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The Rate-Controlled Constrained-Equilibrium (RCCE) method is a thermodynamic
based dimension reduction method which enables representation of chemistry involving
ns species in terms of fewer nr constraints. Here we focus on the application of the RCCE
method to Lagrangian particle probability density function based computations. In these
computations, at every reaction fractional step, given the initial particle composition
(represented using RCCE), we need to compute the reaction mapping, i.e. the particle
composition at the end of the time step. In this work we study three different imple-
mentations of RCCE for computing this reaction mapping, and compare their relative
accuracy and efficiency. These implementations include: (1) RCCE/TIFS (Trajectory
In Full Space): this involves solving a system of ns rate-equations for all the species in
the full composition space to obtain the reaction mapping. The other two implemen-
tations obtain the reaction mapping by solving a reduced system of nr rate-equations
obtained by projecting the ns rate-equations for species evaluated in the full space onto
the constrained subspace. These implementations include (2) RCCE: this is the classi-
cal implementation of RCCE which uses a direct projection of the rate-equations for
species onto the constrained subspace; and (3) RCCE/RAMP (Reaction-mixing Attract-
ing Manifold Projector): this is a new implementation introduced here which uses an
alternative projector obtained using the RAMP approach. We test these three implemen-
tations of RCCE for methane/air premixed combustion in the partially-stirred reactor
with chemistry represented using the ns=31 species GRI-Mech 1.2 mechanism with
nr=13 to 19 constraints. We show that: (a) the classical RCCE implementation involves
an inaccurate projector which yields large errors (over 50%) in the reaction mapping; (b)
both RCCE/RAMP and RCCE/TIFS approaches yield significantly lower errors (less
than 2%); and (c) overall the RCCE/TIFS approach is the most accurate, efficient (by
orders of magnitude) and robust implementation.

Keywords: RCCE; dimension reduction; invariant manifold; RAMP; projections

1. Introduction

Recent advances on the experimental and theoretical fronts in the study of real fuel chem-
istry have led to more accurate chemical mechanisms of real fuels involving hundreds to
thousands of species and thousands of reactions [1]. A major challenge in the numerical
study of turbulent combustion problems is the accurate and efficient use of this detailed
chemistry information in computations.
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2 V. Hiremath and S. B. Pope

In a reacting flow computation, the species composition evolves by three processes:
advection, diffusion and chemical reaction. Here we focus on the general class of solution
methods in which a splitting scheme is used to account for these processes in separate
fractional steps. In particular we focus on turbulent combustion modelling using Prob-
ability Density Function (PDF) methods [2], in which the chemical composition in the
computational domain is represented by a large number of particles. The particle com-
position evolves due to mixing and chemical reaction, which are treated in two separate
fractional steps. The main advantage of using PDF methods is that the chemical source
term in the species evolution equation is represented exactly, which enables the use of de-
tailed chemistry in combustion calculations. PDF methods are typically used in conjunction
with Reynolds-averaged Navier–Stokes (RANS) or Large-Eddy Simulation (LES) based
approaches to perform turbulent combustion simulations [3–6].

Turbulent combustion simulation using PDF methods with detailed chemistry (without
any simplification) entails solving (at each reaction fractional step for each particle) a cou-
pled set of Ordinary Differential Equations (ODEs) for the chemical species composition.
These systems of ODEs are generally stiff owing to the wide range of chemical time-scales
present in the system, and thus computing the solution is expensive. Owing to this high
cost involved in representing chemistry in turbulent combustion simulations, incorporating
detailed chemistry involving thousands of species is computationally prohibitive.

The current challenges of representing chemistry in turbulent combustion simulations
and the various approaches used are highlighted in [7]. In the past two decades, numerous
methods have been developed to tackle the high cost involved in representing combustion
chemistry. These methods can be broadly classified into the following three categories.

(1) Mechanism Reduction: this includes methods designed to generate smaller skeletal
mechanisms from the detailed mechanism by systematically removing unimportant
species. Two prominent methods in this category are the Directed Relations Graph
(DRG) [8]; and the DRG with error propagation (DRGEP) [9].

(2) Dimension Reduction: this includes methods used to represent chemistry using
fewer ‘represented’ variables based on the detailed chemistry. Methods in this cat-
egory include the Quasi Steady-State Assumption (QSSA) [10, 11]; Rate-Controlled
Constrained-Equilibrium (RCCE) [12, 13]; Computational Singular Perturbation (CSP)
[14]; Intrinsic Low-Dimensional Manifolds (ILDM) [15]; Trajectory-Generated Low-
Dimensional Manifolds (TGLDM) [16]; and Invariant Constrained Equilibrium-Edge
Pre-Image Curve (ICE-PIC) [17].

(3) Tabulation: this includes storage-and-retrieval based methods, such as In Situ Adaptive
Tabulation (ISAT) [18, 19]; Piecewise Reusable Implementation of Solution Mapping
(PRISM) [20]; and Artificial Neural Networks (ANNs) [21].

The aforementioned methods have been successfully applied in various combustion chem-
istry calculations, and they have enabled the use of detailed chemistry information in
computations with acceptable levels of accuracy and efficiency.

In our research, we have focused on developing combined methodologies [22–25],
which enables us to extract the best out of the aforementioned three categories, thereby
further reducing the cost of chemistry computations. In particular, our recent efforts have
been focused on developing a combined reduction–tabulation strategy [25, 26], which
involves dimension reduction of chemistry using the RCCE method followed by tabulation
using ISAT. This combined ISAT/RCCE approach can be used with both detailed and
skeletal mechanisms. We have also developed an automated Greedy Algorithm with Local
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Combustion Theory and Modelling 3

Improvement (GALI) [25] to select ‘good’ represented species for performing dimension
reduction with the RCCE method.

We have extensively tested this combined ISAT/RCCE/GALI methodology for methane
and ethylene chemistry with chemical mechanisms involving 20 to 100 species in a
Partially-Stirred Reactor (PaSR) [25, 27] and also in full-scale Large-Eddy Simulation
(LES)/Probability Density Function (PDF) computations of Sandia Flame D [26]. The
main conclusions drawn from these tests are that the ISAT/RCCE/GALI approach: (a)
yields the same level of accuracy as other reduced (using QSSA) and skeletal mechanisms
with relatively fewer represented species; and (b) results in speed-up by a factor of 2 to 15
relative to using ISAT alone [6, 25].

In the RCCE dimension reduction method, the chemistry involving ns-species is repre-
sented in terms of fewer nr-constraints. The reduced representation of chemistry using the
RCCE dimension reduction method is denoted by an nr-vector r. In PDF based simulations
of reacting flows using the RCCE method, given the initial reduced composition of a particle
at the beginning of a reaction time step, r(0), the task is to compute the reaction mapping,
r(t), at the end of the reaction time step t . There are different ways of implementing the
RCCE dimension reduction method to obtain this reaction mapping, and the present paper
studies the relative merits of these implementations.

Our implementation of RCCE [25] is different from the classical RCCE approach first
introduced in [12] and further developed and tested in [13, 28–31]. The Close-Parallel
Inertial Manifold (CPIM) method [32] describes yet another way of implementing RCCE.
The main focus of this paper is to compare these different implementations of RCCE
for their relative accuracy and efficiency. In particular we look at the following three
implementations of RCCE:

(1) RCCE/TIFS (Trajectory In Full Space): this is the implementation used in our previous
work [25–27] (described in Section 3.1);

(2) RCCE: this is the classical implementation introduced in [12] and further developed in
[13, 28–31] (described in Section 3.2.1);

(3) RCCE/RAMP (Reaction-mixing Attracting Manifold Projector): this is a new imple-
mentation (based on the CPIM [32] method) proposed here (described in Section 5).

To compute the reaction mapping, the RCCE/TIFS implementation solves a system of
ns ODEs in the full composition space for all the species. In contrast, the RCCE and
RCCE/RAMP implementations solve a reduced system of nr ODEs for the constraints by
projecting the full system of ODEs onto the constrained subspace. In this work we show
that, for small reaction time steps, all the three aforementioned implementations yield
similar levels of error. However, as the reaction time step increases, the RCCE/RAMP
and RCCE/TIFS implementations yield orders-of-magnitude smaller errors than the RCCE
implementation. We show that the projector used in the RCCE implementation is inaccurate,
which results in large errors in the reaction mapping at large reaction time steps. We show
that the RAMP approach provides a more accurate projector and significantly reduces the
error. We also show that the RCCE/TIFS implementation is the most accurate, efficient and
robust among the above three implementations.

The outline of the remainder of the paper is as follows: in Section 2 we describe the
general framework and notation used for representing chemistry in our work; in Section 3 we
give an overview of the RCCE dimension reduction method and describe the RCCE/TIFS
and the classical RCCE implementations; in Section 4 we describe the projection issues
involved in the implementation of RCCE; in Section 4.2 we describe the Close-Parallel
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4 V. Hiremath and S. B. Pope

Inertial Manifold (CPIM) method [32] and then in Section 5 we extend it to the new
Reaction-mixing Attracting Manifold Projector (RAMP) method; in Section 6 we describe
the partially-stirred reactor used for testing the different implementations of RCCE; and in
Section 7 we describe results to compare the relative accuracy and efficiency of the three
implementations. Finally, in Section 8 we state our conclusions.

2. Chemistry representation

We consider a gaseous phase reacting flow consisting of ns chemical species composed of
ne elements. The thermochemical state of the fluid (at a given position and time) is fully
characterised by the pressure p, enthalpy h and an ns-vector of species specific moles z. (It
is often convenient to view z as a point in the ns-dimensional composition space.)

For definiteness, we focus on the combined Large-Eddy Simulation (LES)/Probability
Density Function (PDF) simulations of turbulent reacting flows, which has been our recent
focus of attention [5, 6, 26]. In these simulations the thermochemical composition of the
fluid is represented by a large number of particles in the computational domain. The particle
chemical composition evolves due to mixing and reaction, which are treated in separate
fractional steps [33].

Furthermore, here, in order to focus solely on the reaction fractional step and study
different implementations of the RCCE method, we use the computationally cheaper rep-
resentative test case of a Partially-Stirred Reactor (PaSR), which will be described in
more detail in Section 6. The methodology described here, however, is applicable to other
time-stepping based reacting flow simulations as well.

To simplify the exposition, here we consider an adiabatic and isobaric reaction fractional
step, i.e. the enthalpy h and pressure p of a particle remain constant over the reaction
fractional step. In addition, to simplify things further, we consider an isobaric flow so
that pressure p is the same for all the particles. Hence the thermochemical state is fully
characterised by z and h. (Note that these assumptions are made only to simplify the
exposition and can be easily relaxed if needed. In general pressure p can vary from particle
to particle, and changes in particle enthalpy h can be incorporated in other fractional steps
in the flow solver.)

As a consequence of the aforementioned assumptions, in the reaction fractional step,
the chemical composition of each of the particles in the computational domain evolves (at
constant h and p) by the following set of rate-equations:

dz

dt
= S(z), (1)

where the ns-vector S denotes the chemical source term obtained from the chemical mecha-
nism used for representing the chemistry. More precisely, the chemical source term is given
as

S(z) ≡ S(z, T (h, z), p). (2)

Since the temperature T is known in terms of h and z, and the pressure p is assumed to be
constant, we henceforth use the more concise notation S(z), where dependence on T and p

is implicitly assumed.
Given the initial particle composition z(0) at t = 0, and a reaction fractional time step

t , we refer to the composition at the end of the reaction fractional step z(t) as the reaction
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Combustion Theory and Modelling 5

mapping. The reaction mapping obtained by directly integrating the system of ODEs given
by Equation (1) is referred to as the exact solution (since the ODE integration errors are
relatively small). We use DDASAC [34] for performing ODE integration.

3. Rate-controlled constrained-equilibrium

Here we give a brief overview of the Rate-Controlled Constrained-Equilibrium (RCCE)
dimension-reduction method and introduce the notation used in our implementation. A
fuller description can be found in [25].

In the RCCE method, the chemistry is represented by a reduced number of nr (with typ-
ically nr � ns) represented scalars or constraints. This reduced representation of chemistry
is denoted by an nr-vector r.

In our implementation of RCCE, to represent the chemistry using a reduced represen-
tation we specify a set of nrs represented species selected from the full set of ns species
present in the chemical mechanism. The reduced representation of chemistry is given as
r = {zr, zu,e}, where the nrs-vector zr denotes the species specific moles of the represented
species and the ne-vector zu,e denotes the specific moles of elements in the unrepresented
species (for element conservation). Thus the chemistry is represented in a reduced dimen-
sion of size nr = nrs + ne instead of the full dimension ns. At any time t , the reduced
representation r is related to the full representation z as

r(t) = BTz(t), (3)

where B is a fixed ns × nr matrix determined by the choice of the represented species.
It is often convenient to view the ns-dimensional composition space to be composed of

the nr-dimensional represented subspace (spanned by the columns of the constraint matrix
B – size ns × nr) and its orthogonal complement the nu-dimensional unrepresented subspace
(with nu = ns − nr), such that together the represented and unrepresented subspaces span
the entire composition space. This helps visualise the ns-dimensional composition space
in a 2D sketch (for example see Figure 1) indicated by the represented (denoted by r) and
unrepresented (denoted by u) subspaces.

In general the reduced representation r can be any linear or nonlinear function of
the full representation z as described in [31, 35]. However, our choice of the reduced
representation for RCCE as described above makes the user interface very simple – the
user only needs to specify a set of represented species and the rest is taken care of by
the implementation. (This simple interface for RCCE has also been incorporated in the
commercial CFD package ANSYS Fluent [36, 37].) In addition we have also developed
an automated Greedy Algorithm with Local Improvement (GALI) [25], which can be used
to select ‘good’ represented species for the RCCE method. Selection of good represented
species or constraints is crucial for the overall accuracy of the RCCE method [27, 31]. In
the remainder of the text, we use the simple reduced representation given by Equation (3)
to describe different implementations of the RCCE method.

When using the RCCE method to represent chemistry in PDF based computations, the
particles carry only the reduced representation of chemistry given by r. In the reaction
fractional step, given the initial reduced representation r(0), the task is to compute the
reduced reaction mapping r(t) at the end of the reaction fractional time step t . In the
following subsections we discuss the different implementations of RCCE used to compute
the reduced reaction mapping.
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6 V. Hiremath and S. B. Pope

Figure 1. Sketch of the composition space (indicated by represented r and unrepresented u sub-
spaces) illustrating the reaction mapping computation using the RCCE/TIFS implementation. Given
the initial reduced composition at t = 0 denoted by r(0), the reaction mapping r(t) is obtained in
three steps (1) computing the constrained-equilibrium composition at r(0) denoted by zCE(0); fol-
lowed by (2) integrating the trajectory in full space (TIFS) to obtain z(t); followed by (3) reduction
r(t) = BTz(t).

3.1. RCCE implementation using trajectory in full space

Here we briefly describe our implementation of RCCE. A more detailed description can be
found in [25, 27].

In our implementation, the reduced reaction mapping is computed by following the
three steps (which are illustrated in the Figure 1 sketch) listed below:

(1) species reconstruction: given the reduced representation r(0), the constrained-
equilibrium composition (at constant enthalpy h) is computed using CEQ [38] and
is denoted as

zCE(0) ≡ zCE(r(0), h), (4)

where zCE is a point on the Constrained-Equilibrium Manifold (CEM);
(2) trajectory in full space: starting from zCE(0), the reaction trajectory (given by Equa-

tion 1) is integrated in the full space to obtain the reaction mapping z(t);
(3) reduction: from z(t), the reduced reaction mapping is obtained as r(t) = BTz(t).

We henceforth refer to our implementation of RCCE as RCCE/TIFS – Trajectory In
Full Space.

It is important to note here that the CEM is not an invariant manifold, i.e. a reaction
trajectory originating from a point on the CEM does not necessarily remain on the manifold.
Thus the reaction mapping z(t) obtained in step (2) of the above RCCE/TIFS implementation
need not be on the CEM (as depicted in the Figure 1 sketch). However, it should be
appreciated that the primary objective of the RCCE method being considered here is to
obtain an accurate reduced reaction mapping r(t), and it does not matter if the reaction
mapping in the full composition space, z(t), is not on the CEM. In fact, there exists an
infinite number of compositions in the full composition space that yield the same reduced
reaction mapping given by r(t) = BTz(t). Here, using the TIFS approach, we seek to obtain
a reaction mapping z(t) that yields an accurate reduced reaction mapping r(t).
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Combustion Theory and Modelling 7

3.2. Classical RCCE implementation

3.2.1. Rate-equations for the constraints

Here we describe the classical implementation of RCCE first introduced in [12], which
involves solving a reduced set of nr rate-equations for the constraints to compute the
reduced reaction mapping r(t).

Given a composition z(t) at an instant of time, the reduced composition is given using
Equation (3) as r(t) = BTz(t). From this relation we get the rate-of-change of r(t) as

dr

dt
= BT dz

dt
= BTS(z). (5)

Denoting the right-hand-side source vector by ṙe(z) ≡ BTS(z), we get the exact rate-
equations for r as

dr

dt
= ṙe(z). (6)

The classical RCCE implementation seeks to solve directly for the constraints r using
a set of rate-equations based on Equation (6). To solve the rate-equations (6) explicitly for
the constraints r, we need a closure for the exact source vector on the right-hand-side ṙe(z)
such that

dr

dt
= ṙ(r), (7)

where we denote the right-hand-side approximated source vector by ṙ and henceforth refer
to it simply as the source vector.

In the classical RCCE method [13], this closure is provided by assuming that z is always
on the CEM – [13, equations 5.11 to 5.17] – i.e. z ≡ zCE(r), which yields

ṙ ≡ ṙCE ≡ BTS(zCE(r)), (8)

and gives an explicit set of rate-equations for the constraints r as

dr

dt
= BTS(zCE(r)). (9)

Now given r(0), the reduced reaction mapping r(t) can be obtained by directly inte-
grating the reduced set of rate-equations given by Equation (9). We henceforth refer to this
method as simply RCCE.

The closure provided by Equation (8) in the classical RCCE implementation [13]
appears to be a simple and straightforward result. However, there is a logical flaw in the
result given by Equation (8), which is based on inconsistent premises, namely

(1) z remains on the CEM, i.e. z ≡ zCE(r); and
(2) dz/dt = S(zCE(r)).

The composition z remains on the CEM only if the chemical source term S(zCE(r)) is
entirely in the CEM, i.e. the CEM is an invariant manifold. However, since the CEM is not
an invariant manifold, the reaction trajectory starting from a point on the CEM does not
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8 V. Hiremath and S. B. Pope

Figure 2. Sketch of the composition space (indicated by represented r and unrepresented u sub-
spaces) illustrating the projections involved in the RCCE method. Given a reduced composition
denoted by r, the classical RCCE implementation computes the source vector ṙ by computing the
chemical source term S at the constrained-equilibrium composition zCE (on the CEM) and then
projecting it back to the represented subspace giving ṙ = BTS. This implementation does not take
into account the non-invariance of the CEM manifold. Alternatively, one could consider a projector
denoted by P, which first projects the source vector S onto the tangent plane of the CEM (denoted by
T) to account for the non-invariance, before projecting it back to the represented subspace to yield
ṙ = BTPS.

necessarily remain on the manifold, which makes the above RCCE assumptions inherently
flawed.

This hidden flawed assumption implied by Equation (8) was first exposed in [32]. The
notation used in [32] is different from our notation, and so for consistency we explain
again this hidden assumption using our own notation. In the RCCE method, by solving
a reduced system of rate-equations for the constraints, the full composition z is assumed
to remain on the CEM. Thus, to obtain the source vector ṙ, the chemical source term S
is being implicitly projected onto the CEM. In the closure provided by Equation (8), the
chemical source term S is implicitly being projected in the unrepresented subspace, i.e. the
orthogonal complement of the represented subspace spanned by the columns of B. This
hidden projection is illustrated in the Figure 2 sketch. It is not obvious if this is an accurate
projection, and in fact it is shown in [32] that a more accurate projection is obtained by
computing the reaction source vector on a Close-Parallel Inertial Manifold (CPIM). We
present results in later sections which will confirm that the source vector approximation
provided by the RCCE method is not accurate.

3.2.2. Rate-equations for the constraint potentials

Numerical integration of the rate-equations for the constraints given by Equation (9) requires
the computation of the constrained-equilibrium composition, zCE(r), at each sub-step of
the integration (as described in more detail in Section 7.4). This makes the numerical
integration of Equation (9) expensive.

To reduce the computational cost, an alternative implementation of RCCE is described
in [13, section 5.3] using the rate-equations for the Lagrange multipliers. This alternative
implementation (also referred to as the rate-equations for the constraint potentials) trans-
forms the rate-equations for the constraints (given by Equation 9) into rate-equations for the
constraint potentials, thereby solving directly for the constraint potentials on the CEM and
avoiding the need for computing the constrained-equilibrium composition at each sub-step
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Combustion Theory and Modelling 9

of the integration. This implementation has been further developed, implemented and tested
in [28, 29, 31].

It is important to note here that the above two implementations of RCCE are mathe-
matically equivalent and both the implementations make use of the closure provided by
Equation (8) – see [13, equations 4.11, 5.19 and 5.20]. Numerically, however, the solution
obtained by the two implementations may differ due to ODE integration errors. As the nu-
merical integration sub-step time size approaches zero (i.e. for very small ODE integration
error tolerance), the two implementations should yield the same solution and thus are con-
sistent with each other. (This has been discussed in a previous work: refer to [23, Figure 1
and the accompanying discussion].) As mentioned later in Section 7.4, in this work we use
DDASAC for ODE integration with a relatively small error tolerance of 10−8. Hence we
expect both the implementations to yield similar solutions (within the ODE integration error
tolerance).

To assess the accuracy of the classical RCCE implementation, either of the aforemen-
tioned implementations can be used. In this work, we use the former implementation of
RCCE, i.e. the implementation using the rate-equations for the constraints, which will
henceforth be simply referred to as the RCCE implementation.

Unlike the RCCE/TIFS implementation, both the aforementioned implementations of
RCCE (implicitly) attempt to follow the CEM in the full composition space accurately to
obtain the reaction mapping r(t). However, as will be shown in later sections, the projection
(Equation 8) used in the above implementations of RCCE yields an inaccurate reaction
mapping.

In the next section we describe the CPIM method and then in the following section we
describe the new Reaction-mixing Attracting Manifold Projector (RAMP), as an extension
of the CPIM method, which provides a more accurate projection for implementing the
RCCE method.

4. Accurate projection for the RCCE method

It is clear that the exact rate-equations for the constraints are given by Equation (6); however,
we need a closure for the right-hand-side source vector denoted by ṙ.

In the previous section we showed that the closure provided by the RCCE method is
inaccurate because the CEM is not an invariant manifold. One way to account for the
non-invariance of the CEM is to replace the chemical source term S in Equation (8) by
a projection of S onto the tangent plane of the CEM. Then, consistently, the composition
remains on the CEM.

To this end, let us consider a general ns × ns projection matrix P such that the source
vector ṙ is obtained (as shown in Figure 2) by

ṙ = BTPS. (10)

There are various choices available for the projection P:

(1) project in the unrepresented subspace, as in RCCE;
(2) project in the CEM normal subspace;
(3) project in the ‘fast’ subspace, as given by ILDM [15] or CSP [14];
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10 V. Hiremath and S. B. Pope

(4) project using a thermodynamic projector [39];
(5) project using a close-parallel manifold, as given by CPIM [32].

Projection (1) implied by RCCE is not accurate as will be shown in later sections.
Projection (2) in the CEM normal subspace depends on the scaling of represented variables
and thus contains arbitrariness. Different projections can be obtained if species composition
is represented using mass fractions instead of specific moles. Projections (3) and (4) provide
more accurate projections; however, their implementation is expensive and quite involved.
Projection (5) provides a simple correction for the non-invariance of the CEM and an
accurate projection, but has issues involving unrealizability and negative entropy production
[32].

The projections given by ILDM, CSP and CPIM are based solely on thermochemistry.
This can become problematic when reactions are not fast (e.g. at low temperatures) lead-
ing to unrealizability and negative entropy production. The Reaction-mixing Attracting
Manifold Projector (RAMP) method introduced below helps address some of these issues.

Here we first present a mathematical formulation for the CPIM method (similar to that
provided in [32], however using our own notation), and then introduce the RAMP method.

4.1. Subspaces and projections

In the following sections we work with subspaces and projections and so before proceeding
further we describe here the notation used for denoting subspaces.

The columns of the constraint matrix B are not necessarily orthogonal, and it is more
convenient to work in terms of orthonormal basis vectors for computing projections. Using
the QR or SVD factorisation of B we obtain: (i) a set of nr orthonormal basis vectors (for the
represented subspace) denoted by matrix R of size ns × nr such that span(R) = span(B);
and (ii) a set of nu orthonormal basis vectors (for the orthogonal complement unrepresented
subspace) denoted by matrix U of size ns × nu such that span(U) = span(B)⊥.

Another important subspace is formed by the tangent vectors of the CEM. Consider an
ns × nr matrix TCEM whose columns are the tangent vectors of the CEM such that

TCEM = ∂zCE

∂r
. (11)

The column vectors of TCEM span the tangent subspace of the CEM; however, the column
vectors need not be orthogonal. Using the QR or SVD factorisation of TCEM we obtain: (i)
a set of nr orthonormal basis vectors (for the CEM tangent subspace) denoted by matrix
T of size ns × nr such that span(T) = span(TCEM); and (ii) a set of nu orthonormal basis
vectors (for the orthogonal complement CEM normal subspace) denoted by matrix N of
size ns × nu such that span(N) = span(TCEM)⊥.

We now have two sets of subspaces (or basis vectors) which together span the full
ns-dimensional composition space

(1) the represented–unrepresented subspaces spanned by {R, U}, respectively;
(2) the CEM tangent-normal subspaces spanned by {T, N}, respectively.

It should be noted that the represented–unrepresented subspaces are fixed once the matrix
B is known, whereas the CEM tangent-normal subspaces are local to the CEM and vary as
we move along the CEM.
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Combustion Theory and Modelling 11

Figure 3. Sketch of the composition space (indicated by represented r and unrepresented u sub-
spaces) illustrating the projections involved in the CPIM method. Given a reduced composition r,
the RCCE implementation computes the source vector ṙCE by projecting the chemical source term
SCE computed at the constrained-equilibrium composition zCE onto the represented space yielding
ṙCE = BTSCE. Alternatively, in the CPIM method, a manifold close-and-parallel to the CEM is con-
sidered to evaluate the chemical source term SCP (which lies entirely in the CEM and CPIM tangent
space denoted by T). In the CPIM method, the source vector is given by ṙCP = BTSCP, which can be
rewritten in terms of a projector P such that ṙCP = BTPSCE.

Any ns-vector x in the full space can be decomposed in the following two ways:

x = R
(
RTx

) + U
(
UTx

)
, (12)

or

x = T
(
TTx

) + N
(
NTx

)
. (13)

4.2. Close-parallel inertial manifold

In the CPIM method, it is hypothesised that there is a manifold close-and-parallel to the
CEM which is invariant with respect to

dzCP(t)

dt
= S

(
zCP(t)

)
, (14)

where zCP is a point on the manifold. This means that any reaction trajectory originating
from a point on the manifold, by hypothesis, remains on the manifold.

The steps involved in the CPIM method are illustrated in Figure 3. For a given constraint
r, the constrained-equilibrium composition on the CEM is denoted by zCE ≡ zCE(r). The
chemical source term at zCE is denoted by SCE ≡ S

(
zCE

)
.

Now we consider a point zCP on the CPIM such that

BTzCP = BTzCE = r, (15)

and we denote

δzCP ≡ zCP − zCE. (16)
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12 V. Hiremath and S. B. Pope

Since BTδzCP = 0, this means that δzCP lies entirely in the unrepresented subspace, and so
we can express

δzCP = UδuCP, (17)

where δuCP is an nu-vector in the unrepresented subspace spanned by U.
By the close-and-parallel assumption, zCP is close to zCE, and so we can express

SCP ≡ S
(
zCP

)
using a linear approximation about SCE as follows:

SCP = SCE + JδzCP = SCE + JUδuCP, (18)

where J is the ns × ns Jacobian evaluated at zCE

J ≡ ∂S
(
zCE

)
∂z

. (19)

Since the CPIM is invariant and parallel to CEM, at zCP the chemical source term SCP ≡
S(zCP) must be in the CEM tangent subspace. This enforces that NTSCP = 0, which gives

NTSCE + NTJUδuCP = 0, (20)

and solving for δuCP we obtain

δuCP = L−1NTSCE, (21)

where we denote

L ≡ −NTJU. (22)

Substituting δuCP in Equation (17) we obtain

zCP = zCE + UL−1NTSCE, (23)

and using Equation (18) we get

SCP = (I + JUL−1NT)SCE. (24)

We now use SCP to compute the source vector ṙ in the rate-equations for the constraints
equation (7) and denote it as

ṙ ≡ ṙCP ≡ BTSCP. (25)

Thus the rate-equations for the constraints equation (7) using the CPIM approach are given
as

dr

dt
= BTSCP, (26)
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Combustion Theory and Modelling 13

which can be re-written as

dr

dt
= BTPS

(
zCE(r)

)
, (27)

where

P ≡ I + JUL−1NT, (28)

provides a more accurate projection of the chemical source term evaluated on the CEM
onto the tangent subspace.

The main issues involved in the CPIM method as highlighted in [32] are:

(1) if the matrix L is ill-conditioned (especially at low temperatures) then the composition
zCP can be unrealizable;

(2) the linear approximation of SCP (for ill-conditioned matrix L) may lead to negative
entropy production.

These issues were handled in the CPIM method [32] by considering a linear combination
of SCP and SCE to ensure positive entropy production and realizability.

Here we present the Reaction-mixing Attracting Manifold Projector (RAMP) [7] as
an extension to the CPIM approach, which provides a much simpler way of handling the
unrealizability and negative entropy production issues.

5. Reaction-mixing attracting manifold projector

In the RAMP approach, similar to CPIM, a hypothetical manifold close-and-parallel to the
CEM is considered; however, now this manifold is assumed to be invariant with respect to
the following evolution equation:

dzCP(t)

dt
= S

(
zCP(t)

) − ω
(
zCP(t) − zCE(t)

)
, (29)

where zCP(t) is a point on the CPIM; zCE(t) ≡ zCE
(
r = BTzCP(t)

)
is a point on the CEM

such that BTzCP = BTzCE; and ω is a specified mixing (relaxation) rate.
The inclusion of the additional mixing term in the evolution equation (29) is inspired

by the general class of reaction–diffusion manifolds described in [7], and in particular
the REDIM method [40]. The inclusion of the additional mixing term helps address the
realizability issues encountered in the CPIM approach, where the evolution equation (14)
contains only the reaction term.

For the RAMP approach, the invariance condition for the evolution equation (29) is
given as

NT

[
dzCP(t)

dt

]
= 0. (30)

Using the same notation as for the CPIM, we can express

dzCP(t)

dt
= SCP − ωδzCP. (31)
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14 V. Hiremath and S. B. Pope

Following the same steps as for the CPIM method we can express SCP by a linear approxi-
mation given by Equation (18), and δzCP = UδuCP, which gives

dzCP(t)

dt
= SCE + (J − ωI) UδuCP. (32)

Using the invariance condition we obtain

NTSCE + NT (J − ωI) UδuCP = 0, (33)

which gives

δuCP = L−1NTSCE, (34)

where

L ≡ L(ω) ≡ −NT (J − ωI) U. (35)

So the only difference from the CPIM method is the additional ωI term in the definition
of L. This term makes L better conditioned, because by assumption if the close-parallel
manifold is an attracting manifold (as is implicitly assumed), then the eigenvalues of the
Jacobian J have negative real parts, which are further decreased by ω due to the introduction
of the relaxation term in the evolution equation.

The new projector with the RAMP method (which is a function of the relaxation
parameter ω) is given as

P(ω) ≡ I + JUL−1NT, (36)

with L given by Equation (35).
The source vector approximation given by the RAMP method is denoted as

ṙ ≡ ṙCP(ω) ≡ BTP(ω)S
(
zCE(r)

)
. (37)

The rate-equations for the constraints (7) using the RAMP approach are given as

dr

dt
= BTP(ω)S(zCE (r)) . (38)

It is important to highlight here the following properties of the RAMP method for the
two limiting values of the relaxation rate parameter ω.

(1) ω = 0. From the definition of the evolution equation (29), it is obvious that ω = 0
corresponds to the CPIM approach, with the projector P(ω = 0) = P provided by the
CPIM method.

(2) ω → ∞. From the definition of L (Equation 35), we see that L−1(ω → ∞) = 0, i.e.
the inverse of L is singular. This yields, from Equation (36), that P(ω → ∞) = I,
and the RAMP method corresponds to the classical RCCE implementation, since
ṙCP(ω → ∞) = BTP(ω → ∞)SCE = BTSCE = ṙCE.
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Combustion Theory and Modelling 15

Figure 4. Sketch of the composition space (indicated by represented r and unrepresented u sub-
spaces) illustrating reaction mapping computation using the three implementations of the RCCE
method: RCCE/TIFS, RCCE and RCCE/RAMP. Given the initial reduced composition r(0), (1)
the RCCE/TIFS implementation computes the reaction mapping by following the trajectory in full
space starting from zCE(0) to obtain z(t) followed by reduction to yield the reaction mapping r(t)
[RCCE/TIFS] = BTz(t); (2) the RCCE implementation solves a reduced system of ODEs with source
vector ṙ = BTS to obtain r(t) [RCCE]; and (3) the RCCE/RAMP implementation solves the re-
duced system of ODEs (as in RCCE) using an alternative source vector ṙ = BTPS to obtain r(t)
[RCCE/RAMP].

In short this shows that the value of ω controls the closeness of the CPIM to the CEM in
the RAMP approach. For ω = 0, we obtain the CPIM method, and for ω → ∞, the CPIM
collapses with the CEM and we get back the classical RCCE implementation. We will see
in the results presented in the following sections that, by choosing an appropriate value of
ω in the RAMP approach, we can address the unrealizability issues of the CPIM method
and also account for the non-invariance of the CEM-based RCCE method.

6. Partially-stirred reactor

In this section we describe the partially-stirred reactor (PaSR) test case used to study the
three implementations of RCCE (illustrated in Figure 4) described in this work:

(1) RCCE/TIFS: the implementation used in our previous works (described in
Section 3.1);

(2) RCCE: the classical RCCE implementation (described in Section 3.2.1); and
(3) RCCE/RAMP: the new implementation based on CPIM (described in Section 5).

To compare these different implementations of the RCCE method, we consider
methane/air premixed combustion in a partially-stirred reactor (PaSR). A detailed de-
scription of the PaSR is provided in [18]: here we briefly describe the details pertinent to
the current study.

The PaSR can be used to study PDF particle implementation applied to a statistically
homogeneous flow. In the PaSR, the thermochemical composition is represented by a
fixed number of particles. The particle composition evolves due to mixing and reaction
in fractional steps. The mixing is implemented using a pairwise mixing model [18]. Our
implementation of PaSR allows the particle chemistry to be represented in any one of the
following ways:
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16 V. Hiremath and S. B. Pope

Figure 5. Sketch depicting a test composition z(0) and its reaction mapping z(t) in the full compo-
sition space (indicated by the represented r and unrepresented u subspaces). The reaction makes the
test composition move closer to a low-dimensional attracting manifold. In the represented subspace,
ṙe = BTS denotes the exact source vector and ṙ denotes a source vector approximation obtained using
one of the RCCE implementations. In addition, re(t) = BTz(t) denotes the exact reaction mapping
and r(t) denotes the reaction mapping obtained using one of the RCCE implementations.

(1) detailed chemistry with ns species, with reaction mapping computed using ODE inte-
gration (also referred to as direct evaluation);

(2) detailed chemistry with ns species, with reaction mapping computed using ISAT;
(3) reduced chemistry with nr represented variables using RCCE, with reaction mapping

computed using the combined ISAT/RCCE approach [25].

For methane/air combustion in the PaSR, we use the same operating conditions as
in [25]. The PaSR involves two inflowing streams: (1) a stoichiometric premixed stream
of methane/air mixture at 600 K; and (2) a pilot stream of equilibrium products of com-
position of stream 1. The streams flow into the PaSR with a mass flow rate ratio of
0.95:0.05. Initially all the particles are set to the pilot stream composition. The pres-
sure is atmospheric throughout. Other important parameters include: the number of par-
ticles, Np = 100; the PaSR residence time, τres = 20 ms;1 the PaSR mixing time scale,
τmix = 1 ms; and the PaSR pairing time scale, τpair = 1 ms. The chemistry is repre-
sented using the GRI-Mech 1.2 mechanism involving ns = 31 species composed of ne =
4 elements.

We perform a PaSR simulation with a reaction time step, �t = 0.033 ms, and reac-
tion mapping computed using ISAT (with error tolerance, εtol = 10−5) with the detailed
mechanism. During the simulation, we save the compositions of the first N particles that
result in an add in the ISAT table (and so are distinct) denoted by z(n)(0) and their reac-
tion mappings z(n)(�t) for n = 1 to N . We use these test compositions to study different
implementations of the RCCE method. In this work, in all the tests, we use N = 2500
test compositions. Henceforth, we use t to denote a general reaction time step, and �t to
denote the exact time step �t = 0.033 ms used in the PaSR test to compute the reaction
mappings.

It is important to note here that, in the PaSR, reaction causes the particle compositions
to move towards a low-dimensional attracting manifold, and mixing causes the particle
compositions to be pulled away from this manifold (as illustrated in Figure 5). Hence the
test compositions at the beginning of the reaction fractional step z(n)(0) are expected to be
away from the attracting manifold, and the compositions at the end of the step z(n)(�t) are
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Combustion Theory and Modelling 17

Table 1. Sets of represented species obtained using GALI (with the 31-species GRI-
Mech 1.2 mechanism) for dimension reduction of methane/air premixed combustion
with RCCE for nrs = 9 to 15 (obtained from [25, table 3]).

nrs Represented species

9 CH4, CO2, H2, O2, H, OH, O, CH2O, CH3

10 CH4, CO2, H2, O2, H, OH, O, CH2O, C2H6, C2H4

11 CH4, CO2, H2, O2, H, OH, O, H2O, CH3, HO2, CO
12 CH4, CO2, H2, O2, H, OH, O, CH2O, CH3, HO2, CO, H2O
13 CH4, CO2, H2, O2, H, OH, O, CH3OH, CH3, HO2, CO, H2O, CH2CO
14 CH4, CO2, H2, O2, H, OH, O, CH2O, CH3, HO2, CO, H2O, CH2CO, C2H5

15 CH4, CO2, H2, O2, H, OH, O, CH2O, CH3, HO2, CO, H2O, CH2CO, C2H5, CH2

expected to be closer to a low-dimensional attracting manifold. Unless otherwise specified
explicitly, in the following tests to study different implementations of RCCE we use the
test compositions from the beginning of the reaction fractional step z(n)(0), which typically
will be encountered in real PDF computations. We use the test compositions z(n)(�t) only
in a few cases to study the validity of the CPIM approximation.

6.1. PaSR tests to study RCCE implementations

We use the test compositions saved from the PaSR run in the full dimension to study
different implementations of the RCCE method. We perform RCCE tests over a range of
values of nrs from 9 to 15, corresponding to nr = nrs + ne in the range 13 to 19 (which
yield less than 3% reduction–tabulation error [25]) with represented species selected using
GALI. We use the same represented species as those listed in [25, table 3], which are
obtained using GALI for the same test case – methane/air premixed combustion in PaSR
with chemistry represented using the 31-species GRI-Mech 1.2 mechanism – as used in the
current study. The relevant sets of represented species for nrs = 9 to 15 used in this study
are listed again in Table 1.

Now for a specified set of represented species for performing dimension reduction with
RCCE, we form the constraint matrix B. At each selected particle composition z ≡ z(n)(0)
(and in some cases z ≡ z(n)(�t)) for n = 1 to N = 2500, we then compute

� the chemical source term, S ≡ S(z);
� the exact source vector, ṙe = BTS (as illustrated in Figure 5);
� the reduced composition, r = BTz;
� the constrained-equilibrium composition, zCE ≡ zCE(r);
� the chemical source term, SCE ≡ S(zCE);
� the orthogonal projections of S and SCE onto the CEM tangent plane, denoted by St and

SCE
t , respectively; and the angles between S and St, and SCE and SCE

t , denoted by < (S, St)
and < (SCE, SCE

t , respectively, to assess the non-invariance of the CEM manifold;
� the source vector given by RCCE, ṙ ≡ ṙCE = BTSCE;
� the source vector given by RAMP, ṙ ≡ ṙCP(ω) = BTP(ω)SCE, for different values of the

relaxation rate ω;
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18 V. Hiremath and S. B. Pope

Figure 6. Scatter plots of angle (in degrees) between the chemical source term SCE (evaluated on
the CEM) and its orthogonal projection onto the CEM SCE

t versus temperature T computed using the
test compositions at t = 0 (a) and at t = �t (b).

� the exact reaction mapping re(t) = BTz(t) and reaction mappings r(t) using the three
implementations of RCCE (as illustrated in Figures 4 and 5).

In the following section we look at various scatter plots to analyse these data, and in addition
quantify and compare the errors involved in the three implementations of RCCE.

7. Results

7.1. Non-invariance

In this section we examine the ‘degree’ of non-invariance of the CEM, by looking at the
angle between the chemical source term SCE and its orthogonal projection SCE

t on the CEM
(denoted by < (SCE, SCE

t )). Figure 6 shows scatter plots of ∠(SCE, SCE
t ) versus temperature

T computed using the test compositions saved at t = 0 and t = �t . If the CEM were an
invariant manifold, then we would have ∠(SCE, SCE

t ) = 0. However, in these scatter plots
we see that ∠(SCE, SCE

t ) is as large as 35◦ at both t = 0 and t = �t . This confirms that
the CEM is not an invariant manifold, and in fact the reaction trajectories could be moving
away from the manifold at large angles. This non-invariance introduces a large error in the
RCCE implementation, in which SCE is directly projected onto the constrained subspace
without accounting for this non-invariance.

We now examine the angle between the chemical source term S (computed at the test
composition) and its orthogonal projection onto the CEM St (denoted by ∠(S, St )), which
gives a measure of the orientation of the chemical source term S relative to the CEM.
Figure 7 shows a scatter plot of ∠(S, St ) versus temperature T computed using the test
compositions saved at t = 0 and t = �t . Here we see that at t = 0, the angle ∠(S, St )
is relatively large (around 10◦) because the test compositions are pulled away from the
attracting manifold due to mixing. However, at t = �t , the angle ∠(S, St ) is very small
(less than 2◦ for T > 1000 K), which shows that the reaction takes the compositions closer
to an attracting manifold, and this attracting manifold is nearly parallel to the CEM (because
the angle is measured relative to the CEM). This observation confirms the CPIM idea that
there exists an invariant manifold close-and-parallel to the CEM. This is the reason why
the CPIM and its extension RAMP are able to give a better approximation for the RCCE
source vector (as quantified in the results included below).

D
ow

nl
oa

de
d 

by
 [

C
or

ne
ll 

U
ni

ve
rs

ity
] 

at
 1

1:
38

 0
1 

Fe
br

ua
ry

 2
01

3 



Combustion Theory and Modelling 19

Figure 7. Scatter plot of angle (in degrees) between the chemical source term S and its orthogonal
projection onto the CEM St versus temperature T computed using the test compositions at t = 0 (a)
and at t = �t (b).

7.2. Realizability and entropy production

Here we briefly examine the realizability and entropy production issues highlighted in the
CPIM work [32] and mentioned in Section 4.2, which are also pertinent to the extended
RAMP approach.

The RCCE/TIFS implementation computes the reaction mapping following the reaction
trajectory in the full space by integrating the full system of ODEs (Equation 1) using the
chemical source term S(z). Since there is no projection involved in this method, there are
no realizability or negative entropy production issues in this implementation.

The RCCE implementation uses a reduced system of ODEs obtained by projecting
the chemical source term S(z) directly onto the constrained subspace given as ṙ = BTS(z).
During the computation of the reaction mapping, the chemical composition evolves through
a series of constrained-equilibrium compositions on the CEM, and it is shown in [13]
that this implementation ensures (mathematically) non-negative entropy production and
realizability.

The CPIM and RAMP approaches use an alternative projection P which need not
necessarily ensure non-negative entropy production as described in [32]. There are two
main concerns:

(1) for an ill-conditioned matrix L(ω), the composition zCP(ω) may not be realizable; and
(2) the linear approximation SCP(ω) (for ill-conditioned matrix L(ω)) may lead to negative

entropy production.

However, since zCP(ω) does not directly appear in the definition of the projector P(ω) given
by Equation (36), the realizability of zCP(ω) is not a major concern. It is only the linear
approximation to the chemical source term SCP(ω) that directly influences the projector,
P(ω).

To analyse these issues we compute the following quantities using the saved test com-
positions:

(1) the minimum species composition in zCP(ω) denoted by min(zCP); and
(2) the ratio of the entropy production given by the RAMP approach denoted by ṡCP to

the actual entropy production at the test composition denoted by ṡ (which are defined
below).
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20 V. Hiremath and S. B. Pope

The entropy production rate ṡ at a test composition z is given as

ṡ = ηT(z)S(z), (39)

where η is the entropy gradient vector (at constant enthalpy h and pressure p) given as

η = ∂s

∂z

∣∣∣∣
h,p

= s − h

T
, (40)

where s and h are molar entropies and enthalpies, respectively.
The entropy production given by the RAMP approach denoted by ṡCP is given as

ṡCP = ηT(zCE)PS(zCE). (41)

First we look at the realizability issue. We consider the test compositions saved at t = 0,
and compute the minimum species composition in zCP denoted by min(zCP) at each test
composition. For zCP to be realizable, we must have min(zCP) ≥ 0. Figure 8 shows the
value of − min(zCP) for a range of values of ω from 0 to 109 s−1. Each subplot shows only
the test compositions for which zCP is unrealizable, i.e. − min(zCP) > 0. The title of each
subplot indicates the percentage of test compositions (out of the overall 2500) for which we
have an unrealizable zCP, i.e. − min(zCP) > 0. In addition, in parentheses, we indicate the
percentage of these unrealizable compositions for which we have the value of − min(zCP)
above a reference value of 10−12 (indicative of round-off error). For this test case, we notice
that, at small values of ω, over 60% of the compositions are unrealizable and some of them
have relatively large negative compositions in the order −10−4. However, as the value of ω

increases, the percentage of unrealizable compositions decreases to less than 7% for values
of ω > 105, and less than 30% of these unrealizable compositions have min(zCP) < −10−12.
The maximum magnitude of the negative species composition decreases to a value of less
than 10−6 for ω ≥ 105 s−1 and a value less than 10−22 for ω ≥ 108 s−1. As described earlier,
larger values of ω pull the CPIM manifold closer to the CEM and improve the conditioning
of the L(ω) matrix, thereby making more compositions zCP(ω) realizable. Nevertheless, as
mentioned earlier, since zCP(ω) does not directly appear in the definition of the projector
P(ω), realizability of zCP(ω) is not a major concern.

Next we look at the ratio of entropy productions, ṡCP/ṡ, as shown in Figure 9 for
the same range of values of ω. We notice that, for the current test case, none of the test
compositions yields a negative entropy production using the RAMP approach (even at
ω = 0, which corresponds to the CPIM method). However, we do notice that, at small
values of ω and at low temperatures, the entropy production is significantly underpredicted
(by about 80%) using the RAMP approach compared to the actual entropy production at
the test composition. We also notice that, for values of ω > 107, the entropy production
(predicted by the RAMP method) is overpredicted by 4 to 8 times in the temperature range
around 1000 K. At large values of ω, zCP approaches zCE and SCP approaches SCE, which
in the temperature range around 1000 K is misaligned with the CEM and S (as inferred
from Figures 6 and 7), and this might be a possible reason for the overprediction of entropy
in this temperature range. We analysed these quantities using test compositions saved at
t = �t as well (results not included), and observed a similar behaviour.

In summary, compared to the CPIM method [32], the RAMP approach provides a good
control over realizability and entropy production using the relaxation rate parameter ω.
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Combustion Theory and Modelling 21

Figure 8. Scatter plots of the minimum species composition in zCP (composition on the CPIM
obtained using the RAMP approach) versus temperature T computed using the saved test compositions
at t = 0 for a range of values of relaxation rate ω from 0 to 109 s−1.

7.3. Accuracy

In this section we look at three measures of error to compare the accuracy of the three
implementations of RCCE. The three measures of error (which are described in more detail
in the following sections) include:

(1) source vector error: this is a measure of error in the source vector ṙ used in the RCCE
and RCCE/RAMP implementations relative to the exact source vector ṙe;

(2) reaction mapping error: this is a measure of error in the reaction mapping r(t) obtained
using the three implementations of RCCE, relative to the exact reaction mapping re(t)
obtained without using the RCCE dimension reduction;
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22 V. Hiremath and S. B. Pope

Figure 9. Scatter plots of ratio of entropy production rates ṡCP (obtained using the RAMP approach)
to ṡ (at the test composition) versus temperature T computed using the saved test compositions at
t = 0 for a range of values of relaxation rate ω from 0 to 109 s−1.

(3) reduction–tabulation error: this a measure of error in the reaction mapping obtained
using the combined ISAT/RCCE methodology (as described in our previous work [6])
with the three implementations of RCCE.

7.3.1. Source vector error

We define the error in the source vector approximation ṙ(t) relative to the exact source
vector ṙe(t) (as illustrated in Figure 5) by

ε(ṙ(t)) = [ṙ(t) − ṙe(t)]rms

[ṙe(t)]rms
, (42)
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Combustion Theory and Modelling 23

Figure 10. Source vector error in the RCCE and RCCE/RAMP (for various values of ω) implemen-
tations at nrs = 11 computed using test compositions saved at t = 0 (a) and t = �t (b).

where the operator [x]rms is defined as

[x]rms =
√√√√ 1

N

N∑
n=1

‖x(n)‖2, (43)

with ‖x‖ denoting the vector 2-norm. We measure the error ε(ṙ(t)) at two discrete times,
t = 0 and t = �t , using the saved test compositions.

Figure 10 shows the source vector error ε(ṙ(t)) computed using the saved test com-
positions at t = 0 and t = �t for the RCCE and RCCE/RAMP implementations using
nrs = 11 represented species (listed in Table 1). For the RAMP implementation, the error
is computed for a range of values of relaxation rate ω from 0 to 1010 s−1.

At t = 0, we notice that both the RCCE and RCCE/RAMP implementations incur the
same error (around 20%) for small values of ω. We see a slight reduction in the source vector
error using the RAMP approach (to about 11%) near ω = 107 s−1. Presumably this value
of ω provides the best approximation for the test compositions at t = 0 using the RAMP
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24 V. Hiremath and S. B. Pope

approach. As the value of ω further increases, the error using the RAMP implementation
again increases and reaches the same value as with RCCE at ω = 109 s−1.

At t = 0, the test compositions are away from the attracting manifold (due to mixing)
and thus both RCCE and RCCE/RAMP yield a similar level of accuracy. However, at
t = �t , we notice that for small values of ω the source vector error using RCCE/RAMP
is considerably smaller (around 2%) than the error incurred using RCCE (over 50%). The
test compositions at t = �t are closer to an attracting manifold which is well approximated
by the CPIM used in the RAMP approach. The RCCE method incurs large errors due
to the inaccurate projection used to compute the source vector. The RAMP approach,
however, yields a more accurate projection (using the CPIM), which in turn provides a
more accurate source vector approximation as confirmed by these error measurements.
We do notice that, as the value of ω increases beyond 104 s−1, the error incurred by
the RCCE/RAMP approach starts increasing and approaches the same level as RCCE at
ω = 109 s−1. This, as explained earlier, is because, for larger values of ω, the CPIM is
pulled closer to the CEM, and the RAMP approach yields the same source vector as the
RCCE approach. In this case the minimum error is attained at ω = 104 s−1. We computed
the source vector error for a few other values of nrs (not shown), and observed a similar
behaviour. The RCCE/RAMP and RCCE approaches yield similar levels of error at t = 0;
however, RCCE/RAMP yields significantly lower errors at t = �t , and for this test the
minimum error is always achieved around ω = 104 s−1. For this reason, in the following
tests, we use a fixed value of ω = 104 s−1 in the RCCE/RAMP implementation.

We think the value of ω which provides the best source vector approximation should be
indirectly related to the flow mixing time scale, τmix. The mixing time scale determines the
extent to which particle compositions can move away from the attracting manifold in the
composition space. Similarly, the ω value in the RAMP approach controls the position of
the CPIM relative to the CEM. Hence, we think, a value of ω in the range 0.1/τmix to 10/τmix

should provide good source vector approximation. In this work we have τmix = 1 ms, which
yields the good range of values of ω to be from 100 to 10,000 s−1.

Figure 11 shows the source vector error ε(ṙ(t)) computed for a range of values of nrs

(using the represented species listed in Table 1) at t = 0 and t = �t . For the RCCE/RAMP
implementation, we use a fixed value of ω = 104 s−1. Here again we see that at t = 0 the
errors using the two implementations are comparable; however, at t = �t , RCCE/RAMP
yields an order-of-magnitude smaller error than the RCCE.

7.3.2. Reaction mapping error

Here we compare the relative error in the reaction mapping r(t) obtained using different
implementations of RCCE relative to the exact reaction mapping re(t) (as illustrated in
Figure 5). For this, at each test composition z ≡ z(n)(0) we define r(0) = BTz and then
compute the reaction mapping using the following methods (as illustrated in Figures 4 and
5).

� Direct evaluation: the exact reaction mapping, re(t) = BTz(t), where z(t) is obtained
using ODE integration in the full space starting from z;

� RCCE/TIFS: r(t) = BTz(t), where z(t) is computed using ODE integration in the full
space starting from zCE(r(0));

� RCCE: r(t) obtained by integrating the reduced system of ODEs (7) for the constraints
starting from r(0) with the source vector ṙ ≡ ṙCE; and
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Combustion Theory and Modelling 25

Figure 11. Source vector error in the RCCE and RCCE/RAMP (for fixed ω = 104) implementations
at various values of nrs computed using test compositions saved at t = 0 (a) and t = �t (b).

� RCCE/RAMP: r(t) obtained by integrating the reduced system of ODEs (7) for the
constraints starting from r(0) with the source vector ṙ ≡ ṙCP.

We define the error in the reaction mapping r(t) as

ε(r(t)) = [r(t) − re(t)]rms

[re(t) − r(0)]rms
, (44)

where the rms error is computed as before using Equation (43).
Figure 12 shows the reaction mapping error ε(r(t)) for varying reaction time steps

from t = 10−12 to t = 10−2 s using the three implementations of RCCE with nrs = 11 and
nrs = 15 represented species (listed in Table 1). The RAMP implementation uses a fixed
value of ω = 104 s−1. For small reaction time steps, we notice that all three implementations
yield similar reaction mapping error.

From the definition of the reaction mapping error Equation (44), we find that as t → 0
we get

lim
t→0

r(t) = r(0) + t ṙ(0) and lim
t→0

re(t) = r(0) + t ṙe(0), (45)
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26 V. Hiremath and S. B. Pope

Figure 12. Reaction mapping error for varying reaction time steps t at nrs = 11 (a) and nrs = 15 (b)
using the three implementations: RCCE/TIFS, RCCE and RCCE/RAMP. The grey region shows the
typical range of values of t (from 1 μs to 1 ms) used in real LES/PDF computations. The dashed line
indicates t = �t .

which gives

lim
t→0

ε(r(t)) = [ṙ(0) − ṙe(0)]rms

[ṙe(0)]rms
, (46)

and hence

lim
t→0

ε(r(t)) = ε(ṙ(0)). (47)

So for small reaction time steps, the reaction mapping error ε(r(t)) for the RCCE and
RCCE/RAMP implementations is the same as the corresponding source vector error ε(ṙ(0))
at the same value of nrs, as seen in Figure 11. Also, the reaction mapping error for the
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Combustion Theory and Modelling 27

Figure 13. Reaction mapping error for large reaction time steps t at nrs = 11 and nrs = 15 using the
RCCE/TIFS implementation.

RCCE/TIFS implementation is the same as the error for the RCCE implementation, since
both use the chemical source term SCE computed at zCE(r(0)) for ODE integration.

At both nrs = 11 and nrs = 15, we notice that, as the reaction time step increases, the
error in the RCCE/TIFS and RCCE/RAMP implementations starts decreasing. This is be-
cause in the RCCE/TIFS implementation we solve the full system of (unconstrained) ns

ODEs, which provides an accurate reaction mapping; and in the RCCE/RAMP implementa-
tion the RAMP approach provides an accurate approximation for the source vector at large
time steps (as seen in Figures 10 and 11). However, we notice that the error in the RCCE
implementation grows or remains constant for larger reaction time steps. This is because
the RCCE approach does not provide a good approximation for the source vector (as seen
in Figure 11), and so the error in the reaction mapping grows for large reaction time steps.
These results show that both RCCE/TIFS and RCCE/RAMP approaches are accurate and
yield similar levels of error: however, the RCCE approach yields significantly larger errors
at large reaction time steps. Figure 12 highlights the typical range of values of reaction time
step t from 1 μs to 1 ms that we may use in real LES/PDF computations. We notice that
in this range the RCCE/TIFS and RCCE/RAMP implementations both yield less than 4
and 2% errors at nrs = 11 and nrs = 15, respectively. However, the RCCE implementation
yields over 30% error.

We notice that the error in the RCCE/TIFS and RCCE/RAMP implementations in-
creases for time steps beyond t = 10−4 s. Ideally, the reaction mapping error should ap-
proach zero for large reaction time t because both r(t) and re(t) in the definition of ε(r(t)) in
Equation (44) should reach the equilibrium composition as t → ∞. The ODE integration
using DDASAC becomes expensive at large reaction time steps because the solution is
computed by taking many smaller sub-steps (as explained later in Section 7.4). Thus we
examine the reaction mapping error at very large reaction time steps using the RCCE/TIFS
implementation alone and the results are presented in Figure 13. We find that, as expected,
the reaction mapping error approaches zero at very large reaction time steps over 103 s. The
relatively large variations in the reaction mapping error for time steps beyond t = 10−4 and
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28 V. Hiremath and S. B. Pope

Figure 14. Combined reduction–tabulation error for a fixed reaction time step, t = �t , at various
values of nrs using the three implementations of RCCE: RCCE/TIFS, RCCE and RCCE/RAMP with
ISAT. The tabulation error (without reduction) is indicated by the solid line labelled ISAT.

the long time required for the error to reach zero can be attributed to different ignition delay
times for different test compositions. Since the test compositions obtained from PaSR have a
wide range of initial temperatures from 600 K to equilibrium temperature (around 2400 K),
the ignition delay time for different test compositions can vary by orders of magnitude
thereby requiring a very long time for all the test compositions to reach equilibrium.

In summary, these results show that both the RCCE/TIFS and RCCE/RAMP imple-
mentations yield significantly smaller error than the RCCE implementation.

7.3.3. Reduction–tabulation error

In [25], we describe our combined dimension reduction and tabulation ISAT/RCCE method-
ology. In this combined methodology, the reaction mapping computation using RCCE is
tabulated using the ISAT algorithm to save computational time in large-scale LES/PDF
computations [26]. Here we measure the combined reduction–tabulation error incurred
using this ISAT/RCCE methodology with RCCE implemented using the three methods
described. We use the same definition of error as in our previous work [25], given as

εRT = [zr(�t) − zr
RT(�t)]rms

[zr(�t) − zr(0)]rms
, (48)

where zr(0) and zr(�t) denote the composition of the represented species obtained from z(0)
and z(�t), respectively, and zr

RT denotes the reaction mapping obtained using ISAT/RCCE.
This error is measured for a fixed reaction time step, t = �t = 0.033 ms, at different values
of nrs. The rms error is computed by considering N = 105 test compositions from a PaSR
simulation (the same as in [25]).

Figure 14 shows the combined reduction–tabulation error using a fixed reaction time
step t = �t for different values of nrs for the three implementations of RCCE. (The
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Combustion Theory and Modelling 29

RAMP implementation uses a fixed value of ω = 104 s−1.) A fixed ISAT error tolerance of
εtol = 10−5 is used, which yields less than 1% tabulation error as shown in Figure 14. As we
observed in the reaction mapping error results, here again we notice that the errors incurred
by the RCCE/TIFS and RCCE/RAMP implementations are comparable and significantly
smaller than the RCCE implementation. For nrs > 9, the RCCE/TIFS and RCCE/RAMP
implementations yield less than 2% error; however, the RCCE implementation yields over
50% error.

7.4. Computational efficiency

In this section we compare the computational performance of the three implementations of
RCCE. Each of the three implementations of RCCE involves solving a system of ODEs to
compute the reaction mapping. We use DDASAC [34] to perform ODE integration with an
absolute error tolerance of 10−8.

Given a system of ODEs

dx

dt
= f(x), (49)

with initial condition x(0) and a time duration t , DDASAC returns the solution x(t) within a
specified error tolerance. DDASAC uses a variable time step predictor–corrector algorithm –
involving backward-difference formulas (BDFs) for the predictor and modified Newton
iterations for the corrector – to compute the solution. To solve a system of ODEs of the
form Equation (49) using DDASAC, we need to provide functions to compute the right-
hand-side source vector f(x) and the Jacobian J(x) defined as

J(x) = ∂f(x)

∂x
. (50)

For the Jacobian, we also have the option to use DDASAC’s built-in finite difference
approximation for the Jacobian.

For a given initial condition x(0) and time duration t , DDASAC takes multiple variable
time steps to compute the solution, x(t). At each step the source vector f(x) is evaluated;
however, the Jacobian is re-evaluated only when needed (based on an error estimate). The
number of sub-steps and Jacobian evaluations depends on the stiffness of the ODE equations
and the specified error tolerance.

Considering the three implementations of RCCE, in the RCCE/TIFS implementation
we solve a system of ns ODEs given as

dz

dt
= S(z), (51)

and in the RCCE and RCCE/RAMP implementations we solve a reduced system of nr

ODEs given as

dr

dt
= ṙ(r), (52)

where in the RCCE implementation ṙ = ṙCE and in the RCCE/RAMP implementation
ṙ = ṙCP.
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30 V. Hiremath and S. B. Pope

Figure 15. Average CPU time required to compute the reaction mapping and other quantities involved
in the RCCE/TIFS, RCCE and RCCE/RAMP implementations at nrs = 11 with the reaction time step
t = �t . The quantities shown (from the bottom) include: the constrained-equilibrium composition,
zCE; the CEM tangent space, T; the Jacobian, J; the chemical source term, S; the source vector in the
RCCE implementation, ṙCE; the source vector in the RCCE/RAMP implementation, ṙCP; and finally,
at the top, the reaction mapping r(t) using the three implementations.

For the RCCE/TIFS implementation, we provide a function generated using ADIFOR
[41] to evaluate the Jacobian. However, due to the relatively complex steps involved in the
evaluation of ṙCE and ṙCP in the RCCE and RCCE/RAMP implementations, respectively,
using ADIFOR to generate functions for their Jacobian is not the best approach (as it
results in the generation of many subfunctions). Hence we use DDASAC’s built-in finite
difference approximation for the Jacobian in the RCCE and RCCE/RAMP implementations.
(The finite difference approximation provides a slightly less accurate Jacobian compared
to ADIFOR.)

Figure 15 compares (on a log scale) the average cost of evaluating the source vector for
the three implementations; and the overall cost of evaluating the reaction mapping using
the three implementations. We see that the cost of evaluating the chemical source term S
(source vector for the RCCE/TIFS implementation) is only around 30 μs. Compared to this
the cost of evaluating the source vector for the RCCE implementation, ṙCE, is around 200 μs
as it involves computing the constrained-equilibrium composition zCE, which dominates
the cost. The cost of evaluating the source vector for the RCCE/RAMP implementation,
ṙCP, goes further up to about 1000 μs. This is because, in the RAMP approach, to compute
the projector we need to compute the Jacobian J and the CEM tangent subspace T, which
are expensive to evaluate.

The cost of evaluating the reaction mapping is directly related to the cost of evaluating
the source vector, and, for this reason, we see that the RCCE/TIFS implementation is
cheapest (around 104 μs) and the RCCE/RAMP implementation is the costliest (around
106 μs, two orders of magnitude more than RCCE/TIFS). The RCCE implementation is
around five times more expensive than the RCCE/TIFS implementation.

For the RCCE implementation, there exists a mathematically equivalent alternative
implementation in terms of the constraint potentials as described in [13, 28, 29, 31].
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Combustion Theory and Modelling 31

This implementation reduces the cost of evaluating the source vector by avoiding the
constrained-equilibrium calculations by transforming the ODEs in terms of the constraint
potentials. This implementation, however, poses some numerical issues as reported in [31],
because constraint potentials can attain very large values (the constraint potential value
corresponding to a species with zero concentration must be infinite). Special transformation
and pre-conditioning methods [31] are used to resolve these problems. This alternative
implementation may be computationally less expensive; however, since this implementation
is mathematically equivalent to our current implementation of RCCE, the accuracy is not
improved by this alternative implementation.

In summary, these results show that the RCCE/TIFS implementation is the most efficient
among the three implementations of RCCE.

7.5. Robustness

In addition, for a method to be accurate and efficient, it is also important for the method
to be robust and fail-safe. In large-scale LES/PDF computations, we compute the reaction
mapping in the order O(1012) times, and we want our ISAT/RCCE implementation to return
an accurate, realizable reaction mapping every time without failing.

In our tests with the three implementations of RCCE, we find the RCCE/TIFS approach
to be the most robust. We have tested this implementation using the partially-stirred reactor
for a wide range of chemical mechanisms, represented species and testing conditions, and
the method has never failed [27, 25]. It has also been recently tested for performing large-
scale LES/PDF simulations of Sandia Flame D [26], and again the method worked without
any issues.

However, in the current study we encountered some test cases (at certain values of
nrs, e.g. nrs = 10, for which results are not included) where both the classical RCCE and
RCCE/RAMP implementations failed to provide a realizable reaction mapping or failed to
converge within DDASAC. Both these implementations solve a reduced system of ODEs
for the constraints by projecting the chemical source term onto the constrained subspace.
The projected source vector on some occasions is found to yield negative unrealizable
constraint compositions during the DDASAC sub-steps. We were able to resolve some of
these cases by using a smaller error tolerance in DDASAC (which in turn forces DDASAC
to take smaller sub-steps); however, the overall implementation still failed for a few test
points.

7.6. Comparison with previous works

Here we have shown that the classical RCCE implementation yields significant errors in
the reaction mapping at large reaction time steps. However, many of the previous works
using the classical RCCE implementation report good accuracy [28–31]. There are two key
differences in the implementation of RCCE used in these previous works compared to our
classical RCCE implementation used in this work. In the previous works:

(1) the rate-equations for the constraint potentials are solved to compute the reaction
mapping; and

(2) general linear combinations of species compositions are used as constraints.

As pointed out earlier, the rate-equations for the constraint potentials are mathematically
equivalent to the rate-equations for the constraints, and thus the two approaches should
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32 V. Hiremath and S. B. Pope

yield the same reaction mapping for similar constraints. The accuracy of the RCCE method
is very sensitive to the choice of the constraints [27, 29, 31], and thus one possible reason for
achieving good accuracy in these previous works could be attributed to better selection of
linear constraints. We understand that the selection of linear constraints may in some cases
provide more accurate results with RCCE. Ideally, it would be very insightful to test the three
implementations of RCCE described in this work for linear constraints. However, our current
implementation of ISAT/RCCE [25] would require significant changes to incorporate linear
constraints, and hence we are unable to perform these tests at this stage. Nevertheless, it
should be noted that, in the previous CPIM work [32], it is shown that even for the constraint
potentials based implementation using general linear constraints, the CPIM method yields
better accuracy than the RCCE implementation.

Moreover, it should be noted that most of the previous works [28, 30, 31] rely more
on qualitative comparison of temperature and species profiles against time to assess the
accuracy of the RCCE implementation versus the detailed mechanism, which is a relatively
weak test for determining the overall accuracy of the RCCE dimension reduction method.
Furthermore, to the authors’ knowledge, the sensitivity of the accuracy of the RCCE
implementation to reaction time step has not been studied carefully in any of the previous
works.

8. Conclusions

In this study, we looked at three different implementation of the RCCE dimension reduction
method:

(1) RCCE/TIFS: involving the solution of the full system of ns ODEs;
(2) RCCE: involving the solution of a reduced system of nr ODEs for the constraints, with

source vector evaluated by projecting the chemical source term evaluated on the CEM
directly onto the represented subspace;

(3) RCCE/RAMP: involving an implementation similar to RCCE, but evaluating the source
vector using a more accurate RAMP approach (based on the CPIM method).

From the results presented in this work we can draw the following conclusions:

� the RCCE/TIFS implementation is the most accurate, robust and efficient among the
three implementations of RCCE;

� the RCCE implementation is based on an inaccurate projection of the chemical source
term onto the represented subspace, which does not take into account the non-invariance
of the CEM manifold and thus yields large errors;

� the RAMP approach provides a more accurate projection for the source vector evaluation
(based on the CPIM method) which significantly reduces the error;

� for the methane/air test case considered in this work, both the RCCE/TIFS and
RCCE/RAMP implementations yield less than 2% error in the reaction mapping com-
pared to over 50% using the RCCE implementation;

� computationally, however, the RCCE/RAMP is an order of magnitude more expensive
than the RCCE/TIFS and RCCE implementations due to the need for expensive Jacobian
evaluations in the RAMP approach.

The RAMP approach, even though being expensive

� elucidates the inaccuracies in the projection employed in the classical RCCE implemen-
tation;
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� demonstrates the accuracy of the CPIM approximation;
� provides an alternative framework for the implementation of RCCE (and possibly other

related dimension reduction methods) based on the invariant manifold concepts.
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