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STOCHASTIC ANALYSIS AND APPLICATIONS, 4(2), 151-186 (1986)

A SECOND-ORDER MONTE CARLO METHOD FOR THE SOLUTION
OF THE ITO STOCHASTIC DIFFERENTIAL EQUATION

D.C. Haworth and S.B. Pope

Sibley School of Mechanical and Aerospace Engineering
Cormnell University
Tthaca, New York 14853

ABSTRACT

A difference approximation that is second-order accurate in the time step 4 is derived for
the general Ito stochastic differential equation. The difference equation has the form of a
second-order random walk in which the random terms are non-linear combinations of Gaussian
random variables. For a wide class of problems, the transition pdf is joint-normal to second
order in h; the technique then reduces to a Gaussian random walk, but its application is not
limited to problems having a Gaussian solution. A large number of independent sample paths
are generated in a Monte Carlo solution algorithm; any statistical function of the solution (e.g.,
moments or pdf’s) can be estimated by ensemble averaging over these paths.

1. INTRODUCTION

The theory of stochastic differential equations and their use as models of physical
phenomena originated with the development of a mathematical description of Brownian motion
[1). The theory blossomed with the introduction of the Ito and Stratonovich calculi [2,3] and
these equations are now used in the modeling of a broad range of physical processes. The pur-
pose of the present work is to develop a numerical algorithm applicable to an important class
of stochastic ordinary differential equations. Specifically, we seek solutions to equations of the
form

du; = A(u,0)dt + B(u,)dWio) , 1)
for ¢ 2 5, subject to the initial conditions

u(ty=1°. )
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152 HAWORTH AND POPE

In Eq.(1), (t) is a vector-valued random process, A (u,r) and B;{u,!) are functions of the ran-
dom processes and of time, and W(¢) is an isotropic Weiner process [4,5]: dW(¢) has a joint-
normal distribution with zero means and an isotropic covariance matrix

<dWity>=0, <dW{(dWin>=dd;, 3

where 3; denotes the Kronecker delta, Qo of Eq.(2) may be a random vector, Here and in the
remainder of the paper, Cartesian tensor notation is used where convenient,

Equation (1) is a general form of Ito’s stochastic differential equation. Included in this
form are coupled stochastic ordinary differential equations of arbitrary order where the random-
ness is expressed as a vector of independent Gaussian white noise processes, the derivative of
the isotropic Weiner process. This type of equation has applications in a variety of fields
including stochastic control theory [6], filtering theory [7], and fluid mechanics [8]. Of particu-
lar interest in applications is the Langevin equation, a special case of Eq.(1) in which the deter-
ministic term is linear in the dependent variable and the coefficient of the random term is
independent of the dependent variable.

We assume that the coefficient functions A; and B;; satisfy all necessary conditions for the
existence of a unique diffusion process solution to Eq.(1) [4,9]. The coefficient functions must
also satisfy the following differentiability requirements for the numerical method developed in
this paper to be applicable: A; and C; possess bounded continuous partial derivatives with
respect to the components of u up to at least the second order and with respect to ¢ up to at
least the first order in the interval of interest, where C;; is a symmetric positive semi-definite
matrix,

C,'j = B“Bj[ . (4)

The numerical scheme can be simplified if, in addition to these constraints, C; satisfies the
equation

CijiCu + CpiCa+ CyyCyp=0. &)

Necessary and sufficient conditions for the satisfaction of Eq.(S) are difficult to deduce and do
not appear to have a simple interpretation in terms of the coefficients B; However, we cite
two important classes of equations for which the restriction is satisfied. First, it follows trivi-
ally if B;; is a function of time only: B;{u,f) = By(#). In the second class of problems, the ran-
dom processes u;,i=1, ' -+, M have a natural ordering such that the coefficients Bj(u,!)
satisfy By{u#) =0 for 1 S ij <m, and By{u,t) = bOuy, - - - upet)S; for i, j > m. That is, for
i > m, the i component of the Weiner process (W) only affects the i* component of the sto-
chastic process (); and, the coefficient B;=b®5; of the i* process is independent of
ug, k > m. This includes generalized Langevin equations for vector-valued stochastic processes
(see Haworth and Pope [10], for example). These are not the most general conditions for the
satisfaction of Eq.(5). For example, any linear transformation of u, &; = Tu;, in the second
class of equations cited also suffices.
The differential notation of Eq.(1) is shorthand for the stochastic integral equation

t t
u(t) = uilte) + [ALus)s)ds + [Bifu(s).s)dWs) . ®)
' fo
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In Eq.(6), the meaning of the stochastic integral is ambiguous: we interpret the integral in the
Ito sense [4,5,11]. In terms of the increment in  in an interval A,

Au = u(t+h)y — u(t) , ()]

the solution of Egs.(1) and (6) is then a diffusion process whose infinitesimal drift and
diffusion parameters are

lim--<Au; | u(=U> = AU , ®
a0 h = had

.1
ll_rflo;<Au;Auj | u()=U> = C(U,1) . [C))

Results applicable to the alternative Stratonovich interpretation may be deduced by a transfor-
mation of the drift parameter {4,5,11].

Accurate and efficient solution methods for the Ito stochastic differential equation are
required in practical applications. Our motivation for developing a new numerical algorithm
for the solution of Eq.(1) is that a six-dimensional stochastic process whose evolution is
governed by an equation of the Langevin type can be used to model the behavior of fluid parti-
cles in a turbulent flow [10,12]. Because of the large dimensionality and because the random
terms are not necessarily small compared to the deterministic terms, most currently available
solution methods are inadequate for our purposes. We were further compelled to develop a
method that is second-order accurate in the computational time step A after tests using a first-
order difference approximation were found to require an impractically small step size (see Sec-
tion 4). For a difference approximation to a differential equation to have an error of O(/?) at a
fixed time ¢, as sought here, the truncation error on a single time step must be of o). (A

. . wy ie i GCA) () .
quantity g(h) is of O(h™) if }lx_m)o pr=; 0 for all e>0 while }'1_% e oo for all €>0.) It is the

one-time statistics of the solution that are of most interest in applications. Thus the minimum
amount of information that we seek is the one-time pdf of the solution AV;f), the joint pdf of
the event {u() = V}. The solution method developed here yields substantially more informa-
tion than this: any one-time or multiple-time statistic can in principle be extracted from the
numerical solution.

We begin in Section 2 by reviewing currently available numerical solution techniques for
stochastic differential or integral equations. It is shown that none of the deterministic methods
is ideally suited to the general Ito equation. A case is made for solving Eq.(1) via sample path
solutions, that is, by a Monte Carlo method. Section 3 contains the principal theoretical result
of this paper that is the basis for the second-order solution algorithm. The new method is
compared with an alternative second order Monte Carlo algorithm to point out advantages of
the approach adopted here. Three sample problems are then presented in Section 4. Two of
these examples satisfy the constraint of Eq.(5) while the third does not. A comparison is made
between first-order and second-order solutions; both statistical errors and time differencing
errors are discussed. Finally, the results are summarized and conclusions are drawn in Section

S. )
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2. SURVEY OF SOLUTION TECHNIQUES

A wide variety of numerical schemes are available for the solution of stochastic
differential or integral equations. Analytic solutions are also available, but as for deterministic
equations, they are applicable only to a limited class of problems and are not considered here.
In this section, the development of a new numerical procedure for the solution of the Ito sto-
chastic differential equation is justified by demonstrating that currently available techniques are
not well suited to this problem in its general form. Most techniques either: 1) yield insufficient
information about the solution; 2) are strongly dependent on the specific form of the coefficient
functions or on the dimensionality of the problem; 3) are not amenable to a priori error
analysis; or 4) fail to take full advantage of the special characteristics of this equation, e.g., the
Gaussian nature of the random terms. Many of the methods described here are applicable to a
wider class of problems than stochastic differential equations of the Ito type; no general indict-
ment of these methods is intended.

Numerical solution techniques for stochastic differential equations can be classified into
two categories. We define "direct” methods as those that deal with the original stochastic
equations, These methods use a discretization analogous to that used in obtaining numerical
solutions to deterministic ordinary differential equations. "Indirect” methods transform the
given set of random ordinary differential equations into either a single deterministic partial
differential equation for the pdf of the solution or into a set of deterministic ordinary or partial
differential equations for moments of the solution. These deterministic differential equations
are then solved by standard techniques.

We consider indirect methods first. For (almost) any continuous time Markovian stochas-
tic process including the current problem, it is possible to derive an equation goveming the
evolution of the probability density function [11]. The pdf equation can in principle be solved
using finite-difference methods (see Smith [13], for example). However, the finite-difference
solution of a partial differential equation in more than three independent variables is beyond
the scope of practical computations. Hence, such an approach is limited to stochastic processes
of low dimensionality.

Another class of indirect methods makes use of moment equations. A set of deterministic
differential equations for the evolution of the moments or cumulants of a stochastic process can
be derived either from its pdf evolution equation or directly from the given stochastic
differential equations [14,15]. Except in simple cases, however, this set is not closed: higher-
order moments appear in the evolution equations for the lower-order moments. Hierarchy
methods overcome this difficulty by expressing the higher-order moments or cumulants as
functions of lower-order moments or cumulants, truncating the infinite set of equations to a
finite number that can then by solved by conventional techniques [16). Such methods are not
attractive here since only a limited amount of information about the solution is obtained, typi-
cally only the first few moments, and no a priori error estimates are in general available.

A review of several direct computational methods is given by Boyce [17]. In this paper,
two techniques are discussed in detail; both are developed for the case of a scalar random pro-
cess. The first treats the stochastic process as a collection of random variables, discretizing
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both the state space and the index parameter (time), then marching from one time level to the
next by determining transition probabilities for the time increment h (see also Kohler and
Boyce [18] ). This method fails to make full use of the special features of Eq.(1) and addi-
tional complications arise for a vector-valued random process. The second technique treats the
process as a collection of sample functions by solving deterministic ordinary differential equa-
tions for fixed values of the random terms in the original equation, then assigning probabilities
to each of these solutions based on the given distribution functions of the random terms (see
also Barry and Boyce [19]) ). This method appears to be more promising but is not an efficient
technique for solving the vector Ito equation.

A third direct method is the method of moments developed by Lax and Boyce [20,21].
This is an extension of Galerkin’s method for linear deterministic equations to linear random
ordinary differential or integral equations. The stochastic process is approximated by a linear
combination of basis functions computed from the original equation. The solution consists of a
finite number of moments, inadequate for our purposes, a priori error estimates do not appear
to be available, and the technique is limited to linear equations,

The above methods are all deterministic, with a unique solution for a given set of initial
conditions. Alternatively, sample-path solutions can be obtained by numerically integrating a
discrete approximation to the stochastic differential equation. A Taylor series expansion is per-
formed to obtain the corresponding difference equations, and pseudo-random number genera-
tors are used in a Monte Carlo solution algorithm to approximate the random terms. A first-
order scheme consists of simply replacing d¢ of Eq.(1) by the finite time step h and replacing
dW(¢) by a vector of independent Gaussian random variables, each with zero mean and vari-
ance h: the stochastic differential equation is reduced to a Gaussian random walk. This
approximation has been used extensively but often requires an extremely small time step in
practice (see Section 4); we limit our discussion to higher-order methods. Second and higher
order algorithms have been presented by several workers [22-28] for subsets of Eq.(1). Rao et
al. [22] consider a scalar-valued Ito equation, expanding #(¢) in a Taylor series and retaining
terms to O(?). Mil’shtein [24] treats the same problem by expanding the transition pdf in a
time step A rather than the stochastic process itself. This gives a simpler numerical algorithm
that yields the same statistical information with the same accuracy as that of Rao et al. The
approach adopted by Helfand [25] and expanded on by Greenside and Helfand [26] is similar
to that of Mil’shtein. They treat a vector-valued Ito equation but restrict their analysis to the
case where By; of Eq.(1) is isotropic and independent of u(f). This is also the case considered
by Drummond et al. [27,28] who add the further restriction that B;; be independent of 1.

The present work extends the approach of Mil’shtein [24) to a general vector-valued Ito
stochastic differential equation. The analysis is presented in a different way, however, with
particular emphasis on the important subset of problems for which Eq.(5) is satisfied: the
numerical method then reduces to a Gaussian random walk although its application is not res-
tricted to problems having a Gaussian or joint-normal solution, The statistical error in approxi-
mating the stochastic process by a finite ensemble of sample paths is treated in detail here
while the earlier works (except Drummond et al. [28] ) dealt primarily with the time
differencing error. Systematic verification of the analytic results for both statistical and discret-
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ization error is given via sample problems (see Section 4). It is important to justify the use of
the second-order algorithm by showing that the larger time step allowed compared to a first-
order scheme compensates for the additional computational complexity. This is also done
using sample problems.

The method of sample-path solutions, ie., a Monte Carlo method, appears to be most
appropriate for our purposes. By obtaining N sample solutions, all statistics can be obtained
with a statistical error of order N ™%, and the order of the discretization error is determined by
the level at which the series expansions are truncated in the derivation of the difference equa-
tions. Problems of large dimensionality are well suited to this numerical technique [29]: com-
putational requirements increase only linearly with the number of independent variables, the
best that can be achieved.

3. DERIVATION OF NUMERICAL METHOD

In this section, we derive the second-order Monte Carlo algorithm for obtaining sample-
path solutions to the Ito stochastic ordinary differential equation, This numerical method is
based on a Taylor series expansion of the transition joint pdf corresponding to Eq.(1). The
advantage of this approach over expanding the stochastic process itself is illustrated by com-
paring the algorithm derived here with that of Rao et al. [22]. A method for extracting the
one-time moments of the solution from the sample paths is described and estimates of the
resulting statistical error are given.

We begin by considering the evolution of the joint pdf. The transition pdf f*(V;s,t | U) is
the joint pdf of the event {u(r) = V} conditional on the event {u(s) = U}, (2 5). Because
Eq.(1) describes a Markov process, all finite-dimensional distributions of the solution can be
expressed in terms of f* [30]. Thus while we concentrate on obtaining the one-time moments
of the solution in this paper, knowledge of the transition pdf to O(k") is sufficient information
to deduce all finite-dimensional moments and distributions of the solution with an error of
O(K"). For any diffusion process, the transition pdf evolves according to the corresponding
Fokker-Planck equation or forward Kolmogorov equation [4,5,11]. The Fokker-Planck equa-
tion corresponding to Eq.(1) is

a* | AfrAwnl 1 PICvnl
TR A T T (10)

Equation (10) also governs the evolution of AVs) for ¢ 2 5 if the state at time s is fixed.

We consider first the case where the constraint of Eq.(5) is satisfied. The basis for the
numerical method is then a result derived in the Appendix: subject to the deterministic initial
conditions u(f) = U, and provided the coefficient functions satisfy Eq.(5), Eq.(10) causes
AV;t+h) to evolve as a joint-normal distribution to second-order in A:

SVieh) = fNVi) + O (11



ITO STOCHASTIC DIFFERENTIAL EQUATION 157

where f/¥(V;f) denotes a joint-normal distribution. This result implies that second-order sam-
ple paths can be formed by choosing Au, the increment in u in each interval 4 (Egq. 7), from a
joint-normal distribution whose means and covariances are correct to O(®). Second-order
accurate approximations for the means and covariances of Au can be derived in several ways
but they have already been found as part of the proof that appears in the Appendix (Eqs. A34 -
A35):

<Aup = A + %(A,- +AA+ -;-A,.,,,,,c,,,‘)h2 + 00y, 12

’ » 1 . 1
<A A > = Cih + —2-(c,-,- + Cy + A Ch+ A Ca+ ECU.,,,C,,,‘)hz + O . (13)

In these equations, all terms on the right-hand sides are evaluated at the current state u(f) at the
current time ¢ and primes denote fluctuations about the mean (Eq. A29). The O(#%) term in
Eq.(13) can always be chosen such that <Aw’;Au’3> is a valid covariance matrix (see Appendix).

Second-order accurate sample paths can be constructed by selecting the increment Au
from a joint-normal distribution whose means and covariances are given by Eqs.(12) and (13),
and marching from time level ¢ to time level +A by adding this increment to u(r). It is more
convenient computationally to express the sample paths as a second-order random walk; this
also facilitates comparison with Rao et al. Assume that it is possible to devise a random walk
of the form

ul(H'h) = ui(‘) + F.(L‘_(‘)J»h) +ftj(£(t)vtrh)§j » (14)

such that the transition pdf of Eq.(14) corresponds to that of Eq.(1) to O(%). Here F; and Sy
are deterministic functions of the state at time ¢ and § is a vector of independent standardized
Gaussian random variables, i.e., £ is a joint-normal random vector with means and covariances

<€>=0, <t&>=3;. as)

This is a plausible assumption. The resulting pdf of Au will be joint-normal since Eq.(14)
expresses the increment as a linear combination of joint-normal random variables. Also, the
two functions F; and f;; provide enough degrees of freedom that the means and covariances can
be made to evolve by Egs.(12) and (13) to O(h?). The means and covariances of Au
corresponding to Eq.(14) are

<Au>=F;, <Au',-Au',~> =fid}t . (16)
To satisfy Eqs.(12) and (13) with an error of O(A®), we find that

Flu(t)6h) = Ak + -;—(A,- + A A+ %A,-_,,,C,,,.)hz , amn

Fuh) = Bgh* + ';'{éii + B+ ABy + %(Bw- + BB BipwWCinlh*? . (18)

The existence of B;‘ is not an additional restriction on the numerical method. However, sam-
ple paths cannot be constructed using Eq.(14) unless B;,}Bb, BipmCim i8 finite whenever By; is
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singular. Equation (18) effectively selects the O(#°) truncation term in Eq.(13) in a way that
guarantees realizability, i.e., so that <Au’Au’> is symmetric and positive semi-definite.

We next consider the case where Eq.(5) is not satisfied. The transition pdf is not joint-
normal to second order in 4 and a Gaussian random walk as expressed by Eq.(14) is no longer
appropriate. A second-order random walk can still be constructed by extending the idea pro-
posed by Mil’shtein [24] for a scalar random process. Equation (14) is replaced by a random
walk of the form

ut+h) = uf6) + Glu(nth) + gD LmE; + Yuu(tLmEE: | (19)

whete G;, g;;, and vy;; are deterministic functions of the state at time ¢ and § is again a vector of
independent standardized Gaussian random variables. As before, the goal is to find functions
G, gy and Y such that the distribution of the random variable Au comesponding to Eq.(19)
agrees to O(#%) with the transition pdf of Eq.(1). Equation (A36) shows that t0 satisfy this, it
is enough that the first four moments of Au from Eq.(19) agree with those of Eq.(1) to O(#%)
and that all higher moments of Au be of O(A®) or higher. The required functions are

G = (4 =~ 7 Bip Bih + (i + Ay + A Cod? (20)
SR = B + %{—%B;‘B.,,,BMB.-‘,,.B., +B
@

1.
+ByAr+ ABy + B.,, B e BarBirmCint®?

1
Yﬁk(ﬁ(‘)"rh) = _2'Bi.k.aBpjh . (22)
To summarize, it has been shown that the second-order random walk

1 1, ; 1
ut+hy= u() + (A; - EBip,lBlp)h + E(Ai + AL+ EAi.bnclm)hz

w, 1. 1. 3
+{Bh" + Sy BB pBudBiasBr + By
. 3)
+ Byshr + Ay + 5 B + 5 BB BimCul P21

+ BBk,

yields the proper evolution of the joint pdf of the increment Au to second-order in A. When
the constraint of Eq.(5) is satisfied, this simplifies to the Gaussian random walk (Eqs. 14-18)

w(t+h) = ut) + A + -;-(A,- + A+ —;—A,-,,,,‘C,,,)hz
- ) (24)
+ {Bjh* + -5-[3,-, + B A+ A By + -2—(3,-,,,,, + BBy B ip wCimH1IE, .

In the numerical implementation, Eq.(1) is integrated in time by a marching algorithm where
the state at time t~h is obtained from the state at time ¢ using Eq.(23) or (24). These
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difference equations are similar to those resulting from a discrete approximation to a deter-
ministic ordinary differential equation except for the presence of the random vector &. These
random terms present no difficulty, however, as computationally efficient methods for generat-
ing a sequence of pseudo-random numbers having a normal distribution are well known (see
Knuth [31], for example). Samples of the Gaussian random variables are generated at each
time step. A large number N of independent sample paths are constructed, each representing
an independent realization of the stochastic process or an independent "particle” path in the
M-dimensional V space. Ensemble averaging over these particles is then used to obtain esti-
mates of the statistics of the solution. The initial condition Q" of Eq.(2), if random, is also
computed using an appropriate pseudo-random number generator.

In the second-order method of Rao et al. for a scalar random variable, derivatives of the
coefficients of the random term up to the third order with respect to u and the u,t mixed
derivatives appear. Also, three correlated Gaussian random variables need to be generated. By
contrast, Eq.(23) (in the scalar case) contains derivatives up to just the second order with
respect to 4 and only a single Gaussian random variable is necessary. In Rao et al, it is the
sample paths themselves that are expanded in a Taylor series while here (and in Mil’shtein
[24] ) it is the transition pdf that is expanded. Thus the sample paths of Rao et al, converge in
probability as #* to sample solutions of the given stochastic differential equation while here the
sample paths converge in distribution, a weaker form of stochastic convergence [30]. This
does not imply any loss of information with the new method, but a gain in efficiency: by
expanding the transition pdf instead of the sample paths, we obtain the same statistical infor-
mation about the solution with the same accuracy as Rao et al. using a simpler numerical algo-
rithm.

We now consider the evaluation of one-point statistics from the sample solutions. In addi-
tion to the discretization error of O(#) for each time step, there is a statistical error associated
with approximating the stochastic process by an ensemble of sample paths. Consider an arbi-
trary function of the random variables u(?), g(&,7). The mean of g(u,!) can be approximated as
an ensemble average over the N independent sample paths or particles:

N
<guf)> = <g(un)>y = %,—Zg(g“’,t) , 25)
&=1

where a superscript "()" refers to the i* particle. A consequence of the central limit theorem
[32] is that, as N tends to infinity, the distribution of <g(u,f)>y approaches a normal distribution
with mean and variance

E, = <<g(u0>n> = <g(u,f)>, (26)

0} = <(<gwPN> = <8 W . @7

o, is a measure of the statistical emor incurred in approximating mean values by ensemble
averages: Eq.(27) shows that this error decreases as N -, Setting g(u,f) = uq(t), we obtain the
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standard statistical error for the mean of uy:
Lcui® 8)
Similarly, we obtain the standard error for the second central moments:

i = %N( <> - <l 'yt ¥, 29

(no sum on o or on B). A normalized standard statistical error for the covariances is defined
by dividing Eq.(29) by <u’qu’p>. This yields, for o = B,

1
tatptp = I Ky = 1" (30)
where K is the flatness factor or kurtosis:
K, =22 31
uy = P (31)

For a joint-normal distribution, K is identically equal to 3.

Estimates of the one-time pdf flV;f) can also be extracted from the sample solutions.
Each particle or realization can be considered as a delta function discrete representation of the
pdf in the M dimensional V state space. The ensemble average pdf fi(V;f) is then the normal-
ized number density of particles in this state space (see Pope [33], for example). This is not
discussed further here since in what follows, we concentrate on obtaining the one-time
moments of the solution,

A new second-order Monte Carlo algorithm for the solution to the Ito stochastic
differential equation has been presented. The basis for this numerical method is an expansion
of the joint pdf of the increment of the particle state in a time step 4. By obtaining N sample-
path solutions, moments and distributions can be obtained with a discretization error of O(h*)
on each time step and a statistical error of order N ™%,

4. EXAMPLES

Three sample problems are solved numerically using the Monte Carlo method derived in
Section 3. These examples retain the essential features of the general Ito stochastic differential
equation while remaining simple enough that their solution can be studied in some detail. The
first problem deals with a Langevin equation and the second treats the case of a non-linear
deterministic term in Eq.(1). In these two examples, Eq.(5) is satisfied and the simplified
Gaussian random walk of Eq.(24) is used. The final problem treats a two-dimensional stochas-
tic process for which Eq.(5) is not satisfied; the general random walk of Eq.(23) is then used.
An analytic solution is available for the first problem, and the second-order method is com-
pared both with this analytic solution and with a first-order method. Only the one-time means
and covariance matrix of the solution are discussed in detail; higher-order moments are exam-
ined only to study departures from joint-normality.
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4.1. Homogeneous Langevin Equation

Consider the coupled set of stochastic differential equations
dx(t) = v(t)dr , aw(t) = —a(Hv(n)dt + B(t)“’dW(t) . (32)

x(f) and v(f) may represent, for example, the position and velocity of a particle subject to a
deterministic drag force that is linear in the particle velocity and a random collisional force
operating at a time scale much smaller than that of the macroscopic particle motion [1]. Since
the coefficient functions o(r) and B(s) are independent of position, the equation for v(f) is
referred to as a homogeneous Langevin equation. The increments Ax and Av (Eq. 7) are joint-
normal with means and covariances (Eqs. 12 and 13)

<Arv> = vh - %avhz + Oy, <Av> = —avh + %(az — Gk + O, (33)

<Ax?> = %Bh’ + 00, <AV = Bh + (%B —20P)R + 0K,  (34)
A 1 2 3

<AXAu'> = 2B+ O . 35)

Here the Taylor series expansions in the Appendix have been extended to third order in h to
obtain the leading order term in <Ax’%>. The resulting correlation coefficient r
<AX'AV>

[<ArZ><AVE]% °

is then 7 = ¥3/2 + O(h). It may be seen from Eqs.(34)-(35) that the variance of Ax must be
O(F) to satisfy the realizability condition —1 < 7 < +1. In the numerical implementation, how-
ever, <AX¥?>> may be anything of O(4®) without affecting the formal accuracy of the scheme.
The second-order random walk of Eq.(24) for this case reduces to

r

(36)

x(t++h) = x + vh - %owh2 + %(Bh%”?; , (37

Yerh) = v - avh + (@ - GouR + (BRY* + %ﬁhyz]g , 38)

where & is a standardized normal random variable (zero mean, unit variance). Equation (37)
yields <Ax?> = 1/4Bh® + O(h%), so that the correlation coefficient of Eq.(36) is unity rather
than V3/2 as 4 — 0. This is a consequence of expressing the results as a random walk using a
vector of independent Gaussian random variables, Eqs.(14)-(18) and (24). A first-order method
is obtained by retaining only the terms to O(h) in Eqs.(37) and (38):

x(t+h) = x + vh (39

Wi+hy = v — ovh + (BRY%E . (40)

To separate the effects of discretization error (non-zero time step k) and statistical error
(finite sample size N), we derive deterministic difference equations for the first two moments
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corresponding to the above sample path solutions. For the second-order method of Eqs.(37)-
(38) we obtain

<x(tHh)> = <> + <v>h — -i—oz<v>h2 , 41)

<V(t+h)> = <v> — OVvh + %(m’—dt)<v>h2 , 42)

(> = <> + 2<xV>h + <vish? — o<xV>hE

1 1 (43)
+ Zﬁh; - acvHhd + Za2<v’2>h“ ,
V(1RS> = <2 + Bh — 20<v>h + dP<v iR + (02— )<V R
1 2ot on gy Loan . a3
+(2 B—afy’ - a(ot-ay<v>h’ + 16([3[3 2087k 44

+ %(az-d)z<v'2>h‘ ,
X (R (t+hY> = <X'V'> — a<xVsh + <vish — %m<v’z>h2
+ %(az—d)oc’\bhz + %th + %(az—dkv'z>h3 + -%(12<v'2>h3 (45)

+ (B - 20 — T H,

where all terms on the right-hand sides are evaluated at time level ¢. Terms of all order in A
have been retained in these difference equations: this does not imply that these are fourth-order
accurate approximations for the variances and covariance. These higher-order terms are
retained so that we have a set of difference equations that correspond exactly to the Monte
Carlo solution with the statistical error removed. The set of difference equations corresponding
to the first-order method of Eqs.(39) and (40) is computed similarly:

<x(t+h)> = <x> + <v>h , (46)
<V(t+hy> = <v> — a<voh , “7)

<A (t+hY> = <> + 2<XV>h + <R, (48)

<V (t+h)%> = B> + Bh - 20<vBh + aP<viSH (49)

<X (R (H+R)> = <XV> — a<XVsh + <vish — a<vh? | (50)

The joint pdf of x(f) and v(f) relaxes to joint-normal from any initial distribution in this
homogeneous problem. If we choose a joint-normal or delta function initial condition, the pdf
remains joint-normal for all time and the evolution of the first and second moments provides a
complete one-time statistical description of the evolution of the system, A closed set of ordi-
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nary differential equations governs the evolution of these one-time moments; these follow
directly from the difference equations Egs.(41)-(45) or (46)-(50). For reasonable choices of
off) and B(s), explicit solutions can be obtained for the time evolution of the means and covari-
ances. We choose

% m
off) = ol B = Bolaot+1)™ . 1)
The analytic solutions are then
<> = <x(0)> + ﬂogliln(ao:m , 52)
_ <v(0)>
<(t)> @t ’ (53)
X () = <X + JBL—[(WH)"” - 1)
od(m+3)*
2., Bo
+ -a;[cc (O)V (0)> - m]lﬂ(ﬂot+l) (54)
1 Bo
+ E[<v"(0)> ) Tin(og+ 1)1,
, _ <O Bo o _2
V(> = ot (oot 1™ = (ogt+1) 7], (55)
_ <K (O(0)> Bo 2 _ o
<XV (1> = P + T [(opr+1) (apr+1)71
B In(og+1) ¢
1 , 0 n
+ ;;[a 0> - Py e

These solutions are valid for all ag = 0, Bo 2 0, m # -2, and m # —2%. In general, the moment
equations do not constitute a closed set. This would be the case if, for example, o and B of
Eq.(32) were functions of x as well as of ¢.

The problem that we select for study is Eq.(32) where o(r) and B(¢) are given by Eq.(51),
with Bo=1, cp=1, and m =3, subject to the delta function initial conditions x(0) =0,
w0) = 1. This provides a severe test for the Monte Carlo algorithm: the means change only
gradually while the variances and covariance grow rapidly, hence the statistical error in the
means grows rapidly (Eq. 28). The pdf is joint-normal for all time so that the kurtoses of x(¢)
and of w(f) are equal to 3 (Eq. 31) while the skewness factors

<> <>
Si=—55 vE 7N

are identically zero. Analytic solutions for the means and covariances (Eqs. 52-56) are shown
in Figures 1 and 2.
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Homogencous Langevin, Analytic Evolution of Means
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Two sets of computations are reported. In the first set, the difference equations Eqs.(41)-
(45) and (46)-(50) are compared to the analytic solutions of Eqs.(52)-(56) to study the discreti-
zation error, In the second set, the random walk of Eqs.(37)-(38) is used with a small enough
time step that discretization error is negligible to study the statistical error.

We consider the discretization error first. Figures 3-5 show the normalized error in the
means and covariances at time ¢ = 5.0 as a function of the time step 4 for Eqs.(41)-(45) and
Eqs.(46)-(50). The normalized discretization error € in Figures 3-5 is
_ lanalytic solution — numerical solution|

analytic solution

€ (58)
As expected, the slope of the lines corresponding to the O(h) method is equal to unity on the
log-log plots, and the slape of those comresponding to the O(h*) method is equal to two. These
calculations were performed in 64-bit precision to minimize roundoff error. We conclude from
Figures 3-5 that 1 keep the normalized discretization errors to less than, say, 1%, the O(h?)
method permits a time step A roughly 10 times that permitted by the O(k) method; for 0.1%
error, the second-order method allows a step 100 times larger than the first-order method.

5.0
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We now consider the statistical error. Second-order Monte Carlo runs were made with
h=0.01 to keep the discretization error to less than 0.01%. In all figures showing Monte
Carlo results, only a few time points are plotted for clarity. Figures 6 and 7 show the normal-
ized statistical errors for the mean and variance of v(f) as a function of time for N = 1,000,
N = 10,000, and N = 100,000, Results for <x>, <¥*>, and <x'v/> are similar, Here the nor-
malized statistical error is

Iytic solution — rical solution
¢ = gnalytic solution onume , (59)
[

where o, is defined in Eqs.(28) and (29). Also shown are error bars corresponding to the nor-
malized standard statistical error. The computed statistical error is in good agreement with the
predictions.

For a given time step A& and to integrate to a fixed time level, the second-order Monte
Carlo algorithm requires about 10% more CPU time than the first-order method for this
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example; this difference is greater for more complex problems. If a 1% error is acceptable,
then the second-order method allows a time step roughly ten times as large as the first-order
method and approximately 10,000 particles are needed, a reasonable number for practical com-
putations. The second-order method is clearly justified in this case. However, to further
reduce the statistical error requires a significant increase in N since the statistical error is of
order N~ (Egs. 27-30). At first glance, it appears 