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A methodology termed the ‘‘velocity filtered density function’’~VFDF! is developed and
implemented for large eddy simulation~LES! of turbulent flows. In this methodology, the effects of
the unresolved subgrid scales~SGS! are taken into account by considering the joint probability
density function of all of the components of the velocity vector. An exact transport equation is
derived for the VFDF in which the effects of the SGS convection appear in closed form. The
unclosed terms in this transport equation are modeled. A system of stochastic differential equations
~SDEs! which yields statistically equivalent results to the modeled VFDF transport equation is
constructed. These SDEs are solved numerically by a Lagrangian Monte Carlo procedure in which
the Itô–Gikhman character of the SDEs is preserved. The consistency of the proposed SDEs and the
convergence of the Monte Carlo solution are assessed by comparison with results obtained by an
Eulerian LES procedure in which the corresponding transport equations for the first two SGS
moments are solved. The VFDF results are compared with those obtained via several existing SGS
closures. These results are also analyzed viaa priori and a posteriori comparisons with results
obtained by direct numerical simulation of an incompressible, three-dimensional, temporally
developing mixing layer. ©2002 American Institute of Physics.@DOI: 10.1063/1.1436496#
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I. INTRODUCTION

The probability density function~PDF! approach has
proven useful for large eddy simulation~LES! of turbulent
reacting flows.1–15 The formal means of conducting suc
LES is by consideration of the ‘‘filtered density function
~FDF! which is essentially the filtered fine-grained PDF
the transport quantities. In all previous contributions,
FDF of the ‘‘scalar’’ quantities is considered: Gao a
O’Brien,3 Colucciet al.,6 Réveillon and Vervisch,7 and Zhou
and Pereira12 developed a transport equation for the FDF
constant density turbulent reacting flows. Jaberiet al.8 ex-
tended the methodology for LES of variable density flows
consideration of the ‘‘filtered mass density function
~FMDF!, which is essentially the mass weighted FDF. T
fundamental property of the PDF methods is exhibited by
closed form nature of the chemical source term appearin
the transport equation governing the FDF~FMDF!. This
property is very important as evidenced in several appl
tions of FDF for LES of a variety of turbulent reactin
flows.6–10,12However, since the FDF of only the scalar qua
tities are considered, all of the ‘‘hydrodynamic’’ effects a
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~716! 645-2593 ~ext. 2320!; Fax: ~716! 645-3875. Electronic mail:
givi@eng.buffalo.edu
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modeled. In all previous LES/FDF simulations, these effe
have been modeled via ‘‘non-FDF’’ methods.

The objective of the present work is to extend the FD
methodology to also include the subgrid scale~SGS! velocity
vector. This is facilitated by consideration of the joint ‘‘ve
locity filtered density function’’~VFDF!. With the definition
of the VFDF, the mathematical framework for its impleme
tation in LES is established. A transport equation is dev
oped for the VFDF in which the effects of SGS convecti
are shown to appear in closed form. The unclosed term
this equation are modeled in a fashion similar to that in
Reynolds-averaged simulation~RAS! procedures. A La-
grangian Monte Carlo procedure is developed and imp
mented for numerical simulation of the modeled VFD
transport equation. The consistency of this procedure is
sessed by comparing the first two moments of the VF
with those obtained by the Eulerian finite difference so
tions of the same moments transport equations. The resul
the VFDF simulations are compared with those predicted
the Smagorinsky16 closure, and the ‘‘dynamic’’ Smagorinsk
model.17–19The VFDF results are also assessed via comp
sons with direct numerical simulation~DNS! data of a three-
dimensional~3D! temporally developing mixing layer in a
context similar to that of Vremanet al.20

This work deals with LES of the velocity field in a con
stant density, nonreacting flow. Consideration of the jo

e:
6 © 2002 American Institute of Physics
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velocity-scalar FDF~or FMDF! in variable density, chemi-
cally reacting flows will be the subject of future work. It is i
this context that the approach has its principal advanta
Convective transport~of momentum and species! is in closed
form.

II. FORMULATION

In the mathematical description of incompressible~unit
density! turbulent flows, the primary transport variables a
the velocity vector,ui(x,t) ( i 51,2,3), and the pressure
p(x,t), field. The equations which govern transport of the
variables in space (xi) and time~t! are

]ui

]xi
50,

]uj

]t
1

]uiuj

]xi
52

]p

]xj
1

]s i j

]xi
. ~1!

For a Newtonian fluid, the viscous stress tensors i j is repre-
sented by

s i j 5nS ]ui

]xj
1

]uj

]xi
D , ~2!

wheren is the kinematic viscosity and is assumed consta
Large eddy simulation involves the spatial filterin

operation21–23

^ f ~x,t !&L5E
2`

1`

f ~x8,t !G~x8,x!dx8, ~3!

whereG denotes the filter function,̂f (x,t)&L represents the
filtered value of the transport variablef (x,t), and f 85 f
2^ f &L denotes the fluctuations off from the filtered value.
We consider spatially and temporally invariant and localiz
filter functions, thus G(x8,x)[G(x82x) with the
properties,21 G(x)5G(2x), and*2`

` G(x)dx51. Moreover,
we only consider ‘‘positive’’ filter functions24 for which all
the moments*2`

` xmG(x)dx exist form>0. The application
of the filtering operation to the instantaneous transport eq
tions yields

]^ui&L

]xi
50,

~4!
]^uj&L

]t
1

]^ui&L^uj&L

]xi
52

]^p&L

]xj
1

]^s i j &L

]xi

2
]tL~ui ,uj !

]xi
,

where tL(ui ,uj )5^uiuj&L2^ui&L^uj&L denotes the ‘‘gener-

alized SGS stresses.’’18 These stresses satisfy18

]

]t
@tL~ui ,uj !#1

]

]xk
@^uk&LtL~ui ,uj !#

52
]Ti jk

]xk
2P i j 1Pi j 2« i j . ~5!

In this equation,Ti jk5tL(ui ,uj ,uk)2n(]/]xk)@tL(ui ,uj )#
is the SGS turbulent transport tensor whe
tL(ui ,uj ,uk)5^uiujuk&L2^ui&LtL(uj ,uk)2^uj&LtL(ui ,uk)

2^uk&LtL(ui ,uj )2^ui&L^uj&L^uk&L .18 The other terms are
the SGS pressure-velocity scrambling tensor,P i j
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5tL(ui ,]p/]xj)1tL(uj ,]p/]xi), the SGS production rate ten
sor, Pi j 52tL(ui ,uk)]^uj&L /]xk2tL(uj ,uk)]^ui&L /]xk ,
and the SGS dissipation rate tensor,« i j

52vtL(]ui /]xk ,]uj /]xk).

III. VELOCITY FILTERED DENSITY FUNCTION „VFDF…

A. Definitions

The ‘‘velocity filtered density function’’~VFDF!, de-
noted byPL , is formally defined as

PL~v;x,t ![E
2`

1`

%@v,u~x8,t !#G~x82x!dx8,

~6!

%@v,u~x,t !#5d@v2u~x,t !#[)
i 51

3

d@v i2ui~x,t !#,

whered denotes the delta function andv is the velocity state
vector. The term %@v,u(x,t)# is the ‘‘fine-grained’’
density,11,25,26and Eq.~6! defines the VFDF as the spatiall
filtered value of the fine-grained density. With the conditi
of a positive filter kernel,24 PL has all the properties of the
PDF.26 For further developments, it is useful to define t
‘‘conditional filtered value’’ of the variableQ(x,t) by

^Q~x,t !uu~x,t !5v&L

[^Quv&L5
*2`

1`Q~x8,t !%@v,u~x8,t !#G~x82x!dx8

PL~v;x,t !
, ~7!

where^aub&L denotes the filtered value ofa conditioned on
b. Equation~7! implies

~ i! for Q~x,t !5c, ^Q~x,t !uv&L5c,

~ ii ! for Q~x,t ![Q̂~u~x,t !!, ^Q~x,t !uv&L5Q̂~v !,

~ iii ! Integral property:

^Q~x,t !&L5E
2`

1`

^Q~x,t !uv&LPL~v;x,t !dv, ~8!

where c is a constant, andQ(x,t)[Q̂(u(x,t)) denotes the
case where the variableQ is completely described by th
variable u(x,t). From these properties it follows that th
filtered value of any function of the velocity variable is o
tained by integration over the velocity space

^Q~x,t !&L5E
-`

1`

Q̂~v !PL~v;x,t !dv. ~9!

B. VFDF transport equation

The exact transport equation for the VFDF is derived
this section. Two forms of this equation are considered si
lar to those previously developed in PDF methods.27–31 The
starting point is to consider the time-derivative of Eq.~6!
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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]PL~v;x,t !

]t
52E

2`

` ]ui~x8,t !

]t

]%@v,u~x8,t !#

]v i

3G~x82x!dx8 . ~10!

This combined with Eq.~7! yields

]PL~v;x,t !

]t
52

]

]v i
F K ]ui

]t Uv L
L

PL~v;x,t !G . ~11!

Substituting Eq.~1! into Eq. ~11! yields

]PL~v;x,t !

]t
52

]

]v i
H F2 K ]uiuk

]xk
Uv L

L

2 K ]p

]xi
Uv L

L

1 K ]s ik

]xk
Uv L

L
GPL~v;x,t !J . ~12!

With the relation

]

]v i
F K ]uiuk

]xk
Uv L

L

PL~v;x,t !G52vk

]PL~v;x,t !

]xk
, ~13!

and decompositions

vkPL5^uk&LPL1@vk2^uk&L#PL ,

K ]p

]xi
Uv L

L

PL5
]^p&L

]xi
PL1F K ]p

]xi
Uv L

L

2
]^p&L

]xi
GPL ,

K ]s ik

]xk
Uv L

L

PL5
]^s ik&L

]xk
PL1F K ]s ik

]xk
Uv L

L

2
]^s ik&L

]xk
GPL , ~14!

the VFDF transport equation becomes

DPL

Dt
52

]

]xk
F ~vk2^uk&L!PLG1

]^p&L

]xi

]PL

]v i

2
]^s ik&L

]xk

]PL

]v i
1

]

]v i
F S K ]p

]xi
Uv L

L

2
]^p&L

]xi
D PLG

2
]

]v i
F S K ]s ik

]xk
Uv L

L

2
]^s ik&L

]xk
D PLG , ~15!

where D/Dt5]/]t1^uk&L(]/]xk) denotes the ‘‘filtered’’
material derivative.

Equation ~15! is an exact transport equation for th
VFDF. The first term on the right hand side represents
SGS convection of the VFDF in physical space and is clos
The second and third terms~which are also in closed form!
represent the convection in velocity space due to the reso
pressure gradient and molecular diffusion, respectively.
last two terms are unclosed and denote convective effec
the velocity space due to SGS pressure gradient and
diffusion.
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Alternatively, the conditional diffusion term in Eq.~15!
can be represented as

2
]

]v i
F K ]s ik

]xk
Uv L

L

PL~v;x,t !G
5n

]2PL~v;x,t !

]xk]xk
2

]2

]v i]v j
F K n

]ui

]xk

]uj

]xk
Uv L

L

PL~v;x,t !G ,

~16!

in which the second term on the right-hand side~rhs! in-
volves the conditional expected dissipation. With this, t
alternate form of the VFDF transport equation is

DPL

Dt
52

]

]xk
@~vk2^uk&L!PL#1

]^p&L

]xi

]PL

]v i
1n

]2PL

]xk]xk

1
]

]v i
F S K ]p

]xi
Uv L

L

2
]^p&L

]xi
D PLG

2
]2

]v i]v j
F K n

]ui

]xk

]uj

]xk
UvL

L

PLG . ~17!

Equation ~17! is another exact transport equation for t
VFDF. The first term on the right-hand side represents
SGS convection of the VFDF in physical space and is clos
The second term corresponds to the convection in the ve
ity space due to the resolved pressure gradient. The t
term represents molecular diffusion of the VFDF in physic
space. The closure problem is associated with the last
terms.

C. Modeled VFDF transport equations

The generalized Langevin model~GLM!27,32 is em-
ployed for closure of the VFDF transport equation. Here
introduce two modeled VFDF equations, which are deno
by ‘‘VFDF1’’ and ‘‘VFDF2.’’ These are presented in orde
To close Eq.~17!, VFDF1 is

]

]v i
F S K ]p

]xi
Uv L

L

2
]^p&L

]xi
D PLG

2
]2

]v i]v j
F K n

]ui

]xk

]uj

]xk
Uv L

L

PLG
'2

]

]v i
@Gi j ~v j2^uj&L!PL#1

1

2
C0«

]2PL

]v i]v i

1n
]^ui&L

]xk

]^uj&L

]xk

]2PL

]v i]v j
12n

]^ui&L

]xk

]2PL

]xk]v i
. ~18!

To close Eq.~15!, VFDF2 is

]

]v i
F S K ]p

]xi
Uv L

L

2
]^p&L

]xi
2 K ]s ik

]xk
Uv L

L

1
]^s ik&L

]xk
D PLG

'2
]

]v i
@Gi j ~v j2^uj&L!PL#1

1

2
C0«

]2PL

]v i]v i
. ~19!
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Note that these models~i.e., the first two terms on the right
hand sides of Eqs.~18! and ~19! are the same, but that the
model slightly different quantities. With this closure, the tw
terms inGi j and« jointly represent the SGS pressure-stra
and SGS dissipation. These are modeled as11,26

Gi j 52vS 1

2
1

3

4
C0D d i j , «5C«k3/2/DL , v5«/k,

~20!

wherev is the SGS mixing frequency,DL is the filter width,
k5 1

2tL(ui ,ui) is the SGS kinetic energy, and«5 1
2« i i is the

SGS dissipation rate.
With the GLM, the two forms of the VFDF transpo

equation are

DPL

Dt
52

]

]xk
@~vk2^uk&L!PL#1

]^p&L

]xi

]PL

]v i
1n

]2PL

]xk]xk

1n
]^ui&L

]xk

]^uj&L

]xk

]2PL

]v i]v j
12n

]^ui&L

]xk

]2PL

]xk]v i

2
]

]v i
@Gi j ~v j2^uj&L!PL#1

1

2
C0«

]2PL

]v i]v i
, ~21!

for VFDF1, and

DPL

Dt
52

]

]xk
@~vk2^uk&L!PL#1

]^p&L

]xi

]PL

]v i

2
]^s ik&L

]xk

]PL

]v i
2

]

]v i
@Gi j ~v j2^uj&L!PL#

1
1

2
C0«

]2PL

]v i]v i
~22!

for VFDF2. Hereinafter, Eqs.~21! and~22! are referred to as
‘‘VFDF1’’ and ‘‘VFDF2,’’ respectively. The difference be-
tween these two equations is in the different treatment of
closed viscous terms.

D. Transport equations for moments

The zeroth, first, and second moment equations co
sponding to these two formulations are

for VFDF1:

]^ui&L

]xi
50,

]^uj&L

]t
1

]^ui&L^uj&L

]xi

52
]^p&L

]xj
1n

]2^uj&L

]xi]xi
2

]tL~ui ,uj !

]xi
, ~23!

]

]t
@tL~ui ,uj !#1

]

]xk
@^uk&LtL~ui ,uj !#

52
]

]xk
FtL~ui ,uj ,uk!2n

]

]xk
@tL~ui ,uj !#G

1GiktL~uj ,uk!1GjktL~ui ,uk!2tL~ui ,uk!
]^uj&L

]xk

2tL~uj ,uk!
]^ui&L

]xk
1C0«d i j , ~24!
Downloaded 22 Sep 2004 to 140.121.120.39. Redistribution subject to AI
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for VFDF2:

]^ui&L

]xi
50,

]^uj&L

]t
1

]^ui&L^uj&L

]xi

52
]^p&L

]xj
1n

]2^uj&L

]xi]xi
2

]tL~ui ,uj !

]xi
, ~25!

]

]t
@tL~ui ,uj !#1

]

]xk
@^uk&LtL~ui ,uj !#

52
]

]xk
@tL~ui ,uj ,uk!#1GiktL~uj ,uk!1GjktL~ui ,uk!

2tL~ui ,uk!
]^uj&L

]xk
2tL~uj ,uk!

]^ui&L

]xk
1C0«d i j .

~26!

It may be seen that the zeroth and first moment equations
identical ~and exact!; whereas the second central mome
equations differ by the additional viscous term in VFDF
@Eq. ~24!#. A comparison of these modeled equations w
Eq. ~5! shows that the GLM model implies

2P i j 2~« i j 2
2
3«d i j !52C1v@tL~ui ,uj !2 2

3kd i j #,

C1511 3
2C0 . ~27!

This is the same as the Rotta33 model as shown by Pope.34

There are two model constants in the VFDF equation.
RAS, typically34,35 C«'1, and C0'2.1 (C154.15). As
shown in Refs. 27, 34 boundedness of the GLM coefficie
C0.0 guarantees that the SGS stress is realizable.

IV. EQUIVALENT STOCHASTIC SYSTEMS

The solution of the VFDF transport equation provides
the statistical information pertaining to the velocity vecto
The most convenient means of solving this equation is
the Lagrangian Monte Carlo scheme. The basis of t
scheme relies upon the principle of equivalent systems.26,32

Two systems with different instantaneous behaviors m
have identical statistics and satisfy the same PDF trans
equation. In this context, the general diffusion process
considered via the following system of stochastic differen
equations~SDEs!:26,31,36,37

dX~ t !5Di~X~ t !,U~ t !;t !dt1B~X~ t !,U~ t !;t !dWi
x~ t !,

dUi~ t !5Mi~X~ t !,U~ t !;t !dt1E~X~ t !,U~ t !;t !dWi
v~ t !

1Fi j ~X~ t !,U~ t !;t !dWj
x~ t !, ~28!

whereXi andUi are probabilistic representations ofx andu,
respectively. The coefficientsDi and Mi are the ‘‘drift’’ in
the phase space of position and velocity, respectively.
termsB and E are the ‘‘diffusion’’ coefficients for physical
and velocity spaces, respectively; andWi

x and Wi
v denote

independent Wiener–Le´vy processes.38 The tensorFi j repre-
sents the dependency between the velocity and phys
spaces. This term is needed to satisfy the Itoˆ condition for
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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BÞ0. A comparison of the Fokker–Planck equation of E
~28! with the modeled VFDF1 transport equation, Eq.~21!
yields

Mi[2
]^p&L

]xi
12n

]2^ui&L

]xk]xk
1Gi j ~Uj2^uj&L!, Di[Ui ,

~29!

B[A2v, E[AC0«, Fi j [A2n
]^ui&L

]xj
.

Therefore, the proper SDEs which represent VFDF1 in
Lagrangian sense are

dXi~ t !5Ui~ t !dt1A2ndWi
x~ t !,

dUi~ t !5F2
]^p&L

]xi
12n

]2^ui&L

]xk]xk
1Gi j ~Uj~ t !2^uj&L!Gdt

1AC0«dWi
v~ t !1A2n

]^ui&L

]xj
dWj

x~ t !. ~30!

This stochastic system is the same as that developed
Dreeben and Pope29–31 for RAS.

For VFDF2, due to the absence of diffusion in physic
space we must haveB50. Therefore, the correspondin
SDEs are

dXi~ t !5Ui~ t !dt ,

dUi~ t !5F2
]^p&L

]xi
1

]^s ik&L

]xk
1Gi j ~Uj~ t !2^uj&L!Gdt

1AC0«dWi
v~ t !. ~31!

This system is the same as that suggested by Pope26 and
Haworth and Pope27 for RAS.

The primary difference between the two formulatio
VFDF1 and VFDF2 is due to molecular effects in the spa
diffusion of the VFDF. This is explicitly included in the
VFDF1 formulation and is also present in the correspond
second moment equation. This difference is expected to
important in flows where viscous effects are important; e
flow near solid boundaries.29–31 Both of these formulation
are considered in our numerical simulations as discussed
low.

V. NUMERICAL SOLUTION PROCEDURE

Numerical solution of the modeled VFDF transpo
equation is obtained by a Lagrangian Monte Carlo pro
dure. The basis of this procedure is the same as tha
RAS39–41 and in previous LES/FDF.6,8 But there are some
subtle differences which are explained here. In the Lagra
ian description, the VFDF is represented by an ensembl
N statistically identical Monte Carlo particles. Each of the
particles carries information pertaining to its veloci
U(n)(t) and positionX(n)(t), n51,2,...N. This information is
updated via temporal integration of Eq.~28!. The simplest
means of performing this integration is via the Eule
Maruyamma approximation42
Downloaded 22 Sep 2004 to 140.121.120.39. Redistribution subject to AI
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Xi
n~ tk11!5Xi

n~ tk!1Di
n~ tk!Dt1Bn~ tk!~Dt !1/2z i

n~ tk!,

Ui
n~ tk11!5Ui

n~ tk!1Mi
n~ tk!Dt1En~ tk!~Dt !1/2j i

n~ tk!

1Fi j
n ~ tk!~Dt !1/2z j

n~ tk!, ~32!

where Di
n(tk)5Di(X

(n)(tk),U
(n)(tk);t), B(n)(tk)

5B(X(n)(tk),U
(n)(tk);t),... andj i

n(tk), z j
n(tk) are indepen-

dent standardized Gaussian random variables. This form
tion preserves the Markovian character of the diffusi
processes43,44 and facilitates affordable computation
Higher-order numerical schemes for solving Eq.~28! are
available,42 but one must be cautious in using them for LES6

Since the diffusion term in Eq.~28! strongly depends on the
stochastic processes, the numerical scheme must be co
tent with Itô–Gikhman45,46 calculus. Equation~32! exhibits
this property.

The statistics are evaluated by consideration of the
semble of particles in a ‘‘finite volume’’ centered at a spat
location. This ensemble provides ‘‘one-time’’ statistics. Th
finite volume is characterized by a cubic box of lengthDE .
This is necessary as, with probability one, no particle w
coincide with the point as considered.32 Here, a cubic box of
size DE is used to construct the ensemble mean, varian
and covariances of the velocity vector. These values are u
in the finite difference LES solver of Eq.~4! as described
below.

The SGS dissipation rate and the SGS mixing freque
as required in the solution of the VFDF are evaluated on
finite difference grid points and interpolated to the particl
location. Ideally, for reliable Eulerian statistics and minimu
numerical dispersion, it is desired to have the size of
sample domain infinitesimally small~i.e., DE→0! and the
number of particles within this domain infinitely large. Th
is

PL~v;x,t ! ←——
NE→`
DE→0

PNE
~v;x,t ![

1

NE
(

nPDE

d~v2u~n!!,

~33!

wherePNE
is the Eulerian PDF constructed from the partic

ensemble,nPDE denotes the particles contained in an e
semble box of lengthDE centered atx; and NE is the total
number of particles within the box. With a finite number
particles, obviously a largerDE is needed. This compromis
between the statistical accuracy and dispersive accuracy
plies that the optimum magnitude ofDE cannot, in general,
be specifieda priori.11,26This does not diminish the capabi
ity of the procedure, but exemplifies the importance of t
parameters governing the statistics.

To provide an estimate of the properDE size, a ‘‘point
estimator’’ procedure is considered. With this procedure,
mean values~the first moments of the VFDF! are evaluated
by ensemble averaging, and spatial variations of these m
values within the box are ignored. With the discrete rep
sentation@Eq. ~32!#, the first two moments in this procedur
are evaluated via
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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TABLE I. Recapitulation of the VFDF solution procedures.

Finite
difference
variables

Particle
solver

variables

Particle statistics
used by the finite
difference solver

Finite difference
variables used by

particle solver
Redundant
quantities

VFDF 1 ^ui&L Xi tL(ui ,uj )
^ui&L ,

]^p&L

]xi

^ui&L

^p&L Ui ]^ui&L

]xk
,
]2^ui&L

]xk]xk

VFDF 2 ^ui&L Xi tL(ui ,uj )
^ui&L ,

]^p&L

]xi

^ui&L

^p&L Ui ]2^ui&L

]xk]xk

LES-FD ^ui&L ,^p&L Xi tL(ui ,uj ,uk)
^ui&L ,

]^p&L

]xi

^ui&L

tL(ui ,uj ) Ui ]2^ui&L

]xk]xk
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1
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(
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Ui
~n![^Ui&E ,

tL~ui ,uj ! ←——
NE→`
DE→0

1

NE21 (
nPDE

~Ui
~n!2^Ui&E!~U j

~n!2^U j&E!.

~34!

The point estimator is obviously subject to both statisti
errors and dispersive errors forDEÞ0.

To determine the pressure field, the ‘‘mean-field solve
is based on the ‘‘compact parameter’’ finite differen
scheme of Carpenter.47 This is a variant of the McCormack48

scheme in which fourth-order compact differences are u
to approximate the spatial derivatives, and a second-o
symmetric predictor-corrector sequence is employed for t
discretization. The numerical algorithm is a hyperbo
solver which considers a fully compressible flow. Here,
simulations are conducted with a low Mach number (M
<0.3) to minimize compressibility effects. All the finite dif
ference operations are conducted on fixed and equally s
grid points. The transfer of information from these points
the location of the Lagrangian particles is conducted via
terpolation. A second-order~bilinear! interpolation scheme is
used for this purpose. The results of previous work indic
no significant improvements with the use of higher ord
interpolation schemes.6

The mean-field solver also determines the filtered vel
ity field. That is, there is a ‘‘redundancy’’ in the determin
tion of the first filtered moments as both the finite differen
and the Monte Carlo procedures provides the solution of
field. This redundancy is actually very useful in monitorin
the accuracy of the simulated results. Detailed discuss
pertaining to this issue are provided in Refs. 8, 39–41.

To establish the consistency of the VFDF solver, anot
LES is also conducted in which the modeled transport eq
tions for the filtered velocity and the generalized SG
stresses are solved strictly via the finite difference sche
These simulations are referred to as LES-FD and are o
 2004 to 140.121.120.39. Redistribution subject to AI
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applied for the case corresponding to VFDF2. That is, E
~25! and ~26! are considered. Since the SGS transport ter
tL(ui ,uj ,uk) are unclosed in Eq.~26!, the values corre-
sponding to these terms are taken from the Monte Ca
solver and substituted in the SGS stress transport equat
The attributes of all of the scheme are summarized in Tab
with further discussions in Refs. 6, 39–41.

VI. RESULTS

A. Flows simulated

Simulations are conducted of a two-dimensional~2D!
planar jet, and a 3D temporally developing mixing layer. T
jet flow simulations are conducted primarily for establishi
the consistency of the Lagrangian Monte Carlo solver. F
this purpose, 2D simulations are sufficient. To analyze
overall performance of the VFDF and to demonstrate its
capabilities and drawbacks, 3D simulations are required.

In the planar jet, a fluid issues from a jet of widthD into
a co-flowing stream with a lower velocity. The size of th
domain in the streamwise~x! and cross-stream~y! directions
are 0<x<14D and23.5D<y<3.5D. The ratio of the co-
flowing stream velocity to that of the jet at the inlet is ke
fixed at 0.5. A double-hyperbolic tangent profile is utilized
assign the velocity distribution at the inlet plane. The form
tion of the large scale coherent structures are expedited
imposing low amplitude perturbations at the inlet. In the
nite difference simulations, the characteristic boundary c
dition procedure of Ref. 49 is used at the inlet, free-sh
boundary conditions are used at the free-streams and
pressure boundary condition of Ref. 50 is used at the outfl

The temporal mixing layer consists of two parall
streams traveling in opposite directions with the sa
speed.51–53A hyperbolic tangent profile is utilized to assig
the velocity distribution at the initial time. The simulation
are conducted for a cubic box, 0<x<L, 2L/2<y<L/2, 0
<z<L, wherex, y, andz denote the streamwise, the cros
stream and the spanwise directions, respectively; and
length,L is specified such thatL52NPlu , whereNP is the
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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desired number of successive vortex pairings andlu is the
wavelength of the most unstable mode corresponding to
mean streamwise velocity profile imposed at the init
time. The flowfield is parameterized in a procedure som
what similar to that by Vremanet al.20 The formation of the
large-scale structures are expedited through eigenfunc
based initial perturbations.54,55 This includes two-
dimensional20,52,56 and three-dimensional52,57 perturbations
with a random phase shift between the 3D modes. This
sults in the formation of two successive vortex pairings a
strong three-dimensionality.

The flow variables are normalized with respect to
lected reference quantities. In the jet flow, the jet exit vel
ity, and the jet width are the reference scales. In the temp
mixing layer, the reference length is the half initial vortici
thickness,Lr5dv(t50)/2 ~dv5DU/u]^u1&L/]yumax, where
^u1&L is the Reynolds averaged value of the filtered strea
wise velocity andDU is the velocity difference across th
layer!. The reference velocity isUr5DU/2.

B. Numerical specifications

All finite difference simulations are conducted o
equally spaced grid points with grid spacingsDx5Dy
5Dz (for 3D)5D. The resolution for LES of the planar je
consists of 2013101 grid points. This allows simulation
with a Reynolds numberRe5UrD/v514,000. The simula-
tions of the temporal mixing layer are conducted on 1933 and
333 points for DNS and LES, respectively. This allows sim
lations withRe5UrLr /v550.

To filter the DNS data, a top-hat function21 of the form
below is used

G~x82x!5)
i 51

ND

G̃~xi82xi !,

~35!

G̃~xi82xi !5H 1

DL
uxi82xi u<

DL

2

0 uxi82xi u.
DL

2

,

in which ND denotes the number of dimensions, andDL

52D.58 No attempt is made to investigate the sensitivity
the results to the filter function24 or the size of the filter.59

For VFDF simulations of the temporal mixing layer, th
Monte Carlo particles are initially distributed throughout t
computational region. For the jet flow, the particles are s
plied in the inlet region21.75D<y<1.75D. As the par-
ticles convect downstream, this zone distorts as it confo
to the flow as determined by the hydrodynamic field. T
simulation results are monitored to ensure the particles f
encompass and extend well beyond regions of nonzero
ticity with an approximately uniform particle number de
sity. All simulations are performed with a uniform
‘‘weight’’ 26 of the Monte Carlo particles. In the tempor
mixing layer, due to flow periodicity in the streamwise a
spanwise directions, if the particle leaves the domain at
of these boundaries new particles are introduced at the o
boundary with the same compositional values. In the cro
Downloaded 22 Sep 2004 to 140.121.120.39. Redistribution subject to AI
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stream directions, the free-slip boundary condition is sa
fied by the mirror-reflection of the particles leaving throu
these boundaries. In the planar jet, new particles are in
duced through the inlet boundary at a rate proportional to
local flow velocity and with a velocity makeup dependent
the cross-stream direction only. When the particles leave
computational domain at the outflow, they are no long
tracked. The density of the Monte Carlo particles is det
mined by the average number of particlesNE within the
ensemble domain of sizeDE3DE(3DE). The effects of
both of these parameters are assessed to ensure the c
tency and the statistical accuracy of the VFDF simulation

All results are analyzed both ‘‘instantaneously’’ an
‘‘statistically.’’ In the former, the instantaneous contou
~snap-shots! and scatter plots of the variables of interest a
analyzed. In the latter, the ‘‘Reynolds-averaged’’ statist
constructed from the instantaneous data are considered
the spatially developing flows this averaging procedure
conducted via sampling in time. In the temporal mixin
layer, the statistics are constructed by spatial averaging o
the x-z plane of statistical homogeneity. All Reynolds ave
aged results are denoted by an overbar.

C. Consistency and convergence assessments

The objective of this section is to demonstrate the c
sistency of the VFDF formulation and the convergence of
Monte Carlo simulation procedure. For this purpose, the
sults via VFDF and LES-FD are compared against e
other. Since the accuracy of the finite difference procedur
well-established~at least for the first-order filtered quant
ties!, such a comparative assessment provides a good m
of assessing the performance of the Monte Carlo solution
the VFDF. To do so, the statistical results obtained from
Monte Carlo simulations of Eq.~31! are compared with the
finite difference solution of Eqs.~25! and ~26!. Also, no at-
tempt is made to determine the appropriate values of
model constants; the values suggested in the literature
adopted34 C052.1(C154.15) andC«51.

In Fig. 1, the instantaneous contour plots of the vortic
are shown as determined by~a! VFDF2 and ~b! LES-FD.
This figure provides a simple visual demonstration of t
consistency of the VFDF2. Scatter plots of^u&L vs ^v&L are
presented in Fig. 2. The correlation and regression coe
cients~denoted, respectively, byr andr on these figures! are
insensitive toDE . Figures 3 and 4 show the Reynolds ave
aged values of the streamwise velocity and several com
nents of the SGS stress tensor for several values ofDE , with
NE540 kept fixed. It is observed that the first filtered m
ments as obtained by VFDF agree very well with those
LES-FD even for largeDE values. However, smallerDE val-
ues are required for convergence of the VFDF predicted S
stresses to those by LES-FD. The relative difference betw
the L2 norms of all of the components of the SGS tensor
a function of (DE /D)2 is presented in Fig. 5. Extrapolatio
to DE50 shows that the ‘‘error’’ goes to zero asDE→0.

The influence ofNE on the first two moments is show
P license or copyright, see http://pof.aip.org/pof/copyright.jsp



1203Phys. Fluids, Vol. 14, No. 3, March 2002 Velocity filtered density function for LES
FIG. 1. Plot of the vorticity field con-
tours, ~a! VFDF2, ~b! LES-FD. DE

5D, NE540.
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in Figs. 6 and 7. It is observed thatNE does not have a
significant influence on the first moments, but does sligh
influence the second moments. In all the cases conside
NE>40 yields reliable predictions, consistent with previo
consistency and convergence assessments of the s
FDF.6,8 All the subsequent simulations are conducted w
DE5D/2 andNE540.

D. Comparative assessments of the VFDF

The objective of this section is to analyze some of
characteristics of the VFDF via comparative assessm
against DNS data. This assessment is done via botha priori
anda posteriorianalyses. In the former, the DNS results a
used to determine the range of the empirical constants
pearing in the VFDF sub-closures. In the latter, the final
sults as predicted by the VFDF are directly compared w
those obtained by DNS. The procedure is similar to tha
Ref. 20 and considers the 3D temporal mixing layer.

In addition to VFDF, three other LES are conducted w
~1! no SGS model,~2! the Smagorinsky16,60 SGS closure,
and ~3! the dynamic Smagorinsky17–19 model. In the case
with no model, the contribution of the SGS is complete
ignored, i.e.,tL(ui ,uj )50. In this case, the numerical erro
amount to an implied model. But as indicated in Ref. 20 t
Downloaded 22 Sep 2004 to 140.121.120.39. Redistribution subject to AI
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case is included to provide a point of reference for the ot
closures. The Smagorinsky model is16,61

tL~ui ,uj !2 2
3kd i j 522n tSi j ,

Si j 5
1

2 S ]^ui&L

]xj
1

]^uj&L

]xi
D , ~36!

n t5CnDL
2S.

Cn5& 0.172'0.04,S5ASi j Si j andDL is the characteristic
length of the filter. This model considers the anisotropic p
of the SGS stress tensorai j 5tL(ui ,uj )2 2

3kd i j . The isotro-
pic components are absorbed in the pressure field. The
namic version of the Smagorinsky model provides a me
of approximatingCn as suggested in Refs. 17–19. The pr
cedure for the implementation of this model in the 3D te
poral mixing layer LES is described by Vreman;20 thus it is
not repeated here.~See Refs. 11, 23, 62, and 63 for rece
reviews on SGS closure strategy.!

In addition to the resolved velocity field, the primar
integral statistical quantities considered for comparative
sessments are
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Ef5E 1
2^ui&L^ui&Ldx, ~37!

Pk5E pkdx, with pk52tL~ui ,uj !
]^ui&L

]xj
,

En5E «ndx, with «v5n
]^ui&L

]xk
S ]^ui&L

]xk
1

]^uk&L

]xi
D ,

~38!

Bk5E min~0,pk!dx.

Ef is the kinetic energy of the resolved field,«v represents
the viscous molecular dissipation rate directly from the
tered field,Pk is the production rate of the SGS kinetic e
ergy ~or the rate of energy transfer from the resolved filter
motion to the SGS motion!, and Bk is the total
backscatter.64–66 The resolved molecular dissipation rate
always positive~by definition!, but the production rate of the
SGS kinetic energy can be locally negative. This backsca
is not represented in the Smagorinsky model. The dyna
model is potentially capable of accounting for it, but at t
expense of causing numerical instabilities. In the implem
tation of the dynamic model used here, backscatter
avoided by averaging the numerator and denominator of
expression determiningCv ~Refs. 19 and 20! over the homo-
geneous directions. If negative values are still present, t

FIG. 2. Scatter plots of the filtered velocity field as obtained via VFDF2
LES-FD. ~a!, ^u&L ; ~b!, ^v&L . DE5D, NE540.
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are set equal to zero.20,63 The ‘‘resolved’’ components of the
Reynolds-averaged stress tensor are denoted byRi j where
Ri j 5(^ui&L2^ui&L)(^uj&L2^uj&L). The ‘‘total’’ Reynolds
stresses are denoted byr i j where r i j 5(ui2ui)(uj2uj ).
These are approximated byr i j 'Ri j 1tL(ui ,uj ).

20,67,68 In
DNS, the total stresses are evaluated directly and the re
indicate thatRi j 1tL(ui ,uj ) does indeed approximater i j

with a maximum error of less than 10%.
Figure 8 shows the distribution of the particle numb

density within the whole computational domain. Assuring
approximately uniform distribution, the values of the m
ments within local ensembles are compared with those
filtered DNS data. These DNS data are transposed from
original high resolution 1933 points to the low resolution of
333 points, and then are compared with LES results on th
coarse points.

The DNS data are also used to makea priori estimates
of the model constants. The primary terms which requ
closure are the SGS dissipation and the velocity-press
scrambling tensors. The model equation@Eq. ~20!# involving
C« is in a scalar form. For an estimate ofC1 ~thusC0!, we
consider the following norm of the corresponding closu
@Eq. ~27!#

i2P i j 2~« i j 2
2
3«d i j !i'C1vitL~ui ,uj !2 2

3kd i j i , ~39!

whereiWi j i5AWji Wi j . To estimate the coefficients, a linea
regression is performed on all the data points at each c
putational time step. The optimized constants as obtaine
this way are denoted byC̃« and C̃1. This procedure is also

s

FIG. 3. Reynolds averaged values of the filtered streamwise velocity.~a!
Cross-stream variations atx57, ~b! streamwise variation aty50 ~center-
line!. NE540.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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followed for the Reynolds averaged data, with the optimiz
models obtained in this way denoted byC« and C1. The
temporal variations of these estimated values are show
Fig. 9. The nonuniformity of the coefficients indicates t
‘‘nonuniversality’’ of the models. This is expected as the flo
evolves from an initially smooth laminar state to a stro
three-dimensional state~at t'40! before the action of the
small scales becomes significant. The closures as adopte
not fully suitable for application in all of these flow region
Nevertheless, Fig. 9 indicates that the values for these c
ficients as suggested in RAS, i.e.,C1'4.15,C«'1 are rea-
sonable, at least within the turbulent regime. The influen
of these parameters are further investigated viaa posteriori
analysis of the results as discussed below.

Figures 10 and 11 show the contours of the spanwise
the streamwise components of the vorticity field, resp
tively, at timet580. By this time, the flow has gone throug
several pairings and exhibits strong 3D effects. This is e
dent by the formation of large scale spanwise rollers w
presence of counter-rotating streamwise vortex pairs in
the simulations. The results via the no-model indicate
many small-scale structures which clearly are not captu
accurately on the coarse grid. The amount of SGS diffus
with the Smagorinsky model is very significant at initi
times. Due to this dissipative characteristics of the model,

FIG. 4. Cross-stream variations of the Reynolds averaged values of som
the components of the SGS stress tensor atx57 with NE540. The LES-FD
results are obtained withDE50.5D, NE540.
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predicted results are too smooth and only contain the la
scale structures. The vortical structures as depicted by
dynamic Smagorinsky and the VFDF are very similar a
predict the DNS results better than the other two models.
results obtained by VFDF1 and VFDF2 are virtually indi
tinguishable from each other. This is expected, due to
lack of importance of molecular effects in this free she
flow.

The Reynolds averaged values of the streamwise ve
ity and the temporal variations of the momentum thickne

dm~ t !
1

4
5E

2L/2

L/2

~12^u&L!~11^u&L!dy, ~40!

are shown in Figs. 12 and 13, respectively. In Fig. 12
Reynolds averaged values of both filtered and unfilte
DNS data are considered and are shown to be essen
equivalent. Therefore, the latter are not shown in subseq
figures. The dissipative nature of the Smagorinsky mode
initial times resulting in a slow growth of the layer is show
Several values of the model parameters (C0 , C«) are consid-

of

FIG. 5. Percentage of the relative difference between theL2 norms of the
stresses as a function ofDE /D. ~a! x52.8, ~b! x57, ~c! x511.2.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1206 Phys. Fluids, Vol. 14, No. 3, March 2002 Gicquel et al.
FIG. 6. Cross-stream variations of the Reynolds averaged values o
filtered streamwise velocity atx57. The LES-FD results are obtained wit
DE50.5D, NE540.

FIG. 7. Cross-stream variations of the Reynolds averaged values of som
the components of the SGS stress tensor atx57. The LES-FD results are
obtained withDE50.5D, NE540.
Downloaded 22 Sep 2004 to 140.121.120.39. Redistribution subject to AI
ered in the VFDF simulations. It is observed that as the m
nitude ofC« decreases, the initial rate of the layer’s spread
higher. With the exception of the case withC«50.5 and the
Smagorinsky model, all the other VFDF cases, the dyna
Smagorinsky and the no-model yield a similar rate of laye
growth at late times.

The temporal variations of the resolved kinetic ener
and all of the terms defined in Eq.~38! are shown in Fig. 14.

he

of

FIG. 8. Particle number density in VFDF2 simulation att560. The isosur-
face corresponds toNE540 set as initial conditions.C052.1, C«51.

FIG. 9. Time variation of the model coefficients as obtained froma priori
analysis of the DNS data.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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The overall features displayed in this figure are similar
those reported by Vremanet al.20 for the no model, the Sma
gorinsky model and the dynamic Smagorinsky model. T
initial rate of decay of the resolved kinetic energy for t
Smagorinsky model is the highest. This is due to the exc
sive production of the SGS kinetic energy by this model
the transitional region, and explains the reason for the lac
small scales in the vortical structures as discussed before
all the other models the initial rate of decrease of the
solved kinetic energy is small and increases as the flow
velops. The trend portrayed by DNS results is best captu
by the VFDF simulations. For the no model case the o
means of dissipation of the resolved kinetic energy
through molecular action and numerical dissipation wh
become significant at later stages due to presence of a
amount of small scales. In this case, the amount of nume
dissipation is the highest. For all the other closures, the p
ductions rate of the SGS kinetic energy is larger than
molecular dissipation as the flow develops. The dynam
Smagorinsky and the no-model simulations predict the sa
initial rate of decay for the resolved kinetic energy. This
due to low initial values ofPk predicted by the dynamic
Smagorinsky model. Aftert540 the amount ofPk as pre-
dicted by the dynamic model is more than that of molecu
dissipation by the no-model. Thus the rate of decay of
resolved kinetic energy becomes higher for the dyna

FIG. 10. Contour plots of the spanwise component of the vorticity az
50.75L/Lr , t580. ~a! Filtered DNS, ~b! no model, ~c!, Smagorinsky
model, ~d! dynamic Smagorinsky model,~e! VFDF2, C052.1, C«51, ~f!
VFDF1, C052.1, C«51.
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model and is closer to that obtained by DNS.
With the exception of the no-model case, all the simu

tions predict similar trends for the molecular dissipation. T
magnitude of this dissipation as predicted by VFDF chan
slightly with the variation of the model parameter. The pr
duction rate of the SGS kinetic energy depends m
strongly on the model coefficients; asC« decreases, the pea

FIG. 11. Contour plots of the streamwise component of the vorticity vec
at x50.25L/Lr , t580. ~a! Filtered DNS,~b! no model,~c! Smagorinsky
model, ~d! dynamic Smagorinsky model,~e! VFDF2, C052.1, C«51, ~f!
VFDF1, C052.1, C«51.

FIG. 12. Cross-stream variations of the Reynolds averaged values o
streamwise velocity att570.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1208 Phys. Fluids, Vol. 14, No. 3, March 2002 Gicquel et al.
magnitude ofPk is larger. The Smagorinsky model does n
adequately predictPk , and the dynamic model yields bette
predictions at long times. The overall trends are best p
dicted by VFDF. The same is true in capturing the backsc
ter phenomenon. By design, the backscatter is identic
zero in the Smagorinsky and the dynamic Smagorin
model. But VFDF is capable of capturing it, and its extent

FIG. 13. Temporal variations of the momentum thickness.
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controlled by the model parameters. In this regard it is i
portant to note that there are no numerical instability pro
lems in the VFDF solver for negativeBk values. However,
the amount of predicted backscatter is less than tha

FIG. 15. Cross-stream variations of some of the components ofai j at t
560.
FIG. 14. Temporal variations of~a! total resolved ki-
netic energy,~b! SGS kinetic energy production rate,~c!
total backscatter,~d! total resolved dissipation.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp



f t

m
Th
th
lo
ix

m
er

e
re
ol
or
y
th
n

r

e of

ula-
DF
ll.

he
ree

if-
wo
ns,
ing
-

r

ents

1209Phys. Fluids, Vol. 14, No. 3, March 2002 Velocity filtered density function for LES
DNS and its relative magnitude is less than those ofPk and
Ev .

Several components of the planar averaged values o
SGS anisotropy tensor,ai j 5tL(ui ,uj )2 2

3k̄d i j are presented
in Figs. 15 and 16. Both the Smagorinsky and the dyna
model under-predict the components of this stress.
VFDF predictions are more satisfactory. In this regard,
VFDF is expected to be more effective than the other c
sures for LES of reacting flows since the extent of SGS m
ing is influenced by SGS convection.69,70 ‘‘Optimum’’ values
for C« andC0 cannot be suggested to predict all of the co
ponents of this tensor at all times, but it is obvious that th
is too much SGS energy withC«50.5.

Several components of the resolved stress tensorRi j are
shown in Figs. 17 and 18. As expected, the performanc
the Smagorinsky model is not very good as it does not p
dict the spread and the peak value of the resolved Reyn
stresses. None of the other models show a distinct superi
in predicting the DNS results. The no-model and the d
namic Smagorinsky model predict large peak values at
middle of the layer. The VFDF predicts both the spread a
the peak values reasonably well. The results for smallC«

values are not shown since the amount of energy in the

FIG. 16. Cross-stream variations of some of the components ofai j at t
580.
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solved scale decreases too much in favor of the increas
the SGS stress~as shown in Figs. 15 and 16!. The cross-
stream variations of the total Reynolds stressr 12 are pre-
sented in Fig. 19. The peak values by the no-model sim
tions are again the highest. The dynamic model and VF
perform similarly and capture the DNS trends equally we

E. Comparison with previous investigations

All of the results obtained here by DNS, and LES via t
Smagorinsky and the dynamic Smagorinsky models ag
very well with those of Vremanet al.20 The slight differences
are due to the nonidentical flow initializations, and the d
ferent computational methodologies employed in the t
simulations. To compare with results of other investigatio
simulations are conducted of another temporally develop
mixing layer with Re5500 in a larger computational do
main, Lr5120. An initial forcing of the formAe2(y/2)2 is
used, whereA is a uniformly distributed random numbe
with an amplitude of 0.05. Rogers and Moser60 perform DNS
of a highRenumber flow on 51232103192 spectral points.
The results of these simulations are in excellent agreem
with laboratory data of Bell and Mehta.71 Here, LES is con

FIG. 17. Cross-stream variations of some of the components ofRi j at t
560.
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1210 Phys. Fluids, Vol. 14, No. 3, March 2002 Gicquel et al.
ducted of this flow via the dynamic Smagorinsky model.
The profiles of the mean streamwise velocity and sev

components of the resolved stresses att5250 are presented
in Figs. 20 and 21, respectively. In these figures,j
5y/dm(t) and the symbols denote the experimental data71 at
several streamwise locations. The good agreement with t
data also indicates good agreement with DNS results of R
ers and Moser.72

F. Computational requirements

The total computational times associated with simu
tions of the 3D temporal mixing layer are shown in Table
Expectedly, the overhead associated with the VFDF sim
tion is extensive as compared to the other models; never
less this requirement is significantly less that of DNS. T
overhead was tolerated in present simulations, but can
reduced with utilization of an optimum parallel simulatio
procedure. This has been discussed for use in PDF73 and is
recommended for future VFDF simulations.

VII. SUMMARY AND CONCLUDING REMARKS

The filtered density function~FDF! methodology1 has
proven very effective for large eddy simulation~LES! of

FIG. 18. Cross-stream variations of some of the components ofRi j at t
580.
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turbulent reacting flows.3,6–11 In all previous contributions,
the LES/FDF of only the scalar quantities are consider
The objective of the present work is to develop the FD
methodology for LES of the velocity field. For this purpos
a methodology termed the velocity filtered density functi

FIG. 19. Cross-stream variations ofr 12, ~a! t560, ~b! t580.

FIG. 20. Cross-stream variation of the Reynolds averaged values of
streamwise velocity att5250. Solid line denotes model predictions via th
dynamic Smagorinsky model. Symbols denote experimental data of Bell
Mehta ~Ref. 71!.
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FIG. 21. Cross-stream variations of the Reynolds av
aged values of the streamwise velocity att5250. Solid
lines denote model predictions via the dynamic Smag
rinsky model. Symbols denote experimental data
Bell and Mehta~Ref. 71!.
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~VFDF! is developed. The VFDF is basically the probabili
function ~PDF! of the subgrid scale~SGS! velocity vector.
The exact transport equation governing the evolution of
VFDF is derived. It is shown that the effects of SGS conv
tion in this equation appears in a closed form. The unclo
terms in this transport equation are modeled via two form
lations: VFDF1 and VFDF2. The primary difference betwe
the two models is the inclusion of the molecular diffusion
the spatial transport of the VFDF in the first formulation. T
closure strategy in the formulation similar to that in PD
methods in Reynolds averaged simulation~RAS!
procedures.32 In this way, the VFDF formulation is at leas
equivalent to a second-order moment SGS closure.

The modeled VFDF transport equations are solved
merically via a Lagrangian Monte Carlo scheme in which
solutions of the equivalent stochastic differential equatio
~SDEs! are obtained. Two Monte Carlo procedures are c
sidered. The schemes preserve the Itoˆ –Gikhman nature of
the SDEs and provide a reliable solution for the VFDF. T
consistency of the VFDF formulation and the convergence
its Monte Carlo solutions are assessed. This is done via c
parisons between the results obtained by the Monte C
procedure and the finite difference solution of the transp
equations of the first two filtered moments of VFDF~LES-
FD!. With inclusion of the third moments from the VFD
into the LES-FD, the consistency and convergence of

TABLE II. Computer requirements for the 3D temporal mixing layer. O
unit corresponds to 1657.2 seconds of CPU time on the SGI origin 200

Resolution NE Normalized CPU time

DNS 19331933193 ¯ 178
VFDF1 33333333 40 33.6
VFDF2 33333333 40 30

Dynamic Smagorinsky 33333333 ¯ 2.19
Smagorinsky 33333333 ¯ 1.05

No model 33333333 ¯ 1
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Monte Carlo solution is demonstrated by good agreement
the first two SGS moments with those obtained by LES-F

The VFDF predictions are compared with those w
LES results with no SGS model, with the Smagorinsk16

SGS closure, and with the dynamic Smagorinsky17–19model.
All of these results are also compared with direct numeri
simulation~DNS! results of a three-dimensional, temporal
developing mixing layer in a context similar to that co
ducted by Vremanet al.20 This comparison provides a mean
of examining some of the trends and overall characteris
as predicted by LES. It is shown that the VFDF perform
well in predicting some of the phenomena pertaining to
SGS transport. The magnitude of the SGS Reynolds stre
as predicted by VFDF is larger than those predicted by
other SGS models and much closer to the filtered DNS
sults. The temporal evolution of the production rate of t
SGS kinetic energy is predicted well by VFDF as compa
with those via the other closures. The VFDF is also capa
of accounting the SGS backscatter without any numer
instability problems, although the level predicted is subst
tially less than that observed in DNS.

The results ofa priori assessment against DNS data
dicates that the values of the model coefficients as emplo
in VFDF ~C0 and C«! are of the range suggested in th
equivalent models previously used in RAS. The results oa
posteriori assessments via comparison with DNS data d
not give any compelling reasons to use values other t
those suggested in RAS,C052.1, C«51. However, small
values ofC« are not acceptable as they would yield too mu
of SGS energy relative to that within the resolved scales

Most of the overall flow features, including the mea
velocity field and the resolved and total Reynolds stresse
predicted by VFDF are similar to those obtained via the d
namic Smagorinsky model. This is interesting in view of t
fact that the model coefficients in VFDF are kept fixed.
may be possible to improve the predictive capabilities of
VFDF by two ways:~1! Development of a dynamic proce

.
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1212 Phys. Fluids, Vol. 14, No. 3, March 2002 Gicquel et al.
dure to determine the model coefficients, and/or~2! imple-
mentation of higher order closures for the generalized Lan
vin model parameterGi j ~see Ref. 34!.

Work is in progress towards developments of a jo
velocity-scalar FDF for LES of reacting flows. Compared
standard LES, this approach has the advantage of trea
reaction in a closed form; and, compared to scalar FDF6,8 has
the advantage of treating convective transport~of momentum
and species! in closed form. These modeling advantag
have an associated computational penalty. For the cases
sidered here, VFDF is more expensive computationally t
the dynamic Smagorinsky model by a factor of 15. It is e
pected that VFDF will not be more expensive than sca
FDF, at least for reacting flows with many species.
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