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A Langevin model appropriate to constant property turbulent flows is developed from the general
equation for the fluid particle velocity increment proposed by Pope in an earlier paper [Phys.
Fluids 26, 404 (1983)]. This model can be viewed as an analogy between the turbulent velocity of
a fluid particle and the velocity of a particle undergoing Brownian motion. It is consistent with
Kolmogorov’s inertial range scaling, satisfies realizability, and is consistent with second-order
closure models. The objective of the present work is to determine the form of a second-order
tensor appearing in the general model equation as a function of local mean quantities. While the
model is not restricted to homogeneous turbulence, the second-order tensor is evaluated by
considering the evolution of the Reynolds stresses in homogeneous flows. A functional form for
the tensor is chosen that is linear in the normalized anisotropy tensor and in the mean velocity

gradients. The resulting coefficients are evaluated by matching the modeled Reynolds stress
evolution to experimental data in homogeneous flows. Constraints are applied to ensure
consistency with rapid distortion theory and to satisfy a consistency condition in the limit of two-
dimensional turbulence. A set of coefficients is presented for which the model yields good

agreement with available data in homogeneous flows.

I. INTRODUCTION

Conventional turbulence modeling'~ is based on at-
tempts to close a set of evolution equations for Eulerian
mean quantities derived from Eulerian transport equations
(e.g., continuity, Navier-Stokes, and scalar transport equa-
tions). Alternatively, an evolution equation for the joint
probability density function (pdf ) of the velocities and sca-
lars can be derived and modeled.* The latter approach of-
fers several advantages: the joint pdf contains more statisti-
cal information than is contained in a finite number of
moments and some of the terms that must be modeled in
moment closure methods appear in closed form in the pdf
evolution equation. The model presented here is a closure of
the evolution equation for the Eulerian one-point joint pdf of
the velocity field in a constant property turbulent flow.

A Lagrangian viewpoint is useful when modeling, inter-
preting, and solving pdf evolution equations’: the behavior
of fluid particles in a turbulent flow provides a complete
description of the turbulence. At time ¢ the position and ve-
locity of a fluid particle are denoted by £(¢) and U(#). Ac-
cording to the Navier-Stokes equations, in an infinitesimal
time interval dt, £(¢) and U(¢) change by

dx, = U,()dt, (1)
and
db, = (sz(U,-) ——1-‘”1’)) dr
p Ox
+ (VV 2y, — ii) dt, 2)
p ox;

where p is the density and v the kinematic viscosity. The
Eulerian velocity U(x,?) and pressure p(x,t) have been de-
composed into their means (U) and ( p) and fluctuations u
and p’. The Eulerian quantities in Eq. (2) are evaluated at
the fluid particle location x = £(¢).
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We consider the generalized Langevin equation pro-
posed by Pope® to model the Lagrangian velocity increment:

i, = (sz(U,-) _%%) dt

+ Gy (U, — (Ut + (Ce)2aW,,  (3)

where e(x,?) is the dissipation rate of turbulent kinetic ener-
gy, W(¢?) is an isotropic Weiner process, C, is a positive con-
stant, and G, is a second-order tensor function of local mean
quantities. Equation (3) shows that G, has dimensions of
inverse time. This equation is discussed in detail in Sec. II.

The Langevin equation and closely related discrete
Markov chains or random walks have been used in studies of
turbulent dispersion since Taylor’s pioneering paper of
1921.° In these Lagrangian calculations, one seeks informa-
tion on the distribution of passive contaminants embedded
in a turbulent flow field; the statistics of the flow field itself
(e.g., velocity and length scales) are assumed to be known.
The articles by Krasnoff and Peskin,'® Yaglom,'! Durbin,'?
and Sawford'® provide historical insight, theoretical discus-
sion, and extensive bibliographies on the use of Langevin
equations in dispersion modeling.

In the present work a Langevin equation is used in a pdf
description of turbulence to obtain the Eulerian statistics of
the velocity field. This approach was introduced by
Chung,'* who formulated a model based on an analogy
between the motion of fluid elements in a turbulent flow and
a general Brownian motion. This model was subsequently
developed and applied to a variety of flows, including some
with chemical reaction, by Chung, Bywater, and Lee.!* %
Using similar arguments, Langevin equations were used by
Kuznetsov and Frost>>?® both for the fluid particle velocity
and for a scalar concentration. Qur development (including
Ref. 8) differs from the earlier work in two respects. First,
the Navier—Stokes equation is retained as the starting point
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for the modeling, rather than an analogy between the dy-
namics of the turbulent flow field and a Brownian motion.
This leads to a different physical interpretation of the mo-
deled terms in the Langevin equation. Several constraints on
the undetermined coefficients appearing in our model are
deduced from the Navier-Stokes equation; results from sec-
ond-order modeling studies are also used when appropriate
(see Sec. IV). The second novel feature of the current work
is the anisotropic linear deterministic term in Eq. (3). This
allows, in particular, a more satisfactory treatment of the
effects of the fluctuating pressure gradient, including the
role of the mean velocity gradients (i.e., “rapid” pressure
terms).

The purpose of this paper is to present a model for the
second-order tensor G; in terms of the Reynolds stresses
(u, 4, ), the mean velocity gradients 3 (U, )/dx,, and a char-
acteristic turbulent time scale 7 = (u;u,)/2¢. No scale infor-
mation can be extracted from this one-point closure, hence 7
must be supplied separately.’ The problem of determining 7
is not considered here. When comparing model behavior

with experimental data, 7 is taken directly from the data as

input to the model.

We begin in Sec. II with a discussion of the Langevin
equation (Eq. 3) and the rationale for its use in turbulence
modeling. It is shown that G;; provides closure for second-
order models' as well as for the pdf evolution equation. In
Sec. I1I we present the general functional form to be devel-
oped for G;;, guided by the principles of invariant modeling.
Constraints on the resulting model coefficients are then de-
rived in Sec. IV by comparing the modeled Reynolds-stress
evolution equations with their exact counterparts derived
from the Navier-Stokes equations. The remaining model co-
efficients are assumed to be constants and are evaluated in
Sec. V by matching the modeled evolution of the Reynolds
stresses to experimental data in homogeneous turbulent
flows. With all model constants determined, we discuss the
performance of the model in Sec. VI. It is demonstrated that
the model accurately mimics experimental data in virtually
every type of homogeneous turbulent flow for which data are
available. Finally, in Sec. VII we summarize the results and
briefly discuss the extension of the Langevin model to more
general classes of turbulent flows.

il. LANGEVIN EQUATION

In this section the physical significance of Eq. (3) and
its relevance to turbulence are discussed. It is shown that the
Langevin model provides closure for both the pdf evolution
equation and for second-order models of turbulence.

By comparing Eqgs. (2) and (3) it may be seen that the
effects of viscosity and of the fluctuating pressure gradient
are modeled by the terms containing G; and C,. The final
term in Eq. (3) represents a random walk in velocity space:
d W is a joint normal random vector with zero mean and
covariance

(AW, dW;) =dt§; . 4)

Equation (3) is a linear Markov model for the fluid
particle velocity, analogous to the Langevin equation for the
velocity of a particle undergoing Brownian motion.”” In the
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present context the justification for the stochastic term is
that it is consistent with Kolmogorov’s (1941) inertial range
scaling laws. This is readily seen by forming the Lagrangian
structure function

(8,0,,U))
=([O¢+9 - U0 [T+ -To] . &
Since G; is to be modeled as a function of (u,u,),

d(U,)/dx,, and ¢, the time scales associated with G, are the
time scale of the mean deformation T'= || (U, )/dx, ||~
and the dissipation time scale 7. For time intervals s such
that s is much smaller than 7 and s is much smaller than 7,
Eq. (3) then yields (to first order in s)

(A UA,T,) = Cyesd, (6)

which agrees with Kolmogorov’s (1941) theory®® and iden-
tifies C, as a universal constant. This result was first ob-
tained by Obukhov.? A value of C, = 2.1 was determined by
Anand and Pope®® by considering the evolution of the ther-
mal wake behind a line source in grid turbulence.

According to Kolmogorov’s (1941) theory, inertial
range scaling applies only for time increments s such that 7,
«s<7 where 7, is the Kolmogorov microscale of the turbu-
lence, while Eq. (6) applies for all s much smaller than 7
(and s much smaller than T'). This shows that the Langevin
equation provides a physically realistic model of fluid parti-
cle behavior only for 7, «s<7. Equation (3) remains compu-
tationally useful for s less than or equal to 7, , however. Con-
sider N time intervals 5, such thats,<7,,n = 1,2,....N and
N _.s, =5, T, €s<7. Equation (6) is vahd foreachs, and
itis readlly shown that if we construct A, U =3N_| A, U, ,
where A, U U (t+s,) — U (t) by N successive appll-
cations of Eq. (3) over the subintervals s, then (A, U: )

= (A, U) and (AUAU)—(A UAU, )sothatEq
(6) remains valid for the total time interval s.

There are two assumptions implicit in Eq. (3). First, the
Markov property of the model, manifest through the Mar-
kov nature of the stochastic process W(¢) and through G;
being a function of local mean quantities, implies that the
model applies only to those flows in which all turbulence
structure can be expressed in terms of local mean quanti-
ties.*! Second, the isotropic inertial range scaling expressed
in Eq. (6) implicitly assumes local isotropy. Flows that are
so strongly distorted or have such a low Reynolds number
that the small scales are not even approximately isotropic are
beyond the scope of this model.

The evolution equation for the Eulerian joint pdf of the
velocities f(V;x,t) corresponding to the Navier-Stokes
equations is’

o ., o T
(7 )
= _ﬁi—[f(ailv>]’ (N

where a; is the fluctuating component of the fluid particle
acceleration
19 (8)

a;, = VV 2“,‘ -
p 9x;
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Since (U) and ( p) can be expressed in terms of f, the only
term in Eq. (7) that needs to be modeled is the conditional
expectation of the fluctuating fluid particle acceleration
(a;|V). A corresponding equation is derived from the Lan-
gevin model, Eq. (3) (see Ref. 8):

F v O (o 13D O
a:*”"ax,. +(vv )~ )'—aV,-
1 3%
~6,-L aV [, = O] + 5 Cot gt

&)

Here G is a function of local mean quantities and can there-
fore be expressed in terms of f; and € is assumed to be known.
Hence, comparing Egs. (7) and (9), we see that the Lange-
vin equation provides a closure model for the Eulerian joint
pdf equation in which (a,|V) is modeled as

—(UN =~ Gy a"{,'

The Langevin modet leads to a valid evolution equation
for the pdf f(V;x,t), Eq. (9). Given appropriate initial and
boundary conditions for f (i.e., those necessary and suffi-
cient to guarantee a unique solution to the initial and bound-
ary value problem with />0 and § §f° _ §fdV =1 every-
where initially), the Langevin equation with any finite G;
causesf toevolvesuchthatf>0and § f*  ffdV = 1forall
time. Consequently, fis realizable and all moments deduced
from f are realizable; the Langevin model satisfies realizabi-
lity for any finite G;; (see Ref. 7).

Experiments in homogeneous turbulent flows show that
the pdf of the velocity field is a joint normal distribution.?
Equation (9) admits joint normal solutions in the homogen-
eous case (G, and € independent of x). Moreover, for homo-
geneous turbulence the term containing C; in Eq. (9) causes
an arbitrary initial pdf to relax to a joint normal distribution.
This behavior is a consequence of the term containing G;; in
Eq. (3) being linear in U, and hence justifies the linear form
of the deterministic term in the Langevin equation.

We now investigate the connection between the Lange-
vin equation and second-order closure models. The modeled
Reynolds-stress evolution equation is derived from Eq. (9)
(see Ref. 8):

a (uu;) a (uuy) a (uuu;)
o T+
U,
+ Cuuy) AL/ + (u,u ’)3( )

= Gy (u;u;) +Gh'(uiuk> +C055kt . (11
The corresponding exact equation is found from the Navier—

Stokes equations to be!~
3 uu;) a (u,uy)
— 4+ (U
at U —5 x;
8(u U ;) a(uy)
— + (uu;.)
ox, ox;
U 1 ap’
+ qauy B9 -—i<u ai) —(u, 2 )
ox; P x, p ox,
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+ v, V 2y + v(,V 2u,) . (12)

In the derivation of moment equations [Egs. (11) and (12)]
from pdf equations [Egs. (7) and (9)], integrals of a diver-
gence in V space arise, e.g.,

N

It can be argued both on mathematical and on physical
grounds that for a wide class of functions Q(V), including
those that appear in the derivation of Eqs. (11) and (12),
such integrals are zero.” These terms are thus omitted in the
Reynolds stress equations.

In second-order modeling, the triple velocity correla-
tion (u,u,u,) and all terms on the right-hand side of Eq.
(12) need to be modeled. By contrast, no model is needed for
the triple velocity correlation term in pdf formulations of the
Reynolds-stress equations, such as Eq. (11). This transport
term arises from the V, df /dx, term representing convection
in physical space in the modeled pdf evolution equation, Eq.
(9), and this term is in closed form. Comparing Egs. (11)
and (12), we see that the terms containing G; and C, in Eq.
(11) provide closure models for the right-hand side of Eq.
(12). Moreover, the tensor G;; can be chosen for compatibi-
lity with any second-order closure model that satisfies reali-
zability.

The second-order closure model corresponding to the
Langevin equation is found by equating the right-hand sides
of Egs. (11) and (12):

1
Guluuy) + Gyuuy) + Coebyy = — — (“k & )
ax,
_1 (u, p ) + v, V) +v(u, V). (13)
P Ix;

This compatibility between the Langevin model and second-
order models is again a consequence of the linearity of the
deterministic term in Eq. (3). In general, second-order clo-
sure models do not satisfy realizability without constructing
functions of the invariants of (u, u,) and then imposing con-
straints to be satisfied in the extreme states.” Clearly, the G,
corresponding to a second-order model that violates realiza-
bility is not defined when the Reynolds-stress tensor be-
comes singular. Hence there is an advantage in modeling G;;
directly in order to satisfy realizability, then using Eq. (13)
to deduce the corresponding Reynolds-stress model.

To summarize, we have shown that the general form of
the Langevin model (Eq. 3) is physically justified and that it
contains implicit assumptions about the structure of the tur-
bulence. Realizability is satisfied for any finite G;;. The mod-
el provides closure for both the pdf evolution equation and
for the Reynolds-stress equations.

lll. GENERAL MODEL FOR G,

To complete the model of Eq. (3), it remains to deter-
mine the form of the second-order tensor G;; as a function of
local mean quantities. The dissipation rate € or time sale 7 is
assumed known. The modeling proceeds by applying the
usual guiding principles of invariant modeling: dimensional
consistency, coordinate system independence, Galilean in-
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variance, and rules for forming isotropic tensor functions of
other tensors.>”-*

We hypothesize that a sufficiently general functional
form for G is

G; =G ((“k'ﬁ)y (14)

2w ).

e

Dependence on the mean velocities (U, ) is removed by Gali-
lean invariance. We cannot, however, invoke material frame
indifference to remove dependence on the antisymmetric
components of the mean velocity gradients. The correlations
(u, u,) arise from the convective term in the Navier-Stokes
equations and this term does not satisfy material frame indif-
ference.® Since G; appears in the modeled evolution equa-
tion for (u,u,), we do not expect G; to satisfy material
frame indifference either.

The functional form expressed in Eq. (14) can be rigor-
ously justified only in simple situations. In homogeneous
flows the velocity pdf is joint normal, hence the mean veloc-
ities and the Reynolds stresses provide a complete one-point
statistical description of the velocity field. In statistically sta-
tionary flows, current values of all Eulerian statistics are
equivalent to their past values so that no history of the flow
needs to beincluded in Eq. (14). Itis observed experimental-
ly that the large-scale structure of turbulence becomes inde-
pendent of Reynolds number as the Reynolds number in-
creases, so that no Reynolds number dependence is needed
for sufficiently large values of the Reynolds number. It is
expected that in more general flows, however, G; would de-
pend on the velocity field within an integral length scale of a
given location x and on the history of the flow within an
integral time scale of the current time 7, as well as on a Reyn-
olds number.?!

No satisfying a priori justification can be offered for ap-
plying the functional form of Eq. (14) in general flows.
However, several observations are made to motivate the use
of this simplified form in moderate Reynolds number, non-
stationary inhomogeneous turbulence. First, it is observed
that some similarity in turbulence structure exists for all
Reynolds numbers high enough that the flow is turbulent,
although the existence of an inertial subrange and local iso-
tropy in the presence of strong deformation by mean velocity
gradients requires a large Reynolds number.>**5 This pro-
vides incentive to try a Reynolds number independent model
in situations where the Reynolds number may be too small
for a significant inertial subrange to exist, such as wind tun-
nel experiments. The extension to nonstationary and inho-
mogeneous flows is more difficult. The ratio of turbulent
scales to mean flow scales is typically of order unity in free
shear flows and there is no reason to expect that Eq. (14) is
an adequate representation under these conditions unless the
turbulence is in dynamic equilibrium with the mean flow.
Arguments on adopting similar simplified functional forms
in the context of moment closures are offered elsewhere
(Ref. 3, for example), but justification is provided only a
posteriori when the performance of the model in a wide range
of flows is known. The modeling of inhomogeneous flows
using the Langevin equation is deferred to later papers.

A consequence of Eq. (14) is that G; can be determined
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by reference to homogeneous flows in which the only rel-
evant velocity field statistics are the mean velocity gradients
and the Reynolds stresses. Even with this reduced set of in-
dependent variables, the most general functional form of G,
contains more coefficients than can reliably be determined
from available experimental data. We instead propose a
model for G; that is linear in the mean velocity gradients and
in the Reynolds stresses, or equivalently, that is linear in the
mean velocity gradients and in the normalized anisotropy
tensor b,,:

by = (ugu))/(uu;) — 16 . (15)

We then assume (with one exception) that the resulting
model coefficients are constants.

The most general form of Eq. (14) that is linear in b,,
and ind (U, )/dx,, and that is consistent with the four prin-
ciples mentioned at the beginning of this section, is

1 1 au

Gij =a1750 +a2—;b,-j +Hijkl ;xlk)’

where
Hy, = B804 + B8y + B3040,
+ Y1001 + V2Buby + V30uby

+ YabyOu + Vsbu by + Vebuby - (16)
This form includes bilinear terms in b,, and (U, )/dx,
(¥, — 76 terms). Without these there is insufficient flexibil-
ity to model experimental data in homogeneous flows.

Equation (11) shows that G;; being linear in (u,u,)
generates terms quadratic in {x,%;) in the modeled Reyn-
olds-stress equation. Hence the model of Eq. (16) does not
correspond to a second-order closure that is linear in the
Reynolds stresses.

The most general form of the model for G; is now re-
duced to the linear form expressed in Eq. (16). This model is
consistent with the principles of invariant modeling and sat-
isfies realizability for any finite values of the model coeffi-
cients. We now restrict our attention to homogeneous flows
in order to determine the 11 model coefficients.

IV. CONSTRAINTS ON MODEL COEFFICIENTS

Several relationships among the model coefficients are
deduced by comparing the modeled Reynolds-stress evolu-
tion equation (Eq. 11) to its exact counterpart (Eq. 12)
obtained from the Navier-Stokes equations in homogeneous
flows. It is found that all 11 of the model coefficients cannot
be constants and that the value of one coefficient is indeter-
minate in constant property flows.

We want to consider the evolution of the Reynolds
stresses in statistically homogeneous transient flows. The
modeled and the exact Reynolds-stress equations (Eqs. 11
and 12) simplify considerably in this case. Mean velocity
gradients can be nonzero but are spatially uniform. Wind
tunnel experiments generate statistically stationary turbu-
lence that is homogeneous in the transverse directions but
inhomogeneous in the streamwise direction. This approxi-
mates the desired homogeneous transient flow field if we
consider a coordinate system that moves with the mean flow
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velocity: the convective derivative following the mean flow is
replaced by a time derivative, (U,)d /dx; =d /dt, and Eqs.
(11) and (12) reduce to ordinary differential equations.
Conditions under which this approximation is valid are giv-
en in Ref. 34. The modeled Reynolds-stress evolution equa-
tion simplifies to

d<uku1) a{uy 3(Uy)
—dt"“—'—‘ — (u;uy) ax, — (u,uy) ox,

+ Gy (uu;) + Gy uuy) + Co€dyy s 17
and the exact Reynolds-stress equation becomes

d (u,u;) = — (uu) a(U,) —{uu )a(Uk)
dt TR ox, T ok,
+ S+ P —€ur s (18)
where
du
¢kIE'1—<P, k>, (19)
P ox,
du, 8u,>
=2 _). 20
=2 < dx, ox, 20

Here ¢,, is the fluctuating pressure-rate-of-strain correla-
tion and €, is the dissipation tensor.

From an examination of these equations and other con-
siderations, constraints on the model coefficients are now
deduced.

A. Evolution of the turbulent kinetic energy

Taking one-half the trace of the Reynolds-stress evolu-
tion equation gives an equation for the turbulent kinetic en-
ergy k = (u,u,)/2. From Eq. (17) the modeled & equation is

dk a(Uy)

— = —(uu;)

dt ox;
while the corresponding exact equation (from Eq. 18) is

+Gk1(”ku1)+‘3—co€’ 2n

where
V*=72+73+¥s+ Ve, (27)
by +byby, (28)
a(U,) 1P
I =b, —* — 2| 29
! M ox, ‘ 2r € (29)
(U,
I, =b,b, 9{Uy) . (30)
dx

This shows that it is not possible to choose constant values
for all model coefficients; since this constraint contains the
three invariants b %, I,, and I,, at least one coefficient must
be a function of these invariants.

We satisfy Eq. (26) by letting a,, ¥1; B2; Bas V2 Vs Vs
and ¥, remain constant. Then a, is given by

a=—0GU+ 2Co)—(7’1+ﬂz+ ﬂ3+%7’*)TIl

—y*rl, —ab? . 31
This method of satisfying Eq. (26) is not unique, butitis a
reasonable choice in that @, remains well behaved as I, I,, or
b?% tend to zero independently. When Eq. (31) is substituted
into Eq. (16), the terms containing ¥, cancel. Then G; no
longer depends on ¥,, so that ¥, is completely arbitrary. An
expedient method for removing this indeterminacy is to fix
71 in the following way:

yi=—(B+ Bs+ 1/737%). (32)

Then a, is independent of I, (Eq. 31). In most flows |,| and
b? are both much smaller than one so that a, is only a weak
function of the anisotropy and of I,. Equation (31) becomes
approximately

=~ — (34 31C)) = —2.075. (33)

This shows that a, is nearly constant.
At this point it proves useful to rewrite the modeled
Reynolds-stress equation for homogeneous flows, Eq. (17),

ar =P—e, (22) substituting G;; from Eq. (16) and including the turbulent
h kinetic energy constraint of Eq. (31). We replace the Reyn-
where olds stresses on the right-hand side of Eq. (17) by the nor-
P= —( ) a(U;) 23 malized anisotropy tensor of Eq. (15) and decompose the
= = Uiy x, ’ 23 mean velocity gradient into its symmetric and antisymme-
e=1ley. (24) tric ((:;m;onents:
By comparing Eqs. (21) and (22), it may be seen that the (Gp) =S, +R,q» (34)
Langevin model yields the proper evolution of k provided ax,
that G; satisfies the kinematic constraint
where
Oulisud +3Coe= —¢. 2% _ 1 (30, 3, 3
For the model of Eq. (16) this constraint becomes Sy = 2\ o + % , (35)
q P
(a;+ab% + 1+ 3C)(1/7) 1 (3(U,Y a(U,)
+ i+ Bt B+ yrO L+ v L =0, (26) Rm=7( , o, ) (36)
J
Here §,,, is the mean rate of strain tensor and R, is the mean rate of rotation tensor. Equation (17) becomes
d{u,u 2
"'Sdkt_n = -2 (bkl’SIi + b, S + %Skl) — 2k(bRy; + byRy) — (3C, + 2)eby, — 3 €0y
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+4g:€[ 4 by + biby —

—bi(biy +16u)] + 282k [3 Sk + Siby + Subu —

21(by +16u) ]

+ 283kb, (S by + Saby) + 484kS; bisby + 3( 85 + 8a)k [bieSu + basSy — 2(1; + 35) (byy + $6u) ]

+ 285 k(Ry;by + Ryby ) + 286k, (R by + Ryby)

where

gi=ay, &=05+PBs &=V1+7Van

8a=Vs+ Ve

37

&= B+t 7)) — Bs =4V +75),8=7s— 72

(38)

Note that only six linearly independent groupings of the model coefficients appear in Eq. (37).

B. Fluctuating pressure-rate-of-strain correlation

In second-order closures, it is necessary to model the
term ¢, of Egs. (18) and (19) in terms of the local mean
quantities {(u, u,),d (U, )/dx,, and €. This usually proceeds
by writing the exact integral solution for this term as derived
by Chou.?¢ For homogeneous flows with uniform mean ve-
locity gradients,

$, = 6L + o, (39)
where
a(u,)
P = 8x,,: Ay (40)
2
Ay = 1 9 (P (x)) 1d 1)
T 27 Jua Or, dr;
@_ _ 1 [ u(Du.(y)u(x0) ld
¥ 4ar vol 5r,3rm¢9rj
(42)
y=X+4Tr, r=|r|. (43)

It is then straightforward to derive the following kinematic
constraints on 4,,; (see Ref. 37):

Amin =Aimlj’ Amnj =Amij1 s

(44)
A, =0, A, =2(u,u;).

The term ¢§" is called the rapid pressure term since it re-
sponds instantly to changes in the mean velocity gradients,
while ¢ is often referred to as the “slow” pressure term or
as the “return-to-isotropy” term.

Since the mean velocity gradients do not appear explicit-
ly in ¢{?’, it is customary to model this term as a function of
{u,u,;) and € only.>* This implies that the only effect of
d{U,)/dx, on #{* is an indirect effect, via its influence on
(uy u,) and €. Recently Jones and Musonge® derived the
evolution equation for the term analogous to ¢{* that ap-
pears in the scalar flux transport equation, demonstrating
that this term does in fact depend on the mean velocity gradi-
ents. The evolution equation for ¢{* is derived similarly and
leads to the same conclusion. They then argue that since
both terms (here 5" and #{*’) depend on the mean velocity
gradients, there is llttle to be gained by modeling these terms
separately.

We feel that this point merits further consideration. The
assumption of an equilibrium structure is implicit in any
closure model, in order that unknown quantities can be ex-

mili mijj
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pressed in terms of known quantities. In any one-point clo-
sure for constant property homogeneous flows, all turbu-
lence structure must be expressed in terms of (u,u,),
d(U,)/dx,, and €. Explicit dependence on the mean veloc-
ity gradients would be excluded from the modeling of ¢{>’
only if the analytic expression for ¢\’ were independent of
d(U,)/dx, or if there were a valid physical argument for
excluding dependence on d(U,)/dx, in a particular flow
that we wish to model. Jones and Musonge’s solution shows
that 8 (U, )/dx, does enter the evolution equation for ¢‘2’.
It is true that B e does not respond instantly to changes in
d(U,)/dx, asdoes ¢3"’; #;>’ depends, rather, on the history
of 3 (U,)/dx,. Lumley*® makes the valid point that if 3>’ is
expressed as a function of the mean velocity gradients as well
as of (u,u,;) and €, then it will behave incorrectly in the case
of an arbitrary turbulence field interacting with a suddenly
imposed arbitrary mean velocity field. He also points out
that Eq. (42) shows that #{> depends only on the fluctuat-
ing velocity field. In constructing closure models for ¢{*’,
there is some incentive, then, for excluding d (U, )/dx, on
the grounds that the resulting model may be applicable to a
wider class of flows than a model that includes d (U, )/dx,.

On the other hand, in flows where d (U, ) /dx, changes
by a relatively small amount (magnitude changes of order 1/
7) or whered (U, ) /dx, changes relatively slowly (on a time
scale of order 7), then the current value of d (U, )/dx, pro-
vides an adequate representation of its recent history. Ex-
cluding the mean velocity gradients from the modeling of

+?? may exclude a physical mechanism that the exact evolu-
tlon equation for ¢{> shows to be present in these flows.
Moreover, there appears to be no strong reason for the two-
point velocity correlations in Eq. (42), even though they are
functions of the fluctuating velocities only, to be functions of
the one-point quantities {#,u,) and € only, independent of
a (Up )/dx,. Indeed, such a restriction may limit the appli-
cability of the model in the slowly evolving flows discussed
above.

It is not clear which modeling philosophy leads to the
more generally applicable model. We feel that in the context
of one-point closures with only (u;4,), d (U,)/dx,, and €
available, it may be overly restrictive to exclude d (U, )/dx,
from the modeling of ¢{*’. We thus reject the notion that ¢‘2’
should be modeled as independent of the mean velocity gra-
dients. In so doing we recognize that there may be spurious
contributions to ¢{?’ in rapidly evolving mean flow fields,
although it should be pointed out that we are still able to deal
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with the rapid distortion of initially isotropic turbulence as
discussed below. (If we did wish to express ¢’ as a function
of (u, u;) and e only, Hy,, of Eq. 16and 4,,;; of Eq. 41 would
be related by Hy;, = {(u, u;) ~'A,,,,;. Applying the kinemat-
ic constraints of Eq. 44 would then uniquely determine all
nine model constants in H,.)

C. Rapid distortion of initially isotropic turbulence

We now consider the rapid distortion of initially iso-
tropic turbulence by uniform mean velocity gradients. This
is not inconsistent with the discussion above concerning ¢§
since ¢’ is identically zero in the initially isotropic turbu-
lence.

Rapid distortion theory is rigorously justified only in
cases where the time scale of the mean strain
T= ||@(U,)/dx, || =" is much smaller than the turbulence
time scale 7 (see Refs 40-42). If Tis smaller than 7, as well
as being much smaller than 7, then even the smallest scales
would be deformed to the extent that local isotropy no longer
prevailed. Clearly, such flows are beyond the scope of our
model. However, rapid distortion theory has been applied to
many experiments in irrotational deformations of homogen-
eous turbulence, sometimes including corrections for decay
or for the initial anisotropy.*'~*® These are flows in which the
time scale ratio 7/T is of order unity, yet this linear theory
successfully models the initial stages of the deformation.
Hence this is a reasonable constraint to apply to our model.

We set b,; equal to zero in Eq. (37) and retain only
those terms involving the mean velocity gradients. The mod-
el reduces to

d{u.u) 4k
— =5 (&= DS,

while rapid distortion theory applied to the exact Reynolds-
stress evolution equation (Eq. 18) yields?*
d (u,u;) _ 8k

=——358.

dt 15

The Langevin model is then compatible with rapid distor-
tion theory provided that

82=Bz+ﬁs=§- (47)

Further constraints are deduced by considering the
fourth-order tensor Hy,, of Eq. (16) directly. In isotropic
turbulence, Hy, is an isotropic tensor (i.e., it involves only
combinations of Kronecker deltas §;). The slow pressure
term ¢{>) is identically equal to zero, so that H, is related
to 4;,; of Eq. (41) by

(45)

(46)

Hy, =y, uj>—IAkai .

L/

(48)

We emphasize that Eq. (48) holds only in isotropic turbu-
lence; ¢ is not being modeled as independent of
d(U,)/dx,. With b, identically equal to zero and (u,u,)
= 2/ 3 k8k,, the four kinematic constraints of Eq. (44) lead
to

Bi=—1, 49)

B.=t, (50)

Bi=—}. (51)
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These values are consistent with Eq. (47). Coefficient £,
does not affect G;; in constant property flows (3 (U, )/dx,

= 0, Eg. 16), hence the evolution of the Reynolds stresses is
independent of the value of B,; 8, and 3, appear in the mo-

deled Reynolds-stress equation (Eq. 37) only as
g = B, + B;and as part of g;. As far as the evolution of the
Reynolds stresses is concerned, then, Eq. (47) is the only
relevant isotropic rapid distortion constraint.

D. Two-dimensional limit

A two-dimensional state in which one of the eigenvalues
of the Reynolds-stress tensor is identically zero is attainable
only as an initial condition for the Langevin model. This is
evident from the presence of the term containing C, in the
modeled pdf evolution equation, Eq. (9); this term repre-
sents a diffusion in velocity space. True two-dimensional
states, in which one component of the fluctuating velocity is
identically zero in the principal axes of (u, #,), violate local
isotropy and are beyond the scope of this model. However,
there are conditions under which one eigenvalue of the
Reynolds-stress tensor becomes much smaller than the other
two while local isotropy still exists. Such states are ap-
proached experimentally in homogeneous flows in axisym-
metric contractions and some plane distortions.***® Similar
effects are expected in inhomogeneous flows. The Langevin
model should work in these cases, so it is reasonable to apply
a constraint that is rigorous only in the two-dimensional lim-
it.

By considering arbitrary time-dependent translations
and rotations of reference frame, Speziale*” has derived a
transformation rule for the Reynolds-stress evolution equa-
tion in two-dimensional flows that shows explicitly the ef-
fects of the antisymmetric components of the mean velocity
gradients R, (Eq. 36). He concludes that the only terms in
amodeled Reynolds-stress equation that contain R pg are (in
the two-dimensional limit)

a (3};“;) (U L3 d (ukw) = (u,u, YRy + (u,u)R,,

+ (terms 1ndependent ofR,,) . (52)

The terms in R, in Eq. (52) result from the production
terms and the modeled fluctuating pressure gradient-veloc-
ity correlation terms in Eq. (12). The Larigevin model, Eq.
(37), yields (for homogeneous flows)

d (upu;)

2t = (8 — 1+38¢) [(wu)R, + (uu;)Ry; ]

+ 86(1/2k) [ (u;u,) (u,u) )Ry,
+ (w;ug) Cuu )R ]

+ (terms independent of R, ), (53)

where we have expressed the right-hand side of Eq. (37) in
terms of the Reynolds stresses.

Consider a homogeneous two-dimensional turbulence
in the x, — x, plane. Then the convective derivative in Eq.
(52) becomes a simple time derivative. The only nonzero
components of the Reynolds-stress tensor are (u?), (u?),
and (u,u,) = (u,u,). The mean velocity gradients are con-
fined to the x, — x, plane and are uniform so that the most
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general form for R, is R,, = — R,,, where R, is spatially
uniform and all other components of R, are zero. It is then
straightforward to show that the effect of R, on the evolu-
tion of the Reynolds stresses according to the model (Eq.
53) is the same as that given by Speziale’s transformation
rule (Eq. 52), provided that

8s—18s=2. (54)

E. Indeterminacy

For constant property flows (3 (U,)/dx, =0), Eq.
(16) shows that neither B, nor y, have any effect on G;.
Here 3, was found by considering the rapid distortion of
initially isotropic turbulence (Eq. 49) while ¥, remains arbi-
trary. We can set ¥, to any value in order to remove this
indeterminacy, but there is no reason to choose a value dif-
ferent than zero:

74=0. (35)

F. Summary

The above analysis has removed seven degrees of free-
dom from the model (Egs. 31, 32,49-51, 54, and 55) leaving
four degrees of freedom to be determined. No additional
constraints were found by considering the fluctuating pres-
sure-rate-of-strain correlation. The two “extreme state”
constraints, Eqs. (47) and (54), should be regarded as ten-
tative. They apply to states of turbulence at the limits of
applicability of this model, and if satisfying them led to unac-
ceptable evolution of the Reynolds stresses in the flows con-
sidered in Sec. V below, we could remove them without ser-
ious loss of model integrity. We also note that these
constraints apply rigorously only in their respective extreme
states; we take them as fixed for all turbulence states because
we seek constant values for the model coefficients.

V. CHOICE OF MODEL CONSTANTS

With e, given by Eq. (31), all other model coefficients
can be constant without violating the constraints derived
above. Four degrees of freedom remain to be determined: g,,
23,84, and g5 (g, is given by Eq. 47, g, by Eq. 54). We now fix
these four constants by optimizing their values with respect
to experimental data in homogeneous flows with uniform
mean velocity gradients. The optimization method is out-
lined first, followed by a discussion of the relevant experi-
mental data.

A. Numerical optimization

In homogeneous flows it is common practice to use the
smallest amount of experimental data in the simplest possi-
ble flow configurations in order to fix the model con-
stants.!~> Algebraic methods are often used in which the mo-
deled Reynolds-stress evolution equations are matched to
experimental data at a single point in each flow. This results
in a matrix equation to be solved for the model constants, but
the method is ill-conditioned if there are more data to be
matched than there are model constants. If the principal
goal of the exercise is to assess the predictive capabilities of a
model in homogeneous flows, then the algebraic method is a
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good one since the least possible amount of experimental
data is used to fix the model constants.

We are considering the special case of constant proper-
ty, homogeneous turbulence in order to calibrate a model
that will eventually be applied to variable density in homo-
geneous flows. We therefore wish to use the maximum
amount of information that can be extracted from experi-
mental data in homogeneous flows, that is, the full time evo-
lution of the Reynolds stresses in as many different types of
flows as possible. This is done by finding the set of M con-
stants C = {C,, C,,...,C),} that minimizes the difference
between the model calculations and the experimental data.
More precisely, we define an error measure e = e(C) to be
the difference between the modeled evolution of (1, u,) and
N sets of experimental Reynolds-stress data. For a given C
the modeled evolution equations are integrated N times with
initial conditions appropriate to each experiment, and then
¢(C) is computed. We find the C that minimizes e(C) by
searching the C space according to a pattern search optimiz-
ation algorithm as contained in standard texts on nonlinear
programming (Ref. 48, for example).

For each experiment the Reynolds-stress data ({u,u;)
as a function of time ¢) are reduced to a set of least-squares
cubic splines coefficients.”” The mean flow field
(8 (U, )/dx,) is specified, initial conditions for the modeled
Reynolds stresses are matched to the splined data at # = 0,
and 7 = k /e is evaluated directly from the spline coefficients
for all ¢ using the homogeneous turbulent kinetic energy
equation (Eq. 22):
-k

P—dk/dt’
The modeled Reynolds-stress equations (Eq. 17) with G;
given by Eq. (16) are integrated using a fourth-order
Runge-Kutta method. A pattern search optimization algo-
rithm is used to minimize a weighted root-mean-square er-
ror over the seven quantities k, b,;, b,y bi3, byy = by,
b3 = byy, and b,; = b,, for N sets of experimental data, sub-
ject to the constraints derived in Sec. IV, Since this is a least-
squares method, there is no potential for over-constraining
the model constants.

Our optimizations were performed on a VAX 11-750
using UNIX FORTRAN. For a four-dimensional coefficient
space and twelve sets of experimental data, the evaluation of
e(C) for each coefficient set C required about 1} CPU min.
A typical optimization converges to a local minimum of
¢(C) in 100-500 iterations, depending on the starting point
in coefficient space. With the basic algorithm in place, differ-
ent models can be optimized with a minimum of new coding.

(56)

T

B. Experimental data

For our purposes experiments involving homogeneous
turbulence in the presence of uniform mean velocity gradi-
ents can be divided into three categories based on the mean
velocity gradients and the normalized anisotropy tensor:

(1) irrotational strains in which the principal axes of b,
are aligned with those of 3 (U, )/9x,;

(2) irrotational strains in which the principal axes of b,
are not aligned with those of 3 (U, )/dx,; and
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(3) homogeneous shear flows.
These are convenient classifications since different sets of
model constants are relevant in each case. We now present
several sets of experimental data representing each of the
three categories; these data are used in the numerical optimi-
 zations. In all pure strain cases (R,,=0), we consider a co-
ordinate system that coincides with the principal axes of the
mean velocity gradients with x, in the streamwise direction.
For the shear flows, x, is the streamwise direction and x, is
the direction in which (U, ) increases. Experimental data in
decaying turbulence (3 (U, ) /9x,=0) are not used to deter-
mine the values of the model constants. A discussion of de-
caying turbulence and solid body rotation is deferred to Sec.
VL

(1) Irrotational strain, principal axes of b,, aligned with
those of 3 (U, )/dx,

The mean rate of rotation R,, is identically zero and
only the diagonal components of b,; are nonzero in these
flows. The only groupings of constants that enter the mo-
deled Reynolds-stress equations are g,, g5, and g, + g,. Sev-
eral types of experiments fall under this general heading.

Axisymmetric contractions are characterized by
811 =D,S;, = S;; = — D /2.Many workers have presented
data in such flows (Refs. 42 and 46, for example). Of these,
only Tucker*? used a duct for which D remains constant
through the contraction. Still, using Eq. (22) to determine €
gives negative values of € over approximately the final 25%
of the deformation; the data of Mills and Corrsin*® exhibit
similar behavior. We thus reject axisymmetric contraction
data for use in the optimization, but we do model the first
70% of Tucker’s data using the optimum set of model con-
stants in order to evaluate the model’s performance in these
flows.

A second subclass of irrotational strains is the trans-
verse irrotational plane strain in which (U;) remains con-
stant: §), =0, S,;, = — S3; = D in this case. Gence* and
Gence and Mathieu*® present a series of experiments in
which turbulence is subjected to two simultaneous deforma-
tions, the second rotated by an angle a with respect to the
first. Two sets of their data, @« = 0 and @ = #/2, are taken as
typical of these flows. A third experiment, that of Tucker
and Reynolds*® (also in Ref. 42), is used as well.

A case similar to the above is the longitudinal plane
strain or two-dimensional contraction in which the stream-
wise direction lies in the plane of the mean strain:
Sy = — 833, =D, S,, =0. The model, being oblivious to the
mean velocity, treats this as identical to the case above in
which the plane of the mean strain is normal to the stream-

0.21 4 0.038 —0.16 4 0.008
by, =|—016+0008 —0.13+ 0.018
0 0

It can be shown from Eq. (37) that the term multiplying g
in the modeled Reynolds-stress equations for these flows is
equal to b,; times the term multiplying g,. Equation (57)
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wise direction. Nevertheless, two examples of such flows
(Tucker*?) are included for completeness.

The last subclass of flows in this category is the axisym-
metric expansion, in which S|, = — D, §,, =833 =D/2.
Such flows are not generally created in the laboratory since
the adverse streamwise pressure gradient leads to flow sepa-
ration. Tucker*? studies instead an “equivalent symmetric
diffuser” in which S, = S,, = D /2, §33 = — D. We use his
data as representative of this type of flow. Assuming that
only gradients of the mean velocity and not the mean veloc-
ity itself affect the turbulence, this flow is expected to be
structurally similar to the axisymmetric expansion.

In each of the above seven flows, initial conditions are
set at the first reported data point where D becomes con-
stant. For the Gence and Mathieu a = #/2 case, the second
reported data point in the second distortion is taken as the
initial condition since we expect that the turbulence does not
feel the effect of the new orientation of the mean strain until a
distance of oneintegral scale L =k 3/2/einto thesecond duct.

(2) Irrotational strain, principal axes of b,, not aligned
with those of 3 (U, )/dx,

Again, R, is identically zero in this category. We use
three sets of Gence and Mathieu’s data**** as typical of these
flows: a =7/8, a =n/4, and a = 3r/8. Here S, =0,
Sy, = — 833 =D, and b,; = b, is now nonzero in addition
to the three diagonal components of b,;; g,, ., €3, and g,
enter the modeled Reynolds-stress equations. Initial condi-
tions are set at the second reported data point in the second

distortion as for the a = 7/2 case above.

(3) Homogeneous shear flows

The only nonzero component of J{(U,)/dx, is
d(U,)/9x,=D=const. Then S,,=8,,=D/2, R,
= — R;, = D/2, and all other components of S,, and of
R, are zero. Here b,, = b,, is nonzero in addition to the
three diagonal components of b,;. All six groupings of model
constants g, — g affect the evolution of the Reynolds stress-
es in these flows.

It is observed that experiments in homogeneous turbu-
lent shear flows fall into two general categories: weakly
sheared flows in which (u, u,) and k reach asymptotic con-
stant values, and strongly sheared flows in which (u, #,) and
k grow exponentially. Karnik*® concludes that in either case,
the normalized Reynolds stresses or the normalized anisot-
ropy tensor b,; approach asymptotic quasi-universal values
independent of the value of the mean shear:

(57)

— 0.07 £ 0.025

f
shows that b,; is approximately equal to — 0.07 for all ho-

mogeneous shear flows. Therefore, the terms containing g
are small compared to the terms containing g, in the mo-

D. C. Haworth and S. B. Pope 395

Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



deled equations. It is this fact that allows us to apply Spe-
ziale’s constraint (Eq. 54) without significantly affecting the
evolution of the Reynolds stresses in all flows considered
here (g5 and g4 enter the modeled Reynolds-stress equation
only for R, #0).

We take three sets of experimental data as typical of
these flows. Champagne, Harris, and Corrsin®! is an exam-
ple of a weakly sheared flow while Harris, Graham, and
Corrsin®? and Tavoularis and Corrsin®? are examples of
strongly sheared flows. In each case initial conditions are set
at the first reported data point downstream of where the
experimenters claim that a reasonable degree of transverse
homogeneity is attained.

C. Summary

The four remaining model constants g, g, g4, and g5
(six without the two “extreme state” constraints) are opti-
mized with respect to twelve sets of experimental data in
homogeneous flows with uniform mean velocity gradients.
Each of the coefficient groups g, — g of Eq. (38) enters the
modeled equations for at least some of the flow types consid-
ered, although the dependence on g4 is weak. A standard
optimization algorithm is used to minimize the difference
between the modeled evolution of k and b, and experimen-
tal data.

The most severe test of the model is expected in flows of
the second category above where the principal axes of b,
must adjust significantly to the mean velocity gradients. This
is especially true in view of the modeling of #{*’ discussed in
Sec. IV. By the time that most experiments in homogeneous
shear flows achieve transverse homogeneity, there is virtual-
ly no further evolution of b,, at all. Still, it is of interest to see
how the model performs in both the weakly sheared and the
strongly sheared cases; many second-order closure models
cannot deal with both cases equally well.

V1. PERFORMANCE OF THE MODEL IN
HOMOGENEOUS FLOWS

A set of optimum model constants is presented and the
modeled evolution of k and b,, is compared to experimental
data in each of the thirteen flows considered in Sec. V. The
qualitative behavior of the model in two other important
classes of homogeneous flows, decaying turbulence and solid
body rotation, is also examined. "

Optimizations were performed both with and without
the “extreme state” constraints, Eqs. (47) and (54). Those
performed without Eq. (47) yield g,~0.63 as optimum,
thus nearly recovering the rapid distortion constraint
&> = 0.60. Those performed without Eq. (54) do not con-
verge to a unique optimum value of g for all reasonable
starting points in coefficient space (C, of order unity,
i=1,...,M). This verifies that the modeled evolution of the
Reynolds stresses for the experiments considered is a very
weak function of g, as anticipated. We conclude that the
constraints of Egs. (47) and (54) can be applied without
adversely affecting the evolution of the Reynolds stresses in
homogeneous flows.

The optimum values of g,, g5, g4, and g5 are found to be
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FIG. 1. Evolution of turbulent kinetic energy k for the axisymmetric con-
traction experiment of Tucker,*> D = 13.71/sec. Langevin model calcula-
tions (lines), experimental data (symbols).

g.=37, g =083, g, =12, and g,=027.
(58)

Using the definitions of g, — g5 in Eq. (38) and the six con-
straints of Egs. (32), (49)-(51), (54), and (55), we then
find the optimum values for the 10 model constants:

a2 = 3.7, B‘ = — 0.20, Bz = 0.80, B3 = — 0.20,
yi= — 128, y,=301, y,= —2.18,
7.=0.00, y,=429, y,= — 3.0,

and a, is given by Eq. (31). For the 13 experiments consid-
ered, a, varies between — 1.2 and — 3.0, but is usually
between — 2.1 and — 2.3. This verifies the approximation
given in Eq. (33).

The modeled evolution of k and b;; using these opti-
mum model constants versus 13 sets of experimental data is
shown in Figs. 1-26. In all cases except one the modeled k
agrees quite well with experimental data. This is to be ex-
pected, since 7 is extracted directly from the data. For
Tucker’s longitudinal plane strain, duct 2 (Fig. 6), the mod-
el gives too large a value of k near the downstream end of the
distortion. From Egs. (15) and (22) and the discussion of

(59)

0.3 T T T T

k (m2/52)
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o
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t (sec)

0.1

FIG. 2. Evolution of turbulent kinetic energy k for the transverse plane
strain experiment of Gence and Mathieu,***> @ = 0, D = 32.23/sec. Lines
and symbols are the same as in Fig. 1.
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FIG. 3. Evolution of turbulent kinetic energy k for the transverse plane
strain experiment of Gence and Mathieu,**** @ = /2, D= — 32.23/sec.
Lines and symbols are the same as in Fig, 1.
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FIG. 4. Evolution of turbulent kinetic energy & for the transverse plane
strain experiment of Tucker and Reynolds,*> D = 4.45/sec. Lines and sym-
bols are the same as in Fig. 1.
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FIG. 5. Evolution of turbulent kinetic energy k for the longitudinal plane
strain experiment of Tucker,*2 duct 3, D = 4.63/sec. Lines and symbols are
the same as in Fig. 1.
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FIG. 6. Evolution of turbulent kinetic energy & for the longitudinal plane
strain experiment of Tucker,*? duct 2, D = 14.21/sec. Lines and symbols
are the same as in Fig. 1.
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FIG. 7. Evolution of turbulent kinetic energy k for the equivalent symmet-
ric diffuser experiment of Tucker,*? D = 7.12/sec. Lines and symbols are
the same as in Fig. 1.
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FIG. 8. Evolution of turbulent kinetic energy k for the transverse plane
strain experiment of Gence and Mathieu,“** o = 7/8, D = 32.23/sec.
Lines and symbols are the same as in Fig. 1.
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FIG. 9. Evolution of turbulent kinetic energy k for the transverse plane
strain experiment of Gence and Mathieu,“** a = /4, D = 32.23/sec.

Lines and symbols are the same as in Fig. 1.

FIG. 12. Evolution of turbulent kinetic energy & for the homogeneous shear
fiow experiment of Harris et al.,*> D = 44.0/sec. Lines and symbols are the

same as in Fig. 1.
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FIG. 13. Evolution of turbulent kinetic energy k for the homogeneous shear
flow experiment of Tavoularis and Corrsin,>? D = 46.8/sec. Lines and sym-

bols are the same as in Fig. 1.

FIG. 10. Evolution of turbulent kinetic energy k for the transverse plane
strain experiment of Gence and Mathien,**** @ = 37/8, D = 32.23/sec.

Lines and symbols are the same as in Fig. 1.
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FIG. 14. Evolution of anisotropies b,, for the axisymmetric contraction ex-
periment of Tucker,*? D = 13.71/sec. Langevin model calculations (lines),
experimental data (symbols): 00, by ; A\, bay; O, by,.

FIG. 11. Evolution of turbulent kinetic energy & for the homogeneous shear
flow experiment of Champagne ef al.,*' D = 12.9/sec. Lines and symbols

are the same as in Fig. 1.
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FIG. 15. Evolution of anisotropies b,, for the transverse plane strain experi-

ment of Gence and Mathien,**** @ = 0, D = 32.23/sec. Lines and symbols
are the same as in Fig. 14.
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FIG. 16. Evolution of anisotropies b, for the transverse plane strain experi-
ment of Gence and Mathieu,**** @ = 7/2, D= — 32.23/sec. Lines and

symbols are the same as in Fig. 14.

FIG. 17. Evolution of anisotropies b,, for the transverse plane strain experi-
ment of Tucker and Reynolds,*> D = 4.45/sec. Lines and symbols are the
same as in Fig. 14.
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FIG. 18. Evolution of anisotropies b,, for the longitudinal plane strain ex-

periment of Tucker,*> duct 3, D = 4.63/sec. Lines and symbols are the same
as in Fig. 14,
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FIG. 19. Evolution of anisotropies b,, for the longitudinal plane strain ex-

periment of Tucker,*? duct 2, D = 14.12/sec. Lines and symbols are the
same as in Fig. 14,
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FIG. 20. Evolution of anisotropies b,, for the equivalent symmetric diffuser
experiment of Tucker,*> D = 7.12/sec. Lines and symbols are the same as in
Fig. 14.
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FIG. 21. Evolution of anisotropies b,, for the transverse plane strain experi- FIG. 24. Evolution of anisotropies b,, for the homogeneous shear flow ex-

ment of Gence and Mathieu,“** @ = 7/8, D = 32.23/sec. Langevin model periment of Champagne ef al.,*' D = 12.9/sec. Langevin model calcula-
calculations (lines), experimental data (symbols): O, b,; A\, ba2; O, byy; B, tions (lines), experimental data (symbols): 5, byj; A, b5 O, bs5; B, by,
b,s.
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FIG. 22. Evolution of anisotropies b,, for the transverse plane strain experi- FIG. 25. Evolution of anisotropies b,, for the homogeneous shear flow ex-
ment of Gence and Mathieu,*** @ = #/4, D = 32.23/sec. Lines and sym- periment of Harris et al.,*> D = 44.0/sec. Lines and symbols are the same as
bols are the same as in Fig. 21. in Fig. 24.
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FIG. 23. Evolution of anisotropies ,, for the transverse plane strain experi-  FIG. 26. Evolution of anisotropies by, for the homogeneous shear flow ex-

ment of Gence and Mathieu,**** @ = 37/8, D = 32.23/sec. Linesand sym-  periment of Tavoularis and Corrsin,’*> D = 46.8/sec. Lines and symbols are
bols are the same as in Fig. 21. the same as in Fig. 24.
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Sec. V,dk /dt = 2kD(b,, — b,,) — efor this flow. The mean
strain rate D = S,;(D > 0) is given, 7 = k /€ is taken from
the experimental data, and the modeled b5, — b, is a bit too
large at the downstream end (Fig. 19), hence we might ex-
pect the modeled k to grow too quickly there. The difference
between model and experiment is less than 10%.

The modeled evolution of b, is also in reasonable agree-
ment with experimental data in all cases. No systematic de-
parture from experimental behavior is evident in Figs. 14—
26, although there are differences in specific cases. The fol-
lowing observations are made:

(i) Agreement is worst in the equivalent symmetric dif-
fuser experiment of Tucker (Fig. 20). The model overpre-
dicts b,,, the component in the direction in which the duct
expands (S;; = — D <0), and underpredicts the stream-
wise component b,,. There is a large scatter in the experi-
mental data for this flow.

(ii) The modeled evolution of b,, in the axisymmetric
contraction experiment of Tucker deteriorates near the
downstream end of the distortion (Fig. 14). Recall from Sec.
V that there was some difficulty in extracting € from the
experimental data for this flow.

(iii) Agreement is quite good in the flows of type 2 of
Sec. V, in which the orientation of the mean strain changes
suddenly (Figs. 21-23). There is some tendency for the mo-
deled evolution of b,; to lag the experimental data as the
principal axes of b,, rotate to align with those of the applied
mean strain.

(iv) The model copes equally well with both the weak
and the strong homogeneous shear flows (Figs. 24-26). The
evolution of b,, in the flow of Harris et al. Fig. 25 is not as
good as in the nearly identical flow of Tavoularis ez al. (Fig.
26).

We conclude that the optimized model yields quantita-
tive agreement with experimental data in homogeneous
flows subject to irrotational mean deformations as well asto
both weak and strong mean shear.

It is of interest to examine the sensitivity of these results
of changes in the model constants from the optimum values
of Egs. (58) and (59). We denote the optimum model
groups of Eq. (58) by g*, a vector of length 4. By definition,
the error e(g) is a minimum for g = g* and hence

de(g)
9g;
A sensitivity analysis then requires examination of the sec-
ond derivatives

_9%(g)
y—agi agj

=0, i=1234

g=g*

(60)

(61)

?
g=g"

where ¢,; is a symmetric positive semidefinite matrix. This
matrix is evaluated numerically by finding e(g) at 32 points
in the neighborhood of g* and applying the usual finite dif-
ference formula for second partial derivatives (see Ref. 53,
for example). Next, the eigenvalues and eigenvectors of e;
are found. The eigenvector corresponding to the largest
eigenvalue gives the direction in which e(g) increases most
rapidly from its minimum at g = g*; the eigenvector corre-
sponding to the smallest eigenvalue gives the direction in
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which e(g) increases least rapidly. Thus the eigenvectors of
e;; are the appropriate principal directions in g space with
orlgm at g* in which to examine the sensitivity of the results
to changes in the model constants.

The eigenvalues A ¢ and eigenvectors v” (normalized
to unit Cartesian length) are found to be

A W =314,
={0.135, —0.429, —0.0877, 0.889},
A?=0.0222,
v? = {0.453, —0.547, —0.586, —0.390}, (62)
A =0.00413,
v ={-0.758, —0.620, 0.109, — 0.173},
A ¥ =0.00184,
v ={—0451, 0.364, —0.798, 0.165}.

The striking finding is that the first eigenvalue is larger than
the other three by at least two orders of magnitude, This
shows that for the 12 experiments considered, it is the single
combination of model constants defined by the first eigen-
vector that dominates the modeled evolution of the Reyn-
olds stresses in the vicinity of g = g*. Unfortunately, it is not
possible to quantify a threshold error e,,,,, such that the mo-
deled evolution of the Reynolds stresses is acceptable for
e(g) <e,,, and unacceptable for e(g) > e,,,.. The adequacy
or inadequacy of the model results with respect to the experi-
mental data is a subjective judgment. Still, it is useful to
estimate (subjectively) the allowable deviation in g from g*
along each of the principal directions. To this end, numerical
experiments were performed in which g = g* + Ag, where
Agis chosen to lie a specified distance along one of the princi-
pal axes of e;,. It is found that moving from g* in the v
direction by as little as + 0.05 gives unacceptable evolution
of the Reynolds stresses for the two strong shear flows. The
allowable deviations in the remaining principal directions
are much larger, as expected: - 0.3 for v, and + 1.0 for
each of v and v. In all cases it is the modeled evolution of
the Reynolds stresses for one of the three shear flows that is
most sensitive to changes in the model constants away from
the optimum values.

We now turn to the case of decaying turbulence. Several
wind tunnel experiments have been performed to study the
decay of grid turbulence in the absence of mean velocity
gradients. Two principal observations are made in such
flows: the turbulent kintic energy X decays and the Reynolds
stresses tend toward isotropy (b,,—0). Recently, efforts
have been directed at compiling all available data in these
flows, primarily in order to determine the proper modeling
of the term ¢}’ in second-order closures.**>¢

With d ( U )/0x, identically equal to zero, the modeled
Reynolds-stress equation (Eq. 37) involves the single model
constant g, = a,. The behavior of the model is best under-
stood in terms of the quantities introduced by Choi**:

d =% , normalized time, (63)
T
_d [In(b ] .
= y , rate of return-to-isotropy, (64)
s
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are confined to the interior of the rough-
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denote the eigenvalues of the Reynolds-
stress tensor arranged in decreasing or-
der: IDIISIIO0.
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p=(1/6b%)"%) | ]
§:-:(1/6bl?l,)”3 invariants of b,,. (65)

Use of the normalized time ds eliminates the effects of energy
decay so that we can concentrate on the return-to-isotropy.
The trajectories of the state of the turbulence in the £&-7 plane
(dn/dE) and the rate of return-to-isotropy p then complete-
1y characterize the evolution of the decaying turbulence. A
sketch of the allowable region of the £-77 plane and its phys-
ical interpretation is shown in Fig. 27 (see Ref. 54).

The quantities p and dn/d§ for the current mode] are
evaluated from Eq. (37). We consider p first. All available
experimental data lie in the vicinity of the axisymmetric
states (Fig. 27). These data indicate that p increases with

increasing anisotropy (with increasing distance from the
origin in Fig. 27) and that for fixed 7, p is larger for £ <0
than for £> 0. Observed values of p vary between 0.0 and
approximately 4.0 (for 0.0 <7 <0.13). The Langevin mod-
el, for any a, between zero and 2C,, gives p greater than or
equal to zero everywhere in the allowable region of the £-n
plane. The rate of return-to-isotropy increases with increas-
ing anisotropy except in a narrow regoin near & =7 (0,
occurs at £ = 7 = 4), and for fixed 7, p is larger for £ <0
than for £>0. At the extreme states £ =7=14 and
—&=n=1},pisequal to 3C,.

Contours of p for a, = 3.7 (Eq. 59) are shown in Fig.
28; p varies from 0.75 to 3C,, = 6.3 for this a,. The minimum
value, p,;, = 0.75, is not as small as the experiments indicate

m
1734 Prnax® 63~
Prmax=6-3
4.0 FIG. 28. Contours of constant rate of re-
3.0 [ turn-to-isotropy p in the £~y plane for
the Langevin model with o, = 3.7.
3.0 —
~2.0
Pmin =0.75
) P=137 {
-1/6 0] 176 173
402
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butp,,,, = 6.3 is in somewhat better agreement (recall that
measurements are available only up to 7=0.13). The trends
noted in the experimental data are evident in Fig. 28. We
conclude that the model behaves at least qualitatively cor-
rectly in most respects for nearly axisymmetric turbulence.

Experimental data on the trajectories of the return-to-
isotropy exhibit the following features: near £ = #, the tur-
bulence appears to tend toward the axisymmetricstate £ = 5
as it returns to isotropy; near £ = — 7, Choi and Lum-
ley**** claim that the turbulence tends toward the axisym-
metric state £ = — 7 as it returns to isotropy, while Le Pen-
ven et al.’® claim that it tends away from this state; near
£ = 0 (away from the axisymmetric states) there are no data
available,

The Langevin model also predicts a tendency toward
the axisymmetric state near § = 7. Near £ = — 7 thereis a
weak tendency toward axisymmetry in a small zone near
& = — m; the size of this zone decreases as a, increases. Tra-
jectories are horizontal at £ = 0, crossing from negative val-
ues of £ to positive values. In general, there is a sweeping
toward the right side of the allowable region of Fig. 27 that
increases in intensity as a, increases. This behavior is shown
in Fig. 29 for a, = 3.7. Again, we conclude that the model
behavior is at least qualitatively correct for this value of a,.

It is evident that further data are needed on the return-
to-isotropy of decaying turbulence, particularly for states far
from axisymmetry. We expect that direct numerical simula-
tions and further experimental investigations will resolve
this question shortly. That is why we do not select &, here by
modeling experiments in decaying turbulence. When more
complete data are available, we may modify our choice of @,
or we may even make a, a function of £ and 7. We emphasize
that the single model constant a, yields the complex behav-
ior of Figs. 28 and 29, and that this behavior is in at least
qualitative agreement with most aspects of the experimental
data in the vicinity of the axisymmetric states.

As a final example of homogeneous flows, we consider
the solid body rotation of initially isotropic turbulence. This
flow was first studied experimentally by Traugott®’; Bardina
et al.*® performed direct numerical simulations of these and
later experiments (see Ref. 58 for references) and provide a

1731 P
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: N7 + —&
-1/6 [o] 176 /3

FIG. 29. Trajectories of return-to-isotropy in the £-7 plane for the Langevin

model with @, = 3.7. Arrows indicate direction only, not rate of return-to-
anisotropy.
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physical interpretation of the results. A turbulent Rossby

number is defined as Ro, = (12k /3) (1/Q4), where A is
the Taylor microscale of the turbulence and ) is the angular
velocity of the imposed solid body rotation. The primary
results of the experiments and computations can then be ex-
pressed in terms of Roy: for moderate angular velocities
(Roz > ~0.4) the principal effect of the rotation is to de-
crease the dissipation rate € with only a small increase in
anisotropy of the Reynolds stresses; for extremely high an-
gular velocities (Ro; < ~0.2) the turbulence approaches a
two-dimensional state in accord with the Taylor-Proudman
theorem.*® Although this is essentially an inviscid pheno-
menon, it is the small scales of the turbulence that are most
strongly affected by the rotation. The appropriate turbulent
time scale is the Kolmogorov microscale 7, ~A /y2k /3.
Thus the alternative expression Ror = (7,0Q)~' shows
more clearly why the Rossby number is the appropriate di-
mensionless parameter.

Consider a solid body rotation about the x, axis. Then
S, is identically zero and only R,, = — R,, = Q is non-
zero. The x, and x, directions are indistinguishable; symme-
try requires that (u,u,) = (u,u;) = (uu;) =0 and
(43) = (42) in the fully developed turbulent flow. The
Reynolds-stress evolution equations (Egs. 18 and 22) re-
duce to

d(u?)
dt3 = 233 — €33,
d{u?) du?)
dtl = dt2 =24, — €11 (66)
dk
—= —¢
dt

This shows that there are no production terms in this flow.
The effect of the solid body rotation enters only via its effects
on ¢, €, and €. Furthermore, (u?) differs from
(u?) = (42) only to the extent that the rotation induces an-
isotropy in #;; and ¢,; (assuming isotropy initially). The
experimental results stated earlier imply that for moderate
rotation rates, little anisotropy is induced in 4,; or in ¢,

The Langevin model (Eq. 37) reduces to a set of equa-
tions that is identical to the modeled Reynolds-stress equa-
tions for decaying turbulence; Q) does not appear. So, the
only effect of the solid body rotation on the modeled Reyn-
olds stresses is via its effect on €. We conclude that the Lan-
gevin model is consistent with experimental data (to the ex-
tent that the anisotropy is negligible) for Ro, larger than
about 0.4. Recall that no € equation is included in the current
model.

The Langevin model is incapable of producing a two-
dimensional turbulence in the limit Ro,—0. We claim that
this limit is outside of the intended range of the model. The
mechanism for the approach to the two-dimensional state,
according to the Taylor-Proudman theorem, is that Coriolis
forces tend to align vortex tubes with the axis of rotation.5%5?
Since vorticity is concentrated in the small scales of the tur-
bulence, local isotropy is destroyed before anisotropy is gen-
erated in the Reynolds stresses, a result confirmed in the
computations of Bardina er al.® The vortex stretching
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mechanism for the transfer of energy from the large scales of
the turbulence to the smaller scales is disrupted, trapping the
essentially isotropic energy in the largest scales. Such behav-
ior is clearly beyond the scope of our model. It is in marked
contrast to the case of rapid distortion by a mean strain dis-
cussed earlier in which production terms are nonzero and
the largest scales are deformed most severely by the mean
flow.

For the case in which (43 ) # (43 ) = (13 ) initially, the
model predicts a return-to-isotropy while the data show a
decaying state in which (43 ) remains greater than (#?). The
anisotropy is small for Ro, greater than 0.4, and to the ex-
tent that anisotropy is negligible, the model is again consis-
tent with experimental data.

To summarize, we have presented a set of constants for
which the model is in quantitative agreement with available
experimental data in homogeneous flows subject to uniform
mean deformations. The sensitivity of these results to
changes in the model constants was examined. Qualitative
agreement with data in decaying grid turbulence and in solid
body rotation of nearly isotropic turbulence has also been
demonstrated.

ViI. CONCLUSION

A generalized Langevin model has been developed by
determining the form of the second-order tensor G;; that
appears in a general modeled equation for the fluid particle
velocity increment. This model provides closure for both the
pdf evolution equation and for the Reynolds-stress equa-
tions, satisfies realizability, yields joint normal pdf’s in ho-
mogeneous flows, and is consistent with Kolmogorov’s iner-
tial range scaling. We expect the model to describe correctly
the behavior of a fluid particle in a turbulent flow only when
local isotropy prevails.

The form of the second-order tensor is evaluated by con-
sidering the evolution of the Reynolds stresses in homogen-

J

eous turbulent flows. We assume a form that is linear in the
normalized anisotropy tensor and in the mean velocity gra-
dients. The resulting model cofficients are determined by
first comparing the modeled Reynolds-stress evolution
equation to its exact counterpart derived from the Navier—
Stokes equations. Seven constraints are derived by enforcing
proper evolution of the turbulent kinetic energy and by en-
suring proper behavior in the limits of a rapid distortion and
a two-dimensional turbulence. The four remaining model
constants are then found by matching the modeled evolution
of the Reynolds stresses to twelve sets of experimental data
in homogeneous flows with uniform mean velocity gradi-
ents.

An optimum set of coefficients is presented for which
the model yields good agreement with experimental data in
homogeneous flows subject to mean deformations. In addi-
tion, the optimized model exhibits qualitatively correct be-
havior in decaying turbulence and agrees in a limited sense
with experimental data on the solid body rotation of nearly
isotropic turbulence for moderate rotation rates.

While the second-order tensor G;; was evaluated by re-
stricting attention to homogeneous turbulent flows, we em-
phasize that the model is not limited to such flows. The sig-
nificance of this model lies not in its ability to accurately
reproduce the evolution of the Reynolds stresses in homo-
geneous turbulence (although the level of agreement is en-
couraging), but rather in the following observations:

(i) both Lagrangian and Eulerian statistics may be ex-
tracted from the model®;

(ii) the extension to multi-time pdf’s is straightfor-
ward®; no additional scale information is then required, and
a separate € equation is not needed,;

(iii) because Eq. (3) is a closure model for a pdf evolu-
tion equation, the extension to the inhomogeneous case re-
quires little further modeling’; and

(iv) because G;; also provides closure for second-order
models, this pdf method can be used to construct second-
order models that satisfy realizability without applying any
additional constraints.*?

The Reynolds-stress model for homogeneous turbulence corresponding to the Langevin model developed here is found
from Egs. (17), (18), and (37), with the optimum model constants given in Eq. (59) and C, =2.1:

b + by — €y = — 8.3eb,, — 2/3€5,, + 14.8¢[1/3b,, + by;b,

—b%(by +1/38,))

+ 1.2k [2/38)y + Siuby + Syby — 21 (byy + 1/38,)] + 1.66kby, (Sycby + Sybu)
+ 4.8KkS, by by + 1.36k [bSy + beSy — 21, + 31,) (b + 1/38,) ]

+ 0.54k(Ry;:b; + Ry;b, ) — 10.38kb, (R, by + R,by ).

Since homogeneous turbulent flows are ideally suited to
direct numerical simulation (see Ref. 60, for example), we
expect that G;; could be measured in such simulations. We
may find that the linear form assumed here needs to be modi-
fied or that the model coefficients must be functions of invar-
iants and of a Reynolds number, at least. Direct simulations
should also prove valuable in clearing up lingering uncer-
tainties concerning the return-to-isotropy of decaying turbu-
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(67)

—

lence and the proper modeling of ¢{7’. The optimum set of

model constants reported here should not be taken as final
until this work has been done. The sensitivity analysis of Sec.
VI shows that there is sufficient latitude in the choice of
model constants that additional data could be matched with-
out significantly degrading the results for the flows consid-
ered here; three degrees of freedom corresponding to the
eigenvectors v, v, v of Eq. (62) remain available. Fu-
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ture papers will deal with the application of this Langevin
model to inhomogeneous flows and to flows with scalar
transport.
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