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Propagating surface evolution in isotropic turbulence is studied using velocity fields 
generated by direct numerical simulations. The statistics of tangential strain rate, 
fluid velocity, characteristic curvature and area-following propagating surface 
elements are investigated. The one-time statistics of strain rate and fluid velocity 
pass monotonically from Lagrangian value at  low propagation speeds to Eulerian 
values at high speeds. The strain-rate statistics start deviating significantly from the 
Lagrangian values only for propagating velocities greater than the Kolmogorov 
velocity scale v,,, whereas, with fluid-velocity statistics the deviation occurs only for 
velocities greater than the turbulence intensity u'. The average strain rate 
experienced by a propagating surface decreases from a positive value to near zero 
with increasing propagation velocity. The autocorrelation function and frequency 
spectrum of fluid velocity and strain rate scale as expected in the limits of small and 
large propagation velocities. It is also found that for the range of propagation 
velocities considered, an initially plane surface element in turbulence develops a cusp 
in finite time with probability nearly one. The evolution of curvature is studied using 
the concept of hitting time. Initially plane propagating surfaces end up being almost 
cylindrical in shape. Highly curved surface elements are associated with negative 
strain rates and small surface areas. 

1. Introduction 
A propagating surface in fluid flow is defined as a surface that propagates normal 

to itself relative to the fluid. Propagating surfaces are of practical value in the study 
of premixed combustion. A complete solution to the turbulent premixed combustion 
problem requires that the coupled chemical-kinetics and turbulence equations be 
solved simultaneously. If the timescale of the thermochemistry is smaller than any 
timescale of the turbulence and if the chemical kinetics are independent of the strain 
rate experienced by the flame, the burning is restricted to thin sheets called flamelets. 
A flamelet by definition is thin compared to any lengthscale in turbulence and this 
regime of premixed combustion is called the flamelet regime. In the flamelet regime 
of premixed combustion the turbulence manifests itself on the combustion only via 
its effect on the propagating flamelet. The flamelet propagates into the reactants, 
leaving behind burnt products of lower density and higher temperature. The 
propagating velocity of the flamelet in turbulent combustion is a function of the local 
strain rate and curvature of the flamelet. It is clear that a good understanding of the 
behaviour of propagating flamelets is important for the accurate modelling of 
turbulent combustion in this regime. 

As a first step towards understanding the behaviour of propagating flamelets, in 
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this work we study passive, infinitesimally thin, regular surfaces (with no inner holes) 
propagating a t  constant velocity in a constant-density turbulence field. Thus the 
simplifications effected to the flamelet are: (i) the surface propagation speed is 
constant at the characteristic laminar flame speed of the mixture; and (ii) the 
density jump across the flamelet is zero. (Peters 1988, refers to flame surfaces 
propagating a t  constant velocity as flame sheets.) The effect of turbulence on such 
a passive surface is to convect, stretch and bend it. These random processes are 
important from the combustion viewpoint and the objective of this work is to 
characterize their statistics. Of particular interest is the question of whether the 
curvature of an initially plane surface becomes infinite (i.e. if the surface develops a 
singularity or cusp) in finite time. 

Global description of a finite-sized propagating surface is rendered difficult by the 
diffusive nature of turbulence. A local one-point description of the surface properties 
is a good starting point (Pope 1988) and is the subject of the present study. Although 
this one-point study cannot answer important questions that involve the global 
description of the flamelet, it will provide valuable insight into the local geometry of 
its structure. Other types of surfaces of interest, material and constant property, can 
also be viewed as propagating surfaces. The material surface propagates with zero 
velocity and the position-dependent propagation velocity of the constant-property 
surface is a known function of the Eulerian scalar field in question (Pope 1988). 

1.1. A brief literature review 
Of all types of surfaces, material surfaces have received most attention in the 
literature. Analytical works in this area include those of Batchelor (1952, 1959) and 
Kraichnan (1974). Recently Yeung, Girimaji & Pope (1990), Pope, Yeung & Girimaji 
(1989), Girimaji & Pope (1990), and Girimaji (1991) have used velocity fields 
generated by direct numerical simulations (DNS) to study the effect of isotropic 
turbulence on material line, area and volume elements. Drummond & Munch (1990, 
1991) have also studied material element deformation and distortion numerically, 
but using a simple random flow field. 

The studies of propagating surfaces in the literature are more recent. Using the 
data of material elements Yeung et al. (1990) infer the behaviour of surface elements 
propagating at velocities much smaller than the Kolmogorov velocity scale. They 
show that these surfaces are trapped close to material surfaces with which they are 
initially coincident. Consequently the behaviour of slowly propagating surfaces is 
deduced to be similar to that of material surfaces. Pope (1988) has derived the 
evolution equations for the surface-normal, area and curvature-following infini- 
tesimal propagating surfaces in terms of velocity derivatives following the elements. 
Flame-front propagating in simple flow fields has been studied by Ashurst, 
Shivashinsky & Yakhot (1988). They suggest that for sufficiently small propagating 
velocities there is no cusp formation. 

1.1.1. Analogy with inertial particles 
The evolution of passive propagating elements in turbulence is somewhat 

analogous to that of particles with inertia at small particle loading densities. 
Elements of vanishingly small propagation velocity and inertia behave like fluid 
particles; hence, the velocity field statistics of these elements are close to the 
Lagrangian statistics. At the other limit, elements of infinite propagation velocity or 
inertia experience a turbulence field that appears frozen in time ; hence, the one-time 
velocity field statistics following these elements are nearly identical to the 
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corresponding Eulerian statistics. The main difference is that in the present case the 
magnitude of the relative velocity between the propagating and the fluid particles is 
constant whereas in the case of inertial particles the relative velocity is governed by 
a differential equation. The evolution of inertial particles in turbulence has received 
a good deal of attention in the literature (e.g. Csanady 1970) and some of the ideas 
developed in that context are used in the present study. In  particular the crossing 
trajectories efiect concept is used to explain some of the observed behaviour of the 
propagating elements. 

Crossing trajectories effect. Consider a propagating element E in a turbulence 
structure of lengthscale h and timescale 7.  A t  time T = 0, let this propagating 
element be coincident with a fluid element F .  Let the element E propagate with 
respect to the fluid at a constant velocity P .  Owing to the relative motion, the 
element E continuously changes its fluid particle neighbourhood. The timescale 7E of 
the change of fluid velocity following the element E is 

whereas the timescale of change following the fluid element F is 7 .  

For low propagation velocities (P  < h/7)  the timescales of the elements E and F 
are nearly equal and their trajectories deviate little with time. However at  large 
propagation velocities (P > h/7) the element E cuts through (or falls out of) the eddy 
losing its memory faster than the fluid element F which changes its velocity owing 
to eddy decay alone. Hence the crossing trajectories effect increases with propagation 
velocity : slowly propagating elements experiencing longer timescales of correlation 
than rapidly propagating elements. By the same token, for any given propagation 
velocity the crossing trajectories effect is negligible if the lengthscale is large enough 
( A  % P7) and is important otherwise, especially for h < P7. 

Having motivated the study of passively propagating surfaces in turbulence and 
briefly reviewed the related literature we now present study. 

1.2. Dejnitions 
To facilitate further discussion we now define various quantities of interest. We 
consider an incompressible, statistically stationary, isotropic turbulence field of 
Taylor-scale Reynolds number R,, turbulence intensity U' and the integral timescale 
Tu. The small scales are characterized by 71, 7 and v,, - the Kolmogorov time, length 
and velocity scales respectively. We expect the small-scale processes and the velocity 
gradient statistics to scale with the Kolmogorov scales. For this reason, throughout 
the remainder of the paper all the quantities considered are normalized with the 
Kolmogorov scales. However it is expected that the (Kolmogorov-normalized) fluid- 
velocity statistics scale with the (normalized) turbulence intensity u'( = U'/v,) and 
with the (normalized) integral timescale T,( = Tu/7,J. 

Evolving in this isotropic turbulent field is an infinitesimal surface element 
propagating normal to itself at  a constant (normalized) velocity p relative to the 
fluid. A t  any time t ,  N ( t )  is the surface-normal vector. Following Pope (1988), we 
describe the evolution of the surface in a Cartesian coordinate system that moves 
with the surface element. By convention the 3-axis is taken to be surface-normal 
direction. The 1- and 2-axes are situated on the tangent plane of the surface and 
rotate with the fluid about the 3-axis. The unit vectors of the Cartesian coordinate 
system, e,,e, and e3, evolve according to the equations given in $1.3. The fluid 
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velocity following the propagating element is denoted by U(t ). The strain-rate tensor 
s is defined as 

UiSj  denotes the derivative of the ith component of velocity in the j t h  direction. The 
tangential strain rate, denoted by a, is 

stj = t[u,,,+u,,,I, i , j  = 1,2,3.  (2) 

a = Ul3,+U,,, = -u3,,, (3) 

the last equality being a consequence of incompressibility. The second derivative of 
U, in the tangential plane of the surface is a second-order tensor denoted by U3,ap 
Here and throughout the rest of the paper Greek subscripts indicate components of 
tensors along the tangential plane and hence are restricted values 1 or 2. 

At time t ,  S( t )  is the infinitesimal area of the element, A(t)  (= 8(t)/S(O)) is the area 
ratio, and, h is the symmetric two-dimensional second-order curvature tensor of the 
propagating surface (Pope 1988). The eigenvalues of h (k, and kz) are called the 
principal curvatures of the surface elements. By convention we take Ik,J 3 lkJ. 
Clearly the eigenvalues and hence k, and k, can be positive or negative. Propagation 
tends to decrease the radius of curvature when the curvature of a surface is positive. 
Conversely, propagation tends to flatten out a surface of negative curvature. The 
characteristic curvature C is defined as, 

G (kt + k i ) i  = (haphap)$. (4) 
The characteristic radius of curvature R of the surface element is defined as 

R = 1/C. (5) 

In thus defining the characteristic curvature and characteristic radius of curvature 
the information about the sign of curvature is lost. Given C alone one cannot answer 
the question of whether propagation will increase or decrease the value of the 
characteristic curvature. To answer that question further information about the 
surface element orientation is required. The second-order tensor gas defined as, 

gap = hap/', (6) 

clearly contains that information. (Note that gapgap = 1. )  

1.3. Evolution equations 
The position vector X(t )  of a propagating element evolves according to 

-- d m  - U ( X ( t ) ) + p N .  
dt (7) 

Pope (1988) has derived evolution equations for the normal N(t )  area ratio A@) ,  and 
curvature h(t), following propagating elements in the time-dependent Cartesian 
coordinate system described in the previous subsection. Given the initial surface 
orientation, the normal N( = e,) evolves according to 

The tangential-plane unit vectors el and e, evolve according to 
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The curvature tensor evolves according to 

The area ratio following the propagating surface evolves according to 

dlnA 
dt 

-- - a-p(k, + k,) = a-ph,. 

The second term in (1 1) represents the stretching of the surface area due to straining 
by the flow field. The third term represents the fractional rate of change of area due 
to propagation. 

The equation for the characteristic curvature can be derived from (10) : 

-= bl+b2C+b,C2, 
dC 
r l J  
U b  

where the bending term b,  is 

the stretching coefficient b, is 
‘1 = U , , a p g a j ,  

b2 = -a-2SupgpySya, 
and the propagation coefficient b, is 

Note that b,, b, and b, are functions of a statistically stationary Eulerian velocity 
field and a tensor of unit norm and hence can be expected to be stationary random 
variables. The bending term initiates curvature on an initially plane surface. Then 
the effects of straining and propagation takeover, perhaps causing the curvature to 
become infinite in finite time. That the propagation term can cause a cylindrical 
surface with some non-zero initial curvature to develop a singularity (i.e. zero radius 
or infinite curvature, also called a cusp) can be seen from the following simplified 
equation for the radius of curvature. Consider the case when k, > 0 and k,/k, x 0 so 
that R x l /k l .  In  the absence of bending and straining the evolution equation of R 

‘3 = N a p  Spy Sya. 

can be derived from (12) to be 
dR 

The solution for (13) is 

-- - -p. 
dt 

R(t) = R,-pt. 

So under the influence of propagation alone, a surface of non-zero initial radius (R,) 
attains singularity at time t = R,/p. Whether a turbulence flow field (where bending 
and stretching are also present) can cause an initially plane surface to develop 
singularity in finite time is not clear and is one of the questions addressed in this 
paper. 

1.4. Specific objectives of the present study 
Numerically generated turbulence is used to study the following aspects of 
propagating-surface evolution as a function of the propagating velocity : 

(i) the one-time statistics, autocorrelation and frequency spectrum of the fluid 
velocity normal to the surface (U3(t)) following a propagating element ; 

(ii) the one-time statistics, autocorrelation and frequency spectrum of the 
tangential strain rate (a(t)) following a propagating element ; 

(iii) the correlation between normal fluid velocity (U,(t)) and tangential strain rate 
(a(t)) of a propagating element ; 

(iv) the evolution of the characteristic curvature C(t) and surface area ratio A(t) 
of the propagating element. 

0 FLM 234 
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The remainder of the paper is organized as follows. In  $2 the numerical methods 
employed are discussed. I n  $3 the statistics of velocity and strain rate are presented. 
The evolution of curvature is investigated in $4. Section 5 summarizes our 
conclusions. 

2. Numerical methods 
In  this Section the numerical methods employed in this study are briefly discussed. 
In  $2.1, the DNS technique used to generate velocity-field time series following the 
propagating elements are described. In  $2.2, we describe the procedure for obtaining 
surface properties from the velocity-field time series. 

2.1. Direct numerical simulations 
The direct numerical simulations performed for this paper are similar to those of 
Pope et al. (1989), using the same parameters but a different initial field, resulting in 
a different realization of the turbulence. For completeness some important details of 
the simulations are provided below. 

A modified version of Rogallo’s (1981) pseudo-spectral code is used to solve the 
Navier-Stokes equations in a cubical box (of 643 grid nodes) with periodic boundary 
conditions. Without affecting the dynamics of the high wavenumbers, energy is 
added to the low wavenumbers to  maintain the turbulence stationary (Eswaran & 
Pope 1988; Yeung & Pope 1989). The kinematic viscosity is chosen to yield a spatial 
resolution adequate for resolving velocity second derivatives (Pope et al. 1989). Such 
a choice of viscosity yields a Taylor-scale Reynolds number (R,) of 37. The 
Kolmogorov length, time and velocity scales for this simulation are 0.0486, 0.0961 
and 0.506 respectively. The turbulence intensity (u’ = U’/w,) is 3.20. Further details 
about the parameters of the simulation are given in Pope et al. (1989). 

For material surfaces a constant time-step of At,,, = 0.0527, was found to be 
adequate (Pope et al. 1989). This time-step yielded a Courant number of 
approximately t for the largest fluid velocity encountered over the entire simulation. 
The time-step used for the propagating surface is 

Ur 
Atp = Atm- 

u ’ + p ’  

which corresponds to a Courant number of approximately t for the largest total 
(propagating + fluid) velocity encountered over the entire simulation. 

Starting from a specified initial spectrum the turbulence is allowed to  evolve until 
the Eulerian field becomes statistically stationary. Then a t  time t = 0, a total of I = 
8192 randomly placed and oriented fluid elements are released. The particle position 
evolution equation, (7),  is integrated using a second-order Rung-Kutta scheme. The 
velocity and its first derivative at  the particle locations are calculated from the 
corresponding Eulerian fields using the cubic-spline interpolation algorithm of 
Yeung & Pope (1988). The second derivative of velocity is obtained by differentiating 
the velocity-derivative spline. 

Eight simulations with identical initial conditions and turbulence parameters are 
performed for propagation velocities ranging from 0 . 2 5 ~ ~  to  32wv, The total number 
of time-steps for each propagating velocity is 1500. The total length of the time series 
for a propagating velocity p is 

78u’ t =- 
fP u’+p’ 
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approximately 707, for the lowest propagating velocity and 7~~ for the highest. So, 
although the realization of the turbulence is the same for all the propagation 
velocities, the total length of the time record decreases with increasing p .  For all 
propagation velocities, the total distance traversed by a typical propagating particle 
over the period of simulation corresponds to approximately twice the length of the 
computational box. Hence the duration of the simulations is adequate. 

2.2.  Calculation of surface properties 
At time t = 0, given the normal vector (e3), the direction of the unit vector e, can be 
chosen at random on the tangent plane, and e, specified to complete a right-handed- 
Cartesian coordinate system. For convenience these directions are made initially 
coincident with the computational axes. Since the turbulence field is isotropic, this 
initial condition represents random orientation of the propagating surface elements 
with respect to the velocity field. The initial values of area ratio and curvature are 
unity and zero respectively. Knowing the velocity first and second derivatives, the 
surface curvature equations (8)-( 1 1 )  are integrated from the aforementioned initial 
conditions to yield the surface properties a t  subsequent times. 

The equations for the unit vectors of the Cartesian coordinate system e,(t), and the 
area ratio A( t ) ,  are all solved using second-order Runge-Kutta schemes. The 
equation for the components of the curvature h,B poses a problem, for the curvature 
of a propagating surface is found to become infinite in finite time. Conventional 
numerical procedures are likely to yield solutions fraught with truncation errors a t  
large but finite curvatures, Motivated by the exact solution at high curvatures to  the 
radius of curvature equation, (13), a predictor-corrector scheme that integrates the 
had equation accurately at  high curvatures is devised. The full curvature equation, 
(lo), can be restated as 

_ -  - G t - p h - h ,  dh 
dt 

where 

Then the predictor h' at  time t is given by 

The corrector step that yields the value of h a t  time t+At is 

QaF = '3, aF - ahaF - (syF h a y  + s y a  'fly) 3 

h'(t) = ( / -h( t )pAt) - ' (h( t )  + G ( h ,  t )  At). 

(18) 

(19) 

h ( t+At )  = (I-h(t)pAt)-'[h(t)++At{G(h)+ G ( h ' ) } + H ] .  (20) 

The H-term in the corrector step is required to make the scheme second-order 
accurate. 

As mentioned earlier, the initial value of curvature is zero for all elements. With 
passage of time the value of curvature increases and for most elements becomes 
infinite before the end of the computations. At each step, each surface element is 
tested for cusp formation. At time t ,  surface-element curvatures which are such that 

are identified. Under the influence of the propagation term, the characteristic 
curvature (calculated according to (19), (20)) of these elements may become zero and 
pass on to negative values over the next time-step.? The zero value represents cusp 

t It is possible though that the bending and stretching terms prevent the characteristic 
curvature from going to zero. But at these high values of curvatures the propagation term is the 
leading-order term and hence can be expected to dominate the curvature evolution. 

0-2 
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formation after which the curvature equation, (lo), is invalid. In the calculations, the 
elements whose curvature are large enough to satisfy (22) are deemed to have 
attained singularity and the calculation of their curvature h and area ratio A is 
discontinued. The particle tracking, interpolation and calculation of the surface 
normal continue since these quantities do not involve curvature. The maximum 
value of curvature - that is distinct from infinity - permitted by the criterion 
expressed in (22) is 

c n a x ( P )  = 2IPAt. (23) 

3. Strain rate and fluid velocity 
Consider an ensemble of initially randomly located and oriented surface elements, 

propagating through stationary isotropic turbulence. The fluid velocity and its 
gradients following the elements are random processes. After an initial transient 
period of a few Kolmogorov timescales (for surface reorientation is a small-scale 
phenomenon) these random processes attain stationary distributions that are 
independent of the initial conditions of the elements. In this Section, the one-time 
statistics, autocorrelation, and spectrum of the strain rate and fluid velocity 
following propagating elements at this stationary state are discussed. The cross- 
correlation between strain rate and velocity is also presented. 

3.1. Strain-rate statistics 
It was seen in Girimaji & Pope (1990) that strain rates following fluid elements are 
somewhat persistent. This causes the surface normal (e3) to preferentially orientate 
along the maximum negative strain-rate direction. As a result the mean tangential 
strain rate ( ( a ) )  is positive. The strain rates experienced by propagating elements 
are, however, less persistent due to crossing trajectories effect. With increasing 
propagation velocities the elements cut through eddies more and more rapidly, 
causing the strain rates to be less and less persistent. So the proclivity of the surface 
normal to point along the maximum strain-rate direction decreases and with it the 
magnitude of ( a )  diminishes. 

The stationary values of the mean and variance of the tangential strain rate a 
(recall that all the quantities are normalized by Kolmogorov scales) are plotted 
against propagation velocity in figure 1. For small propagation velocities these 
statistics are very close to the values for material surfaces given in Girimaji & Pope 
(1990). (The Lagrangian values are ( a )  = 0.160 and var (a)  = 0.09.) At large 
propagation velocities the mean and variance approach the Eulerian values of 0 and 
0.05 respectively. The transition from the Eulerian to the Lagrangian values 
appears monotonic. For propagating velocities smaller than v,, ( p  < 1) the deviations 
from the Lagrangian values are negligible. This is because a t  these propagation 
velocities the crossing trajectories effect is negligible. 

3.1.1. Autocorrelation of strain rate 

rate process are defined as 
The autocorrelation function f a ( t ’ )  and the correlation time-scale 8, of the strain- 

and 
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FIGURE 1. Strain-rate statistics us. propagation velocity: ( a )  (O), var (a) (n), 8,(A). 
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If there is a negative loop in the correlation function, the timescale thus defined is 
a better indicator of the time over which the strain rate is correlated with itself - 
rather than the usual definition (0, = 1; f,(t‘) dt’). 

The behaviour of f,(t’) and 0, at large propagating velocities can be analysed as 
follows. At large propagation velocities the strain rate and bending experienced by 
the element become less and less persistent. As p tends to infinity the integral of the 
right hand-side of (8) over any finite time tends to zero, resulting in 

Since the initial orientation of the surface normal is arbitrary and the turbulence is 
isotropic, e,(O) can be made to coincide with an Eulerian, Cartesian coordinate axis, 
say the 3-axis. Since the propagation velocity along e,(t) ( x  e,(O)) is much larger than 
the fluid velocity, the particle propagates through the turbulence field in a straight 
line along the 3-axis. So. 

- N  a 3  

dt -” 
leading to 

(“-(a)l [a(t+t’)-(a)l) = ([a(X,(tL t)-(a)l [a(X,(t)+pt’,t+t’)-(u)l). (28) 

If p tends to infinity and t’ tends to zero maintaining pt‘ finite, the following 
approximation is valid : 

where, F, is the one-dimensional Eulerian space-correlation function of the velocity 
gradient aU,/ax, (recall a = -XJ,/ax,). Since in isotropic turbulence U, is 
homogeneous in space, the spatial autocorrelation of aU,/ax, is such that 

JomFu(xi) dxi = 0. 

Using (29) and (25), the correlation timescale for large propagation velocities can be 
written as 

1 

P 
IF,(pt‘)J d@t‘) = -A, ,  

where A ,  is the correlation lengthscale of aU,/ax, in isotropic turbulence. 
The variation of 0, with p is plotted in figure 1 .  As with the one-time statistics the 

deviation from Lagrangian values is small for small propagation velocities. The log- 
log version of figure 1 (not shown) indicates that a t  the high-p end, @, decreases as 
p-’ as suggested by (31). 

The autocorrelation function f,(t’) in scaled time t’/@, is presented in figure 2 for 
various propagating velocities. It is mostly positive for slowly propagating velocities, 
as in the case of material surface, Yeung et al. (1990). A t  high propagation velocities 
the function develops a negative loop which is characteristic of the Eulerian velocity- 
gradient correlation in (29). 
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FIGURE 3. Scaled spectra of strain rate: log(pf,(w)) vs. l o g ( w / p ) :  p = f(o), p = &a), p = l(*),  
p = 4(0) ,  p = 8(B), p = 12(+), p = 16(A), p = 32(V). 

3.1.2. Spectrum of strain rate 
The frequency spectrum is the Fourier transform of the temporal autocovariance 

and highlights the various timescales of the random process in question. The 
frequency spectrum of the tangential strain rate following a propagating surface 
element is 

For small propagation velocities when the crossing trajectories effect is negligible, 
the spectrum of propagating elements is likely to be close to that of material 
elements. The behaviour of the spectrum at high propagation velocities can be 
surmized by substituting (29) in (32) leading to 

where, pa@) is the Eulerian wavenuyber spectrum of the velocity gradient aU3/i3x3. 
In figure 3, the scaled spectrum (pfa(w)) is plotted against scaled frequency w / p  on 

a log-log scale for various propagation velocities. The power content of the spectrum 
a t  a given propagation velocity is given by the variance of a at that value of p 
(plotted in figure 1). Referring to figures 1,  3 and equation (33), the effects of 
propagation on the spectrum can be summarized as follows: 

(i) In  the low propagation velocity range (p - 1, when the crossing trajectories 
effect becomes significant), the power content of the spectrum diminishes with 
increasing p .  At large propagation velocities (p %- 1) the power content is 
approximately constant. The variance of the tangential strain rate a at this limit 
tends asymptotically to  the Eulerian variance of aU3/ax3. 
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(ii) The frequency of the power-containing band increases with propagation 
velocity. 

(iii) The bandwidth of the power-containing frequencies increases with propag- 
ation velocity. At large velocities the increase in the bandwidth is linear. Although 
the scaled spectra collapse to a self-similar shape (figure 3) it can be seen from (33) 
that as propagation velocity tends to infinity the unscaled spectra will have infinite 
bandwidth. 

3.2. Fluid velocity statistics 

It was mentioned in $ 1  that energy is added isotropically at low wavenumbers to 
maintain the turbulence statistically stationary. This raises the question of the 
legitimacy of the use of the velocity field thus generated to study fluid velocity 
statistics which are large-scale phenomena. Yeung & Pope (1989) find that although 
the Eulerian velocity wavenumber spectrum is unphysical due to forcing, the 
Lagrangian velocity frequency spectrum is realistic ; and conclude that the use of this 
velocity field to study Lagrangian statistics is valid. We use the same justification for 
this study. 

The time-averaged kinetic energy (adjusted to account for the global fluctuations 
of kinetic energy, see Appendix A), and the variance of U3 following the elements 
a t  the statistically steady state are plotted against various propagation velocities 
(normalized by the turbulence intensity u’) in figure 4 ( a ) .  The fairly large fluctuations 
in the statistics a t  small propagation velocities is due to statistical error arising for 
the reasons detailed in Appendix A. Despite the statistical errors it can be seen that 
the decrease in (var (U,)) from Lagrangian values is monotonic. The same plot on a 
log-log scale (figure 4 b )  indicates that the transition from Lagrangian values is 
appreciable only at propagation velocities larger than the turbulence intensity (p > 
u’) compared to p > v,, for strain-rate statistics. This is because there exists a range 
of propagation velocities (1 < p < u’) for which the crossing trajectories effect is 
negligible for large-scale phenomena (e.g. fluid velocity) but significant for small- 
scale phenomena (e.g. strain rate). 

3.2.1. Autocorrelation of Jluid velocity. 

process are defined (similarly to those of a )  as 
The autocorrelation function f u ( t ‘ )  and the correlation timescale 8, of the velocity 

and (35) 

Again, at high propagation velocities, 

fu(t’)  = Fu@t’), (36) 

where F,(pt’) is the longitudinal velocity spatial autocorrelation in isotropic 
turbulence. Further, 

1 

P 
@ , = - A  U ,  (37) 

where A ,  is the longitudinal correlation lengthscale of velocity in isotropic 
turbulence. 
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The variation of 8, with p is plotted in figure 4(a ,  b ) .  The deviation from the 
Lagrangian value is again monotonic and is proportional to p-' at large values of the 
propagation velocities as indicated by (37). The autocorrelation function fu(t) in 
scaled time t / @ ,  is presented in figure 5 for various propagation velocities. Except 
for the p = 8 case which shows a slight deviation, the other curves collapse, 
indicating that f,(t') may be self-similar in this scaled time. 
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FIGURE 5. Autocorrelation of fluid velocity in scaled time: p = 4(0), p = ice), p = i(*), 

P = 4(0), P = 8(.), P = W+),  P = 16(A), P = 32(V). 

3.2.2. Spectrum of fluid velocity 

element is 
The frequency spectrum of the fluid velocity following a propagating surface 

For large propagating velocities this can be approximated by 

where p,(A) is the Eulerianlwavenumber spectrum of the velocity U,. In figure 6, 
scaled velocity spectrum (pf , (w))  is plotted against w / p  on a log-log scale for various 
propagation velocities. For high p the spectra scale as indicated by (39). 

3.3. Strain rate -fluid velocity correlation 
The cross-correlation function between strain rate and velocity is given by 

Using similar arguments as before it can be shown that for large propagating 
velocities 

where F,, is the Eulerian spatial cross-correlation between U, and aU,/ax,. This 
cross-correlation is related to the Eulerian velocity correlation F,(z&) by 

fuu(t’) = Fua(pt’), (41) 
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FIGURE 6. Scaled spectra of fluid velocity log (pf^,(w)) us. log ( w / p )  : p = f (  O),  p = ice), p = l(*), 
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f". 

FIGURE 7. Cross-covariance of fluid velocity and strain rate: p = a(o), p = .#(a), p = I(*) ,  
P = 4(O), p = 8(.), p = 12( +), p = 16(A), p = 32(V). 

where xj, = pt'. Since F,(xj) is a symmetric function in xj, about the origin, F,,(x;) is 
antisymmetric about the origin. 

In figure 7 the cross-correlation is plotted against time for various propagation 
velocities. Fluid velocity and strain rate are poorly correlated at low p .  With 
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increasing propagation velocity the curves get narrower and within the narrow band 
the correlation increases. At high values of p the shape of the cross-covariance 
approaches the antisymmetric shape suggested by ( 4 2 ) .  

4. Evolution of curvature 
The statistics considered so far depend only upon the first derivative of velocity 

following the propagating element. The curvature, on the other hand, is a function 
also of the second derivatives. Referring to 3 1.3, the characteristic curvature C(t) 
(2 0) evolves according to ( 1 2 ) ,  where b,, b, and b, are stationary random variables. 
It is instructive to look at the exact solution to the curvature equation when b,, b, 
and b, are constants and C(0) = 0. 

For the case of b, = 0 (material element) 

C ( t )  = (b , /b , )  [ebzt - 11 ; 

for the case of (4b, b,-b!) = y2 > 0 

for the case of (b; -4b ,  b,) = z2 > 0 

eZt - 1 
b, +z-  (b ,  -2) ezt ’ C(t) = 2b, 

and when (bi  - 4b, b,) = 0 
b; t 

C ( t )  = 
2b3(2-b , t )  

(45) 

We now use the above solutions to explore the possibility of the curvature becoming 
infinite in finite time. For this analysis, only positive values of b, and non-negative 
values of b, are meaningful. The bending term b, must certainly be positive initially 
for it is this term that causes the curvature to go from zero to positive values. Since 
we are interested in the situation when propagation does not decrease curvature, 
(referring to ( 1 2 ) )  b, must be non-negative. 

Case (i): b, > 0; b, = 0. The curvature grows exponentially in time and hence is 
finite for all finite time. 

Case (ii) : b, < 0 ; b, = 0. For this combination of parameters the curvature 
asymptotes to a steady-state value of 

C ( W )  = bl/lb,l. (47 1 
So for material surfaces the curvature grows exponentially or attains steady-state 
value and hence cusps do not form in finite time. In Girimaji (1991) it is shown that 
in stationary, isotropic turbulence, the curvature of material elements goes to a 
stationary distribution. 

Case (iii) : b, > 0;  z2 = (b!-4b ,  b,) > 0.  For this case singularity will be reached at  
time t ,  given by 

1 b + z  
t - - l n L .  * -  z b, -z  

Case (iv) : b, > 0;  (b; -4b ,  F , )  = 0. The curvature becomes infinite a t  

t ,  = 2 /b , .  ( 4 9 )  
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FIQURE 8. Regimes of cusp formation: various ranges b,, b, and b,. 

Case (v): b, > 0;  y2 3 (4b1b,-b:) > 0. This combination of the coefficients also 
leads to cusp formation a t  

t ,  =-tan- 2 1Y -. 
Y b 2  

Case ( v i )  : b, < 0;  y2 E (4b1 b, -b;) > 0. For this case the curvature is periodic in 
time but always finite. The maximum value attained by the curvature is given by 

Case (vii) : b, < 0 ;  (b: - 4b1 b,) = 0.  With this combination of coefficients, at large 
times the curvature asymptotes to 

c( 00 ) = bz1/2b,. (52) 

Case (viii) : b, < 0; z2 = (b:-4b1 b,) > 0. Again the curvature does not go to 
infinity, and at  large times asymptotes to 

2b 
C(00) = 2. 

lb2l+ 
(53) 

These observations are summarized in figure 8. So it is clear that for cusp 
formation in finite time the stretching coefficient b, and the propagation coefficient 
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b, must be positive. In other words the flow field should compress the surface rather 
than stretch it. In  turbulence, although any surface element is stretched on average, 
it also experiences compressive strain for about 30% of the time (Girimaji & Pope 
1990; Yeung et al. 1990). So the behaviour of characteristic curvature in turbulence 
is not clear. 

In  a turbulent velocity field, the characteristic curvature is a non-negative random 
process {C( t ) ;  0 < t < t,} with the initial condition C(0) = 0;  t, is the time the process 
takes to attain infinity. Clearly t, is a random variable which may be finite with 
non-zero probability. Hence the study of evolution of the moments in time is not 
meaningful since the moments may cease to exist beyond a certain time. A more 
useful approach then is the characterization of an associated random variable, hitting 
time, L(C) .  The hitting time - denoted by L(c) - to  the level c, of the random process 
C( t ) ,  represents the first time the random process attains the value c. The formal 
definition of the hitting time to the level c of the i th realization, CJt), of the random 
process is 

From its definition following properties of the hitting time can be inferred. 
(i) I n  statistically stationary, homogeneous, isotropic turbulence the hitting times 

for various realizations (surface elements) are identically distributed random 
variables with the probability distribution being a function of the level c. 

L,(c) = inf{t 2 0;  Ci(t) 2 c}. (54) 

(ii) If c2 > c1 then 

(iii) The time taken for cusp formation is the hitting time of level infinity, &(a). 
So if for a particular realization a cusp forms in finite time then the hitting time of 
all the levels of c are finite. 

From an ensemble of I realizations the mean hitting time to  a level c can be 
estimated by 

1 '  

I,-, 

U C l )  < W 2 ) .  (55)  

(56) <-w) = - c LAC). 

While i t  seems intuitively plausible that ( L ( c ) )  is finite for small curvatures the 
existence of the mean hitting time for large curvature levels is not evident. 

To resolve the issue of the existence of the mean hitting time for large curvatures, 
appeal is made to the DNS data. At time t = 0, I = 8192 plane surface elements are 
released in stationary, isotropic turbulence and their curvatures calculated (see 5 2 for 
more details). It is found that, for all propagation velocities considered, a large 
fraction of the surface elements form cusps before the end of the simulation. This is 
in direct contrast to the conclusions of Ashurst et al. (1988); the contradiction is 
addressed in detail in Appendix B. To quantify our results two statistics are 
introduced : n(t), the fraction of surface elements that  are non-singular at time t ;  and 
Ti, the time a t  which n(t) = t .  The relevance of these statistics is easily understood 
from the following relationships : 

Prob {t* > t }  = n(t), 

and Prob{t, > T!!} = S. (58) 

(57) 

The probability density function (p.d.f.) of t,, f J t ) ,  can be derived in terms of n(t) 
from (57): 
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FIQURE 10. Fraction of non-singular elements in scaled time In m ( t / q )  US. t/q: p = a( O), 
p = $(.), p = I(*), p = 4(0), p = 8(1), p = 12( +), p = 16(A), I, = 32(V). 

In figure 9, the timescale Ti is presented as a function of the propagation velocity 
p on a log-log scale. No power-law dependence of Ti on p over the entire range is 
evident although at high values of p, Ti appears to scale as P - O . ~ .  In figure 10, n(t) is 
plotted as a function of t/T; on a log-linear scale, for various propagation velocities. 
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For the two smallest velocities the values of n a t  the end of the simulations (t = t f p )  
are both approximately 0.1, whereas for the other velocities n(tfp)  goes down very 
close to zero. At large p-values the curves nearly collapse on one another. The most 
important observation is that for all propagation velocities the log n(t) - (t/T') curves 
are nearly linear with approximately - 1 slopes at large values of scaled time. This 
observation in conjunction with (59) suggests the following behaviour off,.(t) a t  large 
values of t/q: 

f , ,( t /T$) - ect'*$. (60) 

The important consequences of (60) are : 
(i) All propagating elements (in the range of velocities considered) form cusps in 

finite time with probability nearly one. More precisely, for any given E ,  however 
small, there exists a finite time t,, such that 

(61) Prob {t* < t,,} >, 1 - E ,  

where t,, - In (q /~) .  (62) 

(ii) For any propagation velocity, if T;(p) is finite then all finite moments of 
t,( = L(co)) exist since, for all 0 < n < co, 

(iii) All moments of L(c) exist for all finite c since, for any n, 

(L"(c) )  < (LQ(co))  < a. (64) 

The characteristic radius of curvature R(t) is also a non-negative random process 
with the initial condition R(0)  = co. Analogous to L(c) a hitting time H ( r )  for the R(t) 
process is defined as 

H ( r )  = inf{t 2 O;R(t) < r}. (65) 

It is easy to derive the following relationship between the hitting times of the two 
processes : 

H ( r )  = L(l/r). (66) 

At large curvatures the rate of change of radius of curvature is nearly a constant 
(see (13)) and hence H ( r )  can be expected to be a linear function of r .  Hence in the 
investigation of cusp formation i t  is preferable to consider H ( r )  rather than L(c) 
which is less tractable in this range of curvature. In  the remainder of this Section the 
behaviour of the mean hitting time ( H ( r ) )  of the R(t) process for various propagation 
velocities is discussed. Then the shape of the surface element and the stretching and 
straining experienced by it are presented. 

4.1. Mean hitting time ( H ( r ) )  
As was mentioned earlier in this section, the length of the simulation is smaller than 
the time taken for all the surface elements to attain singularity. The estimate ( H e ( r ) )  
of the mean hitting time ( H ( r ) )  is then calculated according to 

where, t f p  is the length of the simulation (see $2, (16)). This is a meaningful estimate 
if t f p  is large enough to capture all the essential features of the curvature evolution. 
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FIQURE 11.  Mean hitting time V8. characteristic radius: p = f(o), p =ice), p = I(*),  p = 4 ( 0 ) ,  
p = WM), ZJ = W+), p = 16(A), p = WV). 

Even for the smallest propagation velocity t f p  is such that over 90 % of the elements 
attain singularity and hence tfp is considered large enough. 

In figure 9, the time taken for the characteristic curvature to decrease from infinity 
to 107, ( H (  lo)), is provided for various propagating velocities. Unlike q, ( H (  10)) is 
nearly constant at small propagation velocities. This is perhaps because at radii 
larger than 107 the curvature evolves mostly due to bending (term of O(1)) and 
stretching (term of order O ( l / R ) )  (equation (12)). The effect of propagation (term of 
O( 1/R)2)  is felt only through the shortened timescales of the bending and stretching 
processes. In figure 11, the scaled mean hitting time ((H(r))/(H(lO)>) is plotted as 
a function of the characteristic radius of curvature r for various propagation 
velocities. For radii greater than 107 the curves for various p-values nearly collapse 
to a single line. In  this regime of radius, bending and stretching are the important 
processes and the implication of the collapse of the curves is that these processes scale 
similarly for various propagation velocities. In the small-radii regime, however, the 
curves of various propagation velocities diverge. In this regime propagation is the 
important curvature-producing mechanism and hence scaling with <H( lo)), which 
represents the bending-stretching processes, does not collapse the curves. 

In the small-radii regime, the behaviour of the mean hitting time can be estimated 
using (13) to be, 

At large radius of curvature the evolution equation of R can be approximated to 

dR/dt x b, R2. (69) 

and hence, 
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FIGURE 12. Shape factor V.Y. characteristic radius: p = $(o), p =ice), p = l (*) ,  p = 4 ( 0 ) ,  
p = 8(.), p = 12( +), p = 16(A), p = 32(V). 

A plot of (pd(H(r))/dr) us. r on a log-log scale for various propagation velocities (not 
given) indeed shows that the scaling is as indicated by (68) and (70) is the limits of 
small and large radii respectively. 

4.2. Shape of the surface element 
The shape factor S of a surface element is defined as, 

S = k , / k , ,  (71) 

where k, and lc, are the smaller and the larger in absolute value of the principal 
curvatures of the surface element ( Q  1.2). By definition S lies between - 1 and + 1 
with values 0, 1 and - 1 corresponding to cylindrical, spherical and pseudospherical 
shapes respectively. The conditional expectation of S for a given radius curvature r 
- denoted by (Slr) - is presented in figure 12 for various propagation velocities. The 
observations from the figures are : (i) Highly curved elements are almost completely 
cylindrical in shape. (ii) Mildly curved elements are also cylindrical in shape, though 
tending more towards pseudospherical than highly curved elements. The above two 
observations are consistent with the findings of Pope et al. (1989) for material 
surfaces. (iii) With increasing propagation velocity the surface elements tend to be 
more cylindrical than pseudospherical for the entire range of the radius of curvature. 

4.3. Straining of propagating surface 
It was seen in the previous Section that with increasing propagation velocities the 
mean strain rate experienced by the surface elements decreases monotonically from 
positive to near zero values. In this subsection the strain rate conditioned upon 
curvature is studied. In figure 13 (a].) is presented for various propagation 
velocities. 
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FIGURE 13. Strain rate us. characteristic radius: p = f( O),  p = i( .), p = I (  *), p = 4( O), 
p = 8(.), p = 12( + ), p = (A), p = 32(V). 

The near-zero average straining experienced by highly curved slowly propagating 
surfaces can be explained by the fact that the high curvatures are the effect rather 
than cause. High curvatures tend to develop in surface elements that experience less 
positive strain rates. A similar explanation is valid for the negative strain rates 
experienced by the highly curved rapidly propagating elements. When a rapidly 
propagating element experiences negative strain rate (positive b,) the curvature 
increases due to straining of the surface. If the resulting curvature is large enough, 
propagation becomes the dominant curvature-producing mechanism, curving the 
surface rapidly to a singularity before the strain rate changes significantly. Hence the 
expectation of strain rate conditioned upon small radii is negative. 

4.4. Stretching of propagating surface 
In figure 14, the conditional expectation of the area ratio (ln (A) I r) is plotted against 
characteristic curvature r for various propagation velocities. The observations are : 
(i) The mean area ratio increases with the radius of curvature. At small radii 1nA 
decreases linearly with In R. (ii) With increasing propagation velocity, curves shift to 
lower and lower values of lnA. Indeed the mean of lnA of highly curved rapidly 
propagating surfaces is negative, indicating that highly curved elements shrink in 
size. Remember that lnA(t) = 0 corresponds to the surface area of the element at  
time t being the same as that at the initial time. 

The linear relation between 1nA and lnR at small radii is easily explained. The 
evolution equation of 1nA (equation (11)) of highly curved elements can be 
approximated to 

d ln Aldt = -p/R. (72) 

When combined with (13) this leads to 

dlnAldlnR = 1. (73) 
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FIQURE 14. Area ratio us. characteristic radius: p = +(o), p = 4(0), p = l(*), p = 4(0), 
p = 8(.), p = 12(+) ,  p = 16(A),  p = 32(V) .  

5. Summary 
In  this paper the evolution of infinitesimal surface elements propagating passively 

in isotropic turbulence is studied using a velocity field generated by direct numerical 
simulations. The Taylor-scale Reynolds number of the turbulence is 37. Evolution 
equations of the surface-normal N ,  characteristic curvature C, and area ratio A 
(defined in 0 1.2) are solved using second-order-accurate predictor-corrector schemes 
(described in $2). The behaviour of tangential strain rate, fluid velocity and 
characteristic curvature are studied. The following is a summary of the results. 

(i) The values of the mean and variance of the tangential strain-rate-following 
propagating elements go from Lagrangian values a t  low propagation velocities to  the 
corresponding Eulerian values a t  high velocities. The transition appears monotonic 
and the deviation from Lagrangian values is noticeable only for propagation 
velocities greater than v,, (figure 1). Slowly propagating surfaces experience positive 
strain rates on average, whereas the mean strain rate experienced by rapidly 
propagating elements is nearly zero. 

(ii) The strain-rate autocorrelation function is mostly positive a t  low propagation 
velocities (similar to the material-element autocorrelation presented in Yeung et al. 
1990), but has a large negative loop (characteristic of the Eulerian spatial velocity- 
gradient correlation) at high velocities (figure 2). At high propagation velocities, the 
frequency spectrum of the strain rate assumes a self-similar form which can be 
related to the Eulerian velocity-gradient wavenumber spectrum (figure 3). 

(iii) The one-time statistics of fluid velocity also go monotonically from 
Lagrangian to  Eulerian values with increasing propagation velocity. The deviation 
from the Langrangian values is discernable only for propagation velocities greater 
than u' = 3 . 2 ~ ~  (figure 4). 

(iv) The fluid-velocity autocorrelation function for various propagation velocities 
appear self-similar when the time lag is scaled with the velocity correlation 
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timescales (figure 5). At high propagation velocities the spectra assume a self-similar 
form that can be related to the Eulerian velocity wavenumber spectrum (figure 6). 

(v) Initially plane propagating surface elements develop cusps with probability 
nearly one in finite time (figure 10). The time taken for cusp formation decreases with 
increasing propagation velocities approximately as p-0.5 (figure 9). 

(vi) The evolution of curvature is studied using the concept of hitting time (figure 
11). 

(vii) The shape of the propagating element is nearly cylindrical. Mildly curved 
slowly propagating elements tend to be more pseudospherical than highly curved 
rapidly propagating elements (figure 12). 

(viii) Milder curvatures are associated with positive mean strain rates and higher 
curvatures with zero or negative mean strain rates (figure 13). 

(ix) Mildly curved elements are associated with larger surface areas than highly 
curved elements (figure 14). 

The above conclusions are valid for surface elements propagating passively at  
constant velocity in isotropic turbulence. Although these results cannot be 
generalized literally to flamelets, the knowledge gleaned here can go a long way in 
helping us better understand flamelet behaviour in turbulence. 

5.1. Behaviour at high Reynolds numbers 
The behaviour of propagating surface elements at higher Reynolds numbers is likely 
to be qualitatively similar to that presented in this paper. The strain-rate statistics 
are likely to scale with the Kolmogorov scales and the fluid velocity statistics with 
the turbulence intensity and the integral time- and lengthscales. This can be 
confirmed only by performing the preceding study for various Reynolds numbers. 
Surely at the limits of low and high propagation velocities the statistics should scale 
in fashions similar to those presented in this paper. With increasing separation of 
scales the range of propagation velocities for which the crossing trajectories effect is 
important for small-scale statistics but negligible for large-scale statistics will 
increase. 

This work was supported by the US Air Force Office of Scientific Research (grant 
number AFOSR-88-0052). Computations conducted during the research were 
performed on the Cornell National Supercomputer Facility, which is supported in 
part by the National Science Foundation, New York State, the IBM Corporation and 
the members of the Corporate Research Institute. 

Appendix A. Accounting for the global fluctuations of statistics 
With increasing Reynolds numbers the separation between the large and small 

scales gets larger. As the Reynolds number becomes higher, the energy-containing 
scales of large-scale quantities (e.g. velocity) get closer and closer to the scales at 
which energy is input to maintain statistical stationarity (Eswaran & Pope 1987). At 
these high Reynolds numbers the global statistics of the large-scale quantities 
fluctuate, owing both to the effect of forcing wavenumbers close to the energy- 
containing range ; and to the fact that the integral lengthscale of turbulence becomes 
comparable to the size of the computational domain. Yeung & Pope (1989) found this 
to be the case for R, = 93 simulation on a 12€i3 grid. 

In this work (64s simulation of R, = 37) it is found that the Eulerian Statistics of 
large-scale quantities (e.g. (utut) )  fluctuate. As in the case of Yeung & Pope (1989) 
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the Lagrangian statistics (of kinetic energy in the present case) are corrected to 
account for these global fluctuations as follows : 

* (A1) 
(ui ui ) Eul erian ( t 

(ui ui) Eulerian tirne-averaged 
(% = (ui Ui)uncorrected(t) 

Appendix B. Validity of the curvature equations 
Ashurst et al. (1988) report a numerical study of propagating surfaces in simple 

one-dimensional sinusoidal velocity fields. A conclusion of their work is that cusps do 
not form if the normalized propagation speed is sufficiently small-in direct 
opposition to the conclusion drawn from the current study. While these simple 
sinusoidal velocity fields are markedly different from the turbulence studied here, the 
different conclusions on cusp formation require further examination. 

In this Appendix we re-examine the flows considered by Ashurst et al. using two 
different numerical methods. The first method is that used in the DNS calculations, 
based on the ordinary differential equations for infinitesimal surface elements. The 
second is a simple surface tracking algorithm (described below) that requires minimal 
algebra and coding to implement, and that consequently has a high probability of 
being free of human error. For the cases considered, the results of these two 
algorithms are in agreement ; and they both agree with the analytic solution for the 
simplest case of a material surface. Applying these algorithms to propagating 
surfaces in sinusoidal velocity fields, we find that cusps form in finite time, however 
small the propagation velocity. This conclusion is in accord with the DNS findings 
reported in the text, and suggests that the numerical method used by Ashurst et al. 
is deficient. 

Initially (t = 0) there is an infinite plane surface with X 3 ( t )  = 0. The two velocity 
fields considered are : 

pulsating flow : U,(x,, t )  = u cos (27~2~) sin (27ct) ; 

travelling wave : U,(x,, t )  = u cos (2x[x, + t ] ) .  
(B 1) 

(B 2 )  

Without loss of generality the wavelength (L)  and period ( T )  are specified to be 27c. 
Hence the propagation speed w and the characteristic fluid velocity u should be 
thought of as being normalized by LIT. The fluid velocity is specified to be unity, 
leaving w( = wT/L) as the only physical parameter. 

The two numerical methods used to track the surface are now described. 

B. 1. InJnitesimal surface elements 
For the cases considered, the equations for an infinitesimal surface element's 
properties (equations A.32-36 of Pope 1988) reduce to 

and 

X ,  = wN,, 8, = wN,+U,, X 3  = 0; 

au2 au, . 
ax, ,ax, N , = - % - ,  N2=NN2-, N 3 = O ;  

where k = k,, and k, = 0. These equations are integrated numerically by a second- 
order-accurate predictor-corrector scheme with a time-step of At = O.O05/(u+ w ) .  A 
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FIWRE 15. Sketch of a finite surface element. 

total of 101 elements are considered which, initially, are uniformly spaced between 
x1 = 0 and z1 = 1 (i.e. one period). 

The curvature equation (B 5) is integrated by a scheme similar to that described 
in the text, so that for large curvature the analytic solution is obtained. Cusp 
formation is detected as ( l / k )  = 0, and when it occurs the integration of (B 5) is 
discontinued. However (B 3) and (B 4) contain no singularities, and are integrated 
through and beyond cusp formation. 

B.2. Finite surface elements 
A finite surface element is sketched on figure 15: it is represented by its end points 
Xu and X,, which are a distance As apart. The element is centred at X = )(X,+X,),  
and the unit normal N is defined to be normal to the straight line joining the end 
points. In a time-step At, X, is advanced by the second-order-accurate solution of the 
equation 

(B 6) 

and similarly for rU,. At the end of each time-step the element is redefined by 
changing its length As to As,, = 0.01, without changing Xor N .  Providing the surface 
is regular, this numerical method for determining X(t )  is second-order accurate with 
respect to both As,, and At. 

This method is used to track 101 elements, with the same initial conditions as the 
infinitesimal surface elements. The curvature is obtained (prior to cusp formation) by 
numerically differentiating the surface, parametrized by its initial position (see do 
Carmo 1976, p. 25). 

B .3. Results 
In order to validate the numerical methods, calculations were performed for material 
surfaces (w = 0) for which analytic solutions for X(t) ,  N(t)  and k(t) are readily 
obtained. 

Figure 16 shows X , ( t )  plotted again X l ( t )  for the pulsating flow at t = 7,  79, ..., 7& 
8. The minimum of X ,  decreases from zero at t = 7 to n-l at  t = 7$, and then increases 
again. Each visible line is the superposition of several lines: one for the exact 
solution, one for each of the numerical methods, and (except at t = 7;) the same three 
lines for the second half of the period. The fact that the lines appear coincident after 
7 time periods confirms the accuracy of the numerical methods. 

For the travelling wave velocity field, figure 17 shows the curvature k( t )  as a 

xa = wN(t) + U(X,, t ) ,  
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0.25 

0 0.5 1 .o 
XI 

FIGURE 16. Material surface in pulsating flow: X,( t )  vs. X , ( t )  for t = 7 ,  76, ..., 79,8. Superimposed 
results from (a) exact solution, ( b )  infinitesimal surface element method, (c) finite surface element 
method. 

l ~ i ~ l ~ , ~ ~ , l , ~ r ~ , l ,  

- 

0 0.5 1 .o 
XI 

FIGURE 17. Material surface in a travelling wave: curvature k( t )  vs. XI@). Same times and 
methods as figure 16. 

function of X , ( t )  at t = 7, 7:, 76, 74 and 8. The surface is plane at t = 7 and t = 8 ; and 
the extremum of k moves to the left as t increases. Again, the analytic solution and 
the results of both numerical methods are shown. The near-coincidence of the lines 
confirms the accuracy of the numerical methods. 
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FIGURE 

0 0.5 1 .o 
XI 

18. Propagating surface (w = 0.2) in pulsating flow: X,(t)  us. X,( t )  for t = 0, 
Superimposed results of finite and infinitesimal surface element methods. 

The propagating surface with speed w = 0.2 in the pulsating flow is shown a t  t = 
0, a, t ,  a, 1 in figure 18. An analytic solution has not been obtained; but, again, the 
near-coincidence of the curves obtained from the two numerical schemes provides 
confirmation of their accuracy. 

A cusp forms at X ,  = a, t = 0.708. At t = 1 the two critical points arising from the 
cusp may be observed: the same pair exist at  t = 9, but are less clearly seen. 

As might be expected from the geometry of the problem, cusp formation is found 
to occur always at  X ,  = $. At this location the curvature equation (B 5 )  reduces, for 
pulsating flow, to 

(B 7) 

It is now shown, from this equation, that a cusp forms in finite time for all 
propagation speeds, w > 0;  and an upper bound is obtained for the time to cusp 
formation, t,. 

The sinusoidal bending term in (B 7) can be removed by considering k averaged 
over a cycle. To this end, for any quantity q(t) we define 

k = ( 2 7 ~ ) ~  sin (2d)  + wk2. 

Integrating (B 7 )  between t and t + 1 we obtain 

(dldt) ,E = WF 3 wF,  
where the inequality follows from the observation 

+1 - 
k 2 - P  = I [k(s)-k(t)I2ds 2 0. 
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FIQURE 19. Time t ,  to cusp formation and upper bound t' for propagating surface in 
pulsating flow. 

To provide an initial condition, @ O ) ,  we integrate (B 7) twice to yield 

Z(0) = 2~ + w k(s)*  ds dt 2 2n. 1: J: 
It follows from (B 9) and (B 11) that  E ( t )  is bounded below by &(t) ,  the solution to 

d&/dt = w f 2  (B 12) 

with the initial condition &O) = 271: 

I = 2n/( 1 -2nwt). (B 13) 

Clearly I becomes infinite a t  r =  (2nw)-', and this provides an upper bound on the 
time f a t  which Ic" becomes infinite. And a singularity in k at time f implies a 
singularity in k ( t )  by t+ 1. Thus, an upper bound on the time t, to form a cusp is 

(B 14) 

The time to cusp formation t,, as a function of w, was determined by integrating 
(B 7) numerically. The result, together with the upper bound t ' ,  is shown on figure 
19. It may be seen that for small w, t' provides an accurate bound. 

The travelling wave velocity field does not admit such a simple analysis, primarily 
because the location of cusp formation is not known a priori. However, using the 
infinitesimal element method, the time to singularity has been computed for several 
values of w. From the results (not shown) it appears that the time to cusp formation, 
again, varies as w-l for small w. 

I n  this Appendix, numerical tests have been performed to confirm the accuracy of 
the infinitesimal surface element method. In  doing so, we address two statements 
made in Ashurst et al. (1988) : 

t, < t' = 1 + 1/(27cw). 
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(i) ‘pulsating flow damps the appearance of flame cusps so strongly that in the 
limit of infinite frequency we should expect to observe a flat laminar flame’; 

(ii) ‘when w > ku, we do not observe this cusp shape but instead obtain a gentle 
sine wave response ’. 
A generalization of our result (B 14) (to pulsating flow of frequency w ,  spatial period 
L,  velocity u and flame speed w) is that an upper bound on the time to the cusp 
formation is 

t* = w-l+wL2/(27twu). 

Thus we are in agreement on statement (i), since w +  00 implies t* + co. But for finite 
values of the parameters-however large wL/w (i.e. w / ( k u L )  in the notation of 
Ashurst et al.) - t* is finite. Hence we disagree with statement (ii) about the pulsating 
velocity field. It is also found that in a travelling wave velocity field, cusps form for 
the smallest speed considered (w = lop3). The numerical evidence suggests that for 
this case too, t* varies as w-l, but this is not proved. 
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