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The evolution of infinitesimal material line and surface elements in homogeneous 
isotropic turbulence is studied using velocity-gradient data generated by direct 
numerical simulations (DNS). The mean growth rates of length ratio (I) and area 
ratio (A) of material elements are much smaller than previously estimated by 
Batchelor (1952) owing to the effects of vorticity and of non-persistent straining. The 
probability density functions (p.d.f.’s) of 1 / ( 1 )  and A/(A) do not attain stationarity 
as hypothesized by Batchelor (1952). It is shown analytically that the random 
variable 1 / ( 1 )  cannot be stationary if the variance and integral timescale of the strain 
rate along a material line are non-zero and DNS data confirm that this is indeed the 
case. The application of the central limit theorem to t!e material element evolution 
equations suggests that the standardized variables Z( = (In 1- (In l))/(var Z);) and 
d( = (1nA - (In A))/(varA)i) should attain stationary distributions that are Gaus- 
sian for all Reynolds numbers. The p.d.f.s of 1 and d calculated from DNS data 
appear to attain stationary shapes that are independent of Reynplds number. The 
stationary values of the flatness factor and super-skewness of both 1 and d are in close 
agreement with those of a Gaussian distribution. Moreover, the mean and variance 
of In I (and 1nA) grow linearly in time (normalized by the Kolmogorov timescale, T ~ ) ,  

a t  rates that are nearly independent of Reynolds number. The statistics of material 
volume-element deformation are also studied and are found to be nearly independent 
of Reynolds number. An initially spherical infinitesimal volume of fluid deforms into 
an ellipsoid. It is found that the largest and the smallest of the principal axes grow 
and shrink respectively, exponentially in time a t  comparable rates. Consequently, to 
conserve volume, the intermediate principal axis remains approximately constant. 

The performance of the stochastic model of Girimaji & Pope (1990) for the velocity 
gradients is also studied. The model estimates of the growth rates of (lnl) and 
(1nA) are close to the DNS values. The growth rate of the xariances are estimated by 
the model to within 17 %. The stationary distributions of I and d obtained from the 
model agree very well with those calculated from DNS data. The model also performs 
well in calculating the statistics of material volume-element deformation. 

1. Introduction 
The evolution of material lines, surfaces and volumes in turbulence is of intrinsic 

interest and practical value. Vortex lines in the inviscid limit, and the magnetic lines 
of force in media of high conductivity are examples of vector fields that are 
proportional to material-line-element vectors (Monin & Yaglom 1975). Constant- 
property surfaces of temperature or of other passive scalars are material surfaces in 
the limit of negligible molecular diffusivity (Pope 1988). In  premixed combustion, for 
laminar flame speeds small compared with the Kolmogorov velocity scale, the 
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flamelets are trapped close to material surfaces that they were initially coincident 
with (Yeung, Girimaji & Pope 1989). So a good understanding of the evolution of 
surfaces in turbulence is important for accurate modelling of the scalar-mixing and 
the flamelet propagation aspects of combustion. 

A material element is defined as any line, surface or volume that always consists 
of the same material points or fluid particles. The basic diffusive character of 
turbulence - which tends to move two fluid particles, however close initially, away 
from each other - renders the study of finite-sized lines and surfaces difficult. 
Batchelor (1952) was the first to simplify the general analysis of lines and surfaces to 
the analysis of infinitesimal line and surface elements. As Batchelor observed, subject 
to the assumption that velocity gradients in turbulence are bounded, an initially 
infinitesimal material element remains infinitesimal for a finitely long time, and 
during this period the velocity gradients can be considered uniform over the material 
element. So a one-point description of the velocity gradients following fluid particles 
suffices for the study of the evolution of infinitesimal elements. 

An infinitesimal line element e evolves according to 

de . 
2 = q , e r ,  
d T  

where T is time, and U is the velocity-gradient tensor following the fluid particle 
associated with the fluid element. Batchelor further argues that after an initial 
transient period, the statistics of the line element evolution will be independent of its 
initial orientation, although the length itself will still be small enough for the element 
to experience uniform strain. The period of validity of this assumption will be 
referred to from here on as the steady state. 

Consider a material line of finite length (E(T) at time T) to  be composed of a large 
number (N, ,N,  -zoo) of infinitesimal line element vectors en(n = 1 ,  2, ... ,I?’,), such 
that, 

E(T) = 3 len(T)I. ( 2 )  
n=l  

If, a t  time T = 0, the lengths of all the infinitesimal elements are the same then 

so that (5 )  

But in homogeneous turbulence the evolution of each of the infinitesimal material 
elements is statistically identical at steady state and hence 

where the angular brackets indicate the ensemble average over independently 
evolving infinitesimal material-line elements. The evaluation of the higher moments 
of E(T) in terms of the infinitesimal elements involve the joint statistics of 
neighbouring elements which are difficult to compute, as discussed before, owing to 
the diffusive nature of turbulence. 
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I n  this work we study an ensemble of incontiguous, perhaps independently 
evolving, infinitesimal line elements (e) and area elements a t  steady state. As seen 
above the average length (or area) of infinitesimal elements can be calculated directly 
from the mean of e (orf) .  Although the higher moments cannot be calculated using 
this approach the study of incontiguous elements should provide valuable insight 
into the evolution of finite lines and surfaces. 

1.1 .  Dejinitions 
For simplicity we define 

f(t) = Ift)l. 
We further define the length ratio ( I )  and area ratio ( A )  as 

Also we define Z(t) and A(t)  as the magnitudes of I(t) and A(t ) ,  respectively, which (by 
their definitions) are initially unity. The linearity of the evolution equation (1) 
permits direct calculation of Z(t), from which e(t) can be computed if e(0) is known. 

The material volume element deformation quantities of interest are the angles 8 
and a, and the Cauchy-Green tensor ( W )  of deformation. The angles 8 and a are 
defined as follows : 0 is the angle between two material line elements that are initially 
orthogonal ; and a is the angle between the normal to a material plane and a material 
line that is initially its normal. The angle 8 indicates the extent to which two initially 
perpendicular lines become colinear, whereas a indicates the extent to which two 
initially parallel planes get closer. Further, r, is defined as the angle between a 
material line vector e and the instantaneous maximum positive strain-rate direction 
P associated with that material element. Finally r, is defined as the angle between 
an area normal f and the instantaneous maximum negative strain-rate direction, C. 

Throughout the rest of the paper we deal with non-dimensional quantities. The 
velocity gradients and time are normalized by the Kolmogorov timescale T ~ ,  so that 

t = T/r1/ ,  
h = UrT. 

Further, let si, be the symmetric (strain-rate tensor) part, and rij be the 
antisymmetric (rotation-rate tensor) part, of the velocity-gradient tensor h, 
following a fluid particle. Let a,, a2 and a3 be the principal values of si, ordered such 
that, 

a, 2 a2 2 a3. 
As a consequence of the incompressibility condition, that sii = 0, we have 

a, 2 0 ,  a3 d 0. 
It is known from previous works (Ashurst et al. 1987) that (a,) is positive. 

Equation (1)  implies the following growth-rate equations for In (ei ei) and In ( fifi) : 



430 X. X. Girimaji and S. B. Pope 

I n  the above equations e' is the unit vector in the e-direction and N( = f/f) is the area 
normal. The growth rates 5 and 6 are composed of the strain-rate tensor and a vector 
of unit magnitude. Hence a t  steady state when the strain-rate tensor is stationary, 
Batchelor (1952) argues that the statistics of 5 and 6 can only be either stationary or 
cyclic with time-independent finite amplitude. Since the latter possibility is 
unphysical the random variables 5 and 6 must be stationary at steady state. As can 
be seen from (9) and ( lo) ,  the angles r, and r, play an important role in determining 
5 and 6. 

1.2. A brief literature survey 
Since Batchelor (1952), there have been others who have analysed the growth of 
infinitesimal material-line elements. Cocke (1969) and Orszag (1970) prove to varying 
degrees of rigour that the length of a line element increases on average in a turbulent 
velocity field. Batchelor (1952) and Batchelor & Townsend (1956) have studied the 
evolution under the assumption of persistent straining - an assumption that they 
claim is supported by the experiment of Townsend (1951). Monin & Yaglom (1975, 
$24.5) study the evolution in the case when the effect of vorticity is exactly offset by 
the rotation of the strain-rate axes. The important conclusions reached in Batchelor 
(1952) and Monin & Yaglom (1975) are: 

(i) Material line elements tend to orient themselves along the principal axis 
corresponding to the maximum positive strain rate (al) .  So a t  steady state, with 
perfect alignment (i.e. r, = 0), (9) yields 

(ii) Material area elements lie in the plane of the a, and a2 principal strain-rate 
axes (i.e. r, = 0). So a t  steady state, from (10) 

(5) = <a, + a,). 

(iii) The probability density function (p.d.f.) of the scaled parameter ( l / (Z) )  a t  
steady state is self-similar (Batchelor 1952). 

Kraichnan (1974) analyses the evolution of material elements in the other extreme 
case of a rapidly changing velocity (white-noise) field. Two of the relevant 
conclusions of this work are : (i) I n  reflection-invariant turbulence, the statistics of 
the growth rates of the logarithm of the length and area of infinitesimal material 
elements are identical. (ii) The length and area of material elements are log-normally 
distributed. 

Recently the evolution of material elements has been studied using a simple 
stochastic velocity field by Drummond & Munch (1990a, b). They suggest that each 
moment of I (and similarly A )  is associated with a timescale, and all these timescales 
need to be accounted for in determining the self-similar steady-state probability 
distribution of 1. They go on to determine the relationship between these various 
moments. Concurrent with the present study the evolution of the curvature of 
material elements has been studied using a direct numerical simulation (DNS)- 
generated velocity field by Pope, Yeung & Girimaji (1989). 

1.3. Xcope of the present work 
The objectives of this paper are to understand the physics of the evolution of 
infinitesimal material lines, surfaces and volumes in homogeneous isotropic 
turbulence, and to assess the performance of the stochastic velocity-gradient model 
of Girimaji & Pope (1990). I n  particular we address the following questions. 

(i) Are the mean growth rates of line and area elements as previously estimated 1 
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(ii) Is the p.d.f. of the scaled parameter (Z/(Z)) self-similar a t  steady state as 
suggested by Batchelor ? If not, does any other scaling of length and area lead to self- 
similar p.d.f.s ? 

(iii) How do material volume elements deform in turbulence ? To what shape does 
an initially spherical volume of fluid deform ? 

(iv) How does the stochastic model of Girimaji & Pope (1990) perform in 
calculating various details of material element deformation ? 

The organization of the rest of the paper is as follows. In $2 we discuss briefly how 
the Lagrangian data from DNS and the stochastic velocity-gradient model are used 
to calculate material element properties. The first, second, third and fourth questions 
listed above are then addressed in $$3,4 ,  5 and 6 respectively. Section 7 summarizes 
our conclusions. 

2. Determination of material element properties 
In  this paper all infinitesimal material element statistics are calculated from 

velocity-gradient time series (following fluid particles) using ( 1 ) .  The velocity- 
gradient time series are obtained in two ways : from direct numerical simulations, 
and from the stochastic model for velocity gradients of Girimaji & Pope (1990). 

2.1. VeZocity-gradient time series from DNS 
The DNS Lagrangian velocity-gradient data are obtained from the stationary, 
isotropic turbulence calculations performed by Yeung & Pope (1989). They solve the 
instantaneous Navier-Stokes equations with periodic boundary conditions using a 
modified version of Rogallo’s pseudo-spectral code (Rogallo 1981). The equations for 
Eulerian velocity are marched in time in spectral space from a random initial field. 
The nonlinear terms, however, are computed in physical space to avoid the expensive 
convolution-integral computations. The statistical stationarity of the turbulent 
velocity field is achieved in the simulations by adding energy isotropically to the low- 
wavenumbers in a way that leaves the high-wavenumber statistics relatively 
unaffected (Eswaran & Pope 1988). Using l B 3  uniformly spaced grid points, Taylor- 
scale Reynolds numbers R, of 38, 64 and 90 are achieved for different values of 
kinematic viscosity. 

The spatial resolution is characterized by k,,, 7, where k,,, is the magnitude of 
the highest resolved wavenumber and 7 is the Kolmogorov lengthscale. For the case 
with the worst spatial resolution (R, = go), k,,, 7 is approximately 1.5, corresponding 
to a grid spacing of about twice the Kolmogorov lengthscale. Previous numerical 
studies have shown that this represents excellent resolution (Eswaran & Pope 1988; 
Yeung & Pope 1988). A constant time-step corresponding to a Courant number of 
about t is used. For the case of worst temporal resolution (Rh = go), this time-step 
corresponds to approximately & of the Kolmogorov timescale, 7?. 

The DNS Lagrangian velocity-gradient time series is obtained by tracking 4096 
initially randomly placed particles over a period of approximately 30 Kolmogorov 
timescales. The velocity gradients of fluid particles (that fall between grid nodes) are 
obtained by interpolation, using highly accurate cubic splines (Yeung & Pope 1988). 
Numerical parameters and some important Eulerian statistics of the three 
simulations are presented in table 1 .  
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Taylor-scale Reynolds number 
Grid size 
Length of solution domain 
Kinematic viscosity 
Turbulence intensity 
Dissipation rate 
Longitudinal integral lengthscale L, 
Dissipation timescale 7, = %zP/(e) 
Eddy turnover time T, = L,/u’ 
Kolmogorov timescale r1 
Duration of simulation T 
Time-step At 
Kolmogorov lengthscale q 
Maximum resolved wavenumber k,,, 
Taylor microscale A 

R A 
N 

38 
128 

2x 
0.025 
1.582 
2.651 
0.383 
1.420 
0.534 
0.068 
5.32 
0.012 
0.041 
2.96 
0.500 

63 
128 

2R 
0.0105 
1.637 
2.673 
0.321 
1.510 
0.407 
0.041 
5.85 
0.024 
0.025 
1.54 
0.399 

90 
128 

2x 
0.006546 
1.274 
0.780 
0.448 
3.174 
0.343 
0.029 
5.51 
0.027 
0.018 
1.48 
0.326 

TABLE 1.  Numerical parameters and Eulerian statistics 

2.2. Velocity-gradient time series from the model 
The stochastic model of Girimaji & Pope (1990) models the velocity gradient 
following a fluid particle, hil, as a diffusion process. With the variance ( c T ~ ) ,  the 
integral timescale (ri) of 1n(h,,hil) and the Kolmogorov timescale (7,) as the only 
input parameters, the model generates velocity-gradient (hij) time series. Time series 
for various Reynolds numbers are obtained by inputting into the model the 
corresponding DNS values of r2, ri and r?. The model is used to generate velocity- 
gradient time series of 4000 particles over a period of approximately 257,. Further 
details of the model and the numerical methods used to generate the time series are 
available in Girimaji & Pope (1990). 

2.3. Extraction of material-element data 
Once the velocity-gradient time series are available, the material-element de- 
formation quantities of interest are calculated as follows. As mentioned in the 
previous Section, the linearity of the material deformation equation ( l ) ,  permits us 
to deal with the length ratio (1) and area ratio ( A )  rather than their infinitesimal 
counterparts e and f .  Referring to Monin & Yaglom (1975), a material-line element 
which is initially Z(O), is given a t  any later time t by 

Z(t) = B(t) . f (O),  (11)  

where B evolves by the equation 

(12) 
d 
- B = h(t) * B(t) ,  
dt 

with the initial condition B(0)  = /. The tensor B(t) contains all of the one-point 
infinitesimal material-element information a t  time t .  Equation ( 12) is solved 
numerically for B using an accurate fourth-order Runge-Kutta scheme explained in 
the Appendix. Once B(t)  is known, Z(t) can be easily calculated from (11). 

For each infinitesimal material element we consider a triplet of lines ( P ( t ) ,  F ( t ) ,  P ( t ) )  
that are initially orthogonal and oriented randomly with their respective strain-rate 
axes : 

IP(O)l = 1, P(O)-fa(O) = S,, for a, /I = 1, 2, 3. (13) 
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0 5 10 15 20 25 30 

t = TIT,, 

FIGURE 1.  Mean and variance of the growth rate of Inl, 5 :  0,  0 ,  *, ( C )  for R ,  = 38, 63, 90; 
A, A, x , var(f;) for R, = 38, 63, 90. 

Re, = 38 Re, = 63 Re, = 93 

0.138 0.129 0.140 
0.163 0.159 0.173 
0.0441 0.0361 0.0436 

var (6)  0.0913 0.0944 0.1134 
T, Val' (5)  0.0491 0.0488 0.0528 
T var (6 )  0.0892 0.0945 0.104 

( 5 )  
( 6 )  
var (5)  

TABLE 2. Statistics of 5 and 6 

Knowledge of all three line element vectors a t  any time t enables us to calculate the 
statistics not only of Z(t) but also of the other material-element deformation 
quantities of interest (see $1.2), using the following simple trigonometric relations : 

(14) 
sin 101 = l4/(lrll~lL (15) 

coslal = IA.PI/(IAIIPl)> (16) 

cosr ,  = p P l / l P l ,  (17) 

cosr ,  = I A . C I / I A I ,  (18) 
W = B-BT. (19) 

A(t)  = r x 12, 

The signs of the directions of the vectors P ,  P, P, A ,  P and C are arbitrary and we 
are only interested in the magnitudes of the angles 0, a, r, and r,. 
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0.24 

0.20 

0.16 

(5) 
var (0 

0.12 

0.08 

0.04 

0 

I I I I I 
n 

I t  

5 10 15 20 25 30 
t = T / T .  

FIGURE 2. Mean and variance of the growth rate of lnA, 6 :  legend as figure 1 .  

3. Analysis of the mean growth rates of In I and In A 
In figure 1 the temporal evolution of the mean and variance of the line growth rate, 

5 (equation (9)), is presented for various Reynolds numbers for t = 0-30. Figure 2 
presents similar plots of the area growth rate, c (equation (10)). The steady-state 
(t  > 12) values of the means and variances (obtained from time-averaging over 
127,257,) of < and E are provided in table 2 .  On the figures and the table we make 
the following observations: (i) The transient evolution of lnl  and 1nA show some 
variation with Reynolds number, but the statistical error involved in the calculations 
are of the same order as the difference and hence no trends can be inferred. (ii) The 
steady-state growth rates (normalized by 7,) vary somewhat with Reynolds number, 
but again no systematic trend can be adduced. (The slight difference in the values 
of (6) and var(5) between table 2 and those presented in Yeung et al. (1990) is due 
to the fact that slightly different values of Kolmogorov timescale 71 have been used 
to calculate these quantities. The  values used in the present case are given in table 
1. )  (iii) The mean growth rates exhibit a peak a t  about t = 2 before settling to lower 
steady-state values. (iv) The steady-state values ( 5 )  x 0.13 and ( c )  x 0.16 are much 
lower than their respective estimates (a,) and (a ,  +a,) (see 3 1.2), which from DNS 
data are 0.40 and 0.50. The values of (a,) and (a,+a,) computed from DNS data 
given above agree well with the theoretical estimates given in Monin & Yaglom 
(1975). 

The first two observations are as anticipated since the evolution of infinitesimal 
elements is a small-scale phenomenon which when suitably scaled can be expected to 
be independent of Reynolds number. The last two observations are, however, 
surprising and are studied in detail in the rest of this section. 
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t = TIT,, 

FIGURE 3. Temporal evolution of the mean of the angles. Angle between material-line and 
maximum positive strain-rate axis, r,: 0, 0 ,  *, for R, = 38, 63, 90. Angle between area-normal 
and the maximum compressive strain-rate axis, r, : 0, ., + , for R, = 38, 63, 90. 

3.1. Reasons for the smaller mean growth rates 
To understand the reasons for the smaller than estimated mean growth rates we 
present the ensemble averages of r, and FA calculated from DNS data in figure 3. It 
may be seen from the figure that the closest alignment between the material line 
element and the maximum positive strain axis is at about t = 2, consistent with the 
peaking of the growth rates. It may also be seen that the premisses of the previous 
estimation (Monin & Yaglom 1975) - that there is perfect alignment of line elements 
with the a,-direction and area normals with the a,-direction - are quite erroneous. 
Perfect alignment corresponds to the angles being zero a t  steady state : figure 3 
indicates that this is not the case. The steady-state values of (I'J and (rA) are 
approximately 0.91 and 0.73 radians respectively. 

If the velocity-gradient tensor h is constant in time, (1)  has the exact solution 

3 

l i ( t )  = C hib C, eket, 
b-1 

where 

and hib is the i-component of the eigenvector corresponding to the eigenvalue k, of 
h. Further, if h is symmetric (i.e. h = s), and its eigenvalues are such that la,[ x a, 
and la,l 6 a,, it can be seen from the above solution (20) that the line element a t  long 
times orients itself (almost) completely along the eigenvector corresponding to the 
maximum positive value. Given this limiting-case behaviour, the reasons for the poor 
alignment of the line elements with the maximum positive strain-rate axis have to 
be the effect of the rotation-rate (vorticity), and/or the effect of the non-persistent 
straining. We now study each of these effects in isolation. 
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cos ( A  

- 6  

1- 

L 1 0.0003 

O L  
- 6  

FIGURE 4. Joint p.d.f. of ln(ri,rij/siisij) and r,: (a)  t = 0 ;  ( b )  t = 25. 

The effect of vorticity 
The effect of rotation rate on (r,) and (rA) can be isolated in our computation 

by holding h constant in time, though varying from particle to  particle, So we solve 
the following modified form of (12) : 

dB 
dt 
- = h(O)*B(t), 
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-6 In (r,, ril/% 4 6 

FIGURE 5. Joint p.d.f. of In ( T ~ , T ~ , / S ~ , S ~ , )  and r, : (a )  t = 0; ( b )  t = 25. 

for an ensemble of particles with h(0) specified from a one-time stationary p.d.f. 
(obtained from DNS) and the initial I oriented randomly with respect to h. This is 
equivalent to assuming that the integral timescale of h is infinity. Given that the 
straining is persistent, any deviation of r, and r, from zero would be the effect of 
vorticity . 

I n  figure 4 the joint p.d.f. of In (Ti* ri j /spq s p p )  and COB r, is presented in the form of 
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a contour plot. (Initially the material line is uniformly randomly distributed in three 
dimensions about the a,-axis. So r, has a spherically symmetric distribution (with 
(r,) = 1 rad), and cosr,  is uniformly distributed in ( 0 , l ) .  Hence we present the 
p.d.f.s. of cos r, (and similarly cos f , )  rather than r,.) Figure 4(a) is the joint p.d.f. 
at time t = 0 when the material-line elements are randomly oriented with respect to 
the h-tensor and figure 4 ( b )  is the joint p.d.f. at steady state ( t  = 25). Figure 5 
presents similar p.d.f.s for r,. At time t = 0 the contour lines (in figures 4a and 5 a )  
are parallel to the y-axis since the initial orientation of the material element with 
respect to the strain-rate axes is random. The steady-state contours show a high 
probability of cos r, (and cos rA) taking values significantly less than unity even for 
small values of vorticity. At steady state the contour lines possess a negative slope 
(less prominent in the case of cosf,), indicating that the angles r, and rA increase 
with the ratio (rii r t , ) / (s t js i j ) .  So, it is clear then that even small values of the ratio can 
cause the material lines to move away from the a, direction, which, combined with 
the high probability of ri jr i i  being larger than sUsii (x 0.45), leads to ( f J  being 
significantly greater than zero. A similar argument is also valid for (rA). 
The esfect of non-persistent straining 

In turbulence the principal strain-rate axes change continuously in magnitude and 
direction. The effect of this on (rl) and (rA) can be studied in isolation by 
modifying (12) to 

- _  - +[h(t) + hT( t ) ]  - 5(t) .  d 5  
dt 

Since the velocity field that is used to calculate 5 is symmetric, any deviation of (r,) 
and ( r A )  from zero will be due only to non-persistent straining. 

We solve the above equation for an ensemble of particles with the h time series 
taken from DNS data. Again the line elements are initially oriented randomly with 
respect to the strain-rate axes. Figure 6 presents the temporal evolution of the 
ensemble averages of the angles r, and fA for such a calculation. The steady-state 
values of ( f , )  and (rA) are approximately 0.78 and 0.60 radians respectively. 
Although the alignment is better now than in the presence of vorticity (figure 3), the 
means of the angles are far from zero. It is clear then that non-persistent straining 
also contributes significantly towards the poor alignment. 

Combined effect of vorticity and rotation of the principal axes 
Although easily understood in isolation, the effects of the two causes in 

juxtaposition are difficult to conjecture, for they depend on the relative orientation of 
the vorticity vector with respect to the axis of rotation of the principal strain-rate 
directions. For example, a rotation of principal strain-rate directions about the 
vorticity vector will lead to reduced relative motion between the principal strain axes 
and the material line element. However, if the principal strain-rate axes rotate in a 
sense opposite that of vorticity, then we shall have increased relative motion between 
the line element and the principal directions. In the former case the two effects would 
(partially) nullify each other, whereas in the latter they would add up. Figure 3 
implies that the interaction between vorticity and strain-rate axes rotation in 
isotropic turbulence is closer to the latter scenario, 

3.2. Reasons for the transient peaks 

Both ( 5 )  (the growth rate of (lnl)) and (5) (the growth rate of (1nA)) exhibit 
transient peaks (figures 1,  2). Figure 3 shows a dip in the value of (rL) coincident 
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FIGURE 6. Temporal evolution of the mean of the angles for the case of no vorticity: 
0, r,; and 0, r,. 

with the peak in (C), whereas no such transient minimum is evident in the case of 
(rA). The reason for the peaking of (0 is not clear, though that for the peaking of 
(g) can be explained with the following simple model similar to  the one used by 
Lumley (1972). 

To understand the transient peak of ( 5 )  (or the transient dip in (rl)) we consider 
the simplified case in which the velocity-gradient tensor is frozen in time. Although 
this simplification leads to poor estimates of the mean growth rates, it aids the 
qualitative understanding of the transient peak. That the non-persistent straining 
does not contribute significantly towards the transient minimum is evident from the 
fact that  (rl) exhibits no dip in figure 6. The analysis is further simplified by 
considering only those line elements whose vorticity vector is oriented close to the 
intermediate strain-rate axis (a,-axis). As observed by Ashurst et al. (1987) the 
probability of the occurrence of this event is very high. Referring to figure 7 (a )  P and 
C represent the maximum positive and maximum negat,ive strain-rate axes 
respectively. The only non-zero components of rotation rate are r13 and r31 = - r13 .  
So without loss of generality we can assume that rI3 is non-negative. We further 
simplify the model by considering material lines that lie in the (P, C)-plane. This 
assumption is not completely necessary but makes possible an analytical solution to 
the model. 

Given the above simplifications, the angle (rl) between the material line and 
a,-axis P, evolves according to (recall that  a, > 0 and a3 < 0) 

dfL 
~ = -;(al + la,[) sin ( 2 r ~  +r13.  dt 

For the case of r13 = 0 the above equation has the exact solution 
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FIGURE 7. Simplified scenarios of line stretching: (a )  t = 0, ( b )  t % 2, (c) steady state. 
(d) (rZ) wus. time for ( U ~ + ~ U ~ ~ ) / ~ T ~ ~  = p = 1.01 (O) ,  1.25 (O) ,  1.50 (A), 1.75 (V), 2.00 (A). 

and for the case of r13 > 0 the solution is 

[tan r,(O) - p  + 6]cp - 6- (p  + 6) e-T1~Bt] - 26(p - 6) 
tanTl(t) = 9 (23) [tanrl(0)-p+6](1 -e-r136t)-26 

where 

and r,(O) is the initial value. 
Case ( a ) :  r13 = 0. From the above definitions and (22) it can be seen that r,(t) 

decays exponentially to zero from its initial value. Since Ir1l decreases monotonically 
these material lines cannot cause the transient dip. 

Case (b)  : rI3 > :(al + la3]) > 0. In this case &is imaginary and the exponentials in (23) 
become sine and cosine functions. For such a line r, is a periodic function. Such 
material lines do not contribute towards the transient dip either. 

Case (c) : 0 < rI3 < ;(al + IaJ). In this case 6 is real and positive and the exponentials 
in (23) decay as t increases. At long times r, tends to an asymptotic value c. The 
material lines that fall in this category cause the transient dip and are now studied 
in further detail. 

A pictorial depiction of the evolution of <r1) for lines with p greater than unity is 
presented in figure 7. Figure 7 ( a )  represents the initial condition. The material-line 
elements are oriented randomly with respect to the principal strain-rate axes (which 
corresponds to (r,) = 1 rad). Because of the arbitrary choice of the sign of the unit 
vectors P and C all material lines can be placed in the I- or the IV-quadrants. 
Initially the line elements are distributed equally between the I- and IV-quadrants. 

In the I-quadrant sin (2rJ  is positive and the material lines move towards their 
steady-state location at  an angle defined by 

c = + sin-l ( i / p ) .  (24) 
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In (1/<0) 
FIGURE 8. P.d.f. of ln(Z/(Z)) us. time: 0, 0 ,  A, 0, m, A, correspond to 

t = 5 ,  10, 15, 20, 25, 30. 

At this angle the effect of vorticity is completely balanced by that of strain rate. 
In  the IV-quadrant sin (2r,) is negative and hence dr l /dt  is positive. Vorticity and 

straining work together to improve the alignment. The line elements move toward 
the a,-axis (P) and cross over to the I-quadrant. During this transition period 
( t  M 2) most elements originating from the IV-quadrant are close to the a,-axis after 
which they settle down in the I-quadrant a t  angles dictated by (24). It is during the 
cross-over (figure 7 b)  that the alignment is a t  its best and consequently the growth 
rate at its peak. 

At steady state (figure 7 c )  all the line elements are situated in the I-quadrant at 
various angles depending on the magnitude of vorticity relative to strain rate, (24). 

Quantitative results of the model are provided in figure 7 (d ) .  The solution (23) to 
the evolution equation of r,, (21), is completely characterized by p and r I3 .  In fact 
r13 only determines the timescale and is not important in the study of the transient 
dip of (r,). In  figure 7 ( d )  we present the ensemble average of r, calculated using (23) 
with a random spherical distribution of r , ( O )  (i.e. cosr,(O) distributed uniformly in 
( 0 , l ) ) .  The results are presented for various values of p ( > 1.0) with r I3  held a t  unity. 
The transient dip in (r1) is evident for all p-values less than 1.5. For higher values 
of p the effect of strain is too large for the overshoot of the angle rl. 

4. Steady-state distributions of 1nZ and In A 
The objective of this section is to  characterize the p.d.f. of l ( t )  and A ( t )  (or some 

function thereof) at steady state. 
In  homogeneous, isotropic turbulence, Batchelor (1952) reasons that, if the 

influence of the initial length has been removed by letting, in eflect, e(0) + O ,  there is  no 
length other than ( e ( t ) )  on which the statistical properties can depend, and a similarity 
in the shape of the probability density function of e ( t )  at different values of t seems 
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FIGURE 9. P.d.f. of In(A/(A>) PW. time: legend as for figure 8. 

inevitable. I n  other words, it seems that e ( t ) / (e ( t ) )  is  a stationary random function. A 
similar argument for area elements implies that  the p.d.f. off/# is stationary a t  
steady state. (Note that c ( t ) / ( e ( t ) )  = 1 / ( 1 )  and f ( t ) / ( f ( t ) )  = A / ( A ) . )  

The DNS data again make possible a direct test of the above hypotheses. In figures 
8 and 9 the p.d.f.s of In ( Z / ( l ) )  and In @ / ( A ) )  are plotted for various times. If the 
hypothesis is correct, these two p.d.f.s attain stationarity a t  steady state and it may 
be seen from the figures that such is not the case. (Note that stationarity of (1 / (1 ) )  
implies the stationarity of In ( 1 / ( 1 ) )  because the relationship between the two p.d.f.s 
is independent of time.) 

The medians of the p.d.f.s are negative, indicating that Z(t) and A ( t )  values of most 
material elements are smaller than the mean and those of a few elements are much 
larger than the mean. With time the median values get progressively smaller with 
fewer and fewer particles determining the higher moments of the distribution. In 
figure 10 we present the evolution in time of (InA/(A))" for n = 1, 2 and 3. Despite 
the large statistical errors in calculating these quantities, figure 10 is evidence that 
the moments increase with time. 

4.1. Why i s  1 / ( 1 )  not a stationary random variable? 
It can be shown analytically that if the variance and the integral timescale of 5 (the 
rate of change of In 1) are non-zero, then 1 / (1 )  cannot be statistically stationary. The 
extent of the departure from stationarity is proportional to the product of the 
variance and the integral timescale. 

The proof entails analysing the p.d.f.s of the random variables In I (or In A )  which 
evolve according to (9) and (10). As pointed earlier, the stationarity of 1/(1)  implies 
the stationarity of the random variable In ( Z / ( l ) ) .  So, conversely, if it can be shown 
that any moment of In (Z / ( l ) )  grows in time, then the random variable 1/(1)  cannot 
be stationary. 

15 FLM 220 
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FIGURE 10. Temporal evolution of the raw moments of lnA/(A): 0, 0, A correspond to  first, 
second and third moments. 

In particular, we consider the variance of In ( Z / ( l ) ) .  It is trivial to show that 

var(lnZ/(Z)) = var(ln1) = var(ln1-(lnt)). 

Starting from (9) the evolution equation for the variance of In1 can be derived: 

d 
-var (InZ- (1nZ)) = 2((lnZ(t)-<lnl(t)))(5(t)-(5(t)))) 
dt 

= 2 (J (5(t’) - (C(t’)))(C(t) - ( C ( t ) ) )  dt ‘ ) .  
0 

At steady state (i.e. when t B Tc, the integral timescale of 5, which is non-dimensional 
since it is the integral timescale in normalized time) we can write 

d 
-var(lnZ-(1nZ)) dt = 2var($Tg. (25) 

Similarly, for area elements we have 

d 
-var (1nA - (1nA)) = 2 var ( 6 )  T,, 
dt 

where T,  is the integral timescale of 5. Non-zero values of the variance and integral 
timescale of 5 would indicate a linear growth of the variance of lnl/(l), and 
consequently 1/(1)  could not be stationary random variable. A similar argument is 
valid for the non-stationarity of A / ( A ) .  

Although it is clear that the variances of 5 and 6 are strictly positive, it cannot be 
shown by analytical means alone that their integral timescales are non-zero. 
Consequently we appeal to the DNS data. The steady-state p.d.f.s computed from 
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5 = d In (I)/dt 

FIGURE 11. P.d.f. of the growth rate of lnZ, I ,  at steady state: 0, 0, A, correspond to 
R, = 38, 63, 90. 

DNS data of 5 and 6 are shown in figures 11 and 12 and their autocorrelations in 
figure 13. (The autocorrelation of was also given in Yeung et al. 1990.) The 
autocorrelations provided are the biased versions so that we have minimal statistical 
error at large time lags. Clearly the integral timescales are non-zero. The growth rates 
of the variances of In 1 and In A are provided in table 2. 

4.2. Implications of the central limit theorem 

It was seen in $1.1 that the growth rates of lnl, (c), and of lnA, ( E ) ,  are statistically 
stationary at steady state. The behaviour of the integral of a statistically stationary 
random variable is discussed in Tennekes & Lumley (1975) and our discussion 
proceeds along similar lines. Each of In1 and 1nA can be viewed as a sum of 
identically distributed random variables, i.e. as the integrals of 5 and 6. The central 
limit theorem governs the behaviour of the probability distribution of the sum of a 
large number of independent, identically distributed random variables under 
suitable conditions. Since 5 and 6 are continuous and differentiable their integrals 
cannot be regarded as the sum of independent variables. However, if the integration 
is performed over times much larger than the timescale of 5 (or E ) ,  the probability 
distribution of the integral can be expected to be amenable to the central limit 
theorem. Hence the p.d.f. of In1 (and 1nA) at  large times can be expected to tend to 
Gaussian. Since a Gaussian distribution is completely characterized by its mean and 
standard deviation, the standardized variables 

i = (In 1- (In l>)/[var (In 1)1+ (27) 

and A = ( ~ n ~ - ( ~ n ~ ) ) / [ v a r ( ~ n ~ ) l t ,  (28) 

can be expected to be statistically stationary. Recall that Kraichnan (1974) shows 
that 1 and A are log-normally distributed for the case of a white-noise velocity field. 
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FIQURE 13. Autocovariance of the growth rate of Inl, 5 :  0,  R, = 38, Tvar (5) = 0.0491; 0 ,  R, = 
63, qvar  ( E )  = 0.0488; *, R, = 90, qvar  (6) = 0.0528. Autocovariance of the growth rate of InA, 4 :  
0 ,  R, = 38, qvar  (6) = 0.0892; ., R, = 63, qvar  (6)  = 0.0945; +, R, = 90, qvar  (6) = 0.104. 

4.3. Stationarity of the standardized random variables 

In figures 14 and 15 the evolution of the p.d.f.s of i and i are shown. Clearly the 
p.d.f.s do attain self-similarity to within statistical error. The first few moments of 
1 and A (for the R, = 38 case) are shown in figures 16 and 17 respectively. It can be 
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FIQURE 15. P.d.f. of d us. time: legend as for figure 14. 

seen that to within statistical error the yoments are constant at steady state. The 
stationary values for all the moments of 1 and the third, fourth and sixth moments 
of d are quite close to the corresponding standard Gaussian values. (The third, 
fourth, fifth and sixth moments of a standard normal random variable are 0 , 3 , 0  and 
15 respectively.) The fifth moment of d is approximately 3 and it is not clear if this 
deviation from the standard normal value is due to statistical error alone. In any case 
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FIGURE 16. Moments off:  0, (is); 0,  (f4); A, (f5); V, (fa) of DNS data. 
---, (fi) and ---, (2") of a standard Gaussian distribution. 
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FIGURE 17. Moments of d: 0, (g);  0,  (A4>; A, (A'); V, (A') of DNS data. 
---, (A^") and -, ( A 6 )  of a standard Gaussian distribution. 

it is clear that the central limit theorem comes quite close to predicting the p.d.f.s of 
lnl  and 1nA correctly. The steady-state p.d.f.s of I^ and A for various Reynolds 
numbers are presented in figures 18 and 19 and there is very little variation (to within 
statistical error). 
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FIGURE 19. Steady-state p.d.f. of d for various RA : legend as for figure 18. 

In this section it has been established that : at steady state the mean and variance 
of In1 and 1nA grow at constant rates that are only weakly dependent on Reynolds 
number (see table 2 for exact values) ; and the p.d.f.5 of the parameters 1 and A, scaled 
to account for the growth of mean and variance only, attain stationary forms that 
appear independent of Reynolds number. 

The fact that, when standardized, In1 attains stationarity implies that there are 
two lengthscales in the problem : e(0)  exp ( ( 5 )  t )  and e (0 )  exp [ (qvar  (@)$I. As can be 
seen from the previous subsection the second lengthscale indicates the extent of the 
deviation of 1 / ( 1 )  from stationarity. In other words, this lengthscale indicates the 
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extent to which the moments of 1 are in excess of what can be accounted for by the 
growth of ( I )  alone. The ratio (Tcvar c);/(c) is larger than unity (as can be seen from 
table 2) indicating that 1/(1)  is far from stationary a t  steady state. Similar 
arguments are valid for A / ( A ) .  

5. Deformation of a volume element 
In this section the statistics of quantities that characterize material volume- 

element deformation are discussed. The quantities of interest are 8 (the angle 
between two material lines that are initially orthogonal) and 01 (the angle between a 
material-plane normal and a material line that is initially normal to the plane) and 
the eigenvalues of the Cauchy-Green tensor W of material element deformation (see 
Ej 1.2 for definitions). Since the sign of the direction of the material lines are arbitrary, 
we deal with the absolute values of the angles. 

The statistics of the evolution of In sin JBI and In cos la1 are completely determined 
by the statistics of c and c. For, referring to (15), we have 

In sin 181 = In A - In 1, - In 1,. 

Taking means and recognizing that 1, and 1, are statistically equivalent we have 

d 
-(lnsinlBl) = ([)-2([) 
dt 

x -0.105 (at steady state). (29) 

Similarly, referring to (16), we obtain 

x -0.300 (at steady state). (30) 

So two material lines that are initially orthogonal, on average, become colinear a t  the 
exponential rate given by (29). Similarly a material line that is initially normal to a 
material plane becomes coplanar a t  the much faster rate given by (30). 

An infinitesimal material sphere deforms under the influence of straining into an 
ellipsoid. The Cauchy-Green tensor W describes this deformation. The principal axes 
of the ellipsoid are given by (w,)f, (w,); and (w3)i relative to the initial diameter of the 
sphere, where, w, 2 w 2  2 w3 are the eigenvalues of W. Given that B(0) = I ,  the 
initial values of all the eigenvalues are unity. Further, since the fluid is incompressible 
the material ellipsoid conserves volume and hence w1 w, w3 = 1 .  It is clear then that 
w, >, 1 and w3 < 1. However, the behaviour of w 2  is not clear. 

In figure 20(a )  the evolution of the logarithm of the eigenvalues is plotted for 
various Reynolds numbers. Not surprisingly, there is not much difference between 
the various Reynolds numbers. The mean of In w2 is positive and much smaller in 
magnitude than the means of In w1 and In w3. The relative magnitude of In w2 with 
respect to that of lnw, and lnw, is still not clear. From the ordering of the 
eigenvalues (In w1 2 In w2 2 In w3) and incompressibility condition (In w1 +In w 2  + 
In w3 = 0) we know the following : 

(i) Once In w, and In wz are known In zu3 can be calculated. Hence the joint p.d.f. of 
In w1 and In w2 contains all the one-time statistical information about the eigenvalues 
of w. 
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FIQURE 20. Evolution of Cauchy-Green tensor: (a)  0, (lnwl); 0, (1nw2); A, (lnw,), for 
R, = 38; 0 ,  ., A respectively for R, = 63; *, +, x respectively for R, = 90. ( b )  Joint p.d.f. of 
In w1 - In w2 a t  t = 30. 

(ii) The maximum value that In wp can take is In wl. This case corresponds to the 

(iii) The minimum value that lnw, can take is -ilnw,. This represents the case 
initial infinitesimal material sphere deforming to a pancake shape. 

when the material sphere deforms to a cigur shape. 
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(In w,) <In wz> (In wa) 

DNS value 0.28 0.04 -0.32 
Estimate of (32)-(34) 0.27 0.06 -0.33 
Estimate of (31) 0.80 0.20 - 1.00 

TABLE 3. Comparison of the estimates and DNS values of the eigenvalues of W 

In  figure 20(b) the joint p.d.f. of lnw, and ln w, calculated from DNS data a t  t = 
30 is provided. Clearly the joint p.d.f. is a function of time. It is found that the 
qualitative details of the joint p.d.f.s a t  t = 5, 10, 15, 25 (not shown) vary very little 
from that of the joint p.d.f. at t = 30. The joint p.d.f. indicates that  the cigar shape 
and the pancake shape are equally probable. However, the event {In w, x 0+} is about 
five times as probable as either the cigar case or the pancake case. (This estimate is 
obtained from the p.d.f. of lnw, a t  time t = 30 (not shown).) So with a high 
probability an initially spherical volume of fluid deforms into an ellipsoid with one 
axis (wl) elongated, one axis (w,) changing little, and the third (w3) shrinking to 
conserve the volume. i n  case of some (25%) of the material elements Inw, is 
negative. 

For the ideal case of no vorticity and persistent straining, the evolution of the 
eigenvalues is easy to compute. From (19) we can derive 

d 
-(lnwi) x 2(a,) .  
dt 

However, from previous sections i t  is known that estimates obtained by neglecting 
the effects of vorticity and non-persistent straining are incorrect by over 200%. So 
the following estimates for the steady-state growth rates of the logarithm of 
eigenvalues may be expected to be better : 

The steady-state growth rates of In wl, In w2 and In w3 calculated from figure 20 are 
approximately 0.28,0.04 and -0.32 respectively. These values are very close to the 
estimates of (32)-(34) as shown in table 3. 

6. Performance of the stochastic model 
The stochastic model of Girimaji & Pope (1990) is a tensor-valued diffusion process 

for the velocity gradients. The modelled Lagrangian velocity gradients mimic the 
DNS velocity gradients and can to be used as a substitute in the study of material- 
element deformation. The model velocity-gradient time series satisfies the pertinent 
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FIQURE 21. Comparison of the statistics of 5 and 5 from DNS and the stochastic model: 0, ( 5 ) ;  
0,  ( 6 ) ;  A, var([); V, var(6) of DNS for the R, = 90 case. Filled symbols represent the 
corresponding model quantities. 

incompressibility, homogeneity and isotropy constraints exactly. The drift and the 
diffusion terms of the diffusion process are such that a t  least the first few moments 
of the modelled velocity-gradient distribution are close to those computed from DNS 
data. 

In  this section the diffusion model is tested for its performance in calculating the 
details of material-line and surface-element evolution. Having already established 
that the details are Reynolds-number independent we do not make a detailed 
Reynolds-number dependence study of the comparison of the model and DNS 
calculations. 

The performance of the model is compared to that of DNS for the following aspects 
of material element deformation: (i) one-time p.d.f. of y and f ;  (ii) two-time 
autocorrelations of and f ;  (iii) the p.d.f.s of 1 and A a t  steady state ; (iv) the material 
volume deformation quantities. 

One-time p.d.f. of 5 and f 
The one-time p.d.f.s of5 and f a r e  important since the means determine the growth 

rate of the means of In1 and lnA, and the variance plays an important role in 
determining the growth rates of the variance of In1 and 1nA. In  figure 21 the 
temporal evolutions of means and variances (of 6 and 6 )  of the model and DNS are 
compared for the R, = 90 case. A similar comparison is made for the R, = 38 case in 
Girimaji & Pope (1990). The agreement in both the cases is good. 

Two-time correlations of 6 and 
The two-time correlations are important since they determine the integral 

lengthscales which, along with the variances, determine the growth rate of the 
variance of In1 and 1nA ((25) and (26)). In figure 22 we compare the two-time 
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FIGURE 22. DNS vs. model. Autocovariances of 5 and 6 for R, = 90: 0, DNS, C, T,var (5) = 0.0490; 
0,  model, C, q v a r  (C) = 0.0407; 0, DNS, 6 ,  T,var(€J = 0.0892; ., model, 6,  T,var(E) = 0.108. 

covariances. The model integral timescale is lower by about 17 YO for 5 and higher by 
17 YO for 6. Though the disagreement is not much, it is large considering the very good 
agreement between the model and the DNS for the case of two-time strain-rate 
correlations in Girimaji & Pope (1990). However, as can be seen from (9) and (10) the 
relative orientation of the material element with the principal strain axes also plays 
a role in determining 6 and 6. The orientation of the material element is affected by 
the rotation-rate tensor, the t'wo-time correlation of which is poorly replicated by the 
model. It is to this shortcoming of the model that  we attribute the relatively poor 
estimation of the integral timescales. 

Steady-state p.d.f.s of i and d 
After removing the effects of the growing mean and variance of !n 1 and In A by 

suitable scaling, it was shown in $4  that  the scaled pFrameters 1 and d attain 
statistical stationarity. If the probability distributions of 1 and d computed from the 
model are also governed by the central limit theorem then it is inevitable that the 
model p.d.f.s should match \he corresponding ones calculated from DNS. In figure 
18 the steady-state p.d.f. of I of the model is compared tq that of DNS. In figure 19 
a similar comparison is made for d. (Note that the model 1 and d are scaled using the 
model values of mean and variance.) The agreement is quite good. 

Material volume deformation quantities 
As seen before, the statistics of the angles 8 and a are completely determined by 

the statistics of the random variables 5 and 6. It was shown in figure 21 that the first 
two moments of these random variables are calculated fairly accurately by the 
model. It can be inferred then that the model does well in calculating the angles. 
Clearly the estimates of (32)-(34) are also valid for the eigenvalues calculated from 
the model. The evolution of the eigenvalues are compared in figure 23. The 
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FIGURE 23. DNS vs. model. Evolution of Cauchy-Green tensors: 0, (lnw,); 0,  (lnw,); A, 
(lnw,), DNS data for the R, = 38 case. Filled symbols represent the corresponding model 
calculations. 

agreement is very good in the case of wl. The model predicts a faster decrease of 
(In w3) than DNS. This is consistent with the model overestimation of (6) (see figure 
21 and (33)). The overestimation of the decay rate of (In wg) by the model is coupled 
with its overestimation of the growth rate of (In w2). 

7. Summary and conclusions 
In  this work we analyse the evolution of material line, surface and volume 

elements using velocity-gradient data generated by DNS. The diffusive nature of 
turbulence renders the study of finite lines and surfaces computationally expensive. 
So we study the evolution of incontiguous infinitesimal material-line (e( t ) )  and 
material-area Mt)) elements. Over each such infinitesimal element the strain rate is 
uniform and hence we need only one-point velocity-gradient information following 
fluid particles. Using DNS-generated velocity-gradient time series we examine the 
statistics of the infinitesimal material elements a t  steady state, employing an 
approach that is somewhat similar to that of Kraichnan (1974). Instead of dealing 
with the lengths, areas and volumes of infinitesimal elements we deal with length 
ratio I (  = e ( t ) / e ( O ) )  and area ratio A( - f ( t ) / f ( O ) ) .  We also assess the performance of 
the stochastic velocity-gradient model of Girimaji & Pope (1990) in calculating the 
material-element deformation quantities. The following is a summary of our 
conclusions. 

Mean growth rates 

The estimate of the growth rate of the mean of In1 given by Batchelor (1952) is 
larger by a factor of three than the value calculated from DNS data, owing to the 
poor alignment of the line elements with the maximum positive strain-rate (a l )  
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direction. The alignment of area elements with the maximum negative strain-rate 
(a,) direction is also poor, resulting in the growth rate of In A also being much smaller 
than expected. The poor alignment is caused by: (i) vorticity sweeping the material 
line away from the maximum positive strain-rate direction (figures 4 and 5) ; and (ii) 
the rotation of the principal-strain axes relative to  the material lines (figure 6). The 
growth rates peak a t  about 2r1 before settling down to smaller steady-state values. 
This peaking is a result of the random initial distribution. 

Kraichnan (1974) shows that if the velocity field is reflection-invariant the 
statistics of the growth rates of the logarithms of length ratio and area ratio would 
be identical. The steady-state growth rates of In1 and 1nA are different by about 
20%, showing that the turbulence velocity field (generated by DNS) is not quite 
reflection-invariant, as was indeed noted by Kraichnan (1974). 

P.d.f. of 1 and A 

The p.d.f.s of 1/(1)  and A/(A) do not attain stationarity (figures 8, 9 and 10) as 
hypothesized by Batchelor (1952). It is shown analytically that if the variance and 
the integral timescale of 5 (or 6 )  are non-zero, then 1/(1)  (and similarly A/(A)) 
cannot be statistically stationary. Figures 11-13 show that in homogeneous isotropic 
turbulence the variance and integral timescale of 6 and 6 are indeed non-zero. 
Then the relevant lengthscales that govern the evolution of line elements are 
e(0) exp ( ( 5 )  t )  and e ( 0 )  exp [(var (g)qt)f]. The second lengthscale indicates the extent 
of departure of the random variable 1/(1) from stationarity. If the first of these two 
lengthscales were much larger than the second, Batchelor's scaling would have led to 
a nearly stationary random variable. However, from DNS, ( 5 )  x 0.13 and (T,var 5); 
x 0.22, indicating that the second length is a t  least as important as, the first. 

The central limit theorem suggests that the p.d.f.s of parameters I and d defined 
by (27) and (28) would assume stationary Gaussian distributions at steady state and 
calculations from DNS data (figures 14, 15, 16 and 17) indicate that such is indeed 
the case. (Kraichnan 1974 comes to the same conclusion for the case when the 
velocity field is a white-noise process.) The mean and variance of In 1 and 1nA grow 
linearly in time, a t  rates that are alyost independent of Reynolds number (table 2). 
Moreover the steady-state p.d.f.s of 1 and d appear nearly independent of Reynolds 
number (figures 18 and 19) which in fact is inevitable if the central l iyit  theorem 
governs the probability distribution of the integrals of 5 and 6. If 1 and d are 
Gaussian, expressions for the various moments of 1 and A can be derived if the 
statistical propertlies of 5 and are known. The pth moment of 1 at, a time t is given 
by 

(35) 

(36) 

(37) 

(Zp)(t) zi exp b( ln  I ) ( t )  + (p2/2) var (In Z(t))]. 

(In W t )  2 ( 5 )  t ,  
var (lnZ(t)) x 2 var (5) !Qt, 

If it can be further assumed that 

the exponent I'p defined by Drummond & Munch ( 1 9 9 0 ~ )  can be calculated : 

= ( 5 )  +P (5) q. 
A similar derivation is also valid for the area-ratio moments. 
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Material-volume deformation 
The angles 8 and a (see Q 1.2 for definition) are of interest. Their statistics, however, 

are completely determined by the statistics of g and 6. The sine of the angle between 
two initially mutually perpendicular material lines decreases approximately 
exponentially (sin 8(t)  x exp ( -0.lt)). The cosine of the angle between the normal to 
a material plane and a material line that was initially normal to the material plane 
also decreases exponentially (cos a ( t )  x exp ( -0.3.t)). The estimated steady-state 
growth rates of the eigenvalues of the Cauchy-Green tensor are given by (32)-(34). 
These estimates account for vorticity and non-persistent straining. As shown in 
figure 20 (see table 3 also) these estimates are quite accurate. The logarithm of the 
intermediate eigenvalue (In (wz)) is in general positive and small in magnitude 
compared to In (wl) and In (w,). 

Performance of diffuusion model 
The performance of the model in calculating the mean and variance of 5 and ,$ is 

good (figure 21). The integral timescale of the two-time correlation of the model 5 is 
smaller than that of DNS by about 17 YO (figure 22), resulting in a slower growth of 
the model var (In 1 ) .  The integral timescale of the motel 5 is larger than that of DNS 
by 17 YO. However, the steady-state model p.d.f.s of 1 and 2 agree quite well with the 
corresponding DNS p.d.f.s (figures 18 and 19). The eigenvalues of the Cauchy-Green 
tensors are also calculated fairly well by the model (figure 23). 

Higher Reynolds numbers 
The comparison of various Reynolds numbers (< 100) shows that to within 

statistical errors, 6 scales as T ; ~  and the integral timescale T, as T?. This scaling is 
likely to be valid for all Reynolds numbers, so that the ratio of the two relevant 
lengthscales in the problem - e (0 )  exp ( ( 5 )  t )  and e(0) exp [(var (c) q;);] - is inde- 
pendent of the Reynolds number. The probability distribution of 1 is likely to 
continue to be amenable to the central limit theorem, resulting in 1 also being log- 
normally distributed a t  high Reynolds number. Similar arguments are also valid for 
the area ratio. 
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Appendix. Numerical algorithm used to determine B 
In  this Appendix the algorithm used to integrate (12) for the tensor B is discussed. 

The incompressibility condition requires that the determinant of B be unity. The 
numerical satisfaction of this condition requires that B be updated very accurately. 
This is achieved using the following fourth-order RungeKutta  scheme : 

Btj(t)  = B&) +iAthik(t)Bkj(t) ,  (A 1) 

(A 2) 

the backward Euler corrector step : 

BFj(t) = B,,(t) + [h,k(t) + hi& + At)] B:,(t), 
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the mid-point predictor step : 

S.  S .  Girimuji and S. B. Pope 

Bij(t) = B,j ( t )+~At[h , , ( t )+h, , ( t+At) ]B~, ( t ) ,  

and the Simpson corrector step 

B,(t + At)  = Bij(t) +:At [htk(t)Bk,(t) 
+{h , , ( t )+h, , ( t+At) } {B~,+B~,}+hik( t+At)B~l( t ) ] .  (A 4) 

This scheme is found to  give the required degree of accuracy. 
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