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ABSTRACT: A Reynolds stress closure based on the generalized Langevin model
(GLM), developed by Haworth and Popel>¥, is applied to the flow calculation with
swirl-induced recirculation. The purpose of the work is to assess the performance of
this model under the complex flow conditions caused by the presence of strong swirl
which gives rise to both unconventional recirculation in the vicinity of the symmetry
axis and strong anisotropy in the turbulence field. Comparison of the computational
results are made both with the experimental data of Roback and Johnson!'!] and the
computational results obtained with the typical isotropization of production model
(IPM) and the k-€ type Boussinesq viscosity model.
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I. INTRODUCTION

Modelling of turbulent flows has followed a traditional path pioneered by Osborn
Reynolds that the turbulent quantities are decomposed into mean and fluctuating parts.
The mean flow equations can be obtained by averaging the governing equations, the Navier-
Stokes equations, and the correlations of the fluctuating velocity components resulting from
the averaging process, the Reynold' stresses, then contain the turbulence statistics. The
Reynolds stresses are unknown quantities in the mean flow equations. Their magnitude have
a critical influence over the solution of the entire flow field, and therefore these Reynolds
stresses need to be modelled appropriately. Current modelling strategies fall basically into
two types: Boussinesq eddy viscosity hypothesis and second-moment closures. These two
approaches in the turbulence modelling research field have received a great deal of attention
in the last two decades, but the application of the subsequent models gives sometimes satis-
factory and sometimes less encouraging results. The main failure of the computations lies in
the area of complex flow fields where either or both strong anisotropy in turbulence proper-
ties and flow recirculation occurs. Strongly swirling flow with recirculation is such a typical
example that the current models have yet to produce satisfactory computation results both
in terms of mean flow and turbulence quantities, although the second-moment closures have
demonstrated superiority over the Boussinesq viscosity models in many applications!(®:8:9].
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Alternatively, an evolution equation for the joint probability density function (PDF)
of the velocities, as well as scalars, can be derived and modelled to describe turbulence
activities. This approach offers several advantages: the joint PDF contains more statistical
information than is contained in a finite number of moments and some of the terms that must
be modelled in the moment closure methods appear in closed form in the PDF evolution
equation. The essence of this modelling strategy is to adopt the Lagrangian viewpoint of .
turbulence that the history of the fluid particles in turbulent flows provides a complete
description of the turbulence. Indeed, following the generalization of the Langevin equation
proposed by Popel!! to model the Lagrangian velocity increment, Haworth and Popel®! were
able to derive a different type of Reynolds-stress evolution equation. They were also able
to close this equation through modelling and calibrate the subsequent model against a
broad range of experiments. It was observed that the GLM type Reynolds stress closure

! exhlblted satisfactory performance in the homogeneous shear flow calculations®!, and later
re—opt1m1zat10n of the model also led the computational results to reasonably good agreement
with experiments in free shear flows(]. These encouraging applications of the GLM in simple
flow calculations provide strong incentives to its application in the complex flow case. Thus,
the present work focuses on the performance of the GLM in the complex flow, in particular,
in the strongly swirling recirculating flow of Roback and Johnson!!.

II. MATHEMATICAL DESCRIPTION OF THE FLOWFIELD

2.1 Lagrangian Description

In the Lagrangian viewpoint, the flow properties are revealed by describing the history
of the fluid particles. By definition, the rate of change of a fluid particle’s position is its
velocity: the velocity must change in accordance with the Navier-Stoke equation. In an
increment of time dt, the increments in fluid particle position and velocity are given by(2!

dz} = Ujdt (1)
v = -19P ( V2y, - 1 9P ) dt )
pBa: p Ox;

where, z}" and Ui'" denote the components of the fluid particle position and velocity in the
i-direction, respectively, at time t. In these equations, the Eulerian velocity and pressure
fields have been decomposed into their means U(x,t) and P(z,t) and the fluctuations u(, t)
and p(z,t). These Eulerian quantities are evaluated at the particle position @(t). The fluid
properties are the density p and the kinematic viscosity v, all assumed to be constant in
the present analysis. The term »V2U; has been omitted as only high Reynolds number
turbulent flows are considered here.

2.2 Generalized Langevin Equation
According to the generalized Langevin model for Eq.(2), the increment in particle
velocity U*(t) in a time interval dt is given by

Uy = ‘%g—Pdt +Gij(U7 — U;)dt + (Coe)/?dWi(t) ®)

i.e., the particle velocity is governed by a stochastic differential equation of the Langevin
type. The notation * is used to distinguish this modelled particle from a fluid particie. The



112 ACTA MECHANICA SINICA ) 1994

term G;j(z,t) in Eq.(3) is a function of the one-point PDF, i.e., a function of one-point
dynamic field, Co is a universal constant, € represents the mean dissipation rate of turbulent
kinetic energy, and W (t) denotes an isotropic Wiener process. This process is Markovian
and stochastic in nature with increments dW (t) = W (t +dt) — W (t) havmg a joint-normal
distribution of zero means and an isotropic covariance matrix

(dW;(2)) =0  (dW,(t)dW(t)) = 6;;d¢ ' 4)

where the angled brackets represent the expectation of the stochastic processes inside.

Eq.(3) represents a linear Markov model for the fluid particle velocity, analogous to
the Langevin equation for the velocity of a particle undergoing Brownian motion. The basic
assumptions embodied in the generalized Langevin equation (3) are that the Markovian
stochastic process W (t) and the G;;(t) terms represent local mean flow quantities, implying
that the model applies only to those flows where turbulence structures can be expressed in
terms of local mean quantities; and that the inertial range scales are locally isotropic.

Eq.(3) also forms a basis where the connection between the Langevin equation and the
Reynolds-stress evolution equation can be established. It can be shown that through the
evolution equation for the joint PDF of the velocities corresponding to the Langevin model,
a modelled Reynolds-stress transport equation can also be derived which reads

D'u,iuj _ _au,-u,-uk

Dt oz + Pij + Gikukuj + G_.,-kukui + 0066,']' (5)
where
Py = —wp i _ g U
=T L x5 oy

Corresponding to the exact transport equation of the Reynolds stresses obtained from the
Navier-Stokes equations!”, it is not difficult to show that the last three terms in the above
equation represent the pressure and viscous correlations in the second-moment closures, i.e.,

1 &
Gikurt; + Gjpurt; + Coebi; = > ( ap +u; 83:) +v(u;V2u; +4;V2u;)  (6)
3
This compatibility between the Langevin model and second-order models is a direct conse-
quence of the linearity of the deterministic term in the velocity components in Eq. (3).

2.3 Closure of G;; Terms

Haworth and Popel® proposed a functional form for G;; that is linear in the mean
velocity gradients and Reynolds stresses. The form is

. Uy |
Gij = 3 (aabij + azbij) + Higi ey "
s Hijit = B18:;6k + Babirbit + Bsbubij + 116:ibr1 + ’Yz&kbﬂ

+v36ibjk + Y46kibij + Y¥561;bki + Y60kjibi
Here, b;; is the normalized Reynolds-stress anisotropy tensor defined by bij = U;u; [Upuk
——56,-,-. The expression (7) contains 11 coefficients, of which, 7 can be deduced from the

Navier-Stokes equation, and the remaining 4 are determined by experimental datal®l. The
values of these coefficients are listed in table 1.
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Table 1
Generalized Langevin model coefficients

Qs Br | B2 | Bs " Y2 73 Y4 | s Y6
3.7 -02 08| —02| —1.24 | 1.04 | —0.34 0 |199 | —0.76

The coefficient ; is determined through the contraction of Eq.(5) such that it becomes
the transport equation of the turbulence kinetic energy, and the constraint on o, is then,

o = — (% 4 %Co) — agh? — §[(ﬂ2 + B85+ 7 /3, + 4 Ly] 8)

with Co = 2.1, b% = bubui, v* = 72 + 3 + 75 + 76 and

g aU;
. I, = bbby —= 9
]a J 2 k k] axj ( )

With expression (7), a closed form of the Reynolds-stress evolution equation can be
obtained from Eq.(5) by substituting the former into the latter. But before doing this, it is
helpful to notice that the expression (6) indicates that the G;; terms physically account for
the interactions between fluctuating velocities and pressure gradients. It is common practice
to attribute the G;; terms to be primarily responsible for the energy 'redistribution. Thus,
expression (6) can be rewritten as

— — 2 ’
Gikukuj + ijuku,- + Coeb;; = ¢,’j - 56,'_1'6 (10)
The @¢;; term, then, represents the redistribution process with zero trace on contraction,
and, hence, can be written in an isotropization form which can be deduced by substituting
the G;; model into the above expression. That is

1 1
¢ij = 4¢ [(al + §a2) bij + as (b?-7 - gsijbik):l
2 2 2 '
+2k [72 (Eij - §5ij12> +73 (Fij - §6ijI2) + (5 +76) (Mij - ‘3‘61']'12)] (11)

1 1 2
=1 (P.'j - §6iijk> = A2 (Dij - §5iijk) — 97 kSii

where | U U, oU;  aU;
D;; = ——u,-ukgw—j — ukujc_‘ia:—i Si; = oz, + B
E;; b?kg_g_z + fkgTU;: M;; = bikb}zskz »
Fy = bfk%g—: + bng—Zf ' b%; = buby;

and, Ay = B2+(72+76)/3, A2 = B3+ (y3+75)/3. It may be observed that the redistribution
model ¢;; formulated in Eq.(11) does not contain the coefficients 3; and v; even- though
they are active in the Langevin equation. This indicates that some turbulence statistical
information contained in the PDF solution are lost in the G;; model.

N
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The redistribution model displayed by Eq.(11) has some interesting properties. The
model is nonlinear in the anisotropy tensor of the Reynolds stresses b;;. The terms on
the first line on the right-hand side represent a nonlinear return-to-isotropy process. This
nonlinearity is found necessary even in the turbulence decay process!?l. The second line
represents the interactions between the quadratic anisotropy tensor with the mean velocity
gradients, a process that has now been widely accepted[®12l. The terms on the third line
have identical form to the Launder, Reece and Rodi’s Quasi-Isotropization Model (QIM).
In fact, the expression (11) may be viewed as a nonlinear extension of QIM with quadratic
terms in the Reynolds-stress anisotropy tensor b;; added on. However, this resemblance
is not complete since the strain rate S;; related redistribution process totally depends on
the nonlinear extensions in the GLM. The absence of these quadratic terms diminishes the
presence of the strain-rate-related terms which stand alone in the QIM. Also, the expression
(11) can easily be reverted to Rotta and the Isotropization of Production Model (IPM) by

setting all the coefficients in this expression to zero apart from a; and )\1 In this way, it
becomes

¢ij = —cleb,J Co ( 6,JPkk) (12)
with ¢; = ~4a; = (24 3Cp) — 262P/e€ and c; = A\; = B;. However, C; has to be a function

of the ratio of the energy production over its dissipation rate, P/e, for c; to take the widely
accepted constant 3.6. In fact, in this case,

1 P\
Co== (C1—2+2ﬂ2-—-)
3 , €

To complete the Reynolds—stress model, the triple velocity correlation %;u;uy, is mod-
elled by the Daly and Harlow’s gradient type modell®! which gives

k___ Ouzu;
—Tu U = Co Uy 3:1:1] (13)

with ¢, = 0.22.

2.4 Remaining Equations for the Solution

The above analysis leads to the closure of the second-moment equations derived from
‘the generalized Langevin model. The complete solution of the flowfield requires the solutions
of the momentum and continuity equations which have the following Cartesian tensor forms:

Momentum
3U,~ _ 10P 1o} aU, an )
e, = 5w oy | (B * 522) ~ 7] (14
Continuity
oU; ;
B = 0 : (15)

It is clear from Eq.(14) that the mean flow variables are strongly coupled with the Reynolds
stresses. In the solution procedure, all three velocity and six Reynolds stress components
have to be solved in the present case of swirling flow, although the flow is axisymmetric. To
complete the closure of the problem, the dissipation rate of the turbulence kinetic energy is



Vol.10, No.2 Fu Song et al.: Computation of Recirculating Swirling Flow 115

obtained through the following equation

Oe 0 k___ Oe € 1
Uja—mj- = a—mk- (Cezukul%) + k(Cdszk - Ceze) (16)

The coefficients c., C¢; and C.; retain their standard values, 0.18, 1.45 and 1.92, respectively.

2.5 k-e Two-Equation Model

In the k- model the Reynolds stresses assume the validity of the Boussinesq hypothesis
that the anisotropy of the Reynolds stresses are linearly proportional to the mean strain rate

____(aU; au;\ 2 :
_'uzuj =l (a—w] a—wl) - 56".7": (17)

where k = %;u; /2 is the turbulent kinetic energy, v, is the isotropic turbulent eddy viscosity
defined in the context of k-¢ model as v; = C.k?/e.

The turbulent kinetic energy k and the dissipation rate € are governed by their modelled
transport equations

ok v\ Ok
and -
Oe o v\ Oe € '

where P = 0.514(8U; /0z; + 8U;/dx;)? contributes to a positive source term in the above
equations, representing the turbulence production. The values of the coefficients in the
above equations are: C, =0.09, 0, =1.0 and o, = 1.22.

* 2.6 Numerical Solution

‘

The model equations are solved numerically by a finite volume method employing the
SIMPLE algorithm. A grid of 50 x 100 nodes is used, preliminary tests having shown that
the solutions obtained are little different on a grid twice as large.

III. RESULTS AND DISCUSSION

The strongly swirling flow of Roback and Johnson was chosen here to be the test case.
The geometry of the flowfield consists of two coaxial jets through which the flow enters an
axisymmetric chamber with sudden expansion. The inner and annular jets have diameters
0.025m and 0.049m respectively. The diameter of the chamber is 0.122m. The swirl velocity
component is introduced to the chamber through the annular jet. It is observed in the
experiment that the swirl strength is so strong that a central recirculation is formed in the
vicinity of the axis of symmetry. The flow can be considered as isothermal and steady state.

3.1 Mean Flow Quantities

Figure 1 shows the streamfunction contour plots calculated with the k- € model and
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with the IPM and GLM second-moment
closures, respectively. It is seen that the
first two give roughly the same length of
the recirculation size in the vicinity of the
symmetry axis, whereas the GLM produces
a very elongated one extending right to the
exit boundary. The flow patterns exhibited
by all the three models differ significantly.
The size of the central recirculation, in-
duced by the strong-swirl inlet condition,
can be best illustrated from the axial ve-
locity developement along the axis, as is
shown in Fig.2. There, it is seen that all
the models fail to provide the velocity re-
covery indicated by the experiment after
the recirculation. The GLM fails to re-
cover the velocity even to the positive value
suggesting a sustained reverse flow pattern
near the axis. The GLM also exhibits an
unrealistic recovery just before the reverse
flow occurs. The cause of this behaviour is
believed to be the effect of the interaction
of the annular and inner jet flows reach-
ing the axis of symmetry. Compared with
the experiment of Roback and Johnson!!!,
the size of the recirculation is well captured
by the IPM, aind the k-e model performed
reasonably well. The reverse flow occurs
on the axis of symmetry in the range of
z=0.04m — 0.17m.

Shown in Figs.3 and 4 are profiles
of the axial velocity, U, and the swirling
velocity, W, at locations z =0.025m,
0.051m, 0.102m, 0.152m and 0.203m, re-
spectively. As the flow enters the chamber,

Fig.1 Contours of the streamfunctions

U(m/s)
O HibWBR O N®

——— k-e model

-1

0 10 20 30 40 50 60
2(m)

Fig.2 Axial velocity development along

the aixs of symmetry

all models give good agreement with the experimental data, as seen in Fig.3(a) and Fig.4(a).
This is due to the dominance of the inlet conditions on the near flowfield. Inside the re-
circulation zone, the models capture the basic features of the axial velocities, Fig.3(b,c),
with GLM producing somewhat unrealistic shape near the axis. At the end and the re-
covering region of the flowfield, the quality of both k-e and the IPM are comparable, but
the strange behaviour of the GLM persists in the entire field (Fig.3(d)). Looking at the
_ swirling velocity inside and in the recovery region, none of the models can be claimed to
be superior to the others (Fig.4(b—d)). Again, GLM displayed particular behavior giving
maximum W-velocity close to the axis. This may also be associated with the U-profiles of

the GLM where unrealistic peaks occur.
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Overall, the basic mean flow features have been captured by the IPM and the k-e
model but none of them is very satisfactory. The GLM behaves in a strange manner, this
is likely due to the nonlinear effects in the redistribution process, as the nonlinear models
need further investigation in general.

3.2 Turbulence Quantities

The differences in the above mean flow quantities are obviously caused by the different
values of the Reynolds stresses with differing modelling strategy in the mean flow equations.
The turbulence quantities predicted by these three models should provide the answer to the -
different behavior of the model performance.

The shear stress %o is shown in Fig.5. It is seen that all the model results have large
errors relative to the experiment. In fact, the k-¢ model may even be said to have performed
better than the second-moment closure IPM. This shows that the Reynolds shear stress wo
is strongly and linearly related to the mean strain rate in this flow. It can be observed that
the GLM persistently underpredicts this shear stress throughout the whole flowfield. This
is believed to be the prime cause-for the occurrence of the excessive central recirculation
exhibited by the GLM, since the shear stress uv is directly responsible for turbulence mixing.
It is difficult to speculate, however, which element in the redistribution equation of GLM,
Eq.(11), causes this underprediction. One possible reason might be that the coefficients 7,
and 73 have different signs which may not be appropriate. The terms associated with these
two coefficients, E;; and Fjj, can be seen as the nonlinear extension of the terms P;; and
D;;, respectively. These latter two terms have the coefficients, A\; and )3, of the same sign.

The shear stress 7w profiles are given in Fig.6. Since no comparison can be made with
experiments, it is difficult to assess the performance 6f the models. But again, the GLM
shows consistent behavior of underpredicting the magnitude of this shear stress as in the
case for wv. For the sake of reference, the anisotropy invariants maps (AIM) for both the
GLM and IPM calculations are also presented in Fig.7. It is seen here that both results

satisfy the realizability condition as all points fall inside the triangular shaped enclosure
* whose vertical axis is (b%)*/? and the horizontal axis (b3;)/3.

IV. CONCLUSION

The present study investigated the performance of the second-moment closure de-
rived from the probability-density function analysis. In particular, the Roback and Johnson
strongly swirling flow was studied with the generalized Langevin model which was first de-
signéd for modelling the fluid particle velocity increment in the Lagrangian viewpoint of the
fluid motion. An isotropization form of the GLM was derived which gives clear interpreta-
tion of the individual terms in this redistribution process. It is observed that the GLM can
be seen as a nonlinear extension of the Rotta and Launder, Reece and Rodi models. The
GLM can also be easily contracted to the IPM.

The computation results show that the GLM produces excessive strength of the recir-
culation. The best agreement with the experiment on the size of the recirculation is obtained
with the IPM. Looking at the mean flow and turbulence quantity profiles, none of the models
appeared to have performed superior than the others, in fact, the k-¢ model results were as
good as that from the IPM. The GLM, however, generally underpredicts the Reynolds shear
stresses, giving less turbulent mixing. This is believed to be the prime cause of the elong-
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g ¥

(a) IPM (b) GLM 1

Fig.7 The anisotropy invariant maps

ated recirculation exhibited by the GLM. The reason for the unconventional velocity profiles
by the GLM is unclear. The nature of the nonlinearity of the model requires further study.
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