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A methodology termed the “velocity filtered density function’VFDF) is developed and
implemented for large eddy simulatidbES) of turbulent flows. In this methodology, the effects of

the unresolved subgrid scaléSGS are taken into account by considering the joint probability
density function of all of the components of the velocity vector. An exact transport equation is
derived for the VFDF in which the effects of the SGS convection appear in closed form. The
unclosed terms in this transport equation are modeled. A system of stochastic differential equations
(SDEs which yields statistically equivalent results to the modeled VFDF transport equation is
constructed. These SDEs are solved numerically by a Lagrangian Monte Carlo procedure in which
the Ito-Gikhman character of the SDEs is preserved. The consistency of the proposed SDEs and the
convergence of the Monte Carlo solution are assessed by comparison with results obtained by an
Eulerian LES procedure in which the corresponding transport equations for the first two SGS
moments are solved. The VFDF results are compared with those obtained via several existing SGS
closures. These results are also analyzedaviariori and a posteriori comparisons with results
obtained by direct numerical simulation of an incompressible, three-dimensional, temporally
developing mixing layer. ©€2002 American Institute of Physic§DOI: 10.1063/1.1436496

I. INTRODUCTION modeled. In all previous LES/FDF simulations, these effects
have been modeled via “non-FDF” methods.
The probability density functioflPDF approach has The objective of the present work is to extend the FDF

proven useful for large eddy simulatidhES) of turbulent  methodology to also include the subgrid so@8&S velocity
reacting flows:™*® The formal means of conducting such vector. This is facilitated by consideration of the joint “ve-
LES is by consideration of the “filtered density function” |ocity filtered density function’(VFDF). With the definition
(FDF) which is essentially the filtered fine-grained PDF of of the VFDF, the mathematical framework for its implemen-
the transport quantities. In all previous contributions, thetation in LES is established. A transport equation is devel-
FDF of the “scalar” quantities is considered: Gao andoped for the VFDF in which the effects of SGS convection
O'Brien,’ Colucciet al.® Reveillon and Vervisct,and Zhou  are shown to appear in closed form. The unclosed terms in
and Pereir& developed a transport equation for the FDF inthis equation are modeled in a fashion similar to that in the
constant density turbulent reacting flows. Jatetral® ex- Reynolds-averaged simulatiofRAS) procedures. A La-
tended the methodology for LES of variable density flows bygrangian Monte Carlo procedure is developed and imple-
consideration of the “filtered mass density function” mented for numerical simulation of the modeled VFDF
(FMDF), which is essentially the mass weighted FDF. Thetransport equation. The consistency of this procedure is as-
fundamental property of the PDF methods is exhibited by thgessed by comparing the first twvo moments of the VFDF
closed form nature of the chemical source term appearing iwith those obtained by the Eulerian finite difference solu-
the transport equation governing the FDFMDF). This  tions of the same moments transport equations. The results of
property is very important as evidenced in several applicathe VFDF simulations are compared with those predicted by
tions of FDF for LES of a variety of turbulent reacting the Smagorinsk&? closure, and the “dynamic” Smagorinsky
flows ®~*%*2However, since the FDF of only the scalar quan-model'’~°The VFDF results are also assessed via compari-
tities are considered, all of the *hydrodynamic” effects are sons with direct numerical simulatigPNS) data of a three-
dimensional(3D) temporally developing mixing layer in a
dAuthor to whom correspondence should be addressed. Telephon&ONntext similar to that of Vremaat al?

(716 645-2593 (ext. 2320; Fax: (716) 645-3875. Electronic mail: This work deals with LES of the velocity field in a con-
givi@eng.buffalo.edu stant density, nonreacting flow. Consideration of the joint
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velocity-scalar FDFor FMDF) in variable density, chemi- = (u;,dp/dx))+ 7. (u;,dp/dx), the SGS production rate ten-

cally reacting flows will be the subject of future work. Itisin sor,  Pjj=— 7 (u;j,uy) d{u;j) /dx— 7 (U ,Ui) Ui [ IXy,
this context that the approach has its principal advantagand the  SGS  dissipation rate  tensor,gj
Convective transpofof momentum and speciess in closed = 2v 7 (du; /Xy, du; [ IXy).

form.

Il. FORMULATION Ill. VELOCITY FILTERED DENSITY FUNCTION (VFDF)

Ir_1 the mathematical descr?ption of incompres_sibjeit A. Definitions
density turbulent flows, the primary transport variables are o ) )

the velocity vector,u;(x,t) (i=1,2,3), and the pressure, The “velocity filtered density function”(VFDF), de-
p(x,t), field. The equations which govern transport of thesehoted byP , is formally defined as

variables in spacex({) and time(t) are

=+

U _ o Y U dp  doy, L PL(v;xt)= fﬁ oo, u(x’,1)]G(x" —x)dx’,

I R VR A A @ ©
For a Newtonian fluid, the viscous stress tensgris repre- 3
sented by e[v,u<x,t>]=6[v—u<x,t>]zi[[l Svi—ui(x,1)],

(9Ui (9UJ . .
T =\ o + vl (2) where § denotes the delta function awds the velocity state
j i

vector. The term g[v,u(x,t)] is the “fine-grained”
wherew is the kinematic viscosity and is assumed constantdensity*?>?®and Eq.(6) defines the VFDF as the spatially
Large eddy simulation involves the spatial filtering filtered value of the fine-grained density. With the condition

operatio =23 of a positive filter kernef* P, has all the properties of the
- PDF?® For further developments, it is useful to define the
<f(x,t)>L:f f(x',t)G(x",x)dx’, (3) “conditional filtered value” of the variabl&(x,t) by
whereg denotes the filter functior(f(x,t)), represents the (QU.D|UXD=w)
filtered value of the transport variablﬁ(x,t)', and f'=f [2Q(x' b e[v,u(x’ ,H)]G(X —x)dx’
—(f)_ denotes the fluctuations dffrom the filtered value. =(Qlv), = P oxD) , (7
L U, X,

We consider spatially and temporally invariant and localized
filter functions, thus G(x',x)=G(x'—x) with the
properties?! G(x) =G(—x), and/” .. G(x)dx= 1. Moreover,
we only consider “positive” filter function® for which all

where(a|8), denotes the filtered value of conditioned on
B. Equation(7) implies

the mo_mer?tg”focme(x)dx exis_t form=0. The application (i) for Qx,t)=c, (Q(x,b)|v).=c,
of the filtering operation to the instantaneous transport equa-
tions yields . N .
Y (i) for Qx,H=Q(u(x.1), (Qx.Dlv) =Q(v),
a(up), 0
ax, (iii) Integral property:
4
e dulud__ dp) oy @ -
at IX; T X X <Q(X,t)>L:J7 (Q(x,t)|v) PL(v;x,t)dv, (8
dr (u;,uj) _ .
T ok wherec is a constant, an@(x,t)=Q(u(x,t)) denotes the
I

case where the variabl®@ is completely described by the
where 7 (U;,u;) =(ujuj) —(u;)(u;). denotes the “gener- variable u(x,t). From these properties it follows that the
alized SGS stresses'® These stresses satisly filtered value of any function of the velocity variable is ob-
3 3 tained by integration over the velocity space

E[TL(Uian)]+ﬁ—Xk[<Uk>LTL(Uian)] e
QD)L= J Q)P (vixt)dv. ©

B &Tijk n
=T ke ij +Pij— . 5

In this equation,T;j =7 (u;,u;,uy) — v(3/dx)[ 7 (u;,u;)] B VFDF transport equation

is the SGS turbulent transport tensor where  The exact transport equation for the VFDF is derived in
7L (U;,Uj, Ug) = Cuiuju) — (Ui (U, u) — (U7 (U U) - this section. Two forms of this equation are considered simi-
— (UL 7 (u; ) = (up) (U (uy), '8 The other terms are lar to those previously developed in PDF meth&@s! The

the SGS pressure-velocity scrambling tensol];; starting point is to consider the time-derivative of EG).

Downloaded 22 Sep 2004 to 140.121.120.39. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



1198 Phys. Fluids, Vol. 14, No. 3, March 2002

P (v;xt)
at B

= Ju(x’',t) de[v,u(x’,t)]
_f,w at v,

XG(x"—x)dx". (10

This combined with Eq(7) yields
(9Ui
ot

Substituting Eq(1) into Eqg.(11) yields
)5

v) —(—

Lo\ax

PL(v;x,t)] .

PLo;xt) 4
ot v

11)

v> PL(v;x,t)}.
L

ot (h)i

IPL(v;xt) | _<auiuk

Xk
v>
L

(12

. <&
0"Xk
With the relation

d

P (v;x,t)
v

Xy ' (13)

<(9Uiuk —
— Uk

(9Xk

v> P (v;x,t)
L

and decompositions

viPL=(u) P +[vk— (Ui 1P,
ap _ AP Jp HP)L
<(9_X| U>LP|_— (9Xi PL+ <(9_X| v>L— {9Xi P
<ﬂ ; + <ﬂ
Xy Xy

P, (14

L

L

> PL:(7<0'ik>L P

X

_ Ko
OXy

the VFDF transport equation becomes

Gicquel et al.

Alternatively, the conditional diffusion term in E¢L5)
can be represented as

J &O’ik = ¢
[ I e
|\ x|/ LX)
PPL(v;xt) &2 Ju; A 5 .
— 'X
anan &vié'vj VﬁXk 5ka L L(v, ,) ’

(16)

in which the second term on the right-hand sidks) in-
volves the conditional expected dissipation. With this, the
alternate form of the VFDF transport equation is

DP, J ap)L IPL 9P
P — + —_ —_—
Dt ax LV (U L)PL] g%, v, OXedXe
KRR RN b
&vi &Xi v L &Xi L
9 au auyl L
&viﬂvj V(?Xk (9ka L LI ( 7)

Equation (17) is another exact transport equation for the
VFDF. The first term on the right-hand side represents the
SGS convection of the VFDF in physical space and is closed.
The second term corresponds to the convection in the veloc-
ity space due to the resolved pressure gradient. The third
term represents molecular diffusion of the VFDF in physical
space. The closure problem is associated with the last two
terms.

C. Modeled VFDF transport equations

The generalized Langevin modéGLM)?"*? is em-
ployed for closure of the VFDF transport equation. Here we
introduce two modeled VFDF equations, which are denoted
by “VFDF1” and “VFDF2.” These are presented in order.
To close Eq(17), VFDF1 is

DP. J Hp) IP,
Dt ax (vk— (UL PL +r?—xi8_vi K2 a_pv AP 5
L
v X L X
Koy P | [ [dp o) — ap)L b
OXy v av; X X L (72 Ju; ﬂuj
L - v— —v| P_
c?vi&vj &Xk an L
9 (<’90'ik’v> Ko P 15 ,
an &Xk| L an L ,-\,_i L . E I:)L
v, [Gij(v; <UJ>L)PL]+ 2 Coe Jv;00;

where D/Dt=d/dt+{uy) (d/dx,) denotes the “filtered”
material derivative. +V°7<ui>L Hupr P*Py V'?<ui>L PPy (18)

Equation (15) is an exact transport equation for the Xy Xy Jv;idv; Xy IXIU;
VFDF. The first term on the right hand side represents the ]
SGS convection of the VFDF in physical space and is closed!© close Eq(15), VFDF2 is
The second and third ternfe/hich are also in closed form
represent the convection in velocity space due to the resolvei <(9_p v> _ 0"<p>L_ < Ik v> n Ko P,
pressure gradient and molecular diffusion, respectively. Thevi || \dXi| [ X Xl | X
last two terms are unclosed and denote convective effects in P 1 2p
the velocity space due to SGS pressure gradient and SGS  __ _~ g (. —(u) P, 1+ = L 1
diffusion. &vi[GI](UJ <UJ>L) Ll 2(:08 Jv1d0; (19
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Note that these modelse., the first two terms on the right- for VFDF2:

hand sides of Eq418) and(19) are the same, but that they
model slightly different quantities. With this closure, the two "=
terms inG;; ande jointly represent the SGS pressure-strain

and SGS dissipation. These are modeled%s

Gij:

1
2 4CO) |Ja 8:C3k3/2/A|_, w=c¢lk,

(20)
wherew is the SGS mixing frequency, is the filter width,
k= 37_(u;,u;) is the SGS kinetic energy, and=3s;; is the
SGS dissipation rate.

With the GLM, the two forms of the VFDF transport

equation are

PP J ap)L 9P, 9°P
Dt __07_xk[(vk (UL PLI+ % av. +V(9Xk(9xk
V‘?<ui>L ‘9<Uj>|_ (92P|_ Hui 072P|_
(9Xk (9Xk anO')Uj é’xk axkﬁvi
1 (92P
[G'J(vl (UpVP+ 3 Cos , (22
for VFDF1, and
bP. J aP)L IPL
Bt = ax Lo (UQUP+ == 2=
(7<0'ik>L P J
T Toxe 0. a0 LCHEITU)UPL
+1C P 29
E 0® anﬁUi ( )

for VFDF2. Hereinafter, Eqg21) and(22) are referred to as
“VFDF1” and “VFDF2,” respectively. The difference be-

Velocity filtered density function for LES 1199
aui)L _
X '
UL Ui (uj)L
at X
d a%(u aT(u;,u; )
B (P)L . ( 1>L L(U; 25

an IX; (9X| (9Xi

Jd
_t[TL(ui U1+ a_xk[<uk>LTL(ui Uj) ]

d
== ﬁ_Xk[TL(ui Uj U ]+ Gy (U, U) + Gy (U, Uy)

a(u J>L

— 7 (Ui, U) ——— X, —7.(u

UL

j ,Uk) X, +C085U

(26)

It may be seen that the zeroth and first moment equations are
identical (and exadt whereas the second central moment
equations differ by the additional viscous term in VFDF1
[Eg. (24)]. A comparison of these modeled equations with
Eq. (5) shows that the GLM model implies

—ITj— (&1 — 58 8j) = — Crw[ 7.(u; ,uj) — 3k,

This is the same as the Rottanodel as shown by Popé.
There are two model constants in the VFDF equation. In
RAS, typically’*® C,~1, and Co~2.1 (C;=4.15). As
shown in Refs. 27, 34 boundedness of the GLM coefficients
Cy>0 guarantees that the SGS stress is realizable.

tween these two equations is in the different treatment of the

closed viscous terms.

D. Transport equations for moments

IV. EQUIVALENT STOCHASTIC SYSTEMS

The solution of the VFDF transport equation provides all
the statistical information pertaining to the velocity vector.

The zeroth, first, and second moment equations correfhe most convenient means of solving this equation is via

sponding to these two formulations are

for VFDF1:
0N _
(?Xi !
AU Ui (uj)L
ot X
Ap) . Aupl aT(uLup)
T aXJ v &Xi&Xi &Xi ! (23)

17 1%
SrLmuiup]+ == <uk>LTL(u|1 uj]

J
=— 7L (Ui, U, Uy) —

(9Xk [TL(UIIU )]

< j>L

+ Gk (Uj,U) + G (U, uy) —

au .)L

_TL(UJ,Uk) +C085

7L (Uj,Uy)

ij » (29)

the Lagrangian Monte Carlo scheme. The basis of this
scheme relies upon the principle of equivalent syst#&mis.
Two systems with different instantaneous behaviors may
have identical statistics and satisfy the same PDF transport
equation. In this context, the general diffusion process is
considered via the following system of stochastic differential
equationg SDEg:26:31:36:37

dA(t) = D; (A1), U(t);t)dt+B( (1), U(t); ) d WKL),
dii (1) =M (A(t),U(t);t)dt+E(A(L),U(t);t)dWF (1)
+Fi (1), U(t); HdW(1), (28)

where &} andl4; are probabilistic representations»ofndu,
respectively. The coefficientd; and M; are the “drift” in

the phase space of position and velocity, respectively. The
termsB and E are the “diffusion” coefficients for physical
and velocity spaces, respectively; aWd and W} denote
independent Wiener-g processes® The tensoi;; repre-
sents the dependency between the velocity and physical
spaces. This term is needed to satisfy thedomdition for
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B+ 0. A comparison of the Fokker—Planck equation of Eq. XM (ts 1) =X(t,) + Dt ) At+ B”(tk)(At)l/zg{‘(tk),
(28) with the modeled VFDF1 transport equation, EB1)

yields UM (e 1) = UD(t) + ML) A+ E(t)(AD ¥20(t)
M= BP0 Ty, D=t FED (G (AD20(t,) (32
i— x; V&Xkﬁxk ij ji’c) i= Ui ij Utk i)y
(29 Nty — e (n) (M) (s - (n)
U, where Di'(t) =D (XM (ty) , U™ (1)), B (ty)
B=\2v, E=\Cee, FijE\/Z_V%- =B(XM(ty), UM (t);t),... andél(ty), £](t) are indepen-

! dent standardized Gaussian random variables. This formula-
Therefore, the proper SDEs which represent VFDF1 in thdion preserves the Markovian character of the diffusion

Lagrangian sense are processéS* and facilitates affordable computations.
Higher-order numerical schemes for solving E&8) are
d; (1) =2 (D) dt+ V2rd WX(1), available?? but one must be cautious in using them for LES.
2(p) 2(u) Since the diffusion term in Eq28) strongly depends on the
P/L UioL stochastic processes, the numerical scheme must be consis-
dui(t)=| — +2 + G (Ui (1) —(u; dt Ly ’ . o
(v IXi Y X% i U0 =Cuio) tent with 1to-Gikhmari®#® calculus. Equatior{32) exhibits

this property.

+CosdW (1) + \/Za<ui>LdV\/}<(t)_ (30) The statistics are evaluated by consideration of the en-
X semble of particles in a “finite volume” centered at a spatial

This stochastic system is the same as that developed d9c_ation. This_ensemble provides “one-_time” statistics. This
Dreeben and Pop& 31 for RAS. f|n|_te _volume is characte_nzed by a_gublc box of Iengt@. _
This is necessary as, with probability one, no particle will
coincide with the point as consider&Here, a cubic box of

For VFDF2, due to the absence of diffusion in physical
space we must hav8=0. Therefore, the corresponding

SDEs are size Ag is used to construct the ensemble mean, variances
and covariances of the velocity vector. These values are used
dAx;(t) =U(t)dt, in the finite difference LES solver of Edq4) as described
below.

The SGS dissipation rate and the SGS mixing frequency
as required in the solution of the VFDF are evaluated on the
finite difference grid points and interpolated to the particle’s

+CosdWI(H). 31 location. Ideally, for reliable Eulerian statistics and minimum
Thi is th h P y— numerical disper.si(.)n_, it.is desired to have the size of the
's system is the same as that suggested by sample domain infinitesimally small.e., Ac—0) and the

Haworth and Popé for RAS. . AN o CE
The primary difference between the two formulations_number of particles within this domain infinitely large. That

VFDF1 and VFDF2 is due to molecular effects in the spatialIS
diffusion of the VFDF. This is explicitly included in the
VFDF1 formulation and is also present in the corresponding

_KP)L N H oL

dui (t) - (9Xi an

+G;j (U (1) = (uj),) [dt

1
PL(wixt) —— Py (vix, )= > sw—um),

second moment equation. This difference is expected to be Ngo NenSag

important in flows where viscous effects are important; e.g., Ag—0

flow near solid boundari€S=3! Both of these formulation (33
are considered in our numerical simulations as discussed be-

low. wherePNE is the Eulerian PDF constructed from the particle

ensemblen e Ag denotes the particles contained in an en-
semble box of lengtiAg centered ak; and Ng is the total
V. NUMERICAL SOLUTION PROCEDURE number of particles within the box. With a finite number of
particles, obviously a largek¢ is needed. This compromise
Numerical solution of the modeled VFDF transport between the statistical accuracy and dispersive accuracy im-
equation is obtained by a Lagrangian Monte Carlo proceplies that the optimum magnitude dfz cannot, in general,
dure. The basis of this procedure is the same as that ibe specifiedx priori.}*?® This does not diminish the capabil-
RAS*¥-* and in previous LES/FDE2 But there are some ity of the procedure, but exemplifies the importance of the
subtle differences which are explained here. In the Lagrangearameters governing the statistics.
ian description, the VFDF is represented by an ensemble of To provide an estimate of the propAg size, a “point
N statistically identical Monte Carlo particles. Each of theseestimator” procedure is considered. With this procedure, the
particles carries information pertaining to its velocity mean valuegthe first moments of the VFDFare evaluated
UM(t) and positionX(M(t), n=1,2,..N. This information is by ensemble averaging, and spatial variations of these mean
updated via temporal integration of E(8). The simplest values within the box are ignored. With the discrete repre-
means of performing this integration is via the Euler—sentationfEq. (32)], the first two moments in this procedure
Maruyamma approximatidf are evaluated via
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TABLE I. Recapitulation of the VFDF solution procedures.

Finite Particle Particle statistics Finite difference
difference solver used by the finite variables used by Redundant
variables variables difference solver particle solver quantities
VFDF 1 (Ui Xi . (U;,Uj) Kp) (Ui
(" %
(P)L Ui AT
M " XX
VFDF 2 (UL Xi m.(Uj,uj) o (UL
(UL, %
(P Ui Au)
2%
LES-FD () .(p) X, LICIINTY AP (Ui
<ui>Lv (7)(1
. (U;,Ujp) Ui AU (Ui ,Ujp)
XX
1 - applied for the case corresponding to VFDF2. That is, Egs.
(uiL <—N—HEA Ui"=(Uj)e, (25 and(26) are considered. Since the SGS transport terms
Ny Enele 7.(u;,uj,u,) are unclosed in Eq(26), the values corre-
: sponding to these terms are taken from the Monte Carlo
1 S - solver and substituted in the SGS stress transport equations.
(Ui, U) N Ne— 1%L, (UT=(Ui)e)(U;"=(Uje)- The attributes of all of the scheme are summarized in Table I,
A0 with further discussions in Refs. 6, 39—41.
E

(39

The point estimator is obviously subject to both statisticaly|, RESULTS
errors and dispersive errors far# 0.

To determine the pressure field, the “mean-field solver”
is based on the “compact parameter” finite difference Simulations are conducted of a two-dimensiol2D)
scheme of Carpentéf.This is a variant of the McCormatk  planar jet, and a 3D temporally developing mixing layer. The
scheme in which fourth-order compact differences are usejkt flow simulations are conducted primarily for establishing
to approximate the spatial derivatives, and a second-ordeéhe consistency of the Lagrangian Monte Carlo solver. For
symmetric predictor-corrector sequence is employed for timehis purpose, 2D simulations are sufficient. To analyze the
discretization. The numerical algorithm is a hyperbolic overall performance of the VFDF and to demonstrate its full
solver which considers a fully compressible flow. Here, thecapabilities and drawbacks, 3D simulations are required.
simulations are conducted with a low Mach numb&t ( In the planar jet, a fluid issues from a jet of widhinto
=0.3) to minimize compressibility effects. All the finite dif- a co-flowing stream with a lower velocity. The size of the
ference operations are conducted on fixed and equally sizetbmain in the streamwisg) and cross-streary) directions
grid points. The transfer of information from these points toare 0<x<14D and —3.5D<y=<3.5D. The ratio of the co-
the location of the Lagrangian particles is conducted via inflowing stream velocity to that of the jet at the inlet is kept
terpolation. A second-ordébilinear interpolation scheme is fixed at 0.5. A double-hyperbolic tangent profile is utilized to
used for this purpose. The results of previous work indicateassign the velocity distribution at the inlet plane. The forma-
no significant improvements with the use of higher ordertion of the large scale coherent structures are expedited by
interpolation schemés. imposing low amplitude perturbations at the inlet. In the fi-

The mean-field solver also determines the filtered velocnite difference simulations, the characteristic boundary con-
ity field. That is, there is a “redundancy” in the determina- dition procedure of Ref. 49 is used at the inlet, free-shear
tion of the first filtered moments as both the finite differenceboundary conditions are used at the free-streams and the
and the Monte Carlo procedures provides the solution of thipressure boundary condition of Ref. 50 is used at the outflow.
field. This redundancy is actually very useful in monitoring The temporal mixing layer consists of two parallel
the accuracy of the simulated results. Detailed discussionstreams traveling in opposite directions with the same
pertaining to this issue are provided in Refs. 8, 39-41.  spee?!>3A hyperbolic tangent profile is utilized to assign

To establish the consistency of the VFDF solver, anothethe velocity distribution at the initial time. The simulations
LES is also conducted in which the modeled transport equaare conducted for a cubic box=k=<L, —L/2<y=<L/2, 0
tions for the filtered velocity and the generalized SGS<z=<L, wherex, y, andz denote the streamwise, the cross-
stresses are solved strictly via the finite difference schemestream and the spanwise directions, respectively; and the
These simulations are referred to as LES-FD and are onliength, L is specified such thdt=2Ne\,, whereNp is the

A. Flows simulated
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desired number of successive vortex pairings apds the  stream directions, the free-slip boundary condition is satis-
wavelength of the most unstable mode corresponding to thied by the mirror-reflection of the particles leaving through

mean streamwise velocity profile imposed at the initialthese boundaries. In the planar jet, new particles are intro-
time. The flowfield is parameterized in a procedure someduced through the inlet boundary at a rate proportional to the
what similar to that by Vremast al”® The formation of the  |ocal flow velocity and with a velocity makeup dependent on

large-scale structures are expedited through eigenfunctiofe cross-stream direction only. When the particles leave the
based |n|t|6':1é256perturbat|orP§:_55 This  includes two- compytational domain at the outflow, they are no longer
dimensiondl”®**® and three-dimensiorf&l®’ perturbations cyed. The density of the Monte Carlo particles is deter-

W'tl? a r?r:\dcf)m phtgse tht'ft between t,he 3Dtmode§: This r‘:]'nined by the average number of particldg within the
SUlts In e formation of WO SUCCESSIVE VOTteX palfings antynsemple domain of SizAE X Ag(XAg). The effects of
strong three-dimensionality. .
. . . both of these parameters are assessed to ensure the consis-
The flow variables are normalized with respect to se-

lected reference quantities. In the jet flow, the jet exit veloc-tency and the statistical accuracy of “t_he VFDF S|mulz?}t|ons.
All results are analyzed both “instantaneously” and

ity, and the jet width are the reference scales. In the temporal "™ ) _

mixing layer, the reference length is the half initial vorticity Statstically.” In the former, the instantaneous contours

thickness,L, = 8,(t=0)/2 (8,=AU/|a(uy) /3| where  (snap-shotsand scatter plots of the variables of interest are
=T v v maxs

{u,), is the Reynolds averaged value of the filtered stream2nalyzed. In the latter, the "Reynolds-averaged” statistics
wise velocity andAU is the velocity difference across the constructed from the instantaneous data are considered. In

layen. The reference velocity i), =AU/2. the spatially developing flows this averaging procedure is
conducted via sampling in time. In the temporal mixing
B. Numerical specifications layer, the statistics are constructed by spatial averaging over

the x-z plane of statistical homogeneity. All Reynolds aver-

All finite difference simulations are conducted on
aged results are denoted by an overbar.

equally spaced grid points with grid spacingsx=Ay

=Az (for 3D)=A. The resolution for LES of the planar jet
consists of 20X 101 grid points. This allows simulations
with a Reynolds numbeRe=U,D/v=14,000. The simula- The objective of this section is to demonstrate the con-
tions of the temporal mixing layer are conducted on*1®3d  sistency of the VFDF formulation and the convergence of its
33® points for DNS and LES, respectively. This allows simu- Monte Carlo simulation procedure. For this purpose, the re-

C. Consistency and convergence assessments

lations withRe=U, L, /v=50. sults via VFDF and LES-FD are compared against each
To filter the DNS data, a top-hat functinof the form  other. Since the accuracy of the finite difference procedure is
below is used well-establishedat least for the first-order filtered quanti-
Np ties), such a comparative assessment provides a good means
Gx'—x)=]1 G(x/ —x)), of assessing the performance of the Monte Carlo solution of
i=1 the VFDF. To do so, the statistical results obtained from the
(35  Monte Carlo simulations of Eq31) are compared with the
Ai X! — x| < ﬁ finite difference solution of Eq425) and (26). Also, no at-
B(x/ —x)= L 2 tempt is made to determine the appropriate values of the
o , A model constants; the values suggested in the literature are
0 I—x[>% adopted® C,=2.1(C,=4.15) andC, =1.

. . . . In Fig. 1, the instantaneous contour plots of the vorticity
in Whlsféh Np denotes the number of dimensions, ad  are shown as determined ifg) VFDF2 and (b) LES-FD.
=2A.>" No attempt is made to investigate the sensitivity of This figure provides a simple visual demonstration of the
the results to the filter functiGfior the size of the filtet consistency of the VFDF2. Scatter plots(of, vs (v), are

For VFDF simulations of the temporal mixing layer, the poqented in Fig. 2. The correlation and regression coeffi-

Monte Carlo partlc_les are |n|t|a_lly distributed th_roughout the cients(denoted, respectively, hyandr on these figurésare
computational region. For the jet flow, the particles are sup-

olied in the inlet region— 1.7 <y<1.75. As the par- insensitive toAg . Figures 3 and 4 show the Reynolds aver-

ticles convect downstream, this zone distorts as it conformgIged values of the streamwise velocity and several .compo-
to the flow as determined by the hydrodynamic field. Thenents of the S_GS stre_ss tensor for several vgluet_sEofwnh
simulation results are monitored to ensure the particles fuII)NE:40 kept f|?<ed. It is observed that the first f||tered mo'-
encompass and extend well beyond regions of nonzero vofl€Nts as obtained by VFDF agree very well with those via

ticity with an approximately uniform particle number den- LES-FD even for largé¢ values. However, smalleXg val-
sity. All simulations are performed with a uniform U€sare required for convergence of the VFDF predicted SGS

“weight” 2 of the Monte Carlo particles. In the temporal Stresses to those by LES-FD. The relative difference between
mixing layer, due to flow periodicity in the streamwise andthe L, norms of all of the components of the SGS tensor as
spanwise directions, if the particle leaves the domain at oné function of Ag/A)? is presented in Fig. 5. Extrapolation
of these boundaries new particles are introduced at the othé® Ag=0 shows that the “error” goes to zero @s-—0.
boundary with the same compositional values. In the cross- The influence ofNg on the first two moments is shown
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y FIG. 1. Plot of the vorticity field con-
tours, () VFDF2, (b) LES-FD. Ag
=A, Ng=40.
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in Figs. 6 and 7. It is observed th&tz does not have a case is included to provide a point of reference for the other
significant influence on the first moments, but does slightlyclosures. The Smagorinsky modet&!

influence the second moments. In all the cases considered,

NE>_40 yields reliable predictions, consistent with previous 7 (y, up)— 2k =—21,S;

consistency and convergence assessments of the scalar
FDF®8 All the subsequent simulations are conducted with
Ag=A/2 andNg=40. _L [ o(upe

I 2 ( é’XJ X ' (36)

D. Comparative assessments of the VFDF

The objective of this section is to analyze some of the Vt:CvAES-
characteristics of the VFDF via comparative assessments
against DNS data. This assessment is done via &qttiori C,=v20.17~0.04,S= VS;; S andA is the characteristic
anda posteriorianalyses. In the former, the DNS results arelength of the filter. This model considers the anisotropic part
used to determine the range of the empirical constants af the SGS stress tensay; = 7 (U ,uj)—ékaij . The isotro-
pearing in the VFDF sub-closures. In the latter, the final repic components are absorbed in the pressure field. The dy-
sults as predicted by the VFDF are directly compared withnamic version of the Smagorinsky model provides a means
those obtained by DNS. The procedure is similar to that irof approximatingC, as suggested in Refs. 17-19. The pro-
Ref. 20 and considers the 3D temporal mixing layer. cedure for the implementation of this model in the 3D tem-
In addition to VFDF, three other LES are conducted withporal mixing layer LES is described by Vrem#&hthus it is
(1) no SGS model(2) the Smagorinski¥*®° SGS closure, not repeated herdSee Refs. 11, 23, 62, and 63 for recent
and (3) the dynamic Smagorinsk{*® model. In the case reviews on SGS closure strategy.
with no model, the contribution of the SGS is completely In addition to the resolved velocity field, the primary
ignored, i.e.,m (u;,u;) =0. In this case, the numerical errors integral statistical quantities considered for comparative as-
amount to an implied model. But as indicated in Ref. 20 thissessments are
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2020 -0410 0.00 0.10 0.20 FIG. 3. Reynolds averaged values of the filtered streamwise veldajty.

Cross-stream variations at=7, (b) streamwise variation at=0 (center-
LES-FD line). Ne=40.

FIG. 2. Scatter plots of the filtered velocity field as obtained via VFDF2 vs

LES-FD. (@), (u), ; (b), (v}, . Ag=A, Ng=40.
(@ (Wi ®). (o - Ae F are set equal to zer3:** The “resolved” components of the

Reynolds-averaged stress tensor are denote®;pyvhere
Rij= ((ui)L—(up ) ({up).—(uj)). The *“total” Reynolds
Ef:J Luy (uphdx, (37) stresses are denoted By, Whegr”-:(ui—ui)(uj—uj).
These are approximated by;~R;;+7(U;,0;).2%%"%® In
Ui, DNS, the total stresses are evaluated directly and the results
indicate thatR;;+ 7 (u;,u;) does indeed approximate;
with a maximum error of less than 10%.
AU [ Uiy Hu) Figure 8 shows the distribution of the particle number
Xy Xy + ax |’ density within the whole computational domain. Assuring an
(38)  approximately uniform distribution, the values of the mo-
ments within local ensembles are compared with those of
Bk:J min(0,p,) dx. filtered DNS data. These DNS data are transposed from the
original high resolution 198points to the low resolution of
E; is the kinetic energy of the resolved field, represents 33® points, and then are compared with LES results on these
the viscous molecular dissipation rate directly from the fil-coarse points.
tered field,P, is the production rate of the SGS kinetic en- ~ The DNS data are also used to makeriori estimates
ergy (or the rate of energy transfer from the resolved filteredof the model constants. The primary terms which require
motion to the SGS motion and B, is the total closure are the SGS dissipation and the velocity-pressure
backscatte?*~°® The resolved molecular dissipation rate is scrambling tensors. The model equatj&. (20)] involving
always positivgby definition, but the production rate of the C. is in a scalar form. For an estimate Gf (thusC,), we
SGS kinetic energy can be locally negative. This backscatte¢onsider the following norm of the corresponding closure
is not represented in the Smagorinsky model. The dynamibEd. (27)]
model is potenthlly capablle of. accoynpng for it, put at the H_Hij (e —§S5ij)H’“C1w||TL(Ui ,Uj)—§k5ij||, (39)
expense of causing numerical instabilities. In the implemen-
tation of the dynamic model used here, backscatter igvhere|W;;|=yW;;W;;. To estimate the coefficients, a linear
avoided by averaging the numerator and denominator of theegression is performed on all the data points at each com-
expression determining, (Refs. 19 and 20over the homo-  putational time step. The optimized constants as obtained in
geneous directions. If negative values are still present, thethis way are denoted b@s and E:l. This procedure is also

Pk:f pkdX, with pk:_TL(ui!uj)T!
J

E,,Zfs,,dx, with g,=v
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FIG. 4. Cross-stream variations of the Reynolds averaged values of some of o = .
the components of the SGS stress tensor=af with Ng=40. The LES-FD 50 A e
results are obtained withg=0.5A, Ng=40. S
0 o
0 1 2 ) 3
(Ag/A)

followed for the Reynolds averaged data, with the optimized
models obtained in this way denoted B; and C;. The FIG. 5. Percentage of the relative difference betweenLtheorms of the
temporal variations of these estimated values are shown igfresses as a function af:/A. (a) x=2.8, (b) x=7, (¢) x=11.2.
Fig. 9. The nonuniformity of the coefficients indicates the
“nonuniversality” of the models. This is expected as the flow ) )
evolves from an initially smooth laminar state to a Strongpredlcted results are too smooth and only contain the large
three-dimensional stat@t t~40) before the action of the scale structures. The vortical structures as depicted by the
small scales becomes significant. The closures as adopted &hgamic Smagorinsky and the VFDF are very similar and
not fully suitable for application in all of these flow regions. Predict the DNS results better than the other two models. The
Nevertheless, Fig. 9 indicates that the values for these coefesults obtained by VFDF1 and VFDF2 are virtually indis-
ficients as suggested in RAS, i.€,~4.15,C,~1 are rea- tmgwshgble from each other. This is expecte_d, due to the
sonable, at least within the turbulent regime. The influenceck of importance of molecular effects in this free shear
of these parameters are further investigatedavigosteriori flow.
analysis of the results as discussed below. The Reynolds averaged values of the streamwise veloc-
Figures 10 and 11 show the contours of the spanwise andy and the temporal variations of the momentum thickness
the streamwise components of the vorticity field, respec- 1 L2 _ _
tively, at imet=80. By this time, the flow has gone through ~ dn(t) 7 :f (1=(u))(1+(u),)dy, (40)
several pairings and exhibits strong 3D effects. This is evi- 2
dent by the formation of large scale spanwise rollers withare shown in Figs. 12 and 13, respectively. In Fig. 12 the
presence of counter-rotating streamwise vortex pairs in alReynolds averaged values of both filtered and unfiltered
the simulations. The results via the no-model indicate todNS data are considered and are shown to be essentially
many small-scale structures which clearly are not captureéquivalent. Therefore, the latter are not shown in subsequent
accurately on the coarse grid. The amount of SGS diffusioffigures. The dissipative nature of the Smagorinsky model at
with the Smagorinsky model is very significant at initial initial times resulting in a slow growth of the layer is shown.
times. Due to this dissipative characteristics of the model, th&everal values of the model parameteZg (C,) are consid-
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FIG. 6. Cross-stream variations of the Reynolds averaged values of the ) ) . )
filtered streamwise velocity at="7. The LES-FD results are obtained with ered in the VFDF simulations. It is observed that as the mag-

Ag=0.51, Ng=40. nitude ofC, decreases, the initial rate of the layer’s spread is
higher. With the exception of the case with =0.5 and the
Smagorinsky model, all the other VFDF cases, the dynamic
Smagorinsky and the no-model yield a similar rate of layer’s
growth at late times.
The temporal variations of the resolved kinetic energy

(&) 0.005 _— and all of the terms defined in EB8) are shown in Fig. 14.
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FIG. 7. Cross-stream variations of the Reynolds averaged values of some of

the components of the SGS stress tensot=a?. The LES-FD results are  FIG. 9. Time variation of the model coefficients as obtained feoriori
obtained withAg=0.5A, Ng=40. analysis of the DNS data.
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FIG. 10. Contour plots of the spanwise component of the vorticitg at
=0.78./L,, t=80. (a) Filtered DNS, (b) no model, (c), Smagorinsky
model, (d) dynamic Smagorinsky modelg) VFDF2, C,=2.1,C,=1, (f)
VFDF1,Cy=2.1,C,=1.

FIG. 11. Contour plots of the streamwise component of the vorticity vector
at x=0.28./L,, t=80. (a) Filtered DNS,(b) no model,(c) Smagorinsky
model, (d) dynamic Smagorinsky modele) VFDF2, Cy=2.1,C,=1, (f)
VFDF1, Cy=2.1,C,=1.

The overall features displayed in this figure are similar to
those reported by Vremaet al?° for the no model, the Sma-

gorinsky model and the dynamic Smagorinsky model. The%ions predict similar trends for the molecular dissipation. The

initial rate of decay of the resolved kinetic energy for the ) R .
Smagorinsky model is the highest. This is due to the excesr-nagthde of this dissipation as predicted by VFDF changes

sive production of the SGS kinetic energy by this model insligh.tly with the variation of the ”.‘Ode' parameter. The pro-
the transitional region, and explains the reason for the lack Oguctlon rate of the SGS. !<|net|.c energy depends more
small scales in the vortical structures as discussed before. thr;rongly on the model coefficients; @ decreases, the peak
all the other models the initial rate of decrease of the re-

model and is closer to that obtained by DNS.
With the exception of the no-model case, all the simula-

solved kinetic energy is small and increases as the flow de- 1.0 , , 5
velops. The trend portrayed by DNS results is best captured O Filtered DNS oo’
by the VFDF simulations. For the no model case the only o pritorec DNS

means of dissipation of the resolved kinetic energy is 0.5 [|o—0 Smagorinsky

through molecular action and numerical dissipation which M v A g

become significant at later stages due to presence of a large E —— VFDF2: C2.1, C.=t

amount of small scales. In this case, the amount of numerical & 0.0 }

dissipation is the highest. For all the other closures, the pro- |7 .

ductions rate of the SGS kinetic energy is larger than the v

molecular dissipation as the flow develops. The dynamic -0.5 e

Smagorinsky and the no-model simulations predict the same >

initial rate of decay for the resolved kinetic energy. This is

due to low initial values ofP, predicted by the dynamic -1.0 : ‘
Smagorinsky model. Aftet=40 the amount oP, as pre- -20 -10 0 10 20
dicted by the dynamic model is more than that of molecular 4

dissipation_by _the no-model. Thus th_e rate of decay of th_&IG. 12. Cross-stream variations of the Reynolds averaged values of the
resolved kinetic energy becomes higher for the dynamiatreamwise velocity at="70.
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FIG. 13. Temporal variations of the momentum thickness. VFDF2: C,=2.1,C =1
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magnitude ofP, is larger. The Smagorinsky model does not
adequately predid®,, and the dynamic model yields better —

predictions at long times. The overall trends are best pre-

dicted by VFDF. The same is true in capturing the backscateontrolled by the model parameters. In this regard it is im-
ter phenomenon. By design, the backscatter is identicallportant to note that there are no numerical instability prob-
zero in the Smagorinsky and the dynamic Smagorinskyems in the VFDF solver for negativB, values. However,
model. But VFDF is capable of capturing it, and its extent isthe amount of predicted backscatter is less than that of

FIG. 15. Cross-stream variations of some of the componems,_»joﬁtt
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FIG. 16. Cross-stream variations of some of the components;0dtt  FIG. 17. Cross-stream variations of some of the component;;oft t
=80. =60.

DNS and its relative magnitude is less than thos®pfind  solved scale decreases too much in favor of the increase of
E,. the SGS stresgas shown in Figs. 15 and L6The cross-
Several components of the planar averaged values of th&ream variations of the total Reynolds stregg are pre-
SGS anisotropy tensog;; = 7 (U ,uj)—§k5ij are presented sented in Fig. 19. The peak values by the no-model simula-
in Figs. 15 and 16. Both the Smagorinsky and the dynamic¢ions are again the highest. The dynamic model and VFDF
model under-predict the components of this stress. Theerform similarly and capture the DNS trends equally well.
VFDF predictions are more satisfactory. In this regard, the
VFDF is expected to be more effective than the other clo- , . , . I
sures for LES of reacting flows since the extent of SGS mix-E' Comparison with previous investigations
ing is influenced by SGS convecti6h!’®“Optimum” values All of the results obtained here by DNS, and LES via the
for C, andC, cannot be suggested to predict all of the com-Smagorinsky and the dynamic Smagorinsky models agree
ponents of this tensor at all times, but it is obvious that therevery well with those of Vremaet al?° The slight differences
is too much SGS energy witG,=0.5. are due to the nonidentical flow initializations, and the dif-
Several components of the resolved stress teRgoare ~ ferent computational methodologies employed in the two
shown in Figs. 17 and 18. As expected, the performance gfimulations. To compare with results of other investigations,
the Smagorinsky model is not very good as it does not presimulations are conducted of another temporally developing
dict the spread and the peak value of the resolved Reynold®ixing layer with Re=500 in a larger computational do-
stresses. None of the other models show a distinct superiorityain, L, = 120. An initial forcing of the form.Ae™ /2 is
in predicting the DNS results. The no-model and the dy-used, whereA is a uniformly distributed random number
namic Smagorinsky model predict large peak values at thavith an amplitude of 0.05. Rogers and MdSgrerform DNS
middle of the layer. The VFDF predicts both the spread andf a highRenumber flow on 51 210X 192 spectral points.
the peak values reasonably well. The results for sr@all The results of these simulations are in excellent agreements
values are not shown since the amount of energy in the rewith laboratory data of Bell and Mehfa.Here, LES is con
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FIG. 19. Cross-stream variations Efz (a) t=60, (b) t=80.

FIG. 18. Cross-stream variations of some of the componenﬁ_,jo&tt
=80. turbulent reacting flow3°~*In all previous contributions,
the LES/FDF of only the scalar quantities are considered.
ducted of this flow via the dynamic Smagorinsky model.  The objective of the present work is to develop the FDF
The profiles of the mean streamwise velocity and severahethodology for LES of the velocity field. For this purpose,

components of the resolved stresses=apS0 are presented 5 methodology termed the velocity filtered density function
in Figs. 20 and 21, respectively. In these figures,

=y/8,(t) and the symbols denote the experimental et
several streamwise locations. The good agreement with these 0.5
data also indicates good agreement with DNS results of Rog-
ers and Mosef?

0.3 1

F. Computational requirements

0.1 ¢
The total computational times associated with simula-

tions of the 3D temporal mixing layer are shown in Table II.
Expectedly, the overhead associated with the VFDF simula-
tion is extensive as compared to the other models; neverthe-
less this requirement is significantly less that of DNS. This -03 1}
overhead was tolerated in present simulations, but can be
reduced with utilization of an optimum parallel simulation
procedure. This has been discussed for use in’PBfd is
recommended for future VFDF simulations.

<u>_ /AU

VIl. SUMMARY AND CONCLUDING REMARKS FIG. 20. Cross-stream variation of the Reynolds averaged values of the

. . . streamwise velocity at=250. Solid line denotes model predictions via the
The filtered density functiofFDF) methodology has dynamic Smagorinsky model. Symbols denote experimental data of Bell and

proven very effective for large eddy simulatidhES) of  Mehta(Ref. 72.
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(VFDF) is developed. The VFDF is basically the probability Monte Carlo solution is demonstrated by good agreements of
function (PDPF of the subgrid scaléSGS velocity vector. the first two SGS moments with those obtained by LES-FD.
The exact transport equation governing the evolution of the  The VFDF predictions are compared with those with
VFDF is derived. It is shown that the effects of SGS convecdES results with no SGS model, with the Smagorin§ky
tion in this equation appears in a closed form. The unclosegGS closure, and with the dynamic Smagorirték{’ model.
terms in this transport equation are modeled via two formuA|l of these results are also compared with direct numerical
lations: VFDF1 and VFDF2. The primary difference betweensimulation(DNS) results of a three-dimensional, temporally
the two models is the inclusion of the molecular diffusion in deve|0ping mixing |aye|' in a context similar to that con-
the Spatial transport of the VFDF in the first formulation. ThEducted by Vremarmet a|_20 This Comparison provides a means
closure strategy in the formulation similar to that in PDF of examining some of the trends and overall characteristics
methods in Reynolds —averaged —simulatiofRAS) a5 predicted by LES. It is shown that the VFDF performs
progedureé. In this way, the VFDF formulation is at least g in predicting some of the phenomena pertaining to the
equivalent to a second-order moment SGS closure. SGS transport. The magnitude of the SGS Reynolds stresses
The modeled VFDF transport equations are solved Nuzg predicted by VFDF is larger than those predicted by the
merically via a Lagrangian Monte Carlo scheme in which the 1o sGS models and much closer to the filtered DNS re-

solutions of the equivalent stochastic differential equationssmts_ The temporal evolution of the production rate of the
(SDES are obtained. Two Monte Carlo procedures are CONg 55 kinetic energy is predicted well by VFDF as compared

sidered. The schemes preserve the-Gikhman nature of : ; .
. . . with those via the other closures. The VFDF is also capable
the SDEs and provide a reliable solution for the VFDF. The b

. ) f accounting the SGS backscatter without any numerical
consistency of the VFDF formulation and the convergence OP g y

) . . . instability problems, although the level predicted is substan-
its Monte Carlo solutions are assessed. This is done via com)- y P 9 . P
tially less than that observed in DNS.

parisons between the results obtained by the Monte Carlo The results o1 briori assessment against DNS data in-
procedure and the finite difference solution of the transport,. P gair

equations of the first two filtered moments of VFDIEES- _dlcates that the values of the model coefficients as employed
FD). With inclusion of the third moments from the VFDF in VFDF (Co and C,) are of the range suggested in the

into the LES-FD, the consistency and convergence of th(gquivalent models previously used in RAS. The resulta of
posteriori assessments via comparison with DNS data does

not give any compelling reasons to use values other than
those suggested in RA%,=2.1, C,=1. However, small
values ofC, are not acceptable as they would yield too much
of SGS energy relative to that within the resolved scales.

TABLE Il. Computer requirements for the 3D temporal mixing layer. One
unit corresponds to 1657.2 seconds of CPU time on the SGI origin 2000.

Resolution ~ Ng  Normalized CPU time Most of the overall flow features, including the mean
DNS 193193X 193 - -- 178 velocity field and the resolved and total Reynolds stresses as
VFDF1 33x33%x33 40 33.6 predicted by VFDF are similar to those obtained via the dy-
VFDF2 33x33x33 40 30 namic Smagorinsky model. This is interesting in view of the
Dynamic Smagorinsky  3833x<33 - 219 fact that the model coefficients in VFDF are kept fixed. It
Smagorinsky 3%33%x33 1.05 . . .. -
No model 3%33x33 .- 1 may be possible to improve the predictive capabilities of the

VFDF by two ways:(1) Development of a dynamic proce-
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