APPLICATION OF A GENERALIZED LANGEVIN MODEL
TO THE TWO~DIMENSIONAL MIXING LAYER

D. C. Haworth and S. B. Pope

Sibley School of Mechanical and Aerospace Engineering
Cornell University
Ithaca, New York 14853

ABSTRACT

A modeled transport equation for the joint pdf
of the velocities and a scalar has been solved
numerically for the plane turbulent mixing layer.
generalized Langevin equation models the effects of
the fluctuating pressure and viscosity, while a
stochastic mixing model represents the effects of
molecular diffusivity. Conditional modeling is
included to account for intermittency. The
calculated intermittency factor and both conditional
and unconditional moments of the velocity field are
compared with experimental data.

A

INTRODUCTION

The one-point statistics of the self-similar
plane turbulent mixing layer have been calculated by
modeling and solving an evolution equation for the
joint probability density function (pdf) of the
velocities U(x,t) and a conserved passive scalar
¢(x,t). Three terms must be modeled in the pdf
evolution equation: these terms represent the
effects of viscosity, the fluctuating pressure, and
molecular diffusivity. A generalized Langevin
equation (3) is used to close the viscosity and
fluctuating pressure terms and a stochastic mixing
model (2) accounts for molecular diffusivity.
Intermittency is incorporated using the conserved
passive scalar approach of Kollmann and Janicka 3.
The resulting conditionally-modeled joint pdf
evolution equation is solved by a Monte Carlo method
(4).

T The pdf approach is advantageous in modeling
complex turbulent flows because processes such as
convection, buoyancy, and reaction can be treated
without approximation (4-7). For the constant-
density inert mixing layer, this means that
convection is treated without the usual gradient
transport assumption (see Ref. 8, for example).
Several calculations based on joint pdf equations
have been reported in the literature both for
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reacting flows and for inert flows:
an extensive bibliography.

The present work is an extension and improvement
of previous pdf calculations (9,10). In earlier
calculations of the self-similar plane jet (10), a
stochastic mixing model was used to model viscous
dissipation, and a stochastic reorientation model was
used to model the pressure fluctuations. The
reorientation model results in a linear return to
isotropy for the Reynolds stresses (i.e. Rotta's
model). Good agreement with experimental data was
obtained in spite of the fact that the rapid-pressure
terms were ignored.

The generalized Langevin model used in the
present calculations is both physically more sound
and of wider applicability than these earlier
models: rapid-pressure effects are included and a
joint-normal pdf is ensured in homogeneous turbu-
lence, in agreement with experimental data (1).

Until now, this model has been calibrated and tested
only for homogeneous flows.

The solution algorithm used previously (10) is
limited to calculating the self-similar solution. A
new, more general, solution method is used here which
allows the calculation of one-dimensional transient
flows or two-dimensional stationary thin free shear
flows, regardless of whether a self-preserving
solution exists.

The purpose of the present investigation is
two-fold. First, we wish to extend the generalized
Langevin model to inhomogeneous flows. Since all the
Langevin model constants have been determined
previously by reference to homogeneous flows (1) and
since convective transport requires no modeling,
there are no additional model constants to be -
adjusted to match experimental data in this flow;
only the turbulent time scale t(x,t) is at our
disposal. Our second goal is to test the solution
algorithm. Unlike the method used previously (10),
the current method is designed to solve for -
developing flows as well as self-similar ones.

see Pope (4) for



We begin in the next section with a discussion
of the closure models for the unconditional pdf
evolution equation. 1In subsequent sections, the
conditional modeling, the solution algorithm, and a
comparison with experimental data are presented. A
summary and conclusions appear in the final section.

UNCONDITIONAL MODELING

We define f(V,¥;x,t) to be the joint pdf of the
event {U(x,t) =V, $(x,t) = ¥}, If Q(U,9) is any
function of U and ¢, the mean of Q at any x and t is
given in terms of the joint pdf as

<Q(U,0)> = [[ Q(V,¥IE(Y,¥)dV dy. m

Here, f dV represents integration over all velocity
space and | dy represents integration over all
composition space. In this statistically stationary
two-dimensional flow, f is independent of z and t
(see Fig. 1): f = £(V,¥;x,y). In the self-similar
regime, a dimensionless cross—-stream similarity
variable n can be introduced to reduce the
dimensionality of f further: f = f(V,¥;n).
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Fig. 1 The plane turbulent mixing layer.

A transport equation for the joint pdf of the
velocities and scalars in a turbulent flow can be
derived from the Eulerian conservation equations for
U(x,t) and ¢(x,t) (4, 5, 11). 1In a constant density
Tlow, the terms to modeled are those representing
the effects of viscosity, the fluctuating pressure,
and molecular diffusivity.

A Lagrangian approach is most expedient when
modeling and solving the joint pdf equation. At time
t, the position, velocity, and composition (a
conserved passive scalar) of a fluid particle are
denoted by x(t), U(t), and ¢(t).

In accordance with the Navier-Stokes equations
and the conservation equation for a conseryed passive
scalar, the increments in x(t), U(t), and ¢(t) in a
time interval dt are given by

dxi = Uidt , (2)
~ 1
du, = (vV2<U > - l.ESEZ)dt + (vvzu - E.EE_)dt , (3)
i i p 3x i pax
i i
e = TV2<e>dt + I929" ar . ()
The Eulerian fields have been decomposed into their

means <U>, <p>, <¢> and fluctuations u, p', ¢'; Vv is
the kinematic viscosity and I' is the molecular
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diffusivity. Closure models for the three terms to
be modeled in the pdf evolution equation are
constructed by modeling the corresponding terms in
the Lagrangian equations, Eqs. (3) and (4).

The first two terms to be modeled represent
viscosity and the fluctuating pressure. These terms
are closed by modeling the corresponding terms in the
Lagrangian velocity equation, Eq. (3). According to
the generalized Langevin model (1), the increment in
fluid particle velocity in a time interval dt is
given by

o, = (wi<u> - 13<p2y4,
p axi

o 1/2
+ 6,00y = W)+ (o) Pa (o) (s)

Here, Gij(iat) is a function of local mean
quantities, €(x,t) is the dissipation rate of’
turbulent kinetic energy, Cy is a universal constant,
and W(t) is an isotropic Wiener process.
Consequently, dW(t) is a joint-normal random vector
with zero mean and an isotropic covariance matrix
<dwi(t)dw

(t)> = dt 61 6)

3 3
Comparing Eq. (5) with Eq. (3), it may be seen that
the terms containing Gj; and C; model the effects

of viscosity and of the fluctuating pressure.

Haworth and Pope (1) proposed a functional form
for Gy5 that is linear in the mean velocity
gradients 3<Up>/3 and in the Reynolds stresses
<uguy>. The resulting model contains 11
coefficients. The value of the universal constant G
is taken to be 2.1, following Anand and Pope (12).
0f the 11 model coefficients appearing in Giy» 7
degrees of freedom are eliminated by exact
constraints deduced from the Navier-Stokes
equations. The remaining four coefficients (assumed
constants) were determined empirically by matching
the modeled evolution of the Reynolds stresses to
experimental data in homogeneous turbulent flows.
The values used in the present computations are
identical to the optimal values given in (1).

The final term to be modeled in the pdf
evolution equation represents the effects of
molecular diffusivity. A stochastic mixing model is
used to model this process (2,10). This model
involves a constant Cy, the ratio of the velocity
turbulent time scale to the scalar turbulent time
scale. We take C’ = 2,0, the conventional value
(10).

T It remains to specify the turbulent time scale
T(x,t) where

<u,u,>
T(x,t) = LI 7
- € 2¢

In (10), it was assumed that T(x,t) was uniform
across the plane jet. The turbulent frequency w(x,t)
- 1/1(5,:) was related to the mean flow scales simply
by

AU

w(x) = wk e

, (8)

where w* is a constant, AU = Uy-Up (Fig. 1), and
§(x) is a suitable measure of the flow width. For
the plane mixing layer, we extend Eq. (8) to allow
for a non-uniform turbulent frequency:



. = Wk (9)
w(x,y) w(y) —— 5( )

Consistent with workers presenting experimental data
for the plane mixing layer (13-14), we choose
§(x) = (x) -

(x) , (10)

Y10 .95
where y_ 19(x) is the lateral position at which
<U>-Uy, is equal to .10 AU, and y, g5(x) is defined
analogously.

Two sets of calculations are reported. In the
first, we choose a constant value for w*, w* = 0,18,
approximately the value at y = y 50 in the data of
Wygnanski and Fiedler (13).

In the second set of calculations, w* varies
across the layer. The dimensionless cross-—stream
similarity variable n is defined by

IR AT
§(x)

Y=Y ealx)
-4 an

7,100 = ¥, g5(0)

The data of Wygnanski and Fiedler show that w* varies
by about a factor of 2 across the flow, monotonically
increasing from the high-speed side to the low-speed
side. As a crude approximation, we take w*(n) to be
piecewise linear: w*(n) = 0.135 for n < =.25; w*(n)
= 0.18(1+n) for =.25 < n < 0.50; and, w*(n) = 0.27
for n > 0.50.

CONDITIONAL MODELING

To incorporate the effect of intermittency, we
adopt the conserved passive scalar approach
introduced by Kollmann and Janicka (3). A scalar
¢(x,t) takes on values of ome in the | high-speed
irrotational stream and zero in the low-speed
irrotational stream. The condition {0 < ¢(x,t) < 1}
is then used to distinguish turbulent fluid from
nonturbulent fluid. The intermittency factor v(x,t)
is defined as the probability of the fluid being
turbulent. In terms of ¢(x,t), then, the
intermittency factor is given by

Y(x,t) = Prob{0 < ¢(x,t) < 1} . (12)

The conditional modeling used here is in most
respects identical to that used previously by Pope
(10). Three model constants Cg, Cp, and Cg are
introduced which control, respectively, the rate of
entrainment of nonturbulent fluid, the rate of
momentum transfer between turbulent and nonturbulent
fluid, and the rate of energy transfer between
turbulent and nonturbulent fluid. We take the same
values as were used for the plane jet (10): Cg =
1.5, Cp = 1.5, and Cg = 5.0.

The current modeling departs from the earlier
work in one respect: no attempt is made to account
for the effects of the fluctuating pressure on the
nonturbulent fluid. While pressure fluctuations do
occur in the nonturbulent fluid, the resulting
velocity fluctuations have little overall effect on
the flow. In (10), it was shown that the emergy in
the nonturbulent velocity fluctuations is quite small
compared to the energy in the turbulent velocity
fluctuations for most thin free shear flows. As we
are not interested in the nonturbulent fluctuations
themselves but only in their effects on the flow as a
whole, the simplified approach taken here appears to
be justified.
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SOLUTION ALGORITHM

The Monte Carlo solution algorithm is discussed
in detail in (4), and is presented here in outline
form only,

In the Monte Carlo method, the joint pdf is
represented by a large number N of notional
particles. At time t, the nth particle has
position x(“)(t). velocity U(n (t), and composition
¢{(0)(t). “The state of each ] particle [x(“), U(“)
¢(n)] evolves in time according to the modeled
Lagrangian equations. For the current calculationms,
this means that the position and velocity of each
particle change in accordance with the generalized
Langevin equation (Eqs. 2 and 5) while the
composition changes in accordance with the stochastic
mixing model (2,4).

A significant simplification is afforded by
requiring that there be negligible probability of a
particle having a negative streamwise velocity. This
permits the use of an explicit marching scheme to
advance the solution in the streamwise direction from
given initial conditions. A consequence of this
restriction in modeling the plane mixing layer is
that the mean velocity of the low speed stream must
be positive. Thus, while we compare our calculations
with experimental data for which Up is essentially
zero, in the computations a finite velocity ratio
Uy/Uy, must be specified. We choose Uy/Uy = 10, a
value that should be sufficiently large that the
self-similar solution does not differ significantly
from the case Uy/Up = =, yet sufficiently small that
the numerical solution is not degraded.

Further simplifications arise from invoking the
boundary-layer assumption: only the dominant mean
velocity gradient term 3<U>/dy is retained in Gy
and the cross~stream mean momentum equation reduces
to an equation for the mean pressure gradient (15):

2
LAS 2 L am
ay 3y .

The term vVZ<Ui> is neglected in Eq. (5) due
to high Reynolds number, and unconditional averages
are used to form Gjj. However, the mean velocity
conditional on the iluid being turbulent is used in
the linear deterministic term of the Langevin equa-
tion (the second term on the right-hand side of Eq.
5): this term represents a linear motion (in veloci-
ty space) about the local turbulent mean velocity.

Eulerian means are extracted from the numerical
solution using cross-validated least squares cubic
splines as described in (4); the statistical error
in this procedure is of order N-1/2, The
calculations reported here are for N = 20,000. No
averaging over steps is used for the calculated
profiles presented in the next section, since we want
to demonstrate that the solution algorithm is
applicable to developing flows as well as to
self-similar flows.

RESULTS AND DISCUSSION

Many experimental results have been reported for
the plane turbulent mixing layer beginning with

. Liepmann and Laufer (16) whose 1947 paper provided

the benchmark for subsequent experiments. We limit
our attention to those in which the velocity ratio
Uy/Up, is infinite. The most comprehensive
measurements available are those of Wygnanski and
Fiedler (13) and Champagne, Pao, and Wygnanski (14).



There is wide scatter in the data among the
various experiments. All achieve a self-similar
state with linear spread of the mixing layer as
predicted by simple scaling arguments (15). However,
taking as a measure of the spreading rate the
quantity §'

(x) - y.gs(x)

x - x

where x; is the virtual origin of the flow, it is
observed (119 that §' varies from 0.17 for Liepmann
and Laufer to 0.23 for Wygnanski and Figdler. The
peak streamwise turbulence intensity <u >1/2/Ug
varies from 0.15 to 0.18 in these same experiments,
with similar scatter evident in the other Reynolds
stress components. The origin of these differences
presumably lies in the initial conditions, boundary
conditions, and Reynolds number of the flow (14),
factors which are beyond the scope of our modeling.

Using the models and solution method described
above, the calculations yield a self-preserving
solution with linear growth of the mixing layer. The
computed spreading rate is §' = 0.050 for uniform w¥*
and §' = 0.048 for piecewise linear w*., This is
smaller by a factor of 4 than experiments with
Uy/Uy, = = indicate. Taking into account the
effect of finite velocity ratio on spreading rate
(17), it is about one-third of the growth rate
expected for a velocity ratio of 10. A discussion of
this low spreading rate follows the comparison of
calculated profiles with experimental data. Use of
the normalized cross-stream similarity variable n
(Eq. 11) removes the effect of spreading rate in
these comparisons.

Profiles of the normalized mean streamwise
velocity and the intermittency factor are shown in
Fig. 2. The calculated mean velocity profile is in
good agreement with experimental data for the uniform
w* case, while there is significant disagreement at
both edges of the flow for the piecewise linear w*
case. By contrast, the computed intermittency factor
appears to be better for plecewise linear w*, The
calculations indicate a turbulent zone which extends
markedly too far into the low-speed stream in both
cases.

Figure 2 illustrates the sensitivity of the
calculations to the assumed turbulent frequency
w(x,t). All subsequent figures show only the uniform
w* calculations, for which the normalized mean
velocity profile agrees with experimental data.

The conditional and unconditional mean
streamwise velocities are shown in Fig. 3: <UDy is
the mean velocity conditional on the fluid being
turbulent, and <UDy is the mean velocity
conditional on the fluid being nonturbulent. The
computed behavior of <UDy appears to be
qualitatively correct near the edges of the layer,
with <U>y > <U> on the high-speed side and <Udy <
<U> on the low-speed side. However, the behavior of
<U>r implies a serious defect in the conditional
modeling. The experimental data indicate that the
"slip” velocity <UDy - <U> is nearly equal to zero
on the high-speed side of the flow and is large on
the low-speed side, while the model produces the
opposite behavior.

Calculated and experimental profiles of the
Reynolds stresses are shown in Figs. 4~7. The
overall turbulent kinetic energy level is different
for the computations and for the two sets of
experimental data. Each profile is thus normalized
by the peak turbulent kinetic energy for that

y
5 = .10 (14)

computation or experiment. Vglues of these
normalization factors kp,«/AU are as follows:

uniform w* computation 0.0204
Champagne et al. (14) 0.0290
Wygnanski and Fiedler (13) 0.0358.

Figures 4-7 show that the model pu:g too much energy
into the streamwise fluctuations <u“> at the expense
of the cross-stream fluctuations <v°>. The calcu-
lated peak of <uv)>/kp,y is lower than experimental
data ipndicate, and the calculated profiles of &>
and <w®> are shifted towards the low-speed stream.

We seek some understanding of the model's beha-
vior and how it might be improved. This is achieved
by examining the effect of the normalized Reynolds
stresses <uju;>/k on the spreading rate and on
the production of k and of <uvd/k. By invoking the
boundary-layer assumption in the mean streamwise
momentum equa:ion2 we see that the spreading rate §'
scales as <uv>/AU® (15). Similarly, the ratio of
production to dissipation of turbulent kinetic energy
P/e scales as <uvd>AU/(kws) = (1/w*)(<uv>/k); and the
dominant production_ term in the evolution equation
for <uvd>/k is - (<v2>/k)3<U>/3y. Consider now
starting the calculations with the correct mean-
velocitx and turbulent kinetic energy profiles, but
with <u®>/k being too large and, more important,
<v2>/k being too small. First, since the production
of <uv> (=<v“>3<U>/3y) is too small, <uv> becomes too
small. Then with P/e = (1/w*)<uv>/k being too small,
k becomes too small. And also, the too small value
of <uv> causes the spreading rate &' to be too
small. It may be seen, then, that all the deficien-
cies in the calculations can be attributed to the
model's making <v°>/k too small.

It remains to understand why the computations
yield too small a value of <v“>/k. A possible
hypothesis is that the plane mixing layer is
significantly different from the homogeneous shear
flows used to calibrate the Langevin model. The
difference could either be in the normalized shear
rate T* = T 3<U>/3y, or in the fact that the mixing
layer is inhomogeneous. The first explanation can
readily be dismissed: the mixing-layer data of

. Wygnanski and Fiedler give T* = 5,6 in the middle of

the layer, which is close to the values T* = 5.7 and
T* = 6.1 in the homogeneous shear flows (18,19) used
to calibrate the model. -
Compared to homogeneous shear flows, the
inhomogeneous mixing layer contains several different
physical phenomena. But, in the fully-turbulent
center of the mixing layer, the only difference in
the modeled joint pdf equation is the convective
transport—which is treated exactly. Evidently the
effect of this tzanspofc is small: 4in the mixing
layer we calculate (<v“>/k-2/3) = =0.32 whereas in
the homogeneous shear flow the value is (<vZ>/k-2/3)
= =0.30. In the exact pdf equation there is a
transport term associated with pressure
fluctuations. It is possible that the inclusion of a
model for this term would augment the transport and
reduce the anisotropy. This is a topic for future
investigation.

SUMMARY AND CONCLUSIONS

A conditionally-modeled joint pdf evolution
equation has been solved by a Monte Carlo method to
calculate the one-point statistics of a self-similar
plane mixing layer. Two new features of these
calculations are the use of a generalized Langevin
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model and the introduction of a new solution
algorithm.

Based on these calculations, we conclude that
both the Langevin model and the solution algorithm
are working properly. The plane jet calculations of
Pope (JED were repeated using the current solution
algorithm and the results were similar to those
reported in (10), thus strengthening the second
conclusion.

These calculations have also pointed out weak-
nesses in the modeling which must be addressed.
First, an understanding is needed of the differences
among flows which had been thought to be similar. In
particular, differences must be understood among
homogeneous shear flows, the plane jet (for which the
conditional modeling used here appeared to be ade-

quate, lQ)' and the plane mixing layer. Second, the
conditional modeling must be improved and generalized

to work in a variety of flows. Third, the modeling
of the turbulent frequency w(x,t) or equivalently,
the dissipation rate €(x,t) needs to be improved and
generalized. Current efforts in this direction treat
€ as a random variable and solve a modeled evolution
equation for the joint pdf of the velocities,
scalars, and the dissipation (20). In addition, we
seek to increase the efficiency and accuracy of the
solution method by introducing a second-order
accurate scheme to advance the solution in x (21).
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Fig. 2 Normalized mean velocity and intermittency.
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Fig. 3 Conditional and unconditional mean
velocities.
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Fig. 4 Normalized streamwise velocity fluctuations.

<“2>/kmax' uniform w* calculation
X <u§>/km,x, Wygnanski and Fiedler
0 <u®>/kpax, Champagne et al.

<v2>/kn.x, uniform w* calculation
X <v2>/kpay, Wysnanski and Fiedler
0 <v2>/kmx, Champagne et al.
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Fig. 6 Normalized transverse velocity fluctuationms.

<"2>/kmax' uniform w* calculation
X <. >/kpax, Wygnanski and Fiedler
0 <"2>/kmax: Champagne et al.
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Fig. 7 Normalized shear stress.

<uvd>/kpax, uniform w* calculation
X <uv>/kpax, Wygnanski and Fiedler
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