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STOCHASTIC ANALYSIS AND APPLICATIONS, 4 ( 2 ) ,  151-186 (1986) 

A SECOND-ORDER MONTE CARL0 METHOD FOR THE SOLUTION 
OF THE IT0 STOCHASTIC DIFFERENTIAL EQUATION 

D.C. Hawonh and S.B. Pope 

Sibley School of Mechanical and Aerospace Engineering 
Cornell University 

Ithaca, New York 14853 

ABSTRACT 

A difference approximation that is second-order accurate in the time step h is derived for 
the general Ito stochastic differential equation. The difference equation has the form of a 
second-order random walk in which the random terms are non-linear combinations of Gaussian 
random variables. For a wide class of problems, the transition pdf is joint-normal to second 
order in h; the technique then reduces to a Gaussian random walk, but its application is not 
limited to problems having a Gaussian solution. A large number of independent sample paths 
are generated in a Monte Carlo solution algorithm; any statistical function of the solution (e.g., 
moments or pdf's) can be estimated by ensemble averaging over these paths. 

1. INTRODUCTION 

The theory of stochastic differential equations and their use as models of physical 

phenomena originated with the development of a mathematical description of Brownian motion 

[I]. The theory blossomed with the introduction of the Ito and Stratonovich calculi [2,3] and 
these equations are now used in the modeling of a broad range of physical processes. The pur- 
pose of the present work is to develop a numerical algorithm applicable to an important class 
of stochastic ordinary differential equations. Specifically, we seek solutions to equations of the 

form 

for t 2 to, subject to the initial conditions 

c ( 3  = vO 

Copyright O 1986 by Marcel Dekker, Inc. 
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152 HAWORTH AND POPE 

In Eq.(l), ~ ( t )  is a vector-valued random process, A i ( ~ , t )  and Bi,(g,t) are functions of the ran- 
dom processes and of time, and !([) is an isotropic Weiner process [4,5]: a([) has a joint- 
normal distribution with zero means and an isotropic covariance matrix 

where 6ii denotes the Kronecker delta. of Eq.(2) may be a random vector. Here and in the 
remainder of the paper, Cartesian tensor notation is used where convenient 

Equation (1) is a general form of Ito's stochastic differential equation. Included in this 
form are coupled stochastic ordinary differential equations of arbitrary order where the random- 
ness is expressed as a vector of independent Gaussian white noise processes, the derivative of 
the isotropic Weiner process. This type of equation has applications in a variety of fields 
including stochastic control theory [6 ] ,  filtering theory [7], and fluid mechanics [8 ] .  Of particu- 
lar interest in applications is the Langevin equation, a special case of Eq.( l )  in which the deter- 
ministic term is linear in the dependent variable and the coefficient of the random term is 
independent of the dependent variable. 

We assume that the coefficient functions Ai and BU satisfy all necessary conditions for the 
existence of a unique diffusion process solution to Eq.(l) [4,9]. The cwfficient functions must 

also satisfy the following differentiability requirements for the numerical method developed in 
this paper to be applicable: Ai and Cij possess bounded continuous partial derivatives with 
respect to the components of g up to at least the second order and with respect to t up to at 
least the first order in the interval of interest, where Cc is a symmetric positive semi-definite 
matrix, 

The numerical scheme can be simplified if, in addition to these constraints, CU satisfies the 

equation 

Necessary and sufficient conditions for the satisfaction of Eq.(5) are difficult to deduce and do 
not appear to have a simple interpretation in terms of the coefficients Bii. However, we cite 
two important classes of equations for which the restriction is satisfied. First, it follows trivi- 
ally if BU is a function of time only: B&,t) = Bi,(t). In the second class of problems, the ran- 
dom processes ui , i = I, . . . , M have a naturd ordering such that the coefficients B&t) 
satisfy B&,t) = 0 for 1 l i j l m, and B&t) = bM(u,, . . . ,u,t)6, for i ,  j > m. That is, for 
i > m, the i* component of the Weiner process (Wi) only affects the r* component of the s m  
chastic process (4); and, the coefficient BU = b("Sii of the i* process is independent of 
ub k > m. This includes generalized Langevin equations for vector-valued stochastic p m s s e s  
(see Haworth and Pope [ l o ] ,  for example). These are not the most general conditions for the 
satisfaction of Eq.(5). For example, any linear transformation of g, f i i  = Tquy in the second 
class of equations cited also suffices. 

The differential notation of Eq.(l) is shorthand for the stochastic integral equation 
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IT0 STOCHASTIC DIFFERENTIAL EQUATION 153 

In Eq.(6), the meaning of the stochastic integral is ambiguous: we interpret the integral in the 
Ito sense [4,5,ll]. In terms of the increment in g in an interval h, 

the solution of Eqs.(l) and (6) is then a diffusion process whose infinitesimal drift and 
diffusion parameters are 

Results applicable to the alternative Stratonovich interpretation may be deduced by a transfor- 
mation of the drift parameter [4,5,11]. 

Accurate and efficient solution methods for the Ito stochastic differential equation are 
required in practical applications. Our motivation for developing a new numerical algorithm 
for the solution of Eq.(l) is that a six-dimensional stochastic process whose evolution is 
governed by an equation of the Langevin type can be used to model the behavior of fluid parti- 
cles in a turbulent flow [10,12]. Because of the large dimensionality and because the random 
terms are not necessarily small compared to the deterministic terms, most currently available 

solution methods are inadequate for our purposes. We were further compelled to develop a 
method that is second-order accurate in the computational time step h after tests using a first- 
order difference approximation were found to require an impractically small step size (see Sec- 
tion 4). For a difference approximation to a differential equation to have an error of O(@) at a 
fixed time t, as sought here, the truncation error on a single time step must be of 0(h3). (A 

quantity q(h) is of O(hR) if l i m a  = 0 for all oO while liis = - for 1 d.) It is the 
Hn 

one-time statistics of the solution that are of most interest in applications. Thus the minimum 

amount of information that we seek is the one-time pdf of the solution A_V;t), the joint pdf of 
the event { ~ ( t )  = g. The solution method developed here yields substantially more informa- 
tion than this: any one-time or multiple-time statistic can in principle be extracted from the 
numerical solution. 

We begin in Section 2 by reviewing currently available numerical solution techniques for 
stochastic differential or integral equations. It is shown that none of the deterministic methods 
is ideally suited to the general Ito equation. A case is made for solving Eq.(l) via sample path 
solutions, that is, by a Monte Carlo method. Section 3 contains the principal theoretical result 
of this paper that is the basis for the second-order solution algorithm. The new method is 

compared with an alternative second order Monte Carlo algorithm to point out advantages of 
the approach adopted here. Three sample problems are then presented in Section 4. Two of 

these examples satisfy the constraint of Eq.(5) while the third does not. A comparison is made 
between first-order and second-order solutions; both statistical errors and time differencing 
errors are discussed. Finally, the results are summarized and conclusions are drawn in Section 
5. I 
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2. SURVEY OF SOLUTION TECHNIQUES 

A wide variety of numerical schemes are available for the solution of stochastic 

differential or integral equations. Analytic solutions are also available, but as for deterministic 
equations, they are applicable only to a limited class of problems and are not considered here. 
In this section, the development of a new numerical procedure for the solution of the Ito sto- 
chastic differential equation is justified by demonstrating that currently available techniques are 
not well suited to this problem in its general form. Most techniques either: 1) yield insufficient 
information about the solution; 2) are strongly dependent on the specific form of the coefficient 
functions or on the dimensionality of the problem; 3) are not amenable to a priori error 

analysis; or 4) fail to take full advantage of the special characteristics of this equation, e.g., the 
Gaussian nature of the random tenns. Many of the methods described here are applicable to a 
wider class of problems than stochastic differential equations of the Ito type; no general indict- 
ment of these methods is intended. 

Numerical solution techniques for stochastic differential equations can be classified into 
two categories. We define "direct" methods as those that deal with the original stochastic 
equations. These methods use a discretization analogous to that used in obtaining numerical 
solutions to deterministic ordinary differential equations. "Indirect" methods wansfom the 

given set of random ordinary differential equations into either a single deterministic partial 
differential equation for the pdf of the solution or into a set of deterministic ordinary or partial 
differential equations for moments of the solution. These deterministic differential equations 
are then solved by standard techniques. 

We consider indirect methods first. For (almost) any continuous time Markovian stochas- 
tic process including the current problem, it is possible to derive an equation governing the 

evolution of the probability density function [I 11. The pdf equation can in principle be solved 
using finitedifference methods (see Smith [13], for example). However, the finite-difference 

solution of a partial differential equation in more than three independent variables is beyond 
the scope of practical computations. Hence, such an approach is limited to stochastic processes 
of low dimensionality. 

Another class of indirect methods makes use of moment equations. A set of deterministic 

differential equations for the evolution of the moments or cumulants of a stochastic process can 
be derived either from its pdf evolution equation or directly from the given stochastic 
differential equations [14,15]. Except in simple cases, however, this set is not closed: higher- 
order moments appear in the evolution equations for the lower-order moments. Hierarchy 

methods overcome this difficulty by expressing the higher-order moments or cumulants as 
functions of lower-order moments or cumuiants, auncating the infinite set of equations to a 
finite number that can then by solved by conventional techniques [16]. Such methods are not 
attractive here since only a limited amount of information about the solution is obtained, typi- 
cally only the first few moments, and no a priori error estimates are in general available. 

A review of several direct computational methods is given by Boyce [17]. In this paper, 
two techniques are discussed in detail; both are developed for the case of a scalar random pro- 

cess. The first treats the stochastic process as a collection of random variables, discretizing 
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I T 0  STOCHASTIC DIFFERENTIAL EQUATION 

both the state space and the index parameter (time), then marching from one time level to the 
next by determining transition probabilities for the time increment h (see also Kohler and 

Boyce [la] ). This method fails to make full use of the special features of Eq.(l) and addi- 
tional complications arise for a vector-valued random process. The second technique treats the 
process as a collection of sample functions by solving deterministic ordinaty differential equa- 

tions for fixed values of the random terms in the original equation, then assigning probabilities 
to each of these solutions based on the given distribution functions of the random terms (see 
also Barry and Boyce [19] ). This method appears to be more promising but is not an efficient 
technique for solving the vector Ito equation. 

A third direct method is the method of moments developed by Lax and Boyce [20,21]. 
This is an extension of Galerkin's method for linear deterministic equations to linear random 
ordinary differential or integral equations. The stochastic process is approximated by a linear 
combination of basis functions computed from the original equation. The solution consists of a 

finite number of moments, inadequate for our purposes, a priori error estimates do not appear 
to be available, and the technique is limited to linear equations. 

The above methods are all deterministic, with a unique solution for a given set of initial 
conditions. Alternatively, sample-path solutions can be obtained by numerically integrating a 
discrete approximation to the stochastic differential equation. A Taylor series expansion is per- 
formed to obtain the corresponding difference equations, and pseudo-random number genera- 
tors are used in a Monte Carlo solution algorithm to approximate the random terms. A first- 
order scheme consists of simply replacing dt of Eq.(l) by the finite time step h and replacing 
e ( t )  by a vector of independent Gaussian random variables, each with zero mean and vari- 

ance h: the stochastic differential equation is reduced to a Gaussian random walk. This 

approximation has been used extensively but often requires an extremely small time step in 
practice (see Section 4); we limit our discussion to higher-order methods. Second and higher 

order algorithms have been presented by several workers [22-281 for subsets of Eq.(l). Rao et 
al. [22] consider a scalar-valued Ito equation, expanding u(t) in a Taylor series and retaining 
terms to 0(hZ). Mil'shtein [24] treats the same problem by expanding the transition pdf in a 
time step h rather than the stochastic process itself. This gives a simpler numerical algorithm 
that yields the same statistical information with the same accuracy as that of Rao et al. The 
approach adopted by Helfand [25] and expanded on by Greenside and Helfand [261 is similar 
to that of Mil'shtein. They treat a vector-valued Ito equation but restrict their analysis to the 
case where Bii of Eq.(l) is isotropic and independent of ~ ( t ) .  This is also the case considered 
by Drummond et al. [27,28] who add the further restriction that Bi, be independent of t. 

The present work extends the approach of Mil'shtein [24] to a general vector-valued Ito 

stochastic differential equation. The analysis is presented in a different way, however, with 

particular emphasis on the important subset of problems for which Eq.(5) is satisfied: the 
numerical method then reduces to a Gaussian random walk although its application is not res- 
tricted to problems having a Gaussian or joint-normal solution. The statistical error in approxi- 
mating the stochastic process by a finite ensemble of sample paths is treated in detail here 
while the earlier works (except Drummond et al. [281 ) dealt primarily with the time 
differencing error. Systematic verification of the analytic results for both statistical and discret- 
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156 HAWORTH AND POPE 

ization error is given via sample problems (see Section 4). It is important to justify the use of 
the second-order algorithm by showing that the larger time step allowed compared to a first- 
order scheme compensates for the additional computational complexity. This is also done 
using sample problems. 

The method of sample-path solutions, i.e., a Monte Carlo method, appears to be most 
appropriate for our purposes. By obtaining N sample solutions, all statistics can be obtained 
with a statistical error of order N-", and the order of the discretization error is determined by 
the level at which the series expansions are truncated in the derivation of the difference equa- 
tions. Problems of large dimensionality are well suited to this numerical technique [29]: com- 
putational requirements increase only linearly with the number of independent variables, the 

best that can be achieved. 

3. DERIVATION OF NLTMERICAL METHOD 

In this section, we derive the second-order Monte Carlo algorithm for obtaining sample- 

path solutions to the Ito stochastic ordinary differential equation. This numerical method is 

based on a Taylor series expansion of the transition joint pdf corresponding to Eq.(l). The 
advantage of this approach over expanding the stochastic process itself is illustrated by com- 

paring the algorithm derived here with that of Rao et al. [22]. A method for extracting the 
one-time moments of the solution from the sample paths is described and estimates of the 
resulting statistical e m r  are given. 

We begin by considering the evolution of the joint pdf. The transition pdf f *(y;s,r 1 is 
the joint pdf of the event {I$) = _V) conditional on the event { ~ ( s )  = _U), (r 2 s). Because 
Eq.(l) describes a Markov process, all finite-dimensional distributions of the solution can be 

expressed in terms off * [30]. Thus while we concentrate on obtaining the one-time moments 
of the solution in this paper, knowledge of the transition pdf to O(hn) is sufficient information 
to deduce all  finite-dimensional moments and distributions of the solution with an error of 

O(h"). For any diffusion process, the transition pdf evolves according to the corresponding 
Fokker-Planck equation or forward Kolmogorov equation [4,5,11]. The Fokker-Planck equa- 
tion corresponding to Eq.(l) is 

Equation (10) also governs the evolution offfy;r) for t 2 s if the state at time s is fixed. 

We consider first the case where the constraint of Eq.(5) is satisfied. The basis for the 

numerical method is then a result &rived in the Appendix: subject to the deterministic initial 
conditions ~ ( t )  = _U, and provided the coefficient functions satisfy Eq.(5), Eq.(lO) causes 
f(lI;t+h) to evolve as a joint-normal diseibution to second-order in h: 
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IT0 STOCHASTIC DIFFERENTIAL EQUATION 157 

where fJN(!;t) denotes a joint-normal distribution. This result implies that second-order sam- 
ple paths can be formed by choosing &, the increment in g in each interval h (Eq. 7), from a 
joint-normal distribution whose means and covariances are correct to 0(h2). Second-order 
accurate approximations for the means and covariances of Ag can be derived in several ways 
but they have already been found as part of the proof that appears in the Appendix (Eqs. A34 - 
A35): 

In these equations, all terms on the right-hand sides are evaluated at the current state g(t) at the 
current time t and primes denote fluctuations about the mean (Eq. A29). The O(h3) term in 
Eq.(13) can always be chosen such that cAutiAu'~ is a valid covariance matrix (see Appendix). 

Second-order accurate sample paths can be constructed by selecting the increment A? 
from a joint-normal distribution whose means and covariances are given by Eqs.(l2) and (13), 
and marching from time level t to time level t+h by adding this increment to g(t). It is more 
convenient computationally to express the sample paths as a second-order random walk; this 
also facilitates comparison with Rao et al. Assume that it is possible to devise a random walk 
of the form 

such that the transition pdf of Eq.(14) corresponds to that of Eq.(l) to ~ ( p ) .  Here Fi andf, 
are deterministic functions of the state at time t and r, is a vector of independent standardized 
Gaussian random variables, i.e., & is a joint-normal random vector with means and covariances 

<ki> = 0 ,  <up = sii . (15) 

This is a plausible assumption. The resulting pdf of & will be joint-normal since Eq.(14) 
expresses the increment as a linear combination of joint-normal random variables. Also, the 

two functions Fi andJj provide enough degrees of freedom that the means and covariances can 
be made to evolve by Eqs.(l2) and (13) to O(hZ). The means and covariances of Ag 
corresponding to Eq.(14) are 

= Fi , <I~u:Au'~  =A& . 
To satisfy Eqs.(12) and (13) with an m r  of O(h3), we find that 

The existence of B;' is not an additional restriction on the numerical method. However, sam- 
ple paths cannot be constructed using Eq.(14) unless B$B,+,$~~,c,,,, is finite whenever Bii is 
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singular. Equation (18) effectively selects the O(h3) truncation term in Eq.(13) in a way that 
guarantees realizability, i.e., so that d ~ ' ~ A u > >  is symmetric and positive semidefinite. 

We next consider the case where Eq.(5) is not satisfied. The transition pdf is not joint- 
normal to second order in h and a Gaussian random walk as expressed by Eq.(14) is no longer 
appropriate. A second-order random walk can still be constructed by extending the idea pro- 
posed by Mil'shtein [24] for a scalar random process. Equation (14) is replaced by a random 
walk of the form 

where Gi, gu, and y,lk are deterministic functions of the state at time t and is again a vector of 
independent standardized Gaussian random variables. As before, the goal is to find functions 
Gi, gii, and yuk such that the distribution of the random variable Ag corresponding to Eq.(19) 
agrees to O(3) with the transition pdf of Eq.(l). Equation (A36) shows that to satisfy this, it 
is enough that the h t  four moments of Ag from Eq.(19) agree with those of Eq.(l) to 0(h2)  
and that all  higher moments of Ag be of O(h3) or higher. The required functions are 

To summarize, it has been shown that the second-order random walk 

yields the proper evolution of the joint pdf of the increment Ag to second-order in h. When 

the constraint of Eq.(5) is satisfied, this simplifies to the Gaussian random walk (Eqs. 14-18) 

In the numerical implementation, Eq.(l) is integrated in time by a marching algorithm where 
the state at time t+h is obtained from the state at time t using Eq.(23) or (24). These 
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difference equations are similar to those resulting from a discrete approximation to a deter- 
ministic ordinary differential equation except for the presence of the random vector &. These 
random tenns present no difficulty, however, as computationally efficient methods for generat- 
ing a sequence of pseudo-random numbers having a normal distribution are well known (see 
Knuth [31], for example). Samples of the Gaussian random variables are generated at each 
time step. A large number N of independent sample paths are constructed, each representing 
an independent realization of the stochastic process or an independent "particle" path in the 

M-dimensional _V space. Ensemble averaging over these particles is then used to obtain esti- 
mates of the statistics of the solution. The initial condition of Eq.(2), if random, is also 
computed using an appropriate pseudo-random number generator. 

In the second-order method of Rao et al. for a scalar random variable, derivatives of the 
coefficients of the random term up to the third order with respect to u and the u,t mixed 
derivatives appear. Also, three correlated Gaussian random variables need to be generated. By 
contrast, Eq.(23) (in the scalar case) contains derivatives up to just the second order with 
respect to u and only a single Gaussian random variable is necessary. In Rao et al., it is the 
sample paths themselves that are expanded in a Taylor series while here (and in Mil'shtein 
[241 ) it is the transition pdf that is expanded. Thus the sample paths of Rao et al. converge in 
probability as hZ to sample solutions of the given stochastic differential equation while here the 
sample paths converge in distribution, a weaker form of stochastic convergence [30]. This 

does not imply any loss of information with the new method, but a gain in efficiency: by 
expanding the transition pdf instead of the sample paths, we obtain the same statistical infor- 
mation about the solution with the same accuracy as Rao et al. using a simpler numerical algo- 
rithm 

We now consider the evaluation of one-point statistics from the sample solutions. In addi- 
tion to the discretization error of O(h3) for each time step, there is a statistical error associated 
with approximating the stochastic process by an ensemble of sample paths. Consider an arbi- 
trary function of the random variables I$), g(gt). The mean of g(g,t) can be approximated as 

an ensemble average over the N independent sample paths or pdc le s :  

where a superscript "(if" refers to the i* particle. A consequence of the central limit theorem 
[321 is that, as N tends to infinity, the distribution of <g(g,t)>N approaches a normal distribution 
with mean and variance 

o, is a measure of the statistical error incurred in approximating mean values by ensemble 

averages: Eq.(27) shows that this error decreases as N - ' ~ .  Setting g ( g )  = u&), we obtain the 
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standard statistical error for the mean of u,: 

Similarly, we obtain the standard error for the second central moments: 

(no sum on a or on p). A normalized standard statistical error for the covariances is defined 
by dividing Eq.(29) by <u',u'p. This yields, for a = P, 

where K is the flatness factor or kurtosis: 

For a joint-normal distribution, K is identically equal to 3. 

Estimates of the one-time pdf f(_V;t) can also be exhacted from the sample solutions. 
Each particle or realization can be considered as a delta function discrete representation of the 

pdf in the M dimensional _V state space. The ensemble average pdf f&t) is then the normal- 
ized number density of particles in this state space (see Pope [33], for example). This is not 
discussed further here since in what follows, we concentrate on obtaining the one-time 
moments of the solution. 

A new second-order Monte Carlo algorithm for the solution to the Ito stochastic 
differential equation has been presented. The basis for this numerical method is an expansion 

of the joint pdf of the increment of the pariicle state in a time step h. By obtaining N sample- 
path solutions, moments and distributions can be obtained with a discretization error of 0(h3) 

on each time step and a statistical error of order N *. 

4. EXAMPLES 

Three sample problems are solved numerically using the Monte Carlo method derived in 
Section 3. These examples retain the essential features of the general Ito stochastic differential 
equation while remaining simple enough that their solution can be studied in some detail. The 
first problem deals with a Langevin equation and the second treats the case of a non-linear 
deterministic term in Eq.(l). In these two examples, Eq.(5) is satisfied and the simplified 
Gaussian random walk of Eq.(24) is used. The final problem treats a two-dimensional stochas- 
tic process for which Eq.(5) is not satisfied; the general random walk of Eq.(23) is then used. 
An analytic solution is available for the first problem, and the second-order method is com- 
pared both with this analytic solution and with a first-order method. Only the one-time means 
and covariance matrix of the solution are discussed in detail; higher-order moments are exam- 
ined only to study departures from joint-normality. 
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4.1. Homogeneous Langevin Equation 

Consider the coupled set of stochastic differential equations 

&(t) = v(t)dt , dv(t) = -a(t)v(t)dt + ~(t)"dW(t) . (32) 

~ ( t )  and v(t) may represent, for example, the position and velocity of a particle subject to a 
deterministic drag force that is Linear in the particle velocity and a random collisional force 

operating at a time scale much smaller than that of the macroscopic particle motion [I]. Since 
the coefficient functions a(?) and P(t) are independent of position, the equation for v(t) is 
referred to as a homogeneous Langevin equation. The increments Ax and Av (Eq. 7) are joint- 
normal with means and covariances (Eqs. 12 and 13) 

Here the Taylor series expansions in the Appendix have been extended to third order in h to 
obtain the leading order term in cAd2>. The resulting correlation coefficient r 

is then r = 0 2  + O(h). It may be seen from Eqs.(34)-(35) that the variance of Ax must be 
0(h3) to satisfy the realizability condition -1 I r < +l. In the numerical implementation, how- 
ever, &% may be anything of O(h3) without affecting the formal accuracy of the scheme. 
The second-order random walk of Eq.(24) for this case reduces to 

where 5 is a standardized normal random variable (zero mean, unit variance). Equation (37) 
yields = 1/4Ph3 + O(h4), so that the correlation coefficient of Eq.(36) is unity rather 
than .15/2 as h + 0. This is a consequence of expressing the results as a random walk using a 
vector of independent Gaussian random variables, Eqs.(14)-(18) and (24). A first-order method 
is obtained by retaining only the t m  to O(h) in Eqs.(37) and (38): 

v(t+h) = v - avh + (Ph)"t . (40) 

To separate the effects of discretization error (non-zero time step h) and statistical error 
(finite sample size N), we derive deterministic difference equations for the first two moments 
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corresponding to the above sample path solutions. For the second-order method of Eqs.(37)- 

(38) we obtain 

where all terms on the right-hand sides are evaluated at time level t .  Terms of all order in h 

have b m  retained in these difference equations: this does not imply that these are fourth-order 
accurate approximations for the variances and covariance. These higher-order terms are 
retained so that we have a set of difference equations that correspond exactly to the Monte 
Carlo solution with the statistical error removed. The set of difference equations corresponding 

to the first-order method of Eqs.(39) and (40) is computed similarly: 

The joint pdf of x(t) and v(t) relaxes to joint-normal from any initial distribution in this 
homogeneous problem. If we choose a joint-normal or delta function initial condition, the pdf 
remains joint-normal for all time and the evolution of the first and second moments provides a 

complete one-time statistical description of h e  evolution of rhe system. A closed set of ordi- 
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nary diiferential equations governs the evolution of these one-time moments; these follow 
directly from the difference equations Eqs.(41)-(45) or (46)-(50). For reasonable choices of 
a(t) and P(t), explicit solutions can be obtained for the time evolution of the means and covari- 
ances. We choose 

The analytic solutions are then 

These solutions are valid for aII a,, 2 0, Po 2 0, m # -2, and m + -2%. In general, the moment 
equations do not constitute a closed set. ?his would be the case if, for example, a and P of 

Eq.(32) were functions of x as well as of I. 
The problem that we select for study is Eq.(32) where a(r) and P(t) are given by Eq.(51), 

with = 1, = 1, and m = 3, subject to the delta function initial conditions NO) = 0, 

v(0) = 1. ?his provides a severe test for the Monte Carlo algorithm: the means change only 
gradually while the variances and covariance grow rapidly, hence the statistical error in the 
rneans grows rapidly (Eq. 28). The pdf is joint-normal for all time so that the kurtoses of Nt) 

and of v(r) are equal to 3 (Eq. 31) while the skewness factors 

are identically zero. Analytic solutions for the means and covariances (Eqs. 52-56) are shown 
in Figures 1 and 2. 
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t 
FIG. 1 

Momogencous Langcvin, A~iaiytic Evolution of Means 

mean velocity 
---* mean position 

Two sets of computations are reported. In the first set, the difference equations Eqs.(41)- 
(45) and (46)-(50) are compared to the analytic solutions of Eqs.(52)-(56) to study the discreti- 
zation error. In the second set, the random walk of Eqs.(37)-(38) is used with a small enough 
time step that discretization error is negligible to study the statistical error. 

We consider the discretization e m  first Figures 3-5 show the normalized error in the 
means and covariances at time t = 5.0 as a function of the time step h for Eqs.(41)-(45) and 
Eqs.(46)-(50). The normalized discretization m r  E in Figures 3-5 is 

& l 
JanaIytic solution - numerical solution[ 

a ~ l y t i c  solution 

As expected, the slope of the lines corresponding to the O(h) method is equal to unity on the 
log-log plots, and the slope of those corresponding to the 0(h2) method is equal to two. These 
calculations were performed in 64-bit precision to minimize mundoff error. We conclude from 
Figures 3-5 that to keep the normalized discretization errors to less than, say, 146, the 0(h2) 
method permits a time step h mughly 10 times that permitted by the O(h) method, for 0.1% 

error, the second-order method allows a step 100 times larger than the first-order method 
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1 
FIG. 2 

1Iomogeneous Langevin, Analytic Evolution of Variances and Covariance 

velocity variance ---- position variance -- position-velocity covariance 

We now consider the statistical error. Second-order Monte Carlo nrns were made with 
h = 0.01 to keep the discretization error to less than 0.01%. In all figures showing Monte 
Carlo results, only a few time points are plotted for clarity. Figures 6 and 7 show the normal- 
ized statistical emxs for the mean and variance of v(t) as a function of time for N = 1,000, 
N = 10,000, and N = 100,000. Results for u>, &, and dv5 are similar. Here the nor- 
malized statistical error is 

& = analytic solution - numerical solution 

=I 

where a, is defined in Eqs.(28) and (29). Also shown are error bars corresponding to the nor- 
malized standard statistical error. The computed statistical error is in good agreement with the 
predictions. 

For a given time step h and to integrate to a fixed time level, the second-order Monte 
Carlo algorithm requires about 10% more CPU time than the first-order method for this 
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h 
FIG. 3 

Homogeneous Longevin, Discrctimtion Error In the Mcnns @ t-S 

mean velocity. first& mcrhod 
rclaece lire w i h  slope - l 

+ mean velocity, second-order mew 
mean position, lira-order m e w  

x mean psition. semnd-order mew ---- mfmnee l im with dopa - 2 

example; this difference is greater for more complex problems. If a 1% error is acceptable, 
then the second-order method allows a rime step roughly ten rimes as large as the first-order 
method and approximately 10,000 particles are needed, a reasonable number for practical com- 
putations. The second-order method is clearly justified in this case. However, to further 
reduce the statistical error requires a significant increase in N since the statistical error is of 
order N-" (Eqs. 27-30). At first glance, it appears reasonable to argue that there is no point in 
choosing h so small or N so large that one type of emx is much smaller than the other. There 
is an important distinction between the two types of error, however. Discretization e m  is sys- 
tematic while statistical error is random and, for the example considered here, unbiased. 
Methods such as spline fiaing may be used to effectively decrease the statistical error [34,35]. 
It may make sense then to keep the discretization error at a level smaller than the standard sta- 
tistical error, and in that case the higher& method becomes more attractive. 
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It 
FIG. 4 

IIomogeneow Langevin, Discrelhtion Error in the Variances @ b 5  
velocity variance, firstorder melhod 
reference lim w i l  slop - I 

+ velocity variance, secondorder method 
+ position variance, lirst-order method 
X podtion variance. secondorder muhod ---- rcluence line with slope - 2 

4.2. Non-linear Deterministic Term 

We next consider a case where the deterministic term is non-linear in the dependent vari- 
able. The pdf is no longer joint-normal and the moment equations no longer constitute a 
closed set. Having discussed discretization and statistical errors in detail in the previous exarn- 
ple, we content ourselves here with demonstrating computationally that the secondader 
method converges as N + m and as h + 0. It is expected that as the departure from joint- 
normal behavior becomes more severe, the second-order method becomes more attractive. We 

select a one-dimensional problem where there is a significant departure from a Gaussian pdf: 

with 
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I1 

FIG. 5 
llomogeneous Lnngcvin, Discretization Error in the Covariance @ t=5 

position-velocity covrriann, firsl-order method 
reference line with slope - 1 

+ position-velocity covariance, second-order method 
refennoc like with dope - 2 

and & = 1, a, = n, vo = 1, Po = 2.5, 9 = n. The initial condition is v(0) = 1. Equation (5) is 
satisfied; the transition pdf is Gaussian to 0(p) but the pdff(V;t) is not Gaussian for all time. 
The second-order random walk for this problem is (Eq. 24) 

where a subscript v denotes a partial derivative with respect to v, and 6 is again a standardized 
normal random variable. Three sets of Monte Carlo calculations were paformed with 
N = 1,000, N = 10,000, and N = 100,000. The time step in each case is h = 0.01. Results for 
the one-time moments of v(t) up to the fourth are plotted in Figures 8-10. The line in each 

figure is a least squares cubic splines fit through the numerical solution for N = 100,000. 
Clearly, the solution for these one-time moments converges as N increases. Note that there is 
a significant departure from Gaussianity evident in the evolution of the skewness and flatness 
factors (Figure 10). To check that the solution algorithm is 0(@), we plot in Figure 11 the 
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t 
FIG. 6 

Homqencous Lnngevin, Statistical Error in Mean Velocity 

Monte Carlo cdculation. N - 1,000 
+ Mome Carlo calculation, N = 10,000 
* Monte Cnrlo calculation, N - 100.000 

normalized standard statistical error 

normalized error in the mean and variance (Eq. 58) at t = 5.0 vs. the time step h for 
N = 1,000,000. Here the "analytic solution" is taken as the Monte Carlo solution for 
h = 0.02 , N = 1,000,000 so that the normalized statistical error is about 0.1%. Figure 11 

verifies that the error in the variance decreases as the square of the time step. However, the 

error in the mean is barely above the threshold of statistical noise so that we cannot draw 
meaningful conclusions about the discretization e m r  for a > .  Both error curves depart from 
linearity at large values of h as higher-order terms become significant 

4.3. General Two-Dimensional Problem 

As a final example, consider a two-dimensional stochastic process not satisfying Eq.(5): 

W t )  = A~(x,v)dt + Bl(x)dWl(t) , dv(t) = A2(x,v,t)dt + B2(v,t)dWz(t) , (63)  
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t 
FIG. 7 

llomogeneous Lnngevin, Stntistienl Error in Velocity Variance 

Monk Carlo calculation, N - 1,000 
+ Monte Gr lo  cdculntion, N - 10,000 
+ Monte Carlo calculation, N - 100,000 

normalized standard statistical error 

where the coefficient functions are 

Al(sv) = al[l + e ~ f ( ~ ) 1 [ 2  + cos(v)l , Bl(x) = P1[2 + sin(x)] , 
xo (64) 

with a, = 1, a2 = 1, PI = 2, pz = 114, xo = 1,  and w = n. The second-order random walk now 
has the form (Eq. 23) 
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t 
FIG. 8 

Non-linear Example, Evolution or the Mean 

Monk Carlo calculation. N - 1,000 
+ Monte Carlo calculation, N - 10,000 

spline fit through Monte Carlo calculation, N = 100,000 

As before, subscripts x and v denote partial derivatives with respect to x and v respectively, 
and t1 and C2 are independent standardized Gaussian random variables. The delta function ini- 
tial conditions are x(0) = 1, v(0) = 1. Monte Carlo calculations were performed using the same 
values of h and N as in the previous example; convergence of the statistical error is evident in 

Figures 12-14. Only the 6rst four moments of v(t) are shown but similar results are obtained 
for the moments of x(t) and for the joint statistics of x( t )  and v( t ) .  
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Taking as the "analytic solution" a Monte Carlo calculation for h = 0.005, N = 1,000,000, 

the second-order nature of the algorithm is checked in Figure 15 by plotting the error E (Eq. 

58) at r = 1.0 versus the step size h for N = 1,000,000. The slopes of the lines corresponding 

to 4m, <v%, and u> are equal to 2, at least for time steps large enough that the error is 
above the level of statistical noise ( = 0.1% ) and small enough that higher-order terms are not 
important. Results for 4% and especially uC'> are, unfortunately, not as convincing. There 
are three sources of error in these calculations. The normalized statistical error in dv'z  is 

estimated to be 0.4% (a of Eq. 29 divided by u'vf>). This can be reduced by increasing the 
number of particles N. Errors due to higher-order huncated terms in h can be reduced by 
decreasing the time step, but it is necessary to simultaneously increase N so that discretization 

error can be distinguished from statistical error. Finally, more severe demands are placed on 
the random number generators here than in the previous examples; up to fourth moments of the 
Gaussian random variables affect the second moments of A! for the random walk of Eq.(23), 



D
ow

nl
oa

de
d 

B
y:

 [C
or

ne
ll 

U
ni

ve
rs

ity
 L

ib
ra

ry
] A

t: 
03

:0
7 

20
 D

ec
em

be
r 2

00
7 

IT0 STOCHASTIC DIFFERENTIAL EQUATION 173 

I , , , ,  
w . w * .  

-2.0 1 I I I I 
0. 1 .O 20 3.0 4.0 5.0 

t 
FIG. 10 

Non-linear Example, Evoluiiun or the Skewness and Kurtosis 

skewness, Monte Carlo wlculation. N - 1.000 
+ skemrss, Motwe Carlo ukulation, N - 10,000 

skew-, spline fit through Monte Cado calwlatio~ N = 100.000 
kunosir, Monte Carlo calculation. N - 1,000 

x kunosis. Monte Carlo calculation. N - 10,000 ---- kunoris. spline fit through Monte Carlo ulwlation. N - 100.000 

while only up to the second moments of the Gaussian random variables affect the second 
moments of Ag for the simplified random walk of Eq.(24). Because these numerical tests con- 
sume large amounts of computer time, we did not attempt to improve on the results of Figure 
15. 

Three sample problems have been solved using the new second-order Monte Carlo algo- 
rithm 'Zhese examples illustrate the convergence of the numerical solution as h -+ 0 and as 
N -+ .o and verify (in most cases) that the method is second-order in the time step even in 
cases where there are departures from a joint-normal pdf and the restriction of Eq.(5) does not 

hold. Although fixed initial conditions were used for convenience in these examples, the 
method is equally applicable to random initial conditions. 
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mean of v 
reference line with slope - 2 

+ variance of v 

l.Oe+Ol 

A numerical solution algorithm applicable to the general Ito stochastic differential equa- 
tion has been developed. The method is based on a Taylor series expansion of the transition 
joint pdf in a time increment h corresponding to Eq.(l); for a wide class of coefficient func- 
tions, this pdf is joint-normal to second order in h. By numerically integrating N sample paths, 
all one-time and multiple-time statistics of the solution can be exeacted with a statistical error 
of order N+ and a discretization error of 0(h3)  on each time step. Results were presented for 
three sample problems, verifying the analytic error estimates and demonstrating convergence 
even in cases where there is a significant departure from joint-normality. 

The present work is a generalization to vector-valued random processes of the method 

developed by Mil'shtein [MI. In working with the transition pdf instead of the sample paths 
themselves as was done by Rao et al. [22], we are able to extract the same statistical informa- 
tion from the solution via a computationally more efficient algorithm. 

1.ktM) 
f - - + 

a - 

1.k-W 
L ,  

1.0e-01 1.0e+00 
It 

FIG. 11 
Non-linear Example, Uiscrctization Error @ t=5 
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FIG. 12 
Two-Dimensional Example, Evolution of Mean of v 

Monte Carlo calcula~ion, N - 1,000 
+ Monte Car10 calculation, N - 10,000 

spline fit through Monte Cvfo ukulatim. N - 100,000 

Compared to other currently available numerical solution techniques, the Monte Carlo 
method takes advantage of the Gaussian nature of the random terms m Eq.(t) and is readily 
applicable to problems of high dimensionality. The strength of the Monte Carlo method is that 
computational requirements increase only linearly with the number of independent variables; 
the penalty is the slow convergence of the statistical enor as N*. Higher order methods in h 

can be derived by carrying additional terms m the Taybr series expansions [24-261. The com- 
putational complexity of the second-order method compared to a firsborder method appears to 
be wananted. That is, the increase in the time step allowed by the h i g h e r a h  scheme com- 
pensates for the extra teams that must be calculated at each time step. In statistically stationary 
problems where statistics can be generated by time averaging over particle trajectories rather 
than by ensemble averaging over a large number of realizations, higher-order schemes may be 
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c 
FIG. 13 

TWO-Dimensional Example, Evolution of Variance of v 

Monte Carlo calculrtion, N - 1,000 
+ Monte Carlo calculation, N - 10,000 

spline fit thmugll Monte Carlo calculation, N - 100,000 

desirable. Otherwise, there is little incentive to extending to 0(h3) or higher as the number of 
particles required to keep the statistical error correspondingly low would be prohibitive. 

At each time step of the random walk, a vector of independent standardized Gaussian ran- 
dom variables is needed. A random number generator is also required for the initial condition, 
if random Convergence of the numerical calculations to the analytic solution as h + 0 and as 
N + - demands that the error of these pseudo-random number generators in approximating the 
desired distributions be negligible. No attempt to quantify this source of error has been made 
here. In practice, it is usually kept small compared to the discretization error and statistical 
error using standard computational algorithms (see Knuth [31], for example). As pointed out 
in Section 4.3 however, the general random walk of Eq.(23) places severe demands on the ran- 
dom number generators. The calculation of the random numbers can take a significant fraction 
of the total execution time in simple problems, about 50% for the example of Section 4.1, but 
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-. . 
0. 0.5 1.0 1.5 2.0 2 5  

I 
FIG. 14 

Two-Dimensiond Exomple, Evolulion oTSkewneu end Kurlosis ofv 

ikewrrss, Monte Carlo calculation, N - 1,000 
+ skewness. Monte Carlo wlculation. N - 10,000 

skewmss. spline lit through Monte Cvlo calculation, N - 100.000 
+ kurtosis. Monte Carlo calculation. N - 1.000 
X ---- kunatis, Monte Cnrlo calculation, N - 10.000 

kurloia, spline lit through Monte Carlo calculation, N - 100.000 

this fraction decreases as the complexity of the coefficient functions increases. For the prob- 
lem of Section 4.2, only 1-2% of the computational time is spent in generating the Gaussian 
random variables. 

As a final comment, it may not always be convenient to use the difference equations with 
the derivatives of the coefficient functions explicitly in evidence, as in Eqs.(23) and (24). This 

is especially important in cases where the coefficients Ai and Bg are functions of the statistics 
of the solution and hence are not known a priori as explicit functions of time. It is possible to 
overcome this difficulty by rewriting the difference equations as a predictor-corrector or 
Runge-Kutta scheme. Runge-Kutta methods are presented by Mil'shtein [%I, by Greenside 
and Helfand [25,26], and by Drununond et al. [28] for the subsets of problems considered in 
those papers. The derivation of Runge-Kutta methods is straightforward when Bi is indepen- 
dent of g. For example, the difference equation for the sample problem of Section 4.2 (Eq. 62) 
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+ wirnceo fv  
4 mean of x 
x variance of x 
V covariance of x and v 

can be witten in the alternative form 

dl) = do) + a@)h + $(O)hHt , 

1 1 v(r+h) = do) + -(a(') + a( '3h  + Z($(0) + $(l))hHS , 
2 (69) 

where quantities with a superscript "(0)" are evaluated at time level r and at v = v(t), while 
those witb a superscript "(1)" are evaluated at time level r + h and at v = dl). Such 
modilicatio~ls are pamissible since all hat is required to retain the formal accuracy of the 
methai is that the increment in u in the time step h has a transition pdf Mat oomsponds to that 
of Eq.(A36) to second~der in h, or equivalently, that the moments of & arc equal to the 
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moments of Eq(A36) to second order in h. Extension to the general case is more difficult; no 
formulation eliminating all derivatives in Eqs.(23) or (24) is offered here. The structure of a 
Runge-Kutta method that eliminates all derivatives from the random walk when By is a func- 
tion of y as well as of t is a topic for further study. 
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APPENDIX 
The evolution equation for the one-time NAY;?) corresponding to the Ito stochastic ordi- 

nary differential equation of Eq.(l) is given by Eq.(lO): 

where CU is defined in Eq.(4). It is shown that subject to the deterministic initial conditions 

!(to) = p . (A2) 

and for a wide class of coefficient functions A,(y,r) and CU(y,t) (restrictions on the coefficient 
functions are introduced in the course of this proof), Eq.(Al) causes AYt) for t 2 to to evolve 

as a joint-normal distribution to second order in h = t-to: 

Az;t) = f JN(y;t) + 0(h3) . (A31 

In Eq.(~3), fm(.) denotes a joint-nod distribution. There are four steps in this proof: 

1) Equation (Al) is Fourier transformed to obtain the evolution equation for the 
characteristic function g(y,t); 

2) the evolution equation for the logarithm of the characteristic function 

q(y,t) 3 ln[s(y,t)l is derived; 

3) q(x,t) is expanded in a Taylor series about the initial state of EQ.(A2); and 

4) it is shown that q(y,t) corresponds to a joint-normal distribution to O(hZ). 

For arbitrary coefficient functions, the pdf is not necessarily joint-no& to second order in h. 

The extension to this general case is also discussed. 

1) Fourier Transform 

First, we Fourier transform Eq.(Al) in V: 

F(n = jeEEfl'f(_v;tfl= g(y,t) , 
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In these equations, _W denotes the transform variable and i i m. = dVldV2...dVM and simi- 
larly for m, where M is the dimension of vectors _V and y. The integrations are over the 
entire M dimensional space. By the definition of the Fourier transform, Eqs.(A4) and (A5): 

F W V .  . . . V ,  - I "  2 
JI JJ - (-1 aw,law,2 x. . aw. . 

J" 
(A71 

We multiply Eq.(AI) by eEw and integrate over all _V using property (A6) to obtain 

1 9 - iW,FVA,) + W,W&fC,& = 0 . 
at (A@ 

Next the coefficient functions are expanded in a Taylor series about p: 
1 

A,(Y,~) = ~ j ' ( t )  + &t)(vrUP) + Z ~ ~ h ( ~ ) ( ~ r @ ~ ~ m - m  + . . . , (A91 

A superscript "0" means that the function is evaluated at @. The truncation after the second 
derivatives is justified below. Using Eqs.(A9), (AlO), and property (A7), Eq.(A8) becomes 

where the time argument (t) of the coefficient functions and their derivatives has been omitted 
for convenience. g@',r) is the characteristic function: it is the Fourier transform of the pdf 
fly;t) with respect to _V [32]. 

2) Logarithm of Characteristic Function 

The function q(_W,r) &notes the natural logarithm of the characteristic function: 

q@d = bIs~ f ) l  . ( A 1 3  

To obtain an evolution equation for this function, we divide Eq.(A11) by &W,t) and make use 
of the identities 

a = d[lntgII= 4 , W 3 )  
g 
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The resulting evolution equation for q (y , t )  is 

* at - iW,{(A? - + 1-.49,,,@~~ 2 - i(Ail - A : , V ~ ~  

- LA?, (22- + &Ee) + . . . } 
2 aw,aw, awl aw, 
1 

+ T y w k { ( q  - Ckl@ + $%@@A - i ( C ( k r ~ , J Q ~  

- L p  ( a ' 4 + a 4 A ) +  . . . I +  . . .  = o .  
2 lkim aw,aw, awl aw, 

3) Taylor Series Expansion 

Equation (A15) is used as the basis for a Taylor series expansion of q ( y , i )  about the 
deterministic initial state of Eq.(A2). Retaining terms to 0(h2): 

where "." denotes a time derivative and superscript "0" means that the function is evaluated at 

time to. First, we evaluate q (y , t )  from Eq.(A15): 

The deterministic initial conditions of Eq.(A2) correspond to a delta function initial pdf: 

f(_V;to) = W - @  . ( A W  

The corresponding initial q (y , t )  is found from Eqs.(A4) and (A12): 

q O @ ' )  = i w , q  . 
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anqO = 0 for n22 . awj, . . awje 

Equation (A15) then yields 

so that 

an .o 
= 0 for n23 . awj1awjl . . . aw, 

The superscript "0" in the coefficient functions now denotes that the function is evaluated at 
time to as well as at e. Fmm Eq.(A17) 

The second-order appmximation to q(y,t) is constructed from Eq.(A16) with Eqs.(A19), (A22), 
and (A26): 

In the derivation of this equation, it is implicitly assumed that the coefficient functions possess 
bounded continuous partial derivatives up to at least the second order with respect to the 
components of u and to at least the fitst order with respect to t. 

4) Joint-Normal Characteristic Function 

The logarithm of the characteristic function corresponding to a joint-normal random vector 
2 is [32] 



D
ow

nl
oa

de
d 

B
y:

 [C
or

ne
ll 

U
ni

ve
rs

ity
 L

ib
ra

ry
] A

t: 
03

:0
7 

20
 D

ec
em

be
r 2

00
7 

I T 0  STOCHASTIC D I F F E R E N T I A L  EQUATION 

where a prime denotes a fluctuation about the mean 

and <@',@'p is a symmetric positive semi-definite matrix (to satisfy realizability). It may be 
seen on comparison of Eqs.(A27) and (A28) that to &st order in h, q(y,to+h) is joint-normal 
with means @ + A;h and covariances @a. Since Cjk is symmetric and positive semi-definite 
(Eq. 4). e k h  corresponds to a valid covariance matrix. 

To O(h2), Eq.(A27) fits the general form of Eq.(A28) as long as C,&) satisfies the res- 
triction 

cjklcpl + C&.Gjl + Cpj,lCkI = 0 . (A301 

The superscript "On has been dropped since this constraint must hold for arbitrary to. It is the 
symmetry of WjWkWp with respect to all permutations of its indices that leads to this condition. 
For an M-dimensional third-rank tensor T,@ that is symmetric in its first two indices to satisfy 
the condition Tjb + Tbj + Tpjk = 0, the M diagonal components must be equal to zero and 
( M ~  - M)/3 of the off-diagonal components can be chosen arbitrarily, the remainder being fixed 
by symmetry and by this condition. Two specific examples of coefficients B+ that satisfy 
Eq.(A30) are given in Section 1. 

It is not obvious that the coefficient of WjWk in Eq.(A27) corresponds to a valid covari- 
ance matrix when terms of second or higher order in h are retained. The coefficient is clearly 

symmetric to O(h2), and as h + 0 at least, is positive semidefinite as well. However, for 
non-zero h, the truncated coefficient is not necessarily positive semi-definite. We argue that 

since Eq.(A27) is derived from a valid pdf evolution equation (Eq. A l )  subject to valid initial 
conditions (Eq. A2), then for some choice of the 0(h3)  t m ,  this coefficient can be made posi- 
tive semi-dqnite. One such choice results from continuing the Taylor series expansion of 
Eq.(A16) to higher order in h but this imposes stricter differentiability requirements on the 
coefficient functions than are necessary; any 0(h3) term that ensures realizability is satisfactory. 
This is sufficient to conclude that Eq.(A27) corresponds to a joint-normal distribution to 
second-order in h. In Section 4.1, an example is given where the covariance matrix is made 
positive semi-definite by carrying a term of 0(h3) that is different from the third-order term in 

the Taylor series expansion. 
It has been proven that subject to the &terministic initial conditions of Eq.(A2) and for a 

wide class of coefficient functions Ai and Cii, Eq.(Al) causes the pdf f(r;ro+h) to evolve as a 
joint-normal distribution to second-order in h. The mean vector and covariance mamix defining 
the joint-normal distribution are found by matching Eq.(A27) with Eq.(A28): 
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It can be shown that retaining higher-order terms in the Taylor series expansions of the 
coefficient functions (Eqs. A9 and A10) does not change this conctusion: qo, q0, and q o  of 
Eqs.(A19), (A22), and (A26) are unaffected by the higher-order terms. 

It is convenient to express the results in terms of the increments 

Since the initial conditions I&) are deterministic (Eq. A2), we conclude immediately that the 
pdf of the increment Ag is joint-normal to second order in h with means and covariances 

Extension to the case where the consaaint of Eq.(AU)) is not satisfied is not immediate. 
Equation (A27) then corresponds to no known distribution. In principle, the corresponding pdf 

can be found by taking the inverse Fourier aansform but this is likely to be of little use: the 

truncated pdf wiU almost certainly not be realizable in the sense of Bochner's theorem 1321. 
(In the case where the cubic term in _W of Eq.(A27) is zero, Bochner's theorem reduces to the 

condition that the coefficient of the quadratic term in _W be symmetric and positive serni- 
definite, as discussed above). We can no longer exploit the features of the joint-normal pdf in 
devising a numerical scheme, i.e., that any linear combination of joint-normal random variables 
is j o i n t - n o d ,  and that the joint-normal pdf is parameterized by its first two moments (see 
Section 3). One approach is to find a realizable random variable whose characteristic function 
agrees with that of Eq.(A27) to O(p). Motivated by the work of Mil'shtein [U], we construct 
a non-linear combination of Gaussian random variables that yields a realizable random variable 
with the desired dismbution in Section 3. 

To ex@te this, the characteristic function of the increment Ag is expanded in powers of 

iy. This brings the moments of A! explicitly into evidence, since the coefficient of the term 
inW,,Wj2 . . . Wja in the power series is the n* moment of A: divided by n!, 

d u j , A u j ,  . . . Auj,>ln! 1241. The characteristic function of the increment, g(_W,h), is equivalent 

to g(W,to+h) (Eq. A4) if of Eq.(A2) is equal to zero. Expanding the characteristic function 
g(E,h) in this way yields 


