Computation of Recirculating Swirling Flow
with the GLM Reynolds Stress Closure

by
Song Fu and S.B. Pope

FDA 93-06 March 1993

WZE Fluid Dynamics and
) Aerodynamics Program

Sibley School of
Mechanical and Aerospace Engineering

Cornell University  Ithaca, New York 14853



Computation of Recirculating Swirling Flow with the
GLM Reynolds Stress Closure

Song Fu
Department of Engineering Mechanics
Tsinghua University
Beijing 100084, China

and

S.B. Pope
Sibley School of Mechanical and Aerospace Engineering
Cornell University

Ithaca, NY 14853

Abstract

A Reynolds stress closure based on the generalized Langevin model (GLM)
developed by Haworth and Pope [3, 4] (from a general equation for describ-
ing the fluid particle velocity increment in the probability density function
method), is applied to the flow calculation with swirl-induced recirculation.
The purpose of the work is to assess the performance of this model under
the complex flow conditions caused by the presence of strong swirl which
gives rise to both unconventional recirculation in the vicinity of the symme-
try axis and strong anisotropy in the turbulence field. Comparison of the
computation results are made both with the experimental data of Roback
and Johnson [11] and the computational results obtained with the typical
isotropization of production model (IPM) and the k — ¢ type Boussinesq
viscosity model.
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1 Introduction

Modelling of turbulent flows has followed a traditional path pioneered by Os-
born Reynolds that the turbulent quantities are decomposed into mean and
fluctuating parts. The mean flow equations can be obtained by averaging
the governing equations, the Navier-Stokes equations, and the correlations
of the fluctuating velocity components resulting from the averaging process,
the Reynolds stresses, then contain the turbulence statistics. The Reynolds
stresses are unknown quantities in the mean flow equations. Their magni-
tudes have a critical influence over the solution of the entire flow field, and
therefore these Reynolds stresses need to be modelled appropriately. Current
modelling strategies fall basically into two types: Boussinesq eddy viscosity
hypothesis and second-moment closures. These two approaches in the turbu-
lence modelling research field have received a great deal of attention in the
last two decades, but the application of the subsequent models gives some-
time satisfactory and sometimes less encouraging results. The main failure
of the computations lies in the area of complex flow fields where either or
both strong anisotropy in turbulence properties and flow recirculation occurs.
Strongly swirling flow with recirculation is such a typical example that the
current models have yet to produce satisfactory computational results both in
terms of mean flow and turbulence quantities, although the second-moment
closures have demonstrated superiority over the Boussinesq viscosity models
in many applications [6, 8, 9].

Alternatively, an evolution equation for the joint probability density func-
tion (pdf) of the velocities, as well as scalars, can be derived and modelled
to describe turbulence activities. This approach offers several advantages:
the joint pdf contains more statistical information than is contained in a
finite number of moments and some of the terms that must be modelled
in the moment closure methods appear in closed form in the pdf evolution
equation. The essence of this modelling strategy is to adopt the Lagrangian
viewpoint of turbulence that the history of the fluid particles in turbulent
flows provides a complete description of the turbulence. Indeed, following
the generalization of the Langevin equation proposed by Pope [1] to model
the Lagrangian velocity increment, Haworth and Pope [3] were able to de-
rive a different type of Reynolds-stress evolution equation. They were also
able to close this equation through modelling and calibrate the subsequent
model against a broad range of experiments. It was observed that the GLM
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type Reynolds stress closure exhibited satisfactory performance in the homo-
geneous shear flow calculations [3], and later re-optimization of the model
also led the computational results to reasonably good agreement with exper-
iments in free shear flows [4]. These encouraging applications of the GLM
in simple flow calculations provide strong incentives to its application in the
complex flow case. Thus, the present work focuses on the performance of the

GLM in the complex flow, in particular, in the strongly swirling recirculating
flow of Roback and Johnson [11].

2 Mathematical Description of the Flowfield

2.1 Lagrangian Description

In the Lagrangian viewpoint, the flow properties are revealed by describing
the history of the fluid particles. By definition, the rate of change of a fluid
particle’s position is its velocity: the velocity must change in accordance
with the Navier-Stoke equation. In an increment of time dt, the increments
in fluid particle position and velocity are given by [2]

dz} = Utdt, (1)
dUf = —%gfdt + (vV’u.- - %'g'f‘) dt, (2)

where, z}" and U;" denote the components of the fluid particle position and
velocity in the i-direction, respectively, at time ¢. In these equations, the
Eulerian velocity and pressure fields have been decomposed into their means
U(x,t) and P(x,t) and the fluctuations u(x,t) and p(x,t). These Eulerian
quantities are evaluated at the particle position x(t). The fluid properties are
the density p and the kinematic viscosity v, all assumed to be constant in the
present analysis. The term ¥V2U; has been omitted as only high Reynolds
number turbulent flows are considered here.



2.2 Generalized Langevin Equation

According to the generalized Langevin model for equation (2), the increment
in particle velocity U*(t) in a time interval dt is given by

dU? = —lpggdt 1 Gy(U3 — Uy)dt + (Coe) 2dWi(2), 3)
1

i.e., the particle velocity is governed by a stochastic differential equation of
the Langevin type. The notation * is used to distinguish this modelled par-
ticle from a fluid particle. The term G;;(x, t) in equation (3) is a function of
the one-point pdf, i.e., a function of one-point dynamic field, Cy is a universal
constant, € represents the mean dissipation rate of turbulent kinetic energy,
and W(t) denotes an isotropic Wiener process. This process is Markovian
and stochastic in nature with increments dW (t) = W (¢t + dt) — W(t) having
a joint-normal distribution of zero means and an isotropic covariance matrix,

<dW;(t) >=0, < dW;(t)dW;(t) >= é;dt, 4)

where the angled brackets represent the expectation of the stochastic pro-
cesses inside.

Equation (3) represents a linear Markov model for the fluid particle veloc-
ity, analogous to the Langevin equation for the velocity of a particle under-
going Brownian motion. The justification for the inclusion of the stochastic
term can be proved from its consistency with Kolmogorov’s inertial range
scaling laws [3]. The basic assumptions embodied in the generalized Langevin
equation (3) are that the Markovian stochastic process W(t) and the G;;(t)
terms represent local mean flow quantities, implying that the model applies
only to those flows where turbulence structures can be expressed in terms of
local mean quantities; and that the inertial range scales are locally isotropic.

Equation (3) also forms a basis where the connection between the Langevin
equation and the Reynolds-stress evolution equation can be established. It
can be shown that through the evolution equation for the joint pdf of the
velocities corresponding to the Langevin model, a modelled Reynolds-stress
transport equation can also be derived which reads:

Du,-uj _ auiujuk
Dt - 6:r:k

+ Pij + GuTx; + Gjxuxt; + Coebij, 5)



where,
F; = —W?—g’; -7 u--a—U—"-
1] 1Yk a(l?k kWj al'k .
Corresponding to the exact transport equation of the Reynolds stresses ob-
tained from the Navier-Stokes equations [7], it is not difficult to show that
the last three terms in the above equation represent the pressure and viscous
correlations in the second-moment closures, i.e.,

GuUrh; + Gurt; + Coebsj =

1 dp dp
—; (uja—a:; + u,-a-;—]-) + l/('u.,'v2uj + u_,'Vzu,'). (6)
This compatibility between the Langevin model and second-order models is

a direct consequence of the linearity of the deterministic term in the velocity
components in equation (3).

2.3 Closure of G;; Terms

Haworth and Pope [3] proposed a functional form for G;; that is linear in the
mean velocity gradients and Reynolds stresses. The form is:

oU,
(165 + agby;) + H;jkz—a—i, (7)
]

€

G,‘j= A

where

Hijw = B16ii6k + B26ikbji + B36abi; + 1650 + ¥26ixbjt +
Y¥30itbjr + YaOribij + ¥561;bki + Yebk;bir.

Here, b;; is the normalized Reynolds-stress anisotropy tensor defined by
b;; = u;w;/uxur — 36;;. The expression (7) contains 11 coefficients, of which
7 can be deduced from the Navier-Stokes equation, and the remaining 4 are
determined by experimental data [3]. The values of these coefficients are
listed in the following table.

Generalized Langevin Model Coefficients

Q2 B B2 B3 st Y2 73 Y4 | U5 Y6
3.781 02108 -02| -124|11.04| 034} 0 |1.99| —0.76 |




The coefficient ¢ is determined through the contraction of equation (5)
such that it becomes the transport equation of the turbulence kinetic energy,
and the constraint on ¢ is then,

a=-(3+30) - ot~ Mgt bt rAL+rE @

with Co = 2.1, b2 = buby, v* =12 + 73 + 5 + 76 and

6U ou;
Il = b;J a = b‘lkbkj a . (9)

With expression (7), a closed form of the Reynolds-stress evolution equa-
tion can be obtained from equation (5) by substituting the former into the
latter. But before doing this, it is helpful to notice that the expression
(6) indicates that the G;; terms physically account for the interactions be-
tween fluctuating velocities and pressure gradients. It can be shown easily
that these pressure terms can be decomposed into two parts: one provides
the mechanism of transferring turbulence energy among its components, the
other corresponds to the diffusion transport due to pressure fluctuation. In
the evolution process, it is observed that away from the solid wall, the diffu-
sion terms play only a secondary role in the overall balance of the Reynolds
stresses. It is therefore plausible to attribute the G;; terms to be primar-
ily responsible for the energy redistribution. Thus, expression (6) can be
rewritten as

2
Gutxuj + Giurts + Coebi; = ¢ij — 30i€- (10)

The ¢;; term, then, represents the redistribution process with zero trace on
contraction, and hence can be written in an isotropization form which can

be deduced by substituting the G;; model into the above expression. That
is:

1 1
¢,-j = 4¢ [(al + gag) bij + oo (b? - —6ijb2 )] +
% [72 (E,, _ -5,,12) + s ( 5,,12) + (95 + ) (M,] _ —5,,12)}

-\ (Pij - §6iijk) ) <Dz‘j - ’3‘6iijk) - §’Y*k5ij, (11)



where,

o U, _ou; | au;
Di, = —uguk*ém—j - uku]_éa:—,', S,_, = axj + B2, R
oU; oU;
E;; = b?ka_w; + b?k'é;;’ M;; = biyxb;i Sy,
oU, U,
Fj= b?ka—zj' + b?k—a—;, bl = bubij;

and, A\; = B2 + (72 +76)/3, A2 = B3 + (13 + 75)/3. It may be observed that
the redistribution model ¢;; formulated in equation (11) does not contain the
coefficients 3, and <; even though they are active in the Langevin equation.
This indicates that some turbulence statistical information contained in the
pdf solution are lost in the G;; model.

The redistribution model displayed by equation (11) has some interesting
properties. The model is nonlinear in the anisotropy tensor of the Reynolds
stresses b;;. The terms on the first line on the right-hand side represent a
nonlinear return-to-isotropy process. This nonlinearity is found necessary
even in the turbulence decay process [10]. The second line represents the
interactions between the quadratic anisotropy tensor with the mean velocity
gradients, a process that has now been widely accepted [6, 12]. The terms on
the third line have identical form to the Launder, Reece and Rodi’s Quasi-
Isotropization Model (QIM). In fact, the expression (11) may be viewed as
a nonlinear extension of QIM with quadratic terms in the Reynolds-stress
anisotropy tensor b;; added on. However, this resemblance is not complete
since the strain rate S;; related redistribution process totally depends on
the nonlinear extensions in the GLM. The absence of these quadratic terms
diminishes the presence of the strain-rate-related terms which stand alone in
the QIM. Also, the expression (11) can easily be reverted to Rotta and the
Isotropization of Production Model (IPM) by setting all the coefficients in
this expression to zero apart from @, and A;. In this way, it becomes

1
¢ij = —clﬁb,'j — C2 (P,] - gaijpkk) ’ (12)

with ¢ = =4y = (24 3Cy) —26,P/e and ¢; = A, = B,. However, Cj has to
be a function of the ratio of the energy production over its dissipation rate,



P/e, for ¢, to take the widely accepted constant 3.6. In fact, in this case,

1 P
Co == (Cl —2+2,32—) .
3 €
To complete the Reynolds-stress model, the triple velocity correlation
U;u;ux is modelled by the Daly and Harlow’s gradient type model [5] which
gives:
k U

— U U Uk = C3— Uy )
€ &L‘z

(13)
with ¢ = 0.22.

2.4 Remaining Equations for the Solution

The above analysis leads to the closure of the second-moment equations
derived from the generalized Langevin model. The complete solution of the
flowfield requires the solutions of the momentum and continuity equations
which have the following Cartesian tensor forms:

Momentum
ou; 10P 0 oU; . 9U;
5z, pom T oz [ (63:,- + 6:1:,-) - ““] ' (14)
Continuity 5
Ui
i 0. (15)

It is clear from equation (14) that the mean flow variables are strongly cou-
pled with the Reynolds stresses. In the solution procedure, all three velocity
and six Reynolds stress components have to be solved in the present case of
swirling flow, although the flow is axisymmetric. To complete the closure of
the problem, the dissipation rate of the turbulence kinetic energy is obtained
through the following equation:

O¢ 0 k Oe € 1

ia - — & e—UkU|— T\l — CUe 1
UJ amj B2y (C GUkulaSL'[) + k(C 12Pkk 026) ( 6)
The coefficients ¢, C and C, retain their standard values, 0.18, 1.45 and
1.92, respectively.



2.5 k- ¢ Two-equation Model

In the k— e model the Reynolds stresses assume the validity of the Boussinesq
hypothesis that the anisotropy of the Reynolds stresses are linearly propor-
tional to the mean strain rate:

ou;  aU; 2
—Wl; = 1 ('5—" + '55:) - g‘sijk: (17)

where k = %u;/2 is the turbulent kinetic energy, v; is the isotropic turbulent
eddy viscosity defined in the context of k — € model as v, = C,k?/e.

The turbulent kinetic energy k and the dissipation rate € are governed by
their modelled transport equations:

ok 0 Ok
Ujé;;; = -6—1—8; [(V+ ) axj} + P - (18)

3 0 65

where P = 0.514(0U;/8z; + 8U;/dz;)? contributes to a positive source term
in the above equations, representing the turbulence production. The values
of the coefficients in the above equations are: C, = 0.09, ox = 1.0 and
o= 1.22,

2.6 Numerical Solution

The model equations are solved numerically by a finite volume method em-
ploying the SIMPLE algorithm. A grid of 50 x 100 nodes is used, preliminary
tests having shown that the solutions obtained are little different on a grid
twice as large.

3 Results and Discussion

The strongly swirling flow of Roback and Johnson was chosen here to be the
test case. The geometry of the flowfield consists of two coaxial jets through
which the flow enters an axisymmetric chamber with sudden expansion. The
inner and annular jets have diameters 0.025m and 0.049m respectively. The
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diameter of the chamber is 0.122m. The swirl velocity component is in-
troduced to the chamber through the annular jet. It is observed in the
experiment that the swirl strength is so strong that a central recirculation is
formed in the vicinity of the axis of symmetry. The flow can be considered
as isothermal and steady state.

3.1 Mean Flow Quantities

Figure 1 shows the streamfunction contour plots calculated with the k — ¢
model and with the IPM and GLM second-moment closures, respectively. It
is seen that the first two give roughly the same length of the recirculation
size in the vicinity of the symmetry axis, whereas the GLM produces a very
elongated one extending right to the exit boundary. The flow patterns ex-
hibited by all the three models differ significantly. The size of the central
recirculation, induced by the strong-swirl inlet condition, can be best illus-
trated from the axial velocity development along the axis, as is shown in
figure 2. There, it is seen that all the models fail to provide the velocity re-
covery indicated by the experiment after the recirculation. The GLM fails to
recover the velocity even to the positive value suggesting a sustained reverse
flow pattern near the axis. The GLM also exhibits a unrealistic recovery just
before the reverse flow occurs. The cause of this behavior is believed to be
the effect of the interaction of the annular and inner jet flows reaching the
axis of symmetry. Compared with the experiment of Roback and Johnson
[11], the size of the recirculation is well captured by the IPM, and the k — ¢
model performed reasonably well. The reverse flow occurs on the axis of
symmetry in the range of z = 0.04m — 0.17m.

The pressure and angular velocity contours are given in figure 3 and 4,
respectively. A distinct feature of the pressure contours is that the GLM
shows very small pressure gradients near the axis of symmetry after recir-
culation has occurred, as the pressure contour lines become almost parallel
with the axis there. But this is in accord with the large recirculation shown
by the GLM. It may be explained that the elongated recirculation is due to
the lack of large pressure gradients which cause the flow to recover. The
angular velocity contours all show large values towards the axis. The k — ¢
model also exhibits a center of precession with the maximum point falls on
the axis inside the recirculation zone, while the two second-moment closure
models give rise to precessing tubes and the strength of the tube produced
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with the GLM is profound, consistent, again, with the phenomenon of large
recirculation in the GLM results.

Shown in figures 5 and 6 are profiles of the axial velocity, U, and the
swirling velocity, W, at locations z = 0.025m, 0.051m, 0.102m, 0.152m and
0.203m, respectively. As the flow enters the chamber, all models give good
agreement with the experimental data, as seen in figure 5(a) and figure 6(a).
This is due to the dominance of the inlet conditions on the near flowfield.
Inside the recirculation zone, the models capture the basic features of the ax-
ial velocities, figure 5(b,c), with GLM producing somewhat unrealistic shape
near the axis. At the end and the recovering region of the flowfield, the qual-
ity of both k — ¢ and the IPM are comparable, but the strange behavior of
the GLM persists in the entire field (figure 5(d,e)). Looking at the swirling
velocity inside and in the recovery region, none of the models can be claimed
to be superior to the others (figure 6(b—€)). Again, GLM displayed partic-
ular behavior giving maximum W-velocity close to the axis. This may also
be associated with the U-profiles of the GLM where unrealistic peaks occur.

Overall, the basic mean flow features have been captured by the IPM and
the k — e model but none of them is very satisfactory. The GLM behaves in a
strange manner, this is likely due to the nonlinear effects in the redistribution
process, as the nonlinear models need further investigation in general.

3.2 Turbulence Quantities

The differences in the above mean flow quantities are obviously caused by the
different values of the Reynolds stresses with differing modelling strategy in
the mean flow equations. The turbulence quantities predicted by these three
models should provide the answer to the different behavior of the model
performance.

The overall feature of the turbulence quantities can be seen from figures 7
and 8, respectively, where the contours of the turbulence kinetic energy and
dissipation rate are given. A common feature there for all the model results
is that the maximum turbulence kinetic energy and dissipation rate occur
at the edges of the recirculation zones near the corner recirculation. This is
because of the very large shear strains existed there due to the presence of
the two recirculations. The GLM seems to produce less intense turbulence
energy than the IPM, this partly explains why the central recirculation is so
large for the GLM results, for smaller turbulence energy implies a smaller
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turbulent diffusion coefficient.

The shear stresses w0 and 7w are shown in figure 9. It is seen that the all
the model results have large errors relative to the experiment. In fact, the k—e
model may even be said to have performed better than the second-moment
closure IPM. This shows that the Reynolds shear stress %o is strongly and
linearly related to the mean strain rate in this flow. It can be observed that
the GLM persistently underpredicts this shear stress throughout the whole
flowfield. This is believed to be the prime cause for the occurrence of the
excessive central recirculation exhibited by the GLM, since the shear stress
v is directly responsible for turbulence mixing. It is difficult to speculate,
however, on which element in the redistribution equation of GLM, equation
(11), causes this underprediction. One possible reason might be that the
coefficients 7, and <3 have different signs which may not be appropriate.
The terms associated with these two coefficients, E;; and Fj;, can be seen as
the nonlinear extension of the terms P;; and D;j, respectively. These latter
two terms have the coefficients, A; and A;, of the same sign.

The shear stress 7w profiles are given in figure 10. Since no comparison
can be made with the experiment, it is difficult to assess the performance
of the models. But again, the GLM shows consistent behavior of underpre-
dicting the magnitude of this shear stress as in the case for ww. For the sake
of reference, the anisotropy invariants maps (AIM) for both the GLM and
IPM calculations are also presented in figure 11. It is seen here that both
results satisfy the realizability condition as all points fall inside the trian-

gular shaped enclosure whose vertical axis is (b2)!/? and the horizontal axis
(B3,

4 Conclusion

The present study investigated the performance of the second-moment clo-
sure derived from the probability-density function analysis. In particular,
the Roback and Johnson strongly swirling flow was studied with the general-
ized Langevin model which was first designed for modelling the fluid particle
velocity increment in the Lagrangian viewpoint of the fluid motion. An
isotropization form of the GLM was derived which gives clear interpretation
of the individual terms in this redistribution process. It is observed that the
GLM can be seen as a nonlinear extension of the Rotta and Launder, Reece
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and Rodi models. The GLM can also be easily contracted to the IPM.

The computation results show that the GLM produces excessive strength
of the recirculation. The best agreement with the experiment on the size of
the recirculation is obtained with the IPM. Looking at the mean flow and
turbulence quantity profiles, none of the models appeared to have performed
superior than the others, in fact, the k — e model results were as good as that
from the IPM. The GLM, however, generally underpredicts the Reynolds
shear stresses, giving less turbulent mixing. This is believed to be prime
cause of the elongated recirculation exhibited by the GLM. The reason for
the unconventional velocity profiles by the GLM is unclear. The nature of
the nonlinearity of the model requires further study.
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Turbuelce Energy Contour (X100)
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Figure 7: Contours of the turbulence kinetic energy. (a) k — ¢ model, (b)
IPM, (c¢) GLM.
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Figure 8: Contours of the dissipation rate. (a) k — ¢ model, (b) IPM, (c)
GLM.
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