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Computational calculations of combustion problems involving large numbers of species
and reactions with a detailed description of the chemistry can be very expensive. Numer-
ous dimension reduction techniques have been developed in the past to reduce the com-
putational cost. In this paper, we consider the rate controlled constrained-equilibrium
(RCCE) dimension reduction method, in which a set of constrained species is specified.
For a given number of constrained species, the ‘optimal’ set of constrained species is
that which minimizes the dimension reduction error. The direct determination of the
optimal set is computationally infeasible, and instead we present a greedy algorithm
which aims at determining a ‘good’ set of constrained species; that is, one leading to
near-minimal dimension reduction error. The partially-stirred reactor (PaSR) involving
methane premixed combustion with chemistry described by the GRI-Mech 1.2 mecha-
nism containing 31 species is used to test the algorithm. Results on dimension reduction
errors for different sets of constrained species are presented to assess the effectiveness of
the greedy algorithm. It is shown that the first four constrained species selected using the
proposed greedy algorithm produce lower dimension reduction error than constraints on
the major species: CH4, O2, CO2 and H2O. It is also shown that the first ten constrained
species selected using the proposed greedy algorithm produce a non-increasing dimen-
sion reduction error with every additional constrained species; and produce the lowest
dimension reduction error in many cases tested over a wide range of equivalence ratios,
pressures and initial temperatures.

Keywords: RCCE; greedy algorithm; optimal species; PaSR; dimension reduction

Nomenclature

Roman

h enthalpy
p pressure
ne number of elements
ns number of species
nrs number of represented species
nus number of unrepresented species
nr reduced dimension (nr = nrs + ne)
z species specific moles
r reduced representation
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620 V. Hiremath et al.

zr specific moles of represented species
zu,e specific moles of elements in the unrepresented species
S chemical production rates
R(z, t) reaction mapping after time t starting from z
B constraint matrix
r(0) reduced representation at time t = 0
zCE(r) constrained-equilibrium composition at r
zDR(t) reaction mapping, R(zDR(0), t)
rDR(t) reduced representation after time t

N number of test compositions
NP number of particles in the PaSR
�t reaction time step
T PaSR initial temperature

Greek

� set of all species
�r set of represented species
�u set of unrepresented species
�ud set of unrepresented determined species
�uu set of unrepresented undetermined species
�opt optimal set of represented species
�g set of good represented species generated by the greedy algorithm
ε(t,�r ) dimension reduction error in the reaction mapping, R(zDR(0), t)
ε(�r ) error used for defining the optimal set of species
φ equivalence ratio
τres PaSR residence time
τmix PaSR mixing time scale
τpair PaSR pairing time scale

1. Introduction

Modern chemical mechanisms for real fuels typically involve hundreds of species and
thousands of reactions [1, 2]. Computational calculations of reactive flows involving such
fuels with detailed chemistry are prohibitive even on a distributed computing platform.

Numerous techniques have been developed in the past to reduce the computational cost
of implementing combustion chemistry. These include:

(1) Skeletal mechanisms: A skeletal mechanism consists of a subset of the species and
reactions from the detailed mechanism. Many methods have been developed to system-
atically generate skeletal mechanisms from detailed mechanisms, such as the Directed
Relation Graph (DRG) [3], DRG with error propagation (DRGEP) [4] and Simulation
Error Minimization Connectivity Method (SEM-CM) [5].

(2) Reduced chemical mechanisms (based on QSSA): The quasi-steady-state approxima-
tion (QSSA) [6, 7] has been widely applied to develop reduced chemical mechanisms.
The QSSA method involves the identification of QSS species in the system, whose net
rate of production is assumed to be zero, thereby reducing the governing differential
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Combustion Theory and Modelling 621

equation for the QSS species to an algebraic relation. These algebraic relations are
used to eliminate the QSS species from the system.

(3) Dimension reduction methods: Another class of dimension reduction techniques is
based on the observation that chemical systems involve reactions with a wide range of
time scales. As a consequence, reaction trajectories are attracted to lower dimensional
attracting manifolds in the composition space. Computations can be performed in a
reduced space by identifying such low-dimensional manifolds, thereby reducing the
overall computational cost. Methods based on this idea include rate-controlled con-
strained equilibrium (RCCE) [8, 9], computational singular perturbation (CSP) [10], in-
trinsic low-dimensional manifolds (ILDM) [11], trajectory-generated low-dimensional
manifolds (TGLDM) [12], invariant constrained equilibrium-edge pre-image curve
(ICE-PIC) [13] and one-dimensional slow invariant manifold (1D SIM) [14].

(4) Storage retrieval methods: In these approaches, combustion chemistry computations
are stored in a table, and are used to build inexpensive approximate solutions at a
later stage of computation to reduce the overall cost. Methods based on this idea
include the structured look-up tabulation [15], repro-modelling [16], artificial neural
network (ANN) [17], in situ adaptive tabulation (ISAT) [18, 19] and piecewise reusable
implementation of solution mapping (PRISM) [20].

In recent times, combined methodologies have also been developed, wherein reduced
reaction mechanisms or dimension reduction methods are used in conjunction with stor-
age/retrieval methods, such as ISAT-QSSA [21], ISAT-RCCE [22], and recently ICE-PIC
with ISAT [23].

In reactive flow calculations, the species concentrations are governed by two processes:
chemical reaction and transport. We consider the important class of solution methods in
which a splitting scheme is used, where the chemical reaction and transport processes
are accounted for in two separate steps. In the computational modelling of the turbulent
combustion using PDF methods [24], the fluid composition within the solution domain is
represented by a large number of particles. In a full-scale PDF calculation, more than two
million particles may be used, and the solution can advance for more than 5000 time steps,
leading to approximately 109 particle-reaction sub-steps. If such a calculation involves 100
species with the chemistry represented by a detailed mechanism, then at each reaction sub-
step, 100 coupled ODEs need to be solved to determine the species concentrations, which
can be very expensive and computationally prohibitive. Instead a dimension reduction
method (such as RCCE or ICE-PIC) integrated with ISAT can be used to perform the
reactive flow calculations in terms of say 10 represented species; where the combined
reduction-storage methodology determines and tabulates (in situ) the reduced space in
terms of the 10 represented species based on the detailed mechanism.

In a reactive system, the reaction trajectories rapidly approach a hierarchy of attract-
ing manifolds of decreasing dimensions and the reactive system’s slow dynamics is well
approximated by these low-dimensional attracting slow invariant manifolds (SIMs) in the
reactive space. Numerous dimension reduction methods have been developed which exploit
this property to represent the chemistry using a reduced set of variables. Here we focus
on the RCCE and ICE-PIC dimension reduction methods, which have been successfully
implemented and used in many reactive flow computations [23, 25–27]. The slow invariant
manifold is approximated in the RCCE method by the constrained-equilibrium manifold
(CEM) constructed using thermodynamic concepts, and in the ICE-PIC method by the
invariant constrained-equilibrium edge (ICE) manifold which is a collection of all the re-
action trajectories emanating from the CEM edge. Recent studies [14] have shown that the
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622 V. Hiremath et al.

consideration of the topology of classical thermodynamic functions may not provide a good
approximation to the 1D SIM. However, in RCCE and ICE-PIC we typically use more than
one constrained species (i.e. work in higher dimensions), and the errors in the approxima-
tion generally decrease in higher dimensions. We also note that the method described by
[14] has yet to be applied in many dimensions.

The RCCE dimension reduction method (originally proposed in [8]) is based on the
assumption that in a reactive system, the reaction trajectories relax to the complete equi-
librium with a rate determined solely by the slow reactions, while the fast reactions tend to
locally equilibrate the system subject to the constraints imposed by the slow reactions. Thus,
the system reaches complete equilibrium by evolving through a sequence of constrained-
equilibrium states on the CEM. As a result, only the rate equations of the slowly changing
constraints need to be solved, though a different approach is used in our implementation
of RCCE as described in Section 2.3. The constrained-equilibrium state can be determined
(locally) by computing the state corresponding to the maximum entropy subject to the given
set of constraints.

The very first step involved in the application of the RCCE (and ICE-PIC) method is
the specification of the constraints for dimension reduction. The conservation of elements
form the most basic time-independent constraints. Among the time-dependent constraints, a
literature review [26–28] shows that the most commonly used constraints in RCCE include
general linear constraints on the total number of moles; moles of active valence (AV); moles
of free oxygen (FO), etc.

In our implementations of RCCE and ICE-PIC, which are integrated with ISAT
[13, 22, 23, 29], the concentration of a specified set of constrained species form the
constraints. The specification of good constraints is crucial for the accuracy of dimension
reduction, but there are no systematic methods available to select good constraints in an
automated way.

Ideally one wants to find the smallest set of constrained species that yields the dimension
reduction errors below a specified tolerance; or one wants to find the ‘optimal’ set of
constrained species that minimizes the dimension reduction errors for a fixed number of
constrained species. This is a very hard problem, so we aim to devise an algorithm to select
a ‘good’ set of constrained species, i.e. a near-optimal set of species which produces low
dimension reduction errors.

The proposed method works by considering a computationally inexpensive representa-
tive test problem (the partially-stirred reactor (PaSR)), and directly measuring the dimension
reduction error. A ‘good’ set of constrained species is selected by employing a greedy al-
gorithm; which selectively adds ‘good’ species to the set (initially empty) one at a time to
minimize the dimension reduction error at each stage. Here we consider the application of
this method for RCCE, but the methodology developed is also applicable to ICE-PIC. The
SEM-CM [5] method used for developing skeletal mechanisms employs a similar idea for
identifying the species to be retained in the skeletal mechanism. In the SEM-CM method,
the mechanism building procedure is started from a set of specified important species, and
then species are added (based on ranking) one at a time until the simulation error using the
skeletal mechanism becomes smaller than a required threshold.

The outline of the remainder of the paper is as follows. In Section 2, we develop a
mathematical representation for a gas-phase reacting system. We then describe the RCCE
dimension reduction procedure and define the dimension reduction errors involved in this
procedure. In Section 3, we propose a definition for the ‘optimal’ set of species and
later present the greedy algorithm for selecting a ‘good’ (near-optimal) set of species. In
Section 4 we present results obtained using the greedy algorithm for the test case of a
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Combustion Theory and Modelling 623

partially-stirred reactor (PaSR) with methane premixed combustion. Finally, in Section 7
we draw conclusions based on the presented results.

2. Representation of chemistry

We consider a reacting gas-phase mixture consisting of ns chemical species, composed
of ne elements. The set of all species is denoted by �. The thermochemical state of the
mixture (at a given position and time) is completely characterized by the pressure p, the
mixture enthalpy h, and the ns-vector z of specific moles of the species. To simplify the
exposition, we consider an adiabatic and isobaric system with h and p taken to be given
constants, and so the thermochemical state is given by z.

It is useful to consider the species composition z to be an ns-vector or a point in the
ns-dimensional full composition space.

2.1. Reaction trajectories

Due to chemical reactions, the chemical composition z evolves in time according to the
following set of ordinary differential equations (ODEs)

d z(t)

dt
= S(z(t)), (1)

where S is the ns-vector of chemical production rates determined by the chemical mecha-
nism used to represent the chemistry.

The reaction mapping, R(z, t), is defined to be the solution to Equation (1) after time t

starting from the initial composition z. In this work, the reaction mapping is computed by
numerically integrating the set of ODEs (1) using DDASAC [30].

2.2. Dimension reduction

The dimension reduction methods that we are interested in are methods based on low-
dimensional manifolds, and in particular the RCCE and ICE-PIC dimension reduction
methods. In this section we briefly describe the notation used in these dimension reduction
methods; detailed descriptions are provided in [13, 23].

In RCCE and ICE-PIC, the set of species � is decomposed as � = {�r ,�u}, where
�r is the set of represented species with cardinality nrs , and �u is the set of unrepresented
species with cardinality nus , where nrs + nus = ns and nrs < ns − ne.

The reduced representation of the species composition is denoted by r ≡ {zr , zu,e},
where zr is nrs-vector of specific moles of represented species, �r ; and zu,e is an ne-
vector giving the specific moles of the elements in the unrepresented species, �u (for atom
conservation). Thus, r is a vector of length nr = nrs + ne in the reduced composition space,
and the dimension of the system is reduced from ns to nr < ns . At any time t , the reduced
representation, r(t), is related to the full composition, z(t), as

r(t) = BT z(t), (2)

where B is a constant ns × nr matrix which can be determined for a specified set of
represented species.
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624 V. Hiremath et al.

2.3. Steps involved in dimension reduction

In this section we briefly describe the four main steps involved in our implementation of
RCCE. Since our implementation of RCCE is integrated with ISAT, some of the steps in
our implementation of RCCE differ from other work found in the literature; those steps are
highlighted and justified.

(1) The first important step in the application of the RCCE dimension reduction method
is the selection of the set of represented (constrained) species, �r . For a given set of
represented species, �r , the reduced representation is given as r ≡ {zr , zu,e}.
Alternatively, in many of the RCCE implementations [26, 27] general linear constraints
on species are specified. In our implementation of RCCE, to simplify the user interface
and specification of constraints, we use the species specific moles of the represented
species as the constraints.

(2) The next step is the species reconstruction, i.e. given a reduced representation r(0) at
time t = 0, reconstruct an estimate of the full composition denoted by zDR(0).
In RCCE the species reconstruction is performed by computing the constrained-
equilibrium composition for the given constraints. In our implementation of RCCE,
the constrained-equilibrium composition is computed using the CEQ [31] code, with
the constraints given by the reduced representation r . The constrained-equilibrium
composition at r is denoted by zCE(r). So the reconstructed composition in RCCE is
given as

zDR(0) = zCE(r(0)). (3)

(3) The next step is to obtain the reaction mapping. Starting from the reconstructed com-
position, zDR(0), the set of ODEs (1) is integrated numerically in the full space using
DDASAC to obtain the reaction mapping after time t , denoted by zDR(t) as shown in
Figure 1.
An alternative approach for the RCCE method as suggested in [9] and also used in
[26, 27] is to integrate the rate equations for the constraint potentials, which is more
economical than integrating the ODEs (1) directly. In our implementation of RCCE,
we chose the latter approach for the ease of integrating the RCCE dimension reduction
method with ISAT, which is discussed in more detail in [22].

zDR(t)

r(0) rDR(t) r

u

zDR(0)

Figure 1. Sketch of the composition space (indicated by represented r and unrepresented u axes)
showing the four steps involved in the dimension reduction procedure using RCCE and ICE-PIC: (i)
the initial reduced composition is represented by r(0); (ii) the reconstructed composition at r(0) is
represented by zDR(0); (iii) the reaction mapping starting from zDR(0) after time t is represented by
zDR(t); (iv) the reduced composition after time t is represented by rDR(t).
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Combustion Theory and Modelling 625

(4) The final step involved in the dimension reduction method is reduction, i.e. from the
obtained reaction mapping after time t , zDR(t), compute the reduced representation
denoted by rDR(t) (shown in Figure 1), given as:

rDR(t) = BT zDR(t). (4)

To summarize, the key steps involved in the RCCE dimension reduction method are

(1) Selection: Identifying good constraints or the set of represented species, �r , for di-
mension reduction.

(2) Species reconstruction: Given the constraints, r(0), reconstructing the full composi-
tion, zDR(0).

(3) Reaction mapping: Starting from the reconstructed composition zDR(0), computing
the reaction mapping after time t in the full composition space zDR(t).

(4) Reduction: From the reaction mapping zDR(t), obtaining the reduced representation
rDR(t) after time t .

The ICE-PIC dimension method also involves the same four aforementioned steps,
with the only difference being in the species reconstruction step, wherein the reconstructed
composition is defined based on the invariant constrained-equilibrium (ICE) manifold
[13, 23]. The remaining three steps: selection, reaction mapping and reduction are identical
to the steps in RCCE.

Among these steps, the selection of the represented (constrained) species is an important
step as the errors involved in the remaining three steps implicitly depend on the choice of
the represented species, �r . As also mentioned in [26, 27], identification of appropriate
constraints is essential for the accuracy of the RCCE dimension reduction method. In the
following sections, we develop an automated algorithm to select a ‘good’ set of represented
species, �r , for the accurate implementation of RCCE and ICE-PIC dimension reduction
methods.

2.4. Partially-stirred reactor

In methods to develop QSSA based reduced mechanisms, it is useful to consider a range of
test cases both to identify QSS species and to validate the resulting reduced mechanisms.

Here, we are interested in applying RCCE and ICE-PIC methods to LES/PDF cal-
culations, for which the partially-stirred reactor (PaSR) is a (computationally cheaper)
representative test case. We can vary the pressure p, temperature T , and the time step �t

to be representative of conditions in an LES/PDF calculation.
In this study, we consider the test case of a partially-stirred reactor (PaSR) involving

premixed combustion of a methane–air mixture. A description of the PaSR is given in [18];
here we list only the important parameters involved.

There are two inflowing streams: a premixed stream of stoichiometric methane–air
mixture at 600 K; and a pilot stream consisting of the adiabatic equilibrium products
of a stoichiometric methane–air mixture at 2375 K (corresponding to an unburnt gas
temperature of 600 K). The mass flow rates of these streams are in the ratio 0.95:0.05.
Initially (t = 0), all particle compositions are set to be the pilot-stream composition. The
pressure is atmospheric throughout.
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626 V. Hiremath et al.

Other important parameters involved are: number of particles, NP = 100; residence
time, τres = 10 ms; mixing time scale, τmix = 1 ms; pairing time scale, τpair = 1 ms;
time step = 0.1 ms (involving three fractional sub-steps of mixing, reaction and mixing);
and reaction time step �t = 0.033 ms. The PaSR is run for 3400 time steps, each involving
three sub-steps over 100 particles, leading to more than 106 particle-sub-steps.

In this study, the GRI-Mech 1.2 mechanism involving 31 species is used to describe the
methane combustion. The species involved are

� = {H2, H, O2, OH, H2O, CH3, CH4, CO, CO2, CH2O, C2H4, O, HO2,

H2O2, C,CH,CH 2, CH 2(S), HCO, CH2OH, CH3O, CH3OH, C2H,

C2H2, C2H3, C2H5, C2H6,HCCO,CH 2CO,HCCOH,N2}. (5)

To give some idea about the state of the PaSR, scatter plots of species specific moles of
CH4 and CO (retrieved from 10 selected particles from the PaSR) versus the temperature
are shown in Figures 2 and 3, respectively. We see that the CH4 concentration drops with
temperature, as more and more CH4 reacts to form products. The concentration of CO, on
the other hand, increases with temperature and reaches a maximum at around 2000 K.

In our implementation of PaSR, computations can be performed using the full set of
species, �, in the full composition space (without any dimension reduction) or using a
smaller set of represented species, �r , with one of the dimension reduction methods –
RCCE or ICE-PIC. For a given test case, PaSR calculations are performed with and without
dimension reduction, and the compositions obtained with the two approaches are compared
to estimate the errors involved in dimension reduction.

In the next section we define the various errors involved in the dimension reduction steps.
Subsequently, based on these definitions of error, we propose a definition of an ‘optimal’

Figure 2. Scatter plot of the specific moles of CH4, zCH4 (retrieved from 10 selected particles from
the PaSR) versus temperature, T , obtained from 3400 time steps of 0.1 ms each in the PaSR for a
stoichiometric methane premixed combustion at atmospheric pressure and an initial temperature of
600 K.
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Combustion Theory and Modelling 627

Figure 3. Scatter plot of the specific moles of CO, zCO (retrieved from 10 selected particles from
the PaSR) versus temperature, T , obtained from 3400 time steps of 0.1 ms each in the PaSR for a
stoichiometric methane premixed combustion at atmospheric pressure and an initial temperature of
600 K.

set of represented species and present an algorithm to select a ‘good’, near-optimal set of
represented species.

2.5. Dimension reduction errors

In this section we define the various errors involved in the dimension reduction process and
describe the method employed to measure these errors using the PaSR.

Given a composition, z(0), in the full composition space, the reaction mapping,
R(z(0), t) (for t ≥ 0) is more concisely denoted by z(t) (see Figure 4).

z(0)

z(t)

u

r

zDR(0)

zDR(t)

r(t)r(0) rDR(t)

Figure 4. Sketch of the steps involved in the computation of dimension reduction errors. z(0) and
its reaction mapping after time t , z(t), are given compositions in the full space. For a specified set
of represented species, �r , the reduced representation at z(0) is denoted by r(0). The reconstructed
composition at r(0) is denoted by zDR(0). The reaction mapping from zDR(0) after time t is denoted
by zDR(t), and the reduced composition at zDR(t) is denoted by rDR(t).
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628 V. Hiremath et al.

For a given set of represented species, �r , the reduced representation of the full com-
position, z(0), is denoted by r(0) and is obtained by performing the reduction using (2)
as

r(0) = BT z(0). (6)

At r(0), the reconstructed composition using a dimension reduction method is de-
noted by zDR(0). Starting from the reconstructed composition, the reaction mapping,
R(zDR(0), t), in the full composition space is more concisely denoted by zDR(t) (see
Figure 4).

Now for a representative test problem, to estimate the errors incurred using a dimension
reduction method, a number of test compositions are selected in the full space. Let the
number of test compositions used be denoted by N . We perform a PaSR computation
in the full composition space (without dimension reduction) and then pick N distinct test
compositions in the full space denoted by z(n)(0), for n = 1, . . . , N ; and their corresponding
reaction mappings, after a fixed constant time t , are denoted by z(n)(t).

At the N chosen compositions, z(n)(0), in the full space, and for a given set of rep-
resented species, �r , we denote the corresponding reduced representations by r (n)(0), the
reconstructed compositions by zDR(n)(0), and the reaction mappings by zDR(n)(t).

Note that, given z(0) and t , zDR(t) depends on the specification of the represented
species, �r . As needed, we show this dependence explicitly by the notation zDR(t,�r ).

At this stage, we define the error in the reaction mapping obtained after time t starting
from the reconstructed composition to be

ε(t,�r ) = [zDR(n)(t,�r ) − z(n)(t)]rms

[z(n)(t)]rms

, (7)

where the operator [ ]rms is defined by, for example,

[z(n)(t)]rms =
√√√√ 1

N

N∑
n=1

||z(n)(t)||2, (8)

where ||z|| denotes the 2-norm.
In particular we have two important errors in the dimension reduction method corre-

sponding to t = 0 and t = �t :

(1) Species reconstruction error: This is the error in reconstructing the full composition
given a reduced composition r(0) at t = 0 and is given by Equation (7) as ε(0,�r ).

(2) Reaction mapping error: This is the error in the reaction mapping obtained after time
step �t (reaction time step) starting from the reconstructed composition and is equal
to ε(�t,�r ).

Both the species reconstruction and reaction mapping errors depend on the choice of
represented species, �r , and the goal of this work is to identify a ‘good’ set of represented
species which reduces these errors.
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3. Selection of optimal species

3.1. Optimal species

In the previous section we looked at the various errors involved in the dimension reduction
method, and with the goal of reducing these errors for accurate implementation of dimension
reduction in combustion chemistry, here we propose a definition for optimal species based
on the RCCE dimension reduction method.

The definition of the optimal set of species is based on the dimension reduction error,
ε(t,�r ). We consider either the species reconstruction error, ε(0,�r ), or the reaction
mapping error, ε(�t,�r ); and the error used for defining the optimal set is concisely
denoted by ε(�r ).

For a given definition of the error ε(�r ), and a given value of nrs , the set of nrs

represented species, �r , which minimizes the error, ε(�r ), is defined to be the optimal set
of species and is denoted by �opt .

The optimal set of species, �opt , (by definition) produces the minimum error:

ε(�opt ) = min
�r

ε(�r ). (9)

3.2. Objectives of species selection

Ideally one wants to find the optimal set of represented species for implementing dimension
reduction. For a given value of nrs , a simple brute-force method for selecting the optimal
set of species is to form all possible

(
ns

nrs

)
number of sets of the represented species, and then

compute the error, ε(�r ), for each of the sets. The set of species producing the minimum
error is the required optimal set. Such a brute-force method involves O

(
ns

nrs

)
number of

computations, which can become very expensive even at small values of nrs and ns (for
example, for ns = 30 and nrs = 10, over 30 million sets of represented species can be
formed) and hence this brute-force method is in general impracticable to use.

An alternative approach is to use a greedy algorithm. A greedy algorithm proceeds in
stages, making a locally optimal choice at each stage to find a near-optimal solution [32].
Greedy algorithms are shortsighted in their approach, making one greedy choice at a time
without worrying about the consequences of such a choice in the future. In other words,
a greedy algorithm never reconsiders its choices. Greedy algorithms are not guaranteed to
give the optimal solutions, but provide good solutions for many mathematical problems.

A ‘good’ set (initially empty) of represented species denoted by �g is formed in stages
using a greedy algorithm by selecting at each stage the species whose addition to the set
produces the minimum dimension reduction error.

The idea is, for a given value of nrs , to select a set of nrs ‘good’ species, proceed in nrs

stages, from 1, 2, . . . , nrs , selecting the best species at each stage, i.e. the species which
minimizes the error. So, at stage 1, pick the first best species from � corresponding to the
minimum error. Next, at stage 2 pick the next best species from the remaining set of species
which minimizes the error, and continue until nrs species are selected.

At each stage S (for S = 1, . . . , nrs) of this algorithm, (ns − S + 1) number of com-
putations are performed. Overall in nrs stages only O(ns nrs) number of computations are
performed and hence this method is economical.

Moreover, in the implementations of RCCE and ICE-PIC it is often desirable to start
working with a given set of represented species, and if required to add more species to the
existing set. For such a purpose, the greedy algorithm is ideal, as it selects the best available
represented species from the remaining set of species.
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In the next section we formally describe this automated greedy algorithm, and then
present results.

3.3. Greedy algorithm for species selection

Notation

Here we define certain terms and quantities used to describe the algorithm:

� Determined species: In a given chemical system with a specified number of moles
of elements, the species whose concentration can be determined by atom conservation
alone are called the determined species. Obviously such species are not good choices
for represented species as they are already determined.

� Unrepresented determined species (�ud ): For a given set of represented species, �r ,
the set of other species whose concentration can be determined by element conservation
alone are called the unrepresented determined species and are denoted by �ud . (There
may be no such species, in which case �ud is the empty set.)

� Unrepresented undetermined species (�uu): The set of unrepresented species which
are not determined are called the unrepresented undetermined species and are denoted by
�uu. (If there are no such species, i.e. all the species are either represented or determined,
then �uu is the empty set.)

The greedy algorithm presented in the next section selects at each stage a good species (pro-
ducing minimum dimension reduction error) from the set of unrepresented undetermined
species, �uu, to form a good set of represented species, �g .

Greedy algorithm

The greedy algorithm is described below for finding the entire species ordering, i.e. until
the set �uu is empty, based on the defined error ε(�r ).

(1) The ns species in set � are assigned indices 1, 2, . . . , ns in an arbitrary order. We use
the notation species k to denote the species with index k.

(2) The algorithm proceeds in S stages, numbered 1, 2, . . . , S where S is at most ns − ne.
(3) At the end of the j th stage, there are j ‘good’ represented species selected by the

algorithm, which form the represented set �
g

j .
(4) Initially, before the beginning of stage 1, the set �

g

0 is initialized to an empty set.
(5) At the beginning of the j th stage, based on the set of represented species from the

previous stage, �
g

j−1, the set �uu
j of unrepresented undetermined species is identified.

If this set is empty, then the algorithm terminates. Let the set of indices of species in
�uu

j be denoted by Iuu
j .

(6) In the j th stage, another species mj for mj ∈ Iuu
j is identified to be added to �

g

j−1 to
form �

g

j .

� For each species k (k ∈ Iuu
j ), �

g

j,k denotes the union of �
g

j−1 and species k from
�uu

j .
� For each set �

g

j,k the defined error ε(�r ) is computed as

εjk = ε(�g

j,k). (10)
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(7) The selected species mj ∈ Iuu
j is that which minimizes the error, i.e.

εjmj
≤ εjk for all k ∈ Iuu

j . (11)

(8) The species mj is added to the set of good represented species, �
g

j−1, to yield

�
g

j = �
g

j−1 ∪ {species mj }. (12)

(9) The value of j is incremented, and the next stage is started at (5).

At the end of the algorithm, the ordered set �g presents a good choice of represented
species for dimension reduction methods. For implementing dimension reduction at any
given value of nrs , the first nrs number of species from the ordered set �g are used as the
represented species.

Note that for any given reduced dimension nrs , the above algorithm does not give the
optimal set of species, �opt , which minimizes the global error at that value of nrs , but
incrementally adds the best available species at each stage to the set of represented species
computed from the previous stage.

4. Results

4.1. Greedy algorithm results

The greedy algorithm presented in the previous section is applied on the set of species (5)
to obtain the species ordering based on the species reconstruction and reaction mapping
errors. A total of N = 2500 test compositions are used in the full space to compute errors.
The justification for choosing this value of N and the sensitivity of results to changes in N

are discussed later in Section 4.3.
The first three stages of the algorithm for species selection based on the species recon-

struction error are illustrated in Figure 5. At each stage j (for 1 ≤ j ≤ 3), the error εjk

(10) resulting from the addition of species k (for each k ∈ Iuu
j ) to the set of represented

species from the previous stage, �g

j−1, is plotted. The species producing the minimum error
is selected at each stage. As N2 is the only species in (5) containing nitrogen, it is a deter-
mined species and hence is not considered for selection. At each stage the determined and
already-selected species, which are not part of the unrepresented undetermined species set,
are marked with a dotted line. The x-axis labels show the entire species ordering obtained at
the end of the algorithm. At stage 1, we see that the species CH4 produces 25% less species
reconstruction error than other species, when used as the represented species for dimension
reduction, and hence CH4 is selected by the greedy algorithm as the first ‘best’ represented
species, �

g

1 = {CH4}. At stage 2, we pick the second species which when used along with
the previously selected good species, CH4, produces the minimum species reconstruction
error, and as we see the species O2 with CH4 produces the minimum error, and so O2 is
the second species selected by the greedy algorithm, �

g

2 = {CH4, O2}. At stage 3, we pick
the third species which when used with the two previously selected species, i.e. {CH4, O2},
produces the minimum species reconstruction error, which is found to be the species C2H4,
and hence is selected in the third stage, �

g

3 = {CH4, O2, C2H4}. The algorithm continues
in this fashion until the required number of represented species are selected.
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632 V. Hiremath et al.

Figure 5. Illustration of the first three stages of species selection based on the species reconstruction
error using the greedy algorithm. At each stage the species producing the minimum error is selected.
At each stage, the determined and already selected species are not included in the selection, and are
marked by a dashed line. The numbering on the x-axis shows the final species ordering obtained at
the end of the algorithm.

The full species ordering based on the species reconstruction error is shown in Figure 6.
The figure illustrates the stage by stage selection of the best available species using the
greedy algorithm. At each stage j , the ordering of the unrepresented undetermined species,
�uu

j , is shown, based on increasing species reconstruction error εjk (10) from bottom to top.
The x-axis labels list the best species selected at the end of each stage, which corresponds
to the bottom most species (which minimizes the error) appearing in the list at that stage.
One important observation we make is that at each stage the unrepresented undetermined
species are reordered significantly from the previous stage especially in the initial stages.
For example, the species selected in stages 5–8 appear at the top of the ordering (produce
high error) in the initial stages. The primary reason for this reordering is that the error at
every stage depends on all the species selected in the previous stages, and as a consequence
the species selected at each stage controls the error in the subsequent stages. As a result,
the species selected in the first few stages of the algorithm have a significant effect on the
rest of the species ordering.

Figure 7 shows the corresponding species reconstruction error values, εjk (10), at each
stage j . The error values, εjk , are marked with a dot, and for clarity, only the species which
produce the minimum and maximum error are numbered. We see that the range of errors
at each stage is very narrow, except at stages 8, 9 and 13, and the minimum error decreases
monotonically with every stage. At every stage, we also observe that certain species, if
selected, result in an increase in the species reconstruction error. This behavior is analyzed
further in the next section.
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Figure 6. Illustration of the working of the greedy algorithm for species selection based on the
species reconstruction error. The x-axis shows the stages (1, . . . , ns = 31) for the 31 species present
in the GRI-Mech 1.2 methane mechanism. At each stage, the unrepresented undetermined species
are plotted with increasing error (from bottom to top) and the species producing the minimum error
is selected, which is marked on the x-axis. The algorithm stops at stage 27, when nrs = ns − ne = 27
because thereafter the species concentrations are determined using element conservation. The species
ordering of the last four species is inconsequential.

Figure 7. Plot showing the range of species reconstruction errors produced by the unrepresented
undetermined species at each stage of the species selection using the greedy algorithm. The x-axis
shows the stages (1, . . . , ns = 31) for the 31 species present in the GRI-Mech 1.2 methane mechanism.
At each stage, the species reconstruction error produced by adding each unrepresented undetermined
species is marked with a dot, and the species that produce the minimum and maximum errors are
numbered. The species which minimizes the error is selected at each stage.
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Figure 8. Illustration of the working of the greedy algorithm for species selection based on the
reaction mapping error. The x-axis shows the stages (1, . . . , ns = 31) for the 31 species present in
the GRI-Mech 1.2 methane mechanism. At each stage, the unrepresented undetermined species are
plotted with increasing error (from bottom to top) and the species producing the minimum error is
selected, which is marked on the x-axis. The algorithm stops at stage 27, when nrs = ns − ne = 27
because thereafter the species concentrations are determined using element conservation. The species
ordering of the last four species is inconsequential.

Figure 9. Plot showing the range of reaction mapping errors produced by the unrepresented unde-
termined species at each stage of the species selection using the greedy algorithm. The x-axis shows
the stages (1, . . . , ns = 31) for the 31 species present in the GRI-Mech 1.2 methane mechanism. At
each stage, the species reconstruction error produced by adding each unrepresented undetermined
species is marked with a dot, and the species that produce the minimum and maximum errors are
numbered. The species which minimizes the error is selected at each stage.
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Figures 8 and 9 show the same plots for species selection based on the reaction mapping
error. While we make similar observations in Figure 8 as for the previous case, Figure 9
shows some interesting behavior after stage 16, where we see that the minimum reaction
mapping error stays constant and then increases slightly at around stages 23 and 24 and
then drops down again at stage 26. The species 28 also consistently shows high errors after
stage 16. It appears as if the solution is ‘trapped’ in a local minimum, where addition of any
more species does not result in any further decrease in error. This may be a shortcoming of
using the greedy algorithm, which picks the locally optimal species at each stage without
reconsidering the previous choices. As a consequence, the greedy algorithm can get trapped
in a local minimum and may give a sub-optimal solution.

Nevertheless, from these results we can draw some important conclusions:

(1) The greedy algorithm has been successfully implemented, and is able to pick the best
available species at each stage.

(2) At least up to nrs = 16 (for the 31-species methane GRI-Mech 1.2 mechanism), the
error decreases with each added represented species using the greedy algorithm.

(3) The error decreases by more than 30% in the first two stages, and on average, the error
decreases by 8% with each added represented species in the first 16 stages.

(4) In order to achieve 1% and 0.1% levels of error, approximately 5 and 10 represented
species are required, respectively.

4.2. Worst case scenario

In this section, to emphasize the importance of carefully selecting the represented species
for dimension reduction, we perform a series of worst case analyses by computing errors
incurred when using a bad set of species compared to using the species obtained from our
algorithm.

To pick the ‘worst’ species, we again use the same greedy algorithm described in Section
3.3 with the exception that at every stage instead of picking the unrepresented species which
minimizes the error, we pick the species which maximizes the error. From here on, we refer
to this ‘worst’ species selection algorithm as the greedy-worst algorithm.

Figure 10 shows the worst species ordering obtained using the greedy-worst algorithm
based on the reaction mapping error. It can be clearly seen that the error for this worst
ordering of species remains almost constant with increase in the dimension, nrs . Also the
errors are orders of magnitude more than the errors obtained with the species ordering
using our species selection algorithm.

We see that the major species – CH4, O2, CO2 and H2O – are the last species selected
by the previous method. To check if manually including the major species first improves
the errors, we performed another worst case test in which we first manually selected the
major species in the system – CH4, O2, CO2 and H2O – and then picked the rest of the
worst species using the greedy-worst algorithm. The species ordering for this case based on
the reaction mapping error is shown in Figure 11. In this cases also, we see that including
the major species in the represented set does not solve the problem fully; the errors still
stay very high with the worst species ordering.

We can draw some important conclusions from these worst case scenarios:

(1) Increase in the number of represented species (or, equivalently, the dimension of the
reduced space) does not necessarily result in a reduction of dimension reduction error.
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Figure 10. Plot showing the reaction mapping errors produced by selecting the worst species, i.e.
species with maximum error at each stage of the greedy algorithm. At each stage, the reaction
mapping errors in all the unrepresented undetermined species are marked with a dot, and the species
which produce the minimum and maximum errors are numbered. The species which maximizes the
error is selected at each stage, which is marked on the x-axis.

Figure 11. Plot shows the reaction mapping errors produced by selecting the worst species,
i.e. species with maximum error at each stage of the greedy algorithm, with the major species:
CH4, O2, CO2 and H2O manually fixed first in the ordering. At each stage, the reaction mapping
errors in all the unrepresented undetermined species are marked with a dot, and the species which
produce the minimum and maximum errors are numbered. The species which maximizes the error is
selected at each stage, which is marked on the x-axis.
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(2) A bad set of species can result in an error which is orders of magnitude greater than
the error resulting from a well chosen set of species.

(3) Including major species does not always help; the errors can still remain very high if
the rest of the species are not well selected.

4.3. Sensitivity tests

In this section we perform a series of tests to investigate the sensitivity of the species
ordering to changes in the number of test compositions, N , used to compute errors; changes
in various testing conditions like the pressure, initial temperature and the equivalence ratio;
changes in the definition of the error, ε; and also to analyze how strongly the dimension
reduction results depend on the choice of represented species.

Choice of test compositions

To compute accurate species orderings using the greedy algorithm, the errors involved need
to be computed accurately. Since the errors are computed on the N chosen test compositions,
the choice of test compositions is crucial.

At each stage of the greedy algorithm, for each candidate species in the unrepresented
undetermined species set, the errors are computed at all the chosen N testing compositions
to find the species producing the minimum error. Selecting a large number of testing
compositions makes the algorithm expensive, and too small a value of N may not give
accurate species orderings.

The species selected in the initial stages of the greedy algorithm are crucial as, in all
the results presented so far, we see that the species reconstruction and the reaction mapping
errors drop rapidly to below 10−2 in the first 8–10 species. Hence, N is chosen high enough
such that the first 8–10 species in the species ordering remain unchanged with any further
increase in N .

Species orderings obtained with increasing N at φ = 1, T = 600 K and p = 1 atm
are shown in Figure 12. From Figure 12(a) it is seen that the first 10 species are identical
with N = 2500 and N = 3000; whereas with N = 1000 only the first species is the same.
From Figure 12(b) we see that the tenth species differs between N = 2500 and N = 3000;
whereas with N = 1000 there are three species which differ. At other testing conditions
also, the species ordering results (not presented here for brevity) show that the first 8–10
species remain unchanged with N ≥ 2500 test compositions. Hence all the results in this
paper are presented with N = 2500 test compositions.

Sensitivity to changes in testing conditions

To investigate the species ordering sensitivity to changes in PaSR testing conditions, the
species orderings are obtained at all of the 12 conditions listed in Table 1. The species
orderings (first 10 species) obtained for these cases based on the reaction mapping error
are listed in Table 2 and based on the species reconstruction error are shown in Table 3.

Table 1. The following set of testing conditions (overall 12 combinations)
are considered for the PaSR tests.

Equivalence ratio (φ) 1 0.8 1.2
Pressure (atm) 1 10
Initial temperature (K) 600 1200
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Figure 12. Displayed are the first ten species selected using the greedy algorithm based on (a) the
reaction mapping error and (b) the species reconstruction error using the PaSR at φ = 1, T = 600 K
and p = 1 atm with increasing number of test compositions, N , used to compute the errors.

Next, using these species orderings we performed two sets of tests:

(1) Different PaSR tests at fixed species ordering:
We pick a species ordering obtained at a particular testing condition, and then using
this species ordering we perform PaSR tests at all the conditions listed in Table 1
with dimension reduction and analyze the reaction mapping and species reconstruction
errors at various values of nrs . We are interested in determining whether the error in
all these cases decreases monotonically or if it shows some irregular trends.

(2) Fixed PaSR test with different species orderings:
In this we perform a fixed PaSR test with dimension reduction using a selected number
of species orderings, i.e, different sets of represented species (obtained at different
testing conditions listed in Table 1) and analyze how the reaction mapping and species
reconstruction errors vary with different choices of represented species.

Since we are more interested in the reaction mapping error which determines the error
in the represented species concentration at the end of the reaction time step, �t , we perform
more tests based on the reaction mapping error than on the species reconstruction error.

PaSR tests at fixed species ordering

We pick the species ordering based on the reaction mapping error obtained using the PaSR
test at an equivalence ratio, φ = 1, initial temperature, T = 600 K and pressure p = 1
atm. Using this species ordering we perform PaSR tests with dimension reduction for
1 ≤ nrs ≤ 10 at all the conditions listed in Table 1. For each value of nrs , the first nrs

number of species from the chosen species ordering are used as represented species.
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Figure 13. Plot of the reaction mapping error in PaSR tests performed at all the 12 conditions listed
in Table 1 with dimension reduction (for 1 ≤ nrs ≤ 10) using represented species from the species
ordering obtained based on the reaction mapping error at φ = 1, T = 600 K and p = 1 atm.

The reaction mapping error obtained at each value of nrs is plotted in Figure 13. We
make the following observations:

(1) For a given value of nrs , the error typically varies by a factor of 10 depending on the
conditions.

(2) While the general behavior is for the error to decrease with increasing value of nrs ,
there are many instances of the error increasing significantly: for example, in one case
(φ = 0.8, T = 600 K and p = 10 atm), as the value of nrs increases from 9 to 10, the
error increases by a factor of 10.

Fixed PaSR test with various species ordering

In the greedy algorithm presented, all the species are treated equally and there are no
predefined ‘major’ or ‘minor’ species. But, in practice, it is often desirable to include the
major species in the calculations. So, at a few selected testing conditions, we obtained
species ordering using the greedy algorithm with the major species CH4, O2, CO2 and H2O
fixed first in the ordering. The species orderings obtained (first 10 species) are listed in
Table 4.

We performed PaSR tests with dimension reduction at 1 ≤ nrs ≤ 10 using various
species orderings:
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Table 4. Displayed are the species orderings (first 10 species) obtained using
the greedy algorithm based on the reaction mapping error at five selected testing
conditions (from Table 1) with the four major species: CH4, O2, CO2 and H2O
manually fixed first in the species ordering.

φ = 1.0 φ = 1.0 φ = 1.0 φ = 0.8 φ = 1.2
T = 600 T = 1200 T = 600 T = 1200 T = 1200
p = 1 p = 1 p = 10 p = 1 p = 1

1 CH4 CH4 CH4 CH4 CH4

2 O2 O2 O2 O2 O2

3 CO2 CO2 CO2 CO2 CO2

4 H2O H2O H2O H2O H2O
5 CH3 CH3 H2 CH3 CH3

6 H H CH2O OH H
7 C2H6 OH HO2 H OH
8 OH H2 CH3 CH2O H2

9 CH2O O CH3OH C2H6 HO2

10 C2H2 CO H2O2 HO2 CH3OH

� Figure 14 shows the reaction mapping error obtained using the PaSR test performed at
φ = 1, T = 600 K and p = 1 atm with various species orderings based on the reaction
mapping error. We see that the species ordering obtained at the same testing conditions
(φ = 1, T = 600 K and p = 1 atm) produces the lowest error at all values of nrs

except at nrs = 10. The error with this species ordering decreases by 10% on average
with every stage, while at other species orderings the error values are greater and at
many instances stay constant with increase in nrs . This case clearly demonstrates that

Figure 14. Plot of the reaction mapping error in the PaSR test performed at φ = 1, T = 600 K
and p = 1 atm with dimension reduction (for 1 ≤ nrs ≤ 10) using represented species from various
species orderings based on the reaction mapping error, given in Tables 2 and 4.
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Figure 15. Plot of the reaction mapping error in the PaSR test performed at φ = 1, T = 1200 K
and p = 1 atm with dimension reduction (for 1 ≤ nrs ≤ 10) using represented species from various
species orderings based on the reaction mapping error, given in Tables 2 and 4.

the greedy algorithm is successfully able to select ‘good’ represented species which
produce low dimension reduction error.

� Figure 15 shows results for the PaSR test performed at a slightly higher temperature of
T = 1200 K, φ = 1 and p = 1 atm. Here also we see that the species ordering obtained
at the same testing conditions (T = 1200 K, φ = 1 and p = 1 atm) produces the lowest
error for nrs ≤ 7; thereafter the error values are still low but slightly higher than species
ordering obtained with major species fixed first and species ordering obtained at φ = 0.8,
T = 1200 K and p = 1 atm. This again shows that the greedy algorithm successfully
captured the best species in the initial stages, but since the greedy algorithm does not
reconsider its choices, it fails to capture the best possible set of represented species at
higher values of nrs .

� Figure 16 shows results for the PaSR test performed at higher pressure of p = 10, φ = 1
and T = 600 K. Here we see that for nrs ≤ 3 the species ordering obtained at the same
testing conditions (p = 10, φ = 1 and T = 600 K) produces the lowest error, but is
soon out-performed by some of the other species orderings. In the range 5 ≤ nrs ≤ 9 the
species ordering with major species fixed first produces the lowest error. For this case,
even though the greedy algorithm does not give the best possible set of species at many
values of nrs , the error with the species ordering obtained at the same testing conditions
decreases monotonically and remains very close to the lowest error values achieved at
all the values of nrs . The other species orderings which produce lower errors show a
highly irregular trend, with the error increasing/decreasing by more than 10% at many
values of nrs .

� Figure 17 shows the results for lean premixed combustion at φ = 0.8, T = 1200 K
and p = 1 atm. In this case also we see behavior similar to the previous case: the

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
o
r
n
e
l
l
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
y
]
 
A
t
:
 
1
4
:
2
2
 
1
8
 
O
c
t
o
b
e
r
 
2
0
1
0



644 V. Hiremath et al.

Figure 16. Plot of the reaction mapping error in the PaSR test performed at φ = 1, T = 600 K
and p = 10 atm with dimension reduction (for 1 ≤ nrs ≤ 10) using represented species from various
species orderings based on the reaction mapping error, given in Tables 2 and 4.

Figure 17. Plot of the reaction mapping error in the PaSR test performed at φ = 0.8, T = 1200 K
and p = 1 atm with dimension reduction (for 1 ≤ nrs ≤ 10) using represented species from various
species orderings based on the reaction mapping error, given in Tables 2 and 4.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
o
r
n
e
l
l
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
y
]
 
A
t
:
 
1
4
:
2
2
 
1
8
 
O
c
t
o
b
e
r
 
2
0
1
0



Combustion Theory and Modelling 645

Figure 18. Plot of the reaction mapping error in the PaSR test performed at φ = 1.2, T = 1200 K
and p = 1 atm with dimension reduction (for 1 ≤ nrs ≤ 10) using represented species from various
species orderings based on the reaction mapping error, given in Tables 2 and 4.

species ordering obtained at the same conditions (φ = 0.8, T = 1200 K and p = 1 atm)
produces the lowest error for nrs ≤ 3; it remains close to the lowest error achieved at
higher values of nrs , and decreases monotonically.

� Figure 18 shows the results for a rich premixed combustion at φ = 1.2, T = 1200 K and
p = 1 atm. In this case, interestingly we see that the species ordering obtained using the
greedy algorithm at the same conditions (φ = 1.2, T = 1200 K and p = 1 atm) produces
the lowest error for nrs ≤ 5 but thereafter the error decreases at a very slow rate. This
again could be a case where the greedy algorithm got ‘trapped’ in a local minimum
and as a consequence the error value almost stays constant with any further addition
of represented species. The other species orderings including the species ordering with
the major species fixed, start with very high errors at low values of nrs , but show some
improvement at higher values of nrs , with the error values decreasing but not very
significantly.

Apart from the individual observations made in each of the cases, the results for all five
cases also show the following:

(1) The species ordering obtained (without any constrained major species) at the same
testing conditions at which the PaSR test is performed, always shows the lowest error
at low values of nrs , suggesting that the greedy algorithm successfully picks the best
species in the initial stages (as it certainly does on the first stage).

(2) The species ordering obtained at the same testing conditions at which the PaSR test is
performed is found to produce a non-increasing error with each addition of represented
species for nrs ≤ 10 (even when no such restrictions are enforced by the algorithm
itself), which is not always true with other species orderings.
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(3) At low values of nrs , the error generated by the species ordering with major species
fixed is higher than that generated by other species orderings in all cases.

(4) At high values of nrs , the greedy algorithm does not always give the best possible set
of represented species producing the lowest error. But, this is an expected outcome of
using a greedy algorithm as it picks the locally optimum species at every stage and is
not guaranteed to give the global optimum set of species at all values of nrs .

In short, the results demonstrate that the greedy algorithm (within its own limitations) is
able to produce a ‘good’ set of represented species for a majority of cases tested over a
wide range of testing conditions.

Sensitivity to changes in the definition of error

The species ordering obtained using the greedy algorithm depends on the given definition
of error, ε, i.e. the dimension reduction error that we want to minimize.

The dimension reduction error in the reaction mapping after time t starting from the
reconstructed composition, zDR(0), is given by ε(t,�r ).

We have so far presented results based on two errors:

(1) species reconstruction error, ε(0,�r );
(2) reaction mapping error, ε(�t,�r ).

We have already seen that the species ordering obtained with these two definitions of
error are significantly different, as seen in Figures 6 and 8, and also in the various species
orderings obtained at different testing conditions in Tables 2 and 3.

Among the two definitions of the error used, the species reconstruction error is cheaper
and easier to compute because it does not involve any ODE integrations. So, to examine
how much reaction mapping error is incurred if we use represented species selected based
on the species reconstruction error instead of the reaction mapping error, we perform a
PaSR test at φ = 1, T = 600 K and p = 1 atm with dimension reduction using represented
species from (i) species ordering based on the reaction mapping; and (ii) species ordering
based on the species reconstruction error, and then compare the errors for the two cases.
The results are shown in Figure 19, and we see that the species ordering based on the species
reconstruction error results in higher reaction mapping errors than species ordering based
on the reaction mapping error, except at nrs = 1, 2 and 8 where they produce approximately
the same error. Thus, the species ordering based on the species reconstruction error may
not work well for problems involving the computation of reaction mappings, but it still
provides a quick and systematic way of obtaining a decent set of represented species to
start working with.

From the results presented so far, we see that there is no one good definition of the
error which will work all the time to select good species using the greedy algorithm. A
good definition of the error is more problem-specific, and depends on the specifications of
the problem we are working on and what we want to achieve from using the dimension
reduction method. If one is investigating a steady state problem involving only species
reconstructions, then an error based at t = 0 will work best. In reactive flow problems,
depending on the reaction time step one can choose a specific value of time, t , to define the
error, or one may also define an error averaged over the time from t = 0 to some specific
time t . However, note that the greedy algorithm presented in this paper is independent of
the definition of the error, and works unchanged with any given definition of the error.
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Figure 19. Plot of the reaction mapping error in the PaSR test performed at φ = 1, T = 600 K
and p = 1 atm with dimension reduction (for 1 ≤ nrs ≤ 10) using represented species from species
orderings obtained at the same conditions (φ = 1, T = 600 K and p = 1 atm) based on the reaction
mapping and species reconstruction errors, given in Tables 2 and 3.

4.4. Computational cost

In order to compare the computational cost involved in the dimension reduction steps
(species reconstruction and reaction mapping) and to assess the overall cost of the greedy
algorithm, the CPU times were measured on a 2.2 GHz Quad-Core AMD Opteron R©
Processor and are reported in this section.

The average CPU time taken per species reconstruction to compute zDR(0) = zCE(r(0))
using CEQ, and the time taken to compute the reaction mapping, zDR(�t), starting from
zDR(0) using DDASAC are shown in Figure 20. We see that solving the full set of ODEs

Figure 20. Plot showing the average CPU time taken (in microseconds) per species reconstruction,
i.e. to compute zDR(0) given r(0) using CEQ; and to compute the reaction mapping, zDR(�t),
starting from zDR(0) using DDASAC. The CPU times are measured on a 2.2 GHz Quad-Core AMD
Opteron R© Processor.
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Figure 21. Plot showing the total CPU time taken (in hours) by the greedy algorithm to compute
the full species ordering for the GRI-Mech 1.2 mechanism involving 31 species based on the species
reconstruction error, ε(0, �r ), and based on the reaction mapping error, ε(�t,�r ), using N = 2500
test compositions. The CPU time is measured by running a serial implementation of the greedy
algorithm on a 2.2 GHz Quad-Core AMD Opteron R© Processor.

(1) using DDASAC to compute the reaction mapping takes approximately 15 times more
CPU time than that required for performing a species reconstruction using CEQ.

The computation of full species ordering for a chemical mechanism involving ns species
using the greedy algorithm on N chosen test compositions based on:

(1) the species reconstruction error involves O(N n2
s /2) species reconstructions using

CEQ;
(2) the reaction mapping error involves computation of O(N n2

s /2) species reconstructions
using CEQ and their reaction mappings using DDASAC.

The total CPU time taken to compute the full species ordering based on the species
reconstruction error, ε(0,�r ), and based on the reaction mapping error, ε(�t,�r ), is shown
in Figure 21. Since the computation of the reaction mapping alone takes 15 times more
CPU time than that taken for the species reconstruction, we see that computing the full
species ordering based on the reaction mapping error takes approximately 25 times more
CPU time than that required for species ordering based on the species reconstruction error.

In Figure 21, the CPU timings are reported for computing the full species ordering. In
practice, however, we are mostly interested in only the nrs most important species for a di-
mension reduction with nrs represented species. So, we can stop once nrs number of species
are selected using the algorithm, which involves O(N ns nrs) number of computations. So,
for selecting nrs species, with a fixed number of test compositions, N , the algorithmic cost
increases linearly with the number of species, ns , in the system.

5. Comparison with time scale based methods

As mentioned earlier, the RCCE and ICE-PIC methods are based on the observation that
chemical systems involve a wide range of time scales, and as a result the reaction trajectories
are attracted to a hierarchy of low dimensional slow invariant manifolds (SIMs). The key
issue in the RCCE and ICE-PIC methods is to identify the slow time scales or the slowly
evolving species (known as represented species in our work) to best approximate the SIMs.

The greedy algorithm described in this paper provides one way of selecting the repre-
senting species. One could also select represented species based on a time scale analysis.
Though we are unaware of any implementation of RCCE in which species or constraints are
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selected based on a time scale analysis, there exist many methods for generating reduced
reaction mechanisms based on QSS [33], CSP [34, 35] and ILDM [36], wherein a time scale
analysis is used to identify the unimportant species and reactions in the detailed mechanism
which are eliminated to obtain reduced mechanisms.

It may be insightful to compare the species ordering obtained by the greedy algorithm
with the order in which species are removed in these reduced mechanism generating
methods. In [34] an automatic reduction of chemistry with the CSP (ARC-CSP) method
is developed to generate reduced mechanisms. In this method, CSP is used to analyze
perfectly-stirred reactor (PSR) data (obtained using a detailed mechanism) to identify and
eliminate QSS species from the detailed mechanism to obtain reduced mechanisms. The
ARC-CSP method when applied to develop a 10-step reduced mechanism from the GRI
Mech 1.2 mechanism (using PSR data from a wide range of operating conditions) identifies
and eliminates 17 QSS species in the following order (see Figure 5 in [34]): CH2(S), C2H,
HCO, CH3O, CH, C2H5, CH2OH, CH2, C2H3, H2O2, HO2, C, C2H6, CH3, CH2CO, HCCO,
CH3OH. The 10-step reduced mechanism retains the following 13 species (in no particular
order): CH4, O2, H2O, CO2, O, CO, H2, OH, H, C2H2, C2H4, CH2CO, HCCOH (the inert
species N2 is not considered).

It is interesting to note that only three QSS species – CH3 (ninth), HO2 (tenth) and
CH2CO (thirteenth) – appear in the first 13 species selected using the greedy algorithm
based on the reaction mapping error (which involves reaction kinetics) as seen in Figure 9.
Also, in the first 10 species selected by the greedy algorithm based on the reaction mapping
error at various testing conditions listed in Table 2, at most four QSS species are seen in each
case, and overall eight out of the 17 QSS species appear in Table 2. We note that five out of
the eight QSS species appearing in Table 2 are at the edge of the 10-step cut-off limit
(Figure 5 in [34]) and, as pointed out in [34], these five species: CH3OH, HCCO, CH2CO,
CH3 and C2H6 have approximately the same normalized time scales and are hard to
distinguish, and hence are treated as a group of QSS species. However, in the greedy
algorithm the species are treated individually and are selected based on an error criterion,
and hence some of these species could possibly be selected in the early stages of the
algorithm if they produce the lowest error.

Finally, we note that the species CH4 appears tenth in Figure 5 [34], based on the
time scale analysis, and any safety factor of α < 30 will generate a reduced mechanism
without the CH4 species. However, as we have seen, the greedy algorithm selects CH4 as the
optimum species (producing the minimum error) at stage 1 in all the cases reported here,
and so this clearly shows that a time scale analysis based method for selecting represented
species may not work at low values of nrs .

In summary, we do see some similarities between the species ordering obtained using
the greedy algorithm with the ordering in which species are removed in time scale based
reduced mechanism generating methods. However, we also note that a time scale analysis
based method alone may not give ‘good’ represented species for the RCCE dimension
reduction method, especially at low values of nrs .

6. Limitations and variants of the greedy algorithm

Based on the results reported here, we see that the current implementation of the greedy
algorithm does not always give a near-optimal set of species, especially at high values of
nrs . This may be due to one or more of the following limitations:

(1) The greedy algorithm is shortsighted in nature and never reconsiders its choices.
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(2) The species in the current implementation are treated individually without considering
any connections (imposed by the reaction mechanism) between species and treating
(strongly connected) species in groups as is done in many reduced mechanism building
methods [3, 5].

To address some of these limitations, implementation of the following variants of the
greedy algorithm are being considered for future work:

(1) Selection-rejection strategy:
The inherent flaw in the greedy algorithm is that choices made in the previous
stages are never reconsidered. To compensate for this drawback, we can consider a
selection–rejection algorithm, in which at every third or fourth stage of the algorithm,
we reject the worst species from the current set of selected species and resume the
algorithm. The cost of rejection goes linearly with number of selected species, O(nrs),
and so is fairly inexpensive and may help in improving the results.

(2) Selecting species in groups:
The greedy algorithm selects the best species at every stage; instead a variant of
this algorithm would involve selecting species in groups of two or three species. So
considering the case in which we want to select two good species at every stage, then
at stage 1 we perform tests with all possible

(
ns

2

)
number of sets of species and pick

the set which produces the minimum error; next at stage 2 we test the remaining
(
ns−2

2

)
sets of species to pick the next two good species; and so on until the required number
of species are selected. Obviously this is an expensive algorithm since the number of
tests performed scales as O(N n3

s ), but by using a fewer number of test points, N , the
computational cost can be reduced. This approach is expected to produce a more nearly
optimal set of species.

7. Conclusions

An automated algorithm for selecting a good set of species for the accurate implementation
of dimension reduction methods has been presented. The following conclusions can be
drawn from the results presented in this paper:

(1) The dimension reduction errors in RCCE are highly sensitive to the choice of con-
strained species; errors can differ by orders of magnitude at the same dimension with
two different sets of represented species as seen in Figures 7 and 11.

(2) Constraints based on the major species concentrations are not always the best constraints
for the RCCE method as is evident from the results presented in Figures 14–18

(3) At low values of nrs ≤ 5, the greedy algorithm is successfully able to select a near-
optimal set of represented species.

(4) At high values of nrs , the greedy algorithm is not guaranteed to produce near-optimal
sets of represented species (see Figure 18) but nevertheless is found to produce a good
set of species for the majority of cases tested (as demonstrated in Figures 14–17) over
a wide range of testing conditions.

(5) In all the cases tested, the species ordering generated by the greedy algorithm for
nrs ≤ 10 produces a non-increasing error with every addition of represented species.
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