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ABSTRACT
Probability density function  (PDF) transport 

methods are increasingly used in simulations of gas 
turbine combustors. One of the main advantages of 
the PDF transport method is that the crucial 
turbulence-chemistry interaction is accurately 
accounted for. Due to its large dimensionality, the 
PDF transport equation is solved using one of two 
Monte-Carlo methods – the Eulerian (or node-based) 
method and the Lagrangian method. Studies on the 
Eulerian method show that a large number of particles 
per cell is necessary for accurate simulations. In the 
present study, the Lagrangian method is developed 
for the simulation of actual gas turbine combustors. 
The key technologies developed are a robust particle 
tracking algorithm and a variable time-step algorithm 
to accelerate the convergence of the flow. The 
accuracy of the Lagrangian method is evaluated by 
applying it to several combustor configurations. A 
model combustor and two production combustors are 
studied. The predicted exit temperature profiles are in 
excellent agreement with rig data. Simulations show 
that even with 10 particles per cell, accurate results 
are obtained. The study shows that the Lagrangian 
Monte-Carlo PDF method can be reliably used in 
simulations of practical gas turbine combustors.

INTRODUCTION
With increasing emphasis on accurate CFD 

predictions of the flow in gas turbine combustors, 
there is greater need to develop advanced models. 
Predicting the combusting flow in gas turbine 
combustors is a complex task due to the strong role 
played by turbulence-chemistry interactions. The 
traditional approach to modeling these interactions 
via the eddy-dissipation model or the presumed PDF 
model has met with limited success. In light of this, 
the PDF transport method1,2 is a promising alternative 
to modeling turbulent-chemistry interactions. Several 
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studies have shown that this method can accurately 
predict turbulent flames, even flames close to 
extinction3-6. There have been several studies of PDF 
methods in axisymmetric reacting flow 
configurations. However, studies in three-dimensional 
flow configurations have been limited due to the 
difficulty of solving the PDF transport equation in 
complex three-dimensional flows7,8.

In the present study, the joint PDF of scalars 
(or composition) is considered, as opposed to the 
more comprehensive and computationally intensive 
velocity-scalar-dissipation PDF method3,4. The PDF 
transport equation is a hyperdimensional equation and 
is generally solved using Monte-Carlo methods. In 
Monte-Carlo methods, an ensemble of particles 
represents the joint PDF of scalars. The transport of 
these particles in physical and compositional space 
mimics the solution of the transport equation. In the 
Eulerian Monte-Carlo method, all the particles in a 
cell are located at the cell-center. The transport of 
these particles is determined by cell-face fluxes, 
computed from the flowsolver. An accompanying 
study7 on the application of the Eulerian method for 
gas turbine combustors showed that a large number of 
particles per cell is required for accurate simulations. 
Studies9 in 2D flows have shown that for a given 
accuracy level, the Lagrangian Monte-Carlo scheme 
is cheaper than the Eulerian scheme. In the 
Lagrangian Monte-Carlo method, particles are 
randomly distributed in the computational domain and 
are associated with the cell that they are in at a given 
instant of time. The implementation of the Lagrangian 
method is significantly more complex than the 
Eulerian method; hence, there have been few 
applications of the Lagrangian method to complex 
three-dimensional flows. The main difficulty in the 
method is the accurate tracking of particles and 
conservative implementation of various submodels. In 
the present study, the Lagrangian method has been 
developed for the simulation of the flow in gas 
turbine combustor configurations. The key 
technologies developed in the method are a robust 
particle tracking algorithm, accurate treatment of 
boundary conditions, and a conservative 
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implementation of molecular mixing and spray 
evaporation. A variable time-stepping scheme has 
also been developed to accelerate the convergence of 
the solution.

The Monte-Carlo solution method involves 
the integration of the chemical rate equations on each 
particle. In direct integration (DI), the smallest 
reaction time-scale is resolved and the rate equations 
are directly integrated – a computationally expensive 
method. In the table look-up algorithm, an a priori 
integration table is created before the start of the CFD 
calculation. During the CFD calculation, linear 
interpolations of the tabulated values are performed to 
integrate the rate equations. In the intrinsic low-
dimensional manifold (ILDM) method10, a reduced 
manifold consisting of one or two scalars describes 
the chemical reactions. This manifold is created a 
priori and accessed during the CFD calculation. In the 
in-situ adaptive tabulation (ISAT) method11, a 
reaction table is created dynamically as the CFD 
calculation progresses. The table look-up method is 
suitable for reaction mechanisms with few numbers of 
scalars and reaction steps. The ILDM method reduces 
the detailed chemical mechanism to a smaller reaction 
mechanism; as a result, the number of degrees of 
freedom of the reaction mechanism is significantly 
reduced. The ISAT method is the most desirable for 
accurately integrating large reaction mechanisms. 

In the next section, the PDF transport 
equation is presented followed by a discussion on the 
Lagrangian Monte-Carlo solution methodology. A 
description of the combustion chemistry and spray 
models is also presented in this section. Calculations 
of gas turbine combustors are presented in the results 
and discussions section. The conclusions of the study 
are reported in the summary section.

FORMULATION
The PDF transport equation is used in 

conjunction with a finite-volume solver, PRECISE12, 
which solves for the velocity, pressure, and 
turbulence fields. A pressure-correction algorithm is 
used to compute the velocity and pressure fields. The 
turbulence fields are obtained by solving the 
conventional ε−k equations. The finite-volume 
solver employs a second-order accurate Hybrid 
Linear/Parabolic Approximation (HLPA) scheme13 to 
compute the convective terms. The PDF transport 
equation is solved once every flow iteration until the 
overall flowfield converges. The density is obtained 
from the PDF module and is the main link between 
the finite-volume solver and the PDF solver. The 
velocities necessary for solving the PDF equation are 
obtained from the finite-volume module.

The PDF Transport Equation

The starting point for the derivation of the 
scalar PDF transport equation is the instantaneous 

continuity and species/enthalpy transport equations, 
given below.
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In the above equations, ρ is the density, iu is the 

instantaneous velocity, α
iJ is the diffusional flux, 

αφ represents the mass fraction of species α  or 

enthalpy, ( )φαS  is the chemical source term for 

species α , 0mρ  is the mass source term due to fuel 

evaporation and )( 0 αα cmm = is the rate of change of 

mass fraction of species α  due to fuel evaporation. 

αc is the mass fraction of species α in the fuel vapor. 

For the enthalpy scalar, αc denotes the enthalpy of the 

evaporated fuel. From Equations (1) & (2), the 
governing equation for the transport of the mass 
density function );,( txF ψ  is given by:
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In this equation, ψ  is the scalar vector, iU is the 

Favre mean velocity, and iu ′′ is the fluctuating 

velocity. The symbol BA  is the expected value of 

A conditioned on B. The terms on the left-hand side 
are the rate of change of the PDF and the convection 
of the PDF. The first term on the right-hand side is 
the molecular mixing term. The second term on the 
right-hand side is the turbulent convection of the PDF 
in physical space. The third term is the effect of 
chemical reactions on the PDF in compositional 
space. The fourth and the fifth terms are the effect of 
spray evaporation on the PDF. Note that no modeling 
is required for the chemical reaction term. Thus, 
chemical reactions of arbitrary complexity can be 
exactly evaluated. The terms that require modeling 
are the molecular mixing, turbulent convection terms 
and the spray evaporation terms.

Modeling

The molecular mixing term is modeled by 
the interaction by exchange with the mean (IEM) 
model14 given by:



American Institute of Aeronautics and Astronautics

3

( )[ ].1
FCF

x

J

i

i

ααφ
α

α

α
φψωψψρψ −∂

∂=





∂
∂

∂
∂

         (4)

The model constant φC has a value of 2.0. The mixing 

frequency ω is expressed in terms of turbulent kinetic 
energy k  and turbulent dissipation ε  ( k/εω = ). 
The turbulent convection term is modeled by the 
gradient diffusion model2 and is given by:
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where, tD (= tt Sc/ν ) is the turbulent diffusivity and 

expressed in terms of the turbulent kinematic 
viscosity tν  and the turbulent Schmidt number tSc .

Now consider the spray evaporation terms in 
Equation (3). Spray is modeled by inserting fuel 
vapor particles, each particle having a fixed fuel 
composition c , into the flowfield. This leads to the 

expressions:
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The final modeled form of the PDF transport equation 
is: 
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Monte-Carlo Method
Consider the discrete mass density function 
);,( txFn ψ  represented by an ensemble of N notional 

particles, each having mass nwm ⋅∆ , position nx and 

scalar values nφ . nw  is the weight of a particle. nF

can be defined as:

.)()();,( nnn

n xxwmNtxF −−∆= δφψδψ            (9)

It can be shown2 that the evolution equation for the 
Lagrangian system defined as,
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ξ = Standardized joint normal random vector,

mimics the transport of F; i.e., the transport equation 
of nF  derived from Equations (10) and (11) has the 

same form as Equation (8) sans the spray evaporation 
term. The mean flow parameters needed in Equation 
(10) are computed via a trilinear interpolation scheme 
in computational space.

Spray Evaporation

Consider the last term on the r.h.s. of 
Equation (8).
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This equation can also be written as:
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where, 0m is the unconditioned evaporation rate 

and );,( txcf s is the mass density function of the new 

vapor.
Considering the discrete mass density 

function, let n be the number of particles created per 

unit time from the new vapor and let vw be the weight 
of each added vapor particle. Then,
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                                                                               (14)
This can be further written as

( ) ( ) .0

0

nvn xxcmwN
N

n

t

F −−∆=∂
∂ δψδ                (15)

where, 0N  is the number of particles (each having 

weight vw ) representing the fuel vapor mass density 
function. Comparing Equations (13) and (15), it can 
be deduced that the two equations are equivalent if:
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shown from Equation (16b) that:
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Thus, Equation (16a) can be rewritten as:
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By assuming a fixed value for the number of vapor 
particles inserted into the cell (i.e. )fixedtn =∆ , the 

weight of each of these particles (with composition 
c ) can then be computed from Equation (18). 

Particle Tracking

The objective of the particle tracking 
algorithm is to determine the cell index associated 
with the final position of a particle after the 
convection and diffusion processes. A cell is defined 
by eight vertices. Each face of the six cell faces is 
bounded by the four straight-line segments connecting 
the four vertices of the face. In general, these four 
vertices are not coplanar, and hence a cell face cannot 
be considered to be a plane. Instead, a face is 
considered to be made up of two triangles. A cell is, 
therefore, bounded by the closed, connected surface 
consisting of 12 triangles. 

Let T denote a general triangle (Figure 1). 
We then define: P  to be the plane containing T , 
n the normal to T  (pointing out of the cell), and 

p any point in P . We consider a particle initially 

located at y and moving with a constant velocity u . 

Hence at time t , its position is given by

tuytx +=)( .           (19)

The trajectory xy→ intersects P if 0>⋅nu . Such an 

intersection occurs at time

./)(* nunypt ⋅⋅−≡        (20)

On average, the trajectory interests 6 of the 12 planes. 
We refer to this type of intersection as an 
“outcrossing”, characterized by 0>⋅nu . An 

outcrossing can be followed by (one or more) 
“incrossings” and “outcrossings”, the incrossings
characterized by 0<⋅nu . We want to determine the 
first cell boundary crossing, which is inevitably an 

outcrossing: hence we do not need to consider 
incrossings. The point of intersection

*** )( tuytxx +=≡ .        (21)

may or may not fall within the triangle T . The cell 
outcrossing is the first intersection of )(tx with a 

triangle. The particle trajectory intersects the cell face 
containing this triangle and passes through the cell 
adjacent to this face. The above algorithm of 
determining the face intersected by the particle 
trajectory is then applied to this cell. This procedure 
is continued until a cell is identified where the particle 
trajectory does not intersect any of the cell’s 
outcrossing faces. This is the cell associated with the 
final particle position.

Molecular Mixing

The IEM mixing model is implemented as in 
Jenny et al.15 For a particle with composition )(tn

αφ , 

position nx and weight nw , the model is defined as:

( ) .5.0 dtCd nnn

ααφα φφωφ −−=        (22)

In the above equation, n

αφ  is the mean scalar value 

at the location of particle n. This value is not the same 
as that obtained by computing the ensemble mean of 
scalar values within the cell containing the particle. 
The essence of the implementation is to specify a 

valid numerical approximation n

αφ̂  to n

αφ . Let cFα

be the value of αφ̂ at a corner c of the cell containing 

the particle n. Let cĝ be the linear basis function 

coefficient, so that interpolation from corners to the 
particle position is expressed by:

Figure 1. Illustration of a particle crossing a 
surface.
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From the above definition and the requirement that 
the implementation of the model be conservative, the 
following expression for cFα can be derived15.
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where, )5.0exp(1 tCd n ∆−−= ωφ . 

Variable Time-Step

A variable time-step algorithm for the 
transport of particles can significantly accelerate the 
convergence of the flowfield. This algorithm within 
the context of the joint velocity-scalar PDF method 
was derived in Muradoglu and Pope16. Here, we 
present the algorithm for the joint scalar PDF method.

The local time-step in each cell is 
determined by the Courant number condition. Since 
the time-step varies from one cell to the next, the 
stochastic differential equations [Equation (10)] have 
to be reformulated.

Consider the standard uniform time-step 
equation:
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We consider the statistically stationary case, so that 
the coefficients do not depend on time. The evolution 
equation for the mass density function 

( )xtxmtxG n −= )();( δ , where m is the total mass 

in the system, corresponding to Equation (25) is given 
by:
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With variable time-step, we define, 

( ) ,)()();(ˆ xsxsmwsxG nn −= δ  (27)

where, s is a psuedo-time, and specify the particle 
evolution equations as,
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where, ( ) ( ) sxtx ∆∆= /γ  is a specified positive field. 

From the above equations, we have,

[ ],)()( sxdsdw nn γξ=        (29)

where, ))0((/)0( nn xw γξ = is a fixed constant for 

each particle. The evolution of );(ˆ sxG can be derived 

as follows.
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Further simplification yields:
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which can be further reduced to
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For stationary flows, the l.h.s. of the equation is zero 
and the above equation becomes identical to the 
stationary form of Equation (26). The particle 
equation in composition space can be shown to be

( ) .)( sSsCs nnn ∆+∆−−=∆ γγφφωφ φ        (33)

Equations (28) and (33) constitute the variable time-
step particle evolution equations. The weight nw at 
the end of the timestep s∆ is computed as
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Particle weights are prevented from becoming 
excessively large or small by a process of  “cloning” 
and “clustering”. Particles below a certain weight are 
combined into one particle, while particles above a 
certain weight are split into multiple particles.  This is 
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done to ensure that particles within a cell have more 
or less uniform weights.

Combustion Chemistry

The fuels used in the simulations are 
Propane and Jet A. A two-step generalized 
Westbrook and Dryer scheme17 is used to represent 
the combustion chemistry. In addition to fuel and 
oxygen, the other scalars involved in the combustion 
process are CO2, H2O, CO and N2. The integration of 
the chemical source term is achieved using the table 
look-up method. The results of the a priori integration 
are stored in the form of tables. During the CFD 
calculation, the tables are accessed and linear 
interpolation is performed to determine the change in 
composition due to reaction. The tables are 
parameterized by mixture fraction, CO2, H2O and 
timestep in the two-step mechanism. For the two-step 
mechanism, given the values of mixture fraction, CO2

and H2O, the remaining species can be computed 
using algebraic relations. 

Spray Transport

The liquid fuel spray is assumed to be 
composed of a large number of spray droplets of 
different sizes. These droplets are transported using a 
Lagrangian model18,19. The model is described by the 
equations:

,dtgdt
uu
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where, iu is the instantaneous fluid velocity at the 

droplet location, d

iu is the droplet velocity, ig is the 

acceleration due to gravity, and dτ is the droplet 

dynamic relaxation time. The instantaneous fluid 
velocity is sampled from the assumed independent 
Gaussian distribution. The value of the relaxation 
time is chosen as the minimum of the turbulent eddy 
lifetime and the residence time of the particle in the 
eddy. As the droplets move through the flowfield, 
they evaporate. The governing equations for heat and 
mass balance are solved iteratively to compute the 
evaporated mass over the period of the droplet time-
step, such that the heat and mass balances are 
satisfied20. The evaporated fuel and the corresponding 
enthalpy are added as source terms in the PDF 
transport equation. Additionally, the momentum 
exchange between droplets and the surrounding flow 
are also accounted for as source terms in the flow 
equations.

RESULTS AND DISCUSSIONS
In this section, results from PDF simulations 

of three gas turbine combustors are presented. The 
combustors will be denoted as A, B and C. 

Combustor-A employs gaseous fuel, while 
Combustors-B & C employ liquid fuel. 

Combustor-A

A model combustor with gaseous Propane 
fuel is first studied. A schematic of the combustor is 
presented in Figure 2. The simulated flow domain is a 
22-degree sector of an annular combustor. The system 
pressure and temperature of the flows are 14.8 atm 
and 735 K, respectively. Gaseous Propane flows 
through a fuel nozzle at the center of the dome. An air 
swirler surrounds this nozzle. A total of 43,000 nodes 
are used to represent the geometry. 

Figure 2. The grid used in the simulation of 
Combustor-A. Gaseous Propane fuel is injected 
from a fuel nozzle at the center of the inlet plane. 
An air swirler surrounds the fuel injection 
location.

Two PDF simulations are performed – with 
10 particles per cell and with 60 particles per cell 
(values at start of the calculations). The two 
simulations can be analyzed to assess the statistical 
and bias errors in the PDF algorithm. A cold flow 
simulation is first performed until the mixture fraction 
field is sufficiently evolved. Subsequently, an ignition 
source is introduced in the recirculating zone for ten 
iterations. The simulation is then continued until 
steady-state is reached and the average mixture 
fraction value at the exit of the combustor match the 
theoretical value of 0.0355, computed from the mass 
flow rates of air and fuel entering the combustor. 
Figure 3 shows the u-velocity field on a plane passing 
through the center of the fuel nozzle, swirler and liner 
walls (center k-plane) in the combustor. A 
recirculating zone is seen in the combustor. The 
recirculating zone acts as an anchor for the flame and 
helps to stabilize the reacting front. This stabilization 
of the flame is seen in Figure 4, which shows the 
temperature field in the combustor from the two 
simulations. The overall flame structure looks similar 
in the two simulations. Minor differences are seen in 
the high temperature region at the flame anchoring 
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location. Downstream of this location, the flame 
shows a “necking” effect, suggesting the importance 
of finite-rate chemistry effects in this region.

u (ft/s): -150 -50 50 150 250 350

Figure 3. The u-velocity field at the center k-plane 
of the combustor. A recirculating region is 
observed close to the dome.

T (K): 300 575 850 1125 1400 1675 1950

10 particles/cell

T (K): 300 575 850 1125 1400 1675 1950

60 particles/cell

 

Figure 4. The temperature field in the combustor 
from PDF calculations with 10 (top) particles per 
cell and 60 (bottom) particles per cell. 

Figure 5 shows the evolution of mixture 
fraction and temperature at the center of the 
combustor where the cross-sectional area starts 
decreasing. The two simulations are ignited at 
different times; hence the temperature rise is different 
in the two cases. The procedure of time-averaging the 
mean fields computed from particles is used in the 
simulations to reduce statistical fluctuations. It can be 
seen that the two simulations converge to the same 
value in both mixture fraction and temperature fields. 
Note that statistical fluctuations in mixture fraction 
during initial times with 10 particles per cell are quite 
high. The fluctuations are substantially lower with 60 
particles per cell. 

The time evolution of the total number of 
particles (not shown) shows an initial transient. 
Subsequently, the total number of particles settles to a 
steady value at convergence. In the two simulations, 
the final number of particles per cell, on an average, 

is 10.5 and 65.7. It is also noted that fluctuations in 
the total number of particles in the flow domain are 
higher with 10 particles per cell. The minor 
differences in the two simulations indicate that bias 
errors are small. This is an encouraging result, as 
simulations with as low as 10 particles per cell can be 
performed thus significantly saving valuable CPU 
time and memory. Detailed analyses of errors in 
transport PDF algorithms are presented in Xu and 
Pope21.
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Figure 5. Evolution of mixture fraction (top) and 
temperature (bottom) with 10 particles per cell 
and 60 particles per cell. Note that converged 
results are independent of the number of particles 
per cell used in the simulations.

Combustor-B

Combustor-B is a variant of a production gas 
turbine combustor. Simulation of the flow in this 
combustor is a stringent test for the predictive 
capability of the PDF methodology and the feasibility 
of performing PDF transport calculations of real 
engine combustors.

Figure 6 shows the combustor grid used in 
the PDF simulations. The combustor is operated at a 
pressure of 18 atm and a temperature of 782 K. Air 
flows through two swirlers on the dome, and primary, 
dilution and effusion holes on the liner. Simulations 
are performed on a grid with 400,752 nodes and with 
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10 particles per cell. In order to assess the capability 
of the PDF method to handle flows in practical gas 
turbine combustors, a simulation of Combustor-B 
with gaseous Propane fuel is first performed. This 
simulation will allow an assessment of the accuracy 
and convergence characteristics of the PDF method in 
complex flow configurations.

Figure 6. The computational grid of Combustor-B. 
Air is fed through swirlers and primary, dilution 
and effusion holes. The grid has 400,752 nodes. 

Figure 7 presents the mixture fraction and 
temperature fields from the simulation. The overall 
fuel-air ratio of the flow is 0.0124. High temperatures 
are present in the primary zone, where the fuel-air 
mixture is within the flammability limits. Combustion 
is almost complete before the flow enters the 
secondary zone. The average mixture fraction at the 
exit of the combustor converges to the theoretical 
value of 0.0121 (fuel-air ratio = 0.0124).

Figure 8 shows the convergence behavior of 
mixture fraction and temperature at a fixed point in 
the flowfield. Note that large fluctuations are present 
in the field until 2000 iterations. Subsequently, the 
flowfield converges to a steady field. Also note that 
fluctuations are significantly higher in the mixture 
fraction field. Figure 9 presents the evolution of the 
total number of particles in the flowfield. Large 
fluctuations are seen in the number of particles before 
it settles to a steady value of 3.3e+6. This value 
corresponds to a 5% increase in the number of 
particles from the initial number of particles 
distributed in the flowfield. 

fmix: 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

T (K): 300 470 640 810 980 1150 1320 1490 1660 1830 2000

Figure 7. The mixture fraction (top) and 
temperature (bottom) fields from a simulation of 
Combustor-B with gaseous Propane fuel.
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Figure 8. Convergence behavior of mixture 
fraction (top) and temperature (bottom) at a fixed 
point in the flowfield. Initial transients last until 
2000 iterations.
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Figure 9. Evolution of the total number of 
particles in the flowfield. Large fluctuations are 
observed for the first 2000 iterations. 
Subsequently, the fluctuations are very small, 
indicating convergence of the flowfield.

A stringent test of the PDF algorithm is the 
linearity between mixture fraction and enthalpy that 
must be exhibited by the particle and mean fields for 
adiabatic gaseous fuel combustion. Figure 10 presents 
the relationship between the two physical quantities in 
both the particle and mean fields.  As expected, a 
linear behavior is observed. The linearity in the 
particle field indicates that the interpolation algorithm 
and the particle cloning and clustering algorithm do 
not introduce spurious values. The same linear 
behavior is also seen in the mean fields.
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-1500

-1000

-500

0

500

particle field
mean field

Figure 10. Relationship between mixture fraction 
and enthalpy in the particle (circles) and mean 
(line) fields. As expected, a linear behavior is seen.

Another test of the PDF algorithm is the 
consistency in density. Density can be computed via 

two methods. The conventional method of computing 
density is through ensemble average of the density on 
each particle. Another method of computing density is 
by dividing the total mass in each cell by the volume 
of the cell. Figure 11 presents the density field using 
the two methods. It can be seen that the two fields are 
similar. A local accumulation of mass is seen at the 
stagnation points. This is not of concern, since one 
could block the stagnation regions and still obtain the 
same overall flowfield. A particle-position correction 
algorithm22 could be implemented to rigorously 
enforce the consistency condition. However, 
implementation of this algorithm in the present scalar 
PDF code has been postponed until further 
assessment of the universality of the constants used in 
the algorithm is performed

density (particle): 1 1.75 2.5 3.25 4 4.75 5.5 6.25 7

density (mass/volume): 1 1.75 2.5 3.25 4 4.75 5.5 6.25 7

Figure 11. The consistency condition for density 
(Kg/m3). Top: Density computed from total mass 
of particles in a cell divided by the volume of the 
cell. Bottom: Density computed from conventional 
averages.  Note that density from the two 
calculations is similar, except at the stagnation 
points.

Combustor-B is next simulated with liquid 
Jet A fuel. The airflows are kept the same as in the 
gaseous fuel case. The fuel is injected though nozzles 
on the dome. A simulation is performed until the 
average mixture fraction value at the exit converges to 
the expected value. Figure 12 presents the mixture 
fraction and temperature fields from the simulation. 
Note that the fuel evaporates in the primary zone, 
where high temperatures are observed. The dilution 
jets and effusion cooling air from the liner lowers the 
temperature in the secondary zone. Figure 13 presents 
the comparison of the burner exit temperature profile 
between predictions and measurements from a rig test 
of the combustor. Note that the predictions are in 
good agreement with rig data.
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fmix: 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

T /Tavg: 0.2 0.31 0.42 0.53 0.64 0.75 0.86 0.97 1.08 1.19 1.3

Figure 12. Mixture fraction (top) and temperature 
(bottom) fields from a simulation of Combustor-B 
with liquid Jet A fuel. 
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Figure 13. Comparison of predictions with rig 
measurements for the exit temperature profile in 
Combustor-B with liquid Jet A fuel. 

Combustor-C

The PDF method has been used to simulate 
Combustor-C, which is a variant of Combustor-B with 
different flows and nozzle and hole geometry. The 
locations of the primary and dilution holes are 
different from those in Combustor-B. Figure 14 
presents the grid for this combustor. Combustor-C is 
operated at a pressure of 14 atm and a temperature of 
750 K. Liquid Jet A fuel is used in this combustor. A 
PDF simulation with 10 particles per cell is 
performed. Figure 15 shows the mixture fraction and 
temperature fields in the simulation. The average exit 
mixture fraction converges to the expected value. 
Figure 16 shows a comparison of predictions with 
measured data of the exit temperature profile. The 
predictions are in excellent agreement with rig data. 

Figure 14. The grid on Combustor-C. A total of 
400,752 nodes are used. PDF simulation is carried 
out with 10 particles per cell. 
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Figure 15. Mixture fraction (top) and temperature 
(bottom) in Combustor-C. 
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Figure 16. Comparison of predictions with rig 
measurements for the exit temperature profile in 
Combustor-C.
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SUMMARY
The Lagrangian PDF transport method has 

been developed for the simulation of practical gas 
turbine combustor flows. The method involves an 
efficient particle tracking algorithm, a variable time-
step method, and a conservative implementation of 
molecular mixing and spray evaporation. The method 
has been used in simulations of several combustors. 
Simulations of a model combustor with 10 and 60 
particles per cell were performed. The simulations 
showed that statistical errors could be suppressed by 
time-averaging the fields computed from particles. 
Bias errors were observed to be not significant and as 
low as 10 particles per cell could be used to get 
reliable results. Simulations of an actual gas turbine 
combustor with gaseous Propane fuel were 
performed. This combustor is representative of actual 
combustors used in aircraft engines. Analyses of the 
results showed that the flowfield converged to the 
expected values and the expected linear behavior 
between mixture fraction and enthalpy in the particle 
field was obtained. The density field computed from 
particles as well as that computed using the mass in 
each cell was observed to be similar, indicating 
consistency between evolution of particles and the 
mean field. This combustor was also operated with 
liquid Jet A fuel and a simulation was performed. The 
predicted exit temperature profile was in good 
agreement with rig data. A similar combustor with 
different flowrates and different placement of the 
primary and dilution holes was also simulated. Again, 
the predicted exit temperature profile was observed to 
be in good agreement with rig data. The results 
indicate that the Lagrangian PDF transport method 
can be reliably used for the prediction of practical gas 
turbine combustor flows. 
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