of w in the turbulent fluid.
Arguably, the appropriate rate to model processess in the turbulent fluid
is the conditional, turbulent mean

@r = ["afemdn
= (/. (18)

Clearly, towards the non-turbulent edge of the intermittent region (y < 0- 1,
say) (w)r is much larger than (w), which is the rate usually used in models.

Both experimentally and in modelling it is problematic to distinguish
unambiguously between turbulent and non-turbulent fluid—a threshold is
required. As a well-conditioned surrogate for (w)z, we use the conditional—
or above-average mean—

Q = Colw|w > (w))
= o [T ot an / INCLE 19)

The constant Cgq is chosen so that 2 equals (w) when the pdf f(n) is given
by Eq. (13). This consideration yields

Ca =Q(p,p)/Q(+1,p), (20)

where p = 072, and Q is the incomplete gamma function defined in Press,
Teukolsky, Vetterling, and Flannery (1992),

- Q(a,z) =T(a,2)/I(a). (21)
For 0 = %, the value of Cq is

Cq ~ 0.6893. (22)



GENERAL MODEL

The general model for inhomogeneous flows differs from the stationary model
in just two respects. First, the definition of T' (Eq. 19) is replaced by

T™! = C5Q, (23)

and, second, a source term—related to that in the dissipation equation—is
added. The result is

do = —(w- <w))f;§ — (w)wS, dt
+{20%(w)w/T}? dW. (24)

The non-dimensional source term .S, is as defined by Pope (1991):
Sy = Cy — C15;;Si;/(w)?, (25)
where S;; is the mean rate of strain

_1(oW) oWy
Sy 2<axj T o )

and the constants are taken to be C; = 0.9 and C; = 0.08.

RESULTS

As an example of the use of the model, Figure 2 shows calculations of the
temporal mixing layer performed by Delarue (personal communication) using
the code PDF2DV (Pope 1994). Notice in particular the skirt on the profile
of Q.
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Figure 2: Temporal mixing layer showing (a) mean velocity profile (b) shear
stress profile (c) profiles of mean (w) and conditional mean Q frequency.
Symbols, experimental data of Bell and Mehta (1990); dashed line, DNS
of Rogers and Moser (1994); solid line, PDF model calculations using the
stochastic frequency model (Delarue, private communication).
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