Direct numerical simulations of the turbulent mixing of a passive scalar
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The evolution of scalar fields, of different initial integral length scales, in statistically
stationary, homogeneous, isotropic turbulence is studied. The initial scalar fields conform,
approximately, to “double-delta function” probability density functions (pdf ’s). The initial
scalar-to-velocity integral length-scale ratio is found to influence the rate of the subsequent
evolution of the scalar fields, in accord with experimental observations of Warhaft and Lumley
[J. Fluid Mech. 88, 659 (1978)]. On the other hand, the pdf of the scalar is found to evolve in
a similar fashion for all the scalar fields studied; and, as expected, it tends to a Gaussian. The
pdf of the logarithm of the scalar-dissipation rate reaches an approximately Gaussian self-
similar state. The scalar-dissipation spectrum function also becomes self-similar. The evolution
of the conditional scalar-dissipation rate is also studied. The consequences of these results for
closure models for the scalar pdf equation are discussed.

1. INTRODUCTION

Since their advent, direct numerical simulations’
(DNS) have been established, along with the related large-
eddy simulations (LES), as important tools of research in
turbulent fluid mechanics. The introduction of bigger and
faster computers has put turbulent flows with an ever-in-
creasing range of Reynolds numbers within the grasp of
these simulations.

Direct numerical simulations have been shown to be ca-
pable of accurately reproducing the physics of moderate-
Reynolds-number turbulent flows (see, e.g., Refs. 2 and 3).
These simulations use pseudospectral methods to solve the
Navier-Stokes equation numerically without any modeling.
Because of their accuracy, and the fact that almost complete
information of the transient velocity and scalar fields is made
available, these simulations are a powerful supplement to
experimental investigations of turbulence phenomena.

Direct numerical simulations have been used to study
different aspects of the behavior of scalars in homogeneous
turbulence. Kerr* studies the small-scale structure of scalar
fields. Herring and Kerr® used DNS to analyze the validity
of two-point closure models like the direct interaction ap-
proximation. There have also been some simulation studies
done on reactive flow problems.%’ The latter have been
largely concerned with the effect of a decaying velocity field
upon the rate of reaction of passive reactants in the flow.
(Passive scalars are those that have no influence on the ve-
locity field.)

The current DNS study of the mixing of an inert passive
scalar in statistically stationary flows illuminates the process
of turbulent mixing itself, without the added complications
introduced by chemical reactions or by decaying turbulence.
Also, simulations with decaying flow fields are often unduly
influenced by the initial velocity fields because a significant
amount of mixing occurs in the initial period of the simula-
tion.

Situations that involve the advection and mixing of a
scalar in a turbulent flow present an important class of prob-
lems to researchers of fluid flows. Instances of such prob-
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lems appear, for example, in the analysis of chemically reac-
tive flows, turbulent flames, and of pollutant dispersion in
the atmosphere.

The difficulty of extracting information on the scalar
field in turbulent flows has constrained experimental studies
of this subject. However, a number of researchers have stud-
ied the evolution of one-point and two-point quantities of
scalar fields in grid turbulence (see, e.g., Refs. 8 and 9). In
these studies, the variance of the scalar has been shown (like
the velocity variance) to decay in accordance with a power
law in time (in a frame moving with the mean flow velocity).
Warhaft and Lumley® have shown that the value of the expo-
nent in the power law of the scalar-variance decay is depen-
dent on the ratio of the wavenumbers at which the scalar and
the velocity spectra peak. Antonopoulos-Domis'® found
that the scalar power-law exponent was essentially deter-
mined by the ratio of the initial dissipation microscales of the
scalar and velocity fields in his large-eddy simulations of grid
turbulence. Thus the length scales of the scalar and velocity
fields play an important part in determining the turbulent
mixing of the scalar. However, these studies focused on flows
in which the velocity field was decaying. It is useful to know
the extent to which the initial length scales of the scalar field
influence the mixing process when the turbulence is statisti-
cally stationary. Another interesting point that arises is the
question as to whether (and how rapidly) the scalar field
reaches a self-similar state.

Research on turbulent mixing processes is of great inter-
est to those working on turbulent-reactive flows. This is
owing to the fact that turbulence causes the reactants in a
flow to mix more rapidly and may thus significantly increase
the rate of reaction, especially in the cases of relatively rapid
chemical reactions where the mixing determines the overall
rate. Probability density function (pdf) formulations have
had some success in modeling reactive flow problems (see,
e.g., Refs. 11 and 12). However, the molecular diffusion
terms in the equation of the scalar pdf are unclosed and have
to be modeled. Various closures have been proposed for this
term in the one-point and two-point pdf equations.'>-'®
However, little experimental evidence is available to confirm
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the assumptions underlying these closures. It is, therefore, of
interest to be able to study the character of the unclosed
diffusion term so as to evaluate existing closures and, per-
haps, propose new ones.

In the present work, direct numerical simulations are
used to study decaying scalar fields in stationary, homogen-
eous turbulence. The initial scalar fields are constructed so
that the scalar value at any point is close to either one of two
specified values (i.e., conforming approximately to a “dou-
ble-delta function” pdf). The simulations were performed so
as to shed light on the following: (a) the effect of the initial
length scales of the scalar field on the mixing process; (b) the
evolution of the pdf ’s (and related quantities) of the scalar
and the scalar-dissipation rate during the mixing process;
and (c) the tendency of the scalar field to reach a self-similar
state in the later stages of the decay.

Most of the simulations in this study were performed on
a 64° grid, with a Taylor-scale Reynolds number of approxi-
mately 50 and a Prandtl number of 0.7. Among the quanti-
ties studied are the probability density functions of the scalar
and the logarithm of the scalar-dissipation rate, the condi-
tional scalar-dissipation rate, and the scalar-energy and sca-
lar-dissipation spectrum functions.

In Sec. II the numerical method and the forcing scheme
used in the simulations are briefly explained. In Sec. III an
overview of the quantities considered in the simulations is
given. Section IV describes the method used to generate the
initial scalar fields. This is followed by the presentation of
the results and a discussion of their significance in Sec. V.
The paper closes with a summary of the most important
conclusions in Sec. VI.

Il. THE NUMERICAL METHOD AND FORCING SCHEME
A. The numerical method

The simulations were performed using a modified ver-
sion of the computer code developed by Rogallo.'® The code
solves the continuity, Navier-Stokes, and scalar equations
numerically on a three-dimensional grid.

The method of numerical solution is pseudospectral,
i.e., the spatial-derivative terms in the Navier-Stokes and
scalar equations are computed in spectral (Fourier) space,
while the bilinear products in the convective terms are com-
puted in physical space. The aliasing errors caused by the
latter operations are almost completely removed by phase
shifting and truncation techniques.'® The time-stepping
scheme is an explicit second-order Runge-Kutta method.

The solution is obtained on a cubical uniform mesh with
N grid points. In physical space, the cube is of side L and the
grid points are located at x= (/;A,LA,LA), where 1, ,, and
I are integers between 0 and N — 1, and the grid spacing A is
equal to L /N. The grid points (or nodes) in wavenumber
space are at k= (m,ko,m,ky,m;k,), where m,, m,, and m,
are integers between 1 — N /2 and N /2 and k, (the lowest
nonzero wavenumber) is equal to 277/L. The value of Nis 64
for all simulations but one, for which it is 32.

The dependent variables in the simulations are the am-
plitudes of the discrete complex Fourier transforms, @i(k,?)
and ®(k,?), of the velocity and scalar values at the grid

507 Phys. Fluids, Vol. 31, No. 3, March 1988

points, u(x,t) and ¢(x,t), respectively. The use of Fourier
representation imposes periodic boundary conditions on the
velocity and scalar fields, i.e.,

u(x+nL9t) =u(x,t), (1)
and
¢(x+nL,t) =¢(X,t), (2)

where n is any integer vector. Furthermore, the mean veloc-
ity is chosen to be zero, i.e., (0,t) = 0.

To obtain simulations that are well resolved and have
acceptably small time-stepping errors, three conditions have
to be satisfied.

(i) The highest wavenumbers in the computational box
must be large enough to represent the smallest length scales
in the flow (which are of the order of the Kolmogorov length
scale, 7). It was previously found that good resolution is
obtained when the parameter &, 77 is greater than or equal
to unity,”® where k..., is the maximum significant wavenum-
ber resolved by the grid. The value of k,,, is V2ZNko/3
( = 30.17k, for 64> simulations ) the factor y2/3 arises from
the alias removal procedure used.

(ii) The integral length scale of the velocity field (to be
defined later) must be sufficiently small (less than L /3, say)
so that the periodic boundary conditions do not unduly con-
strain the solution.

(iii) The time step Ar must be sufficiently small. The
parameter that is used to control the time-stepping errors is
the nondimensional time step, the Courant number, which is
defined by

C= ([u]l + [v| + |w]) max AL 74, (3)

where u, v, w are the components of velocity (in physical
space) at a grid point. It is clear that, other things being the
same, the choice of higher Courant numbers will decrease
the computer time needed for a simulation. However, Cour-
ant numbers greater than unity are found to cause a marked
increase in the time-stepping errors.?® In the simulations in
this study the Courant number is chosen to be 0.8.

B. The forcing scheme

In order to obtain statistically stationary velocity fields,
the simulations are “forced,” i.e., energy is added to the ve-
locity field at low wavenumbers. This causes the simulations
to reach a quasiequilibrium state where the energy dissipated
at the small scales is equal to the energy added at the large
scales.

The forcing scheme used is fully described and tested
elsewhere.?® Briefly, the forcing is done by including an addi-
tional term in (the spectral form of) the Navier-Stokes
equation in a low-wavenumber band. Therefore, the equa-
tion determining the forced velocity field is

du(k,t)

ot
where d(k,?) is the Fourier transform of the rate of change of
velocity with time, evaluated using the Navier-Stokes equa-
tion, and a/(k,?) is the additional forcing acceleration. The
forcing acceleration is nonzero only for wavenumbers k that
satisfy O < |k| <K, where K is the maximum forcing wave-

=d(k?) +a’(kp), 4
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number, chosen here to be K = 2y2k,. At each of these
wavenumbers, a/(k,?) is obtained from a three-dimensional
complex stochastic process, b(k,t), which is composed of six
independent Uhlenbeck-Ornstien processes (see, ¢.g., Ref.
21), each with a time scale 7, and standard deviation ¢. In
terms of b(k,t), a/(k,?) is defined by

a’(k,t) =b(k,?) — kkb(k,z)/k?, (5

which ensures that a /(k,#) satisfies the continuity equation
(k-a’=0).

The forcing scheme introduces three nondimensional
quantities in the simulations: the forcing Reynolds number,
Re*(=e*'/?k,~*/3/v), the nondimensional forcing time
scale T*#(=T,e*'*k %), and the nondimensional maxi-
mum forcing wavenumber K/k,. Here v is the kinematic
viscosity and e* is defined by €* =0 >T, . These three nondi-
mensional quantities can be varied to obtain simulations of
different Reynolds numbers and nondimensionalized Kol-
mogorov length scales (k,77). For all the simulations in this
study, K ;/k, is equal to 242.

The forcing scheme used in this study has been shown to
yield relatively isotropic velocity fields.”® As homogeneity
follows as a direct consequence of the numerical scheme, the
velocity fields in this study are, therefore, homogeneous and
isotropic.

Jil. CALCULATED QUANTITIES

The pdf’s of the scalar, ¢(x,?), and of the logarithm of
the scalar-dissipation rate, €, (x,t) [ =DV (x,1)-Vé(x,t),
where D is the diffusivity of the scalar], were computed at
regular time-step intervals during the simulations. The pdf ’s
were estimated by generating histograms, with a relatively
large number of intervals (200), from the values of ¢ and €,
at the grid points. As there are about one-quarter of a million
grid points (in a 64> simulation), the marginal pdf ’s can be
expected to have low statistical errors. The pdf of In(€, ) was
calculated instead of the pdf of €, because the latter pdfhas a
long “tail,” which makes it difficult to estimate an appropri-
ate upper bound to be used when constructing the histo-
grams.

The conditional expectation of the scalar-dissipation
rate,

X80 = (e, (x,0)|p(x,0) = §), (6)
is a quantity of great interest because of its central role in the
scalar pdf equation. For the case considered—a homogen-
eous scalar field in homogeneous turbulence—the scalar pdf,
P, (é;1), and indeed all one-point statistics, are independent
of x. The equatlon determining the evolution of P, (é;t) can
be written as'*

9P, ($; n
.ot a¢2 [X(¢:t)P¢ (¢ t)] (7)
It may be seen then, for the homogeneous case, the sole un-
known in the scalar pdf equation is the conditional dissipa-
tion x(&,t). Many closures have been proposed for the pdf
equation,'>~'® few of which are based on a direct model for
x(&.0.
The conditional expectation, x(¢ t), is estimated by
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generating a histogram of the scalar values, ¢ (x,t), weighted
by the corresponding scalar-dissipation rate, €, (x,?), at the
same point. The values of this function at each interval is
then divided by the (unweighted) histogram value of the
scalar at the appropriate interval to yield the estimate of
X((},t). To decrease statistical errors, fewer histogram inter-
vals (50) are used (compared to 200 used for estimating the
pdf).

Among the other quantities computed are the energy,
scalar-energy, and scalar-dissipation spectrum functions.
The energy spectrum function E(nkg,t) and the scalar-ener-
gy spectrum function E,(nkyt) (n=0,1,2,..,N,,), de-
scribe the energy and scalar energy in wavenumber shells of
thickness k,. (Here N,,, is the greatest integer less than
K onax ko, which is 30 for a 64° grid.) The spectra are comput-
ed by summing the squares of the complex Fourier modes of
velocity and scalar, respectively, for all k, such that
nky — ko/2< |k| < nky + ko/2. The scalar-dissipation spec-
trum function D, (nkyt) is similarly computed directly
from the Fourier modes by summing 2Dk *® (k,£)®*(k,?) in
each wavenumber shell. (The asterisk indicates the complex
conjugate.)

[ A technical detail, which is reported for completeness,
is that the spectra are compensated for nonuniform node
density. In the shell centered on nk, there are M(n) nodes,
and the node density is

M (my=M@n)/{r[(n+ 1% — (n—$°]} (8)

This node density is approximately unity (i.e., independent
of n); but, especially for small », there are variations. To
compensate for this nonuniformity, the spectrum functions
are computed as described above and then divided by
M'(n).]
The volume-averaged scalar variance (¢*) is calculated
from the scalar spectrum function, i.e.,
n=N,

max

() =ko Y E,(nko). 9

n=0
[Because of the symmetry of the scalar values, {(#) is zero,
and (4°) is equal to ¢’%, where ¢’ is the root-mean-square
(rms) value of the scalar.] The volume-averaged scalar dis-
sipation (¢, ), defined by
= Npa:

(€,Y=D (V(x,1)V(x,t)) = =2 E

¢(nko),
(10)

is also computed.

Three length scales characterize the energy-containing
scales, the dissipation scales, and the mixed energy-dissipa-
tion scales of the turbulent velocity fields. They are, respec-
tively, the average integral scale

IEi:ijz _E,(0.), (11
the Kolmogorov microscale

n=(*/e)'4, (12)
and the Taylor microscale

A=(e/15v?) 12, (13)

where E,; (k,t) is the one-dimensional longitudinal energy
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spectrum of the ith velocity component (see, e.g., Ref. 22), u
is the rms value of the components of velocity, and € is the
volume-averaged energy-dissipation rate.

Each simulation is characterized by the Reynolds num-
ber based on the Taylor microscale, Re; =uA /v, and the
nondimensional Kolmogorov length scale, ky7. Simulations
that have the same values of these two parameters display
nearly identical statistics for a number of quantities pre-
viously studied.?®

We use the eddy-turnover time //u to normalize the
time ¢.

The two length scales of the scalar field considered here
are the integral length scale /,, defined by

ly=(7/2{($*))E 4 (0,0), (14)
and the scalar dissipation scale A, defined by
/1¢5[((5¢>/6D(¢2))]~”2, (15)

where E |, (k,t) is the one-dimensional scalar-energy spec-
trum.

IV. INITIAL SCALAR FIELD
A. Initialization of the scalar fields

The initial scalar fields, ¢(x,0), are constructed so that
the pdf of the scalar values conforms as closely to a double-
delta function as is allowed by the constraints imposed by the
numerical scheme. That is, the scalar values of the initial
fields are as close to either one of two values ( + 1 and — 1,
in this case) as is possible while keeping the fields smooth
enough to be well-resolved in the simulations.

The procedure used to create these initial scalar fields is
as follows.

(a) First, the Fourier amplitudes of the scalar field are
assigned random values such that the resultant scalar-ener-
gy spectrum function is equal to a specified function, f; (k).
The corresponding Fourier phases are randomly chosen.
This is done by the following assignment:

®(k,0) = [ £, (k)/4mk*]"*exp[2mif(k)], (16)

where (here and below) k is the magnitude of k, and (k) is
a uniformly distributed random number between 0 and 1
(chosen independently for each node). The function f; (k)
is chosen to be a “top-hat” function, defined more precisely
in the following subsection.

The scalar-energy spectrum function is computed from
the relationship

E,(nkyt) = az o (k,0)P*(k,t), n=01.2,..,N_,,
K’l

(17)
where K, is the set of all wavenumbers that satisfy nk, — k,/
2<|k| < nky + ky/2, and a is a normalization factor. There-

fore, after the first step of the initialization, the scalar spec-
trum is

Jo (K)
4k’
where the left-hand side of the equation approximately

equals the average value of f, (k) over the interval of sum-
mation.

E, (nky,t) =az (18)
Kn
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(b) Next, the scalar field is (inverse-Fourier) trans-
formed into physical space. In physical space, the scalar val-
ue at each node is reset to 1, if it is positive, and to — 1 ifitis
negative. This operation yields the desired “double-delta”
distribution but also causes the scalar value to change
abruptly between adjacent nodes, thereby causing signifi-
cant high-wavenumber components in the scalar field that
are poorly resolved in the simulations.

(c) In the final step of the initialization the scalar field is
retransformed into spectral space. The Fourier amplitudes
of the scalar are multiplyed by a filter function, F(k), de-
fined by

, if k<k,,
(k/k)7% if k>k,,

where k_ is a specified cutoff wavenumber. This filtering
operation removes much of the poorly resolved high-wave-
number components of the scalar fields.

F(k) = { (19)

B. The length scale of the initial scalar field

As one of our stated aims is to observe the effect of the
length scale of the initial scalar field upon the subsequent
mixing, a systematic method of varying the length scale is
needed. The method used simply consists of changing the
function f (k), which is used to create the initial scalar
field.

The function f4 (k) is chosen to be a “top-hat” function
of width k,, centered on a selected integer wavenumber k_,
ie.,

1, if k, — ko/2<k<k, + ko/2,

. (20)
0, otherwise.

fao-|
The parameter k,/k, essentially determines the integral
length scale of the scalar field. Higher values of k,/k, yield
lower length scales for the scalar field and vice versa.

10° - - [ -
N ™
o ]
3 \\\_\ :
i x ~ ]
1072 L \_\ ~__ ]
3 (b) E
\ ~
%, N
5 f \ o
T o=f \ ]
g 3 \ : 3
E \ (c) 3
3 (a) \ ]
1076 | \, ]
E \' 3
\
E .\ %
1078 : L h
10° 10!

FIG. 1. The scalar-energy spectrum function at different stages in the scalar
field initialization (N = 64, k,/k, = 1, k./k, = 2). The lines (a), (b), and
(c) are the function after the respective initialization stages.
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The second parameter in the specification of the initial
scalar fields is the ratio k./k,. For the same value of k_,
higher values of k,, allow more high-wavenumber scalar en-
ergy to exist after the creation of the initial scalar field. It is
found, however, that this scalar energy is quickly eliminated
by the high scalar dissipation in the high-wavenumber re-
gions. This means that, beyond a certain limit, increasing
k./k, affects only the smaller scales where the consequent
variation is short-lived.

Figure 1 shows the scalar-energy spectrum function at
the end of steps (a), (b), and (c) of the initialization for a
typical simulation with k,/k, = 1 and k. /k, = 2. [In Fig. 1,
the scalar-energy spectrum function at the end of stage (a)
of the initialization is zero everywhere except at n = 1. For

2'5-|||ﬁ—1ﬁr"|'|'IVI'|'fWII|v1|T'|—r
L i
- 4
20 [ ]
L i
i ]
- 1.5[ ]
g I ]
1.0[ (a) il = 0.07
[ i
i ]
L J
0.5 [ ﬂ
T Brvevvopes=eee
0‘0 PN Y RS NN TR (N0 WY S TN U W U0 T [N WO AN TN G N Y T
0 8 16 24 32
n
2.5 L B e e S I BN R Ee e S e s e e e e
20[ j
i ]
15[ )
T I 7
£ 1
~— N b
> | ]
Q10[ (b) tull = 0.27 ]
05 T
L |
i u_/\—"‘ )
0-0 ) RSN N NN TN OR[NV WO N T (Y VRN Y WO (NN Y [ S Y S | 1J_L-
0 8 16 24 32
n

FIG. 2. The scalar-dissipation spectrum function for two simulations (F2e)
with identical initial conditions (k,/k, = 8), but different scalar-cutoff
wavenumbers (X./k, = 2 and 4, for the solid and dashed lines, respective-
ly): (a) shortly after initialization (#u/!=0.07); (b) a later time (tu/
1=0.27).
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convenience in plotting the graph, 10~ is used as a nominal
Zero. ]

Figures 2 and 3 illustrate the influence of the cutoff
wavenumber k.. Figure 2 shows the scalar-dissipation spec-
tra for the case k./k, = 8, with two different values of the
cutoff: k./k, = 2 and 4. A little after the initialization [Fig.
2(a)] the difference is evident, but after about one-quarter
of an eddy-turnover time [Fig. 2(b)] the two spectra are
very similar—the high-wavenumber variation has been vir-
tually eliminated. Figures 3(a) and 3(b) show the pdf of the
logarithm of the scalar dissipation for the same cases shown
in Figs. 2(a) and 2(b), respectively. Again, the two pdf’sin
Fig. 3(b) are close to identical.

From this evidence we conclude that the effect of the
parameter k_/k, (aslong as it is not too small) is not signifi-
cant beyond a short time from the scalar field initialization.
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FIG. 3. The pdf ’s of the logarithm of the scalar-dissipation rate for the same
conditions as Fig. 2.
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FIG. 4. Contour plot of the scalar values on an
arbitrary plane in an initial scalar field. The con-
tour interval is 0.3 (k,/k, = ; k /k, = 2).

The value of k,/k, was chosen to be 2 for the simulations in
this work. With this relatively small value we find that the
scalar field is adequately resolved, even at early times.

Figure 4 shows the contour lines describing the initial
scalar values on an arbitrary plane in a typical simulation
(k./kqs=1). The solid and dashed lines indicate positive
and negative scalar values, respectively. It can be seen that
the initial scalar field consists of relatively broad patches
where the scalar values are close to + 1, which are separated
by narrow transition zones with intermediate values.

The initial scalar pdf ’s (and those at early times) may
be seen in the figures presented below (e.g., Figs. 6 and 14 -
16).

C. Resolution of the scalar fields

It has been shown previously? that the velocity fields
are, for most purposes, well-resolved when the parameter

TABLE 1. Summary of forced turbulence simulations: velocity fields.

k... 7 is greater than, or equal to, unity. In the simulations in
this study, the lowest value of this parameter is 1.01 (simula-
tions F2a-F2e; see Table I). It is necessary to show that the
scalar fields are well-resolved at this value of k. 77 for the
Prandtl number of 0.7 used in this study.

This is done by comparing a simulation with a higher
value of k., 7 (1.42; simulation F3e) with another simula-
tion with identical values for the other parameters, and with
identical initial conditions, but with a value of k,,,,, 7 equal to
1.01 (F3f). The maximum wavenumber, k_,,, , was reduced
in the latter simulation by discarding the Fourier modes out-
side a shell of the appropriate wavenumber when time step-
ping the solution of the Navier—Stokes and scalar equations.

Figures 5(a) and 5(b) show the evolution of the scalar
rms and the scalar-dissipation rates from these two simula-
tions. Except for a small difference in the scalar-dissipation
rates during the initial period of the simulations, the results

Run Vel. field kon Knax T kol koA 1/u Tpu/l Re, D*

Fla vl 0.0376 1.13 1.17 0.528 0.49 39 50.5 0.581
Fic v2 0.0368 1.11 1.02 0.510 0.42 4.4 49.9 0.590
F2a-F2e v3 0.0359 1.01 1.01 0.464 0.38 44 49.2 0.663
F3a—-F3e v4 0.0473 1.42 1.11 0.583 0.66 4.2 39.2 0.664

F3f v4 0.0473 1.01 111 0.583 0.67 4.2 39.2 0.664

F4° v5 0.0721 1.09 1.24 0.744 1.34 14.2 27.6 0.730

* 323 simulation.
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FIG. 5. The evolution of the scalar rms and dissipation rate for two simula-
tions (F3e and F3f) with identical initial conditions, but different values of
k.M ( = 1.42 and 1.01, for the solid and dashed lines, respectively). The
time is normalized by the eddy-turnover time (Re, =~40): (a) the scalar
rms (the two lines are indistinguishable); (b) the scalar-dissipation rate.

are identical for the two cases. This evidence strongly sug-
gests that the scalar fields are well-resolved for simulations
with a value of k., 7 of at least 1.01 and a Prandtl number
of 0.7.

V.RESULTS

This section contains the results obtained from a series
of direct numerical simulations of the turbulent mixing of a
passive scalar in statistically stationary turbulence. The ini-
tial scalar fields have a prescribed integral length scale and
the initial pdf of the scalar conforms roughly to a double-
delta function distribution.

The initial velocity fields are generated by running

512 Phys. Fluids, Vol. 31, No. 3, March 1988

(pre) simulations, starting from (almost) arbitrary initial
conditions. and with prescribed forcing parameters (Re¥*,
T¥ and K/k;) for four or more eddy-turnover times. Sta-
tistical stationarity is reached by the end of these computer
runs. The velocity fields are stored and used as the initial
velocity fields for the simulations.

A. Flow conditions

The principal parameters and output quantities from
the simulations in this study are presented in Tables I and II.
The symbols v1,v2,... and s1,s2,..., etc., in these tables refer
to different initial velocity and scalar fields, respectively, T
refers to the real time of a simulation, and D * is the nondi-
mensional energy-dissipation rate (D *=e€/u’k,).

The 64° simulations were performed for Reynolds
numbers of, approximately, 40 and 50 (corresponding to a
nondimensional Kolmogorov length scale of kyn~0.047
and 0.037, respectively). The forcing Reynolds number Re*
and time scale T} are 9.421 and 0.15 (Re; ~40; simulations
F3a-F3f) and 14.402 and 0.15 (Re; =~ 50; simulations Fla,
Flc, F2a~-F2¢). The parameter K »/k, is 2y2 in all the simu-
lations and the kinematic viscosity v, and the Prandtl num-
ber Pr, are 0.025 and 0.7, respectively.

B. Statistical variability

‘When two or more simulations are performed with iden-
tical parameters (Re*, T¥, k,/k,, etc.) but with different
random numbers used in the specification of the initial con-
ditions, then some statistical variability between the simula-
tions is expected.

In order to gauge the extent of this variability, three
simulations (Fla, Flc, F2a) with identical parameters, but
with different initial velocity and scalar fields, were studied.
Figure 6 shows the initial pdf of the scalar for these simula-
tions. The pdf ’s are quite similar, although some variability
is evident, not only from the differences between the curves,
but also from the asymmetry of the pdf ’s. Little variability is
evident in the initial scalar-energy spectrum functions which
are displayed in Fig. 7.

The evolution of the scalar rms ¢’, and the scalar dissi-
pation (¢, ) in Figs. 8 and 9, respectively, follow similar but

TABLE II. Summary of simulations: scalar fields.

Run Scalar field k,/k, (/Do A/ 0
Fla sl 1 1.248 3.28
Flc s2 1 1.520 3.56
F2a s3 1 1.484 3.83
F2b s4 2 0.684 2.04
F2c S 4 0.450 1.07
F2d s6 6 0.252 0.71
F2e s7 8 0.182 0.54
F3a s8 1 1.284 293
F3b s9 2 0.544 1.62
F3c s10 4 0.394 0.85
F3id sl 6 0.242 0.56
Fle s12 8 0.166 0.43
Fif s12 8 0.168 0.44
V. Eswaran and S. B, Pope 512
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FIG. 6. The initial scatar pdf s for three simulations with identical input
parameters but different initial conditions: Fla (dashed line), F1c (dashed
line with pluses), and F2a (solid line) (Re; =50).

not identical paths. This evidence suggests that the evolution
of the scalar is, to a degree, sensitive to statistical variations
in the initial scalar and velocity fields even when the relevant
initial length scales are relatively unchanged (as in simula-
tions Flc and F2a).

C. Evolution of scalar variance and dissipation

Figure 10 shows the decay of the scalar rms ¢’ for the
five simulations F2a~F2e. In each case the velocity field is
the same (Re; = 49.2), but the initial scalar fields have dif-
ferent integral length scales /,—differing by as much as a
factor of 8. It is clear from the figure that /, has a major effect
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FIG. 7. The initial scalar-energy spectrum functions for the same cases as in
Fig. 6.
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FIG. 8. The evolution of the scalar rms for the same cases as in Fig. 6.

on the decay rate, at least for the first two eddy-turnover
times.

Figure 11, which shows the evolution of the scalar dissi-
pation (¢, ), explains the trends observed above. It is readily
shown from an examination of the initialization procedure
that (all other things being fixed) (e, ) is initially propor-
tional to k 2 and hence to/ ;2. Thus, for example, the initial
value of (¢, ) for run F2e (k,/k, = 8) is observed to be four
times that of run F2c¢ (k,/k, = 4). For the two smallest ini-
tial values of /, (F2d and F2e), (¢,) may be seen to decay
monotonically, whereas with the larger initial values of /,,
(€, ) increases to a maximum before decaying.

In decaying grid turbulence, ¢’ and (¢,) decay with
time according to power laws.® This corresponds to the me-
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FIG. 9. The evolution of the scalar-dissipation rate for the same cases as in
Fig. 6.

V. Eswaran and S. B. Pope 513

Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



100

S ——
107!

1072 ™~

T T T YT

T
s

10—3AllLllllllJJlLJ_llllIlllll|A||||||
0. 1. 2. 3 4.
tu/l

P A A B S

FIG. 10. The evolution of the scalar rms for simulations with identical ini-
tial velocity fields, but with different values of k,/k,. Data from simulations
F2a (—; k,/ky = 1), F2b (- - -; 2), F2¢ (- + -; 4), F2d (-0-; 6), and F2e
(-x~; 8). The time is normalized by the eddy-turnover time (Re; = 50).

chanical-to-scalar time-scale ratio
rs((e¢)/(¢2))/[e/(3u2)], an

being constant. Depending on the initial conditions, values
of 7 in the range 0.6 —2.4 are observed.>** For the present
case of forced stationary turbulence, a constant value of »
results in exponential decay of ¢’ and (€, ). With the scales
used in Figs. 10 and 11, exponential decay corresponds to
lines of constant slope. The figures suggest that at large times
(t> 31 /u, say) such constant-slope segments occur.
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FIG. 11. The evolution of the scalar-dissipation rate for the same cases as in
Fig. 10.

514 Phys. Fluids, Vol. 31, No. 3, March 1988

AR N BN N B B Bt S B ot B N O A L B N B G

0- T T N0 TN SO U A U N U0 WA S OO0 00 T W OO0 S0 T SO O S0 N O NNV S T O W O B S B A 1

0. 1. 2. 3. 4.
tull

FIG. 12. The evolution of the mechanical-to-scalar time-scale ratio 7 for the
same cases as in Fig. 10.

The question is addressed more directly by Fig. 12,
which shows the evolution of 7 itself for the same five simula-
tions. Like (e, ), initially r is proportional to I ;2, all else
being equal. In all cases, 7 rises initially but then levels off or
decreases. Having initially differed by as much as a factor of
64, by t = 4] /u the values of r are within 25% of each other,
and several of the curves have crossed. This strongly sug-
gests a trend toward a universal value independent of the
initial condition. At the end of the simulations (¢ = 4.4/ /u)
the value of r is approximately 2.5, but a downward trend is
still evident.
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FIG. 13. The evolution of the mechanical-to-scalar time-scale ratio r for the
simulations with Re, ~40. Data from simulations F3a (—; k,/k, = 1),
F3b (- --; 2), F3c (- +-; 4), F3d (-0-; 6), and F3e (-x-; 8). The time is
normalized by the eddy-turnover time.
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Simulations were also performed at a lower Reynolds
number, Re; = 39.2 (F3a~F3e). In all respects the results
are analogous to those already reported. For example, Fig.
13 shows a similar evolution of the time-scale ratio » (cf.
Fig. 12).

Our observation that » appears to approach a universal
value independent of initial conditions is at variance with
Warhaft and Lumley’s observation.® This is discussed
further in the next section.

D. Evolution of the scalar pdf

It is generally assumed that the scalar pdf P, ( $;t), start-
ing from a double-delta function distribution, evolves
towards a Gaussian. But the shapes adopted by P, ( é;t) dur-
ing this evolution have hitherto been unknown.

For one simulation (F2a; Re;, = 49.2, k,/k, = 1), Fig.
14 shows the scalar pdf P, (¢;¢) at five different stages of its
evolution. At the earliest time shown (¢ = 0.22/ /u) little de-
cay has taken place (see Fig. 10): the rms ¢’ is still 99% of its
initial value, denoted by ¢, The pdf at this early time has
peakscloseto + 1and — 1 corresponding to unmixed fluid,
and in between a U-shaped distribution. This is the expected
contribution from diffusive layers, possibly with error func-
tion profiles of ¢.

At the next time shown (7 = 1.49/ /u, ¢’ = 0.73¢,) the
peaks have disappeared, and the distribution is remarkably
flat. Later still (# = 2.11/ /u, ¢’ = 0.55¢,) the pdf resembles
an inverted parabola with a noticeable lack of tails. As time
progresses further, the pdf evolves towards the familiar bell-
shaped curve. In Sec. V F evidence is presented showing that
the asymptotic shape is indeed Gaussian.

Remarkably, and importantly, the evolution of pdf
shapes described above appears to be independent of the ini-
tial conditions. Figures 15 and 16 show P, ( $;t) for the cases
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FIG. 14. The scalar pdf from simulation F2a (Re, =50, k,/k, = 1) at dif-
ferent times. Lines: — (tu/l=0.22; ¢'/¢¢ = 0.99), - - - (1.49;0.73), - + -
(2.11; 0.55), -0- (2.78; 0.40), -x- (3.47; 0.27).
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FIG. 15. The scalar pdf from simulation F2¢c (Re; =50, k,/k, = 4) at dif-
ferent times. Lines: — (tu/l = 0.22; ¢'/¢; = 0.92), - - - (0.42; 0.80), - + -
(0.83; 0.54), -0- (1.28; 0.35), -x- (1.49; 0.28).

k,/ky=4 and 8, respectively. Thus while (as shown by
Warhaft and Lumley®) /,/! is an important parameter in
determining the rate of evolution of the scalar variance, it
does not affect the shapes adopted by the scalar pdf. Need-
less to say, this observation greatly simplifies the task of con-
structing models for the evolution of scalar pdf ’s. Also, even
though our simulations are for particular initial conditions,
the results have generality.

Figure 17 shows the evolution of the pdf of In(¢,) for
the simulation with the smallest initial scalar integral scale
(F2e; Re; =49.2, k,/k,=28). Except at the first time
shown, the pdf ’s have a similar shape: they are bell shaped,
with a slight negative skew (see Fig. 24 below). As time
progresses, the pdf ’s become centered on smaller values of
In(€,), reflecting the decrease of (€,) (see Fig. 11). At the

15[

1.0

Py@it)

051

FIG. 16. The scalar pdf from simulation F2e (Re, =50, k. /k, = 8) at dif-
ferent times. Lines: — (tu/! = 0.07; ¢'/¢; = 0.94), - - - (0.22; 0.76), - + -
(0.42; 0.54), -o0- (0.62; 0.38), -x- (0.83; 0.27).
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FIG. 17. The pdf of the logarithm of the scalar-dissipation rate for the same
case as in Fig. 16,

earliest time, there is a significant probability of relatively
very low dissipation, corresponding to fluid in unmixed
blobs with ¢~ + 1.

E. Conditional scalar dissipation

The pdf evolution equation [Eq. (7)] shows that, for
the case considered, the scalar pdf P, (¢;t) evolves solely
because of the effects of conditional scalar dissipation,
x(.1) = (€,(x,1)|d(x,t) = #). Figures 18 and 19 show for
two simulations (Re, = 49.2, k,/k, = 4 and 8, respective-
ly) the conditional scalar dissipation (normalized by the un-
conditional mean) at three times. At the first time shown
(corresponding to ¢'=~0.5¢,) y(&,t) exhibits a parabolic
shape, being maximum at ¢ = 0, and small for large values of
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FIG. 18. The evolution of the conditional scalar-dissipation rate from simu-
lation F2¢ (Re; =50, k,/k, = 4). Lines: — (tu/l = 1.05; ¢'/¢; = 0.43),
---(2.11;0.16), - + - (3.25;0.07).
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FIG. 19. The evolution of the conditional scalar-dissipation rate from simu-
lation F2e (Re, =50, k,/k, = 8). Lines — (tu/l = 0.42; ¢'/¢; = 0.54),
---(1.05;0.20), - + - (2.78; 0.04).

|@|. This is the expected shape for a field consisting of diffu-
sive layers separating regions of approximate homogeneity.

At the intermediate time shown (corresponding to
¢'~0.24,) the curves of y (#,7) appear aimost flat, while at
the latest time (4'=0.05¢,) they are again parabolic but
with a minimum at ¢ = 0.

To examine further the dependence of €, on ¢, we con-
sider the correlation function defined by

p={(¢%€,)/({$*)(e,)) ~ 1. (22)

1.0
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FIG. 20. The evolution of the scalar variance dissipation correlation func-
tion for simulations with identical initial velocity fields, but with different
values of k,/k,. Data from simulations F2a (—; k,/k, = 1), F2b (- - 2),
F2c (- + -;4), F2d (-0-; 6), and F2e (-x-; 8). The time is normalized by the
eddy-turnover time (Re; ~=50).
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This is not a correlation coeflicient, but it has similar proper-
ties and is easier to evaluate accurately. If ¢ and ¢, are inde-
pendent, then p is zero. If large values of ¢* are accompanied
by large values of €, then p is positive, etc. Figure 20 shows
the evolution of g with time for the five simulations with Re
= 49.2. In all cases, p is initially about — 0.65 and subse-
quently increases, most rapidly for the case with the smallest
length scale. Eventually p becomes positive. It is shown be-
low that for very large times, p asymptotes to zero, but this is
not evident within the duration of these simulations.
The results for the simulations with Re; = 39.2 (not
shown) are similar in all respects.

F. Self-similarity at large times

We now address the following questions: at large times,
does the scalar pdf become self-similar, independent of the
initial conditions? And, if so, is the pdf Gaussian? It has
already been observed that the evolution to an asymptotic
state (assuming it to exist) is quite slow. For example, even
after four eddy-turnover times, the time scale 7 is still evolv-
ing (see Fig. 12).

Figure 21 shows, for one simulation, the standardized
scalar pdf at five late times (¢'/¢, <0.25). (The standard-
ized pdfis the pdf of ¢/¢'.) It may be seen that there is fairly
close agreement between the pdf’s, although some differ-
ences are noticeable around the peak. The corresponding
standardized pdf ’s of scalar dissipation are shown in Fig. 22.
Again close agreement is observed.

Figure 23 shows the normalized scalar dissipation spec-
trum function at the end of the five simulations with Re;

= 49.2, Even though the initial spectra are quite different—
the length scales differing by as much as a factor of 8—it may
be seen that there is relaxation to a universal spectrum.
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FIG. 21. The standardized pdf of the scalar at different times in the later
period of its evolution during a typical simulation (F2c; Re, =50,
k,/ko=4). Lines: — (tu/I = 1.70; ¢'/¢3 = 0.23), - - - (2.33; 0.14), - + -
(3.00; 0.08), -o- (3.69; 0.05), -x- (4.13; 0.04).
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FIG. 22. The standardized pdf of the logarithm of the scalar-dissipation rate
for the same case as in Fig. 21.

To examine more quantitatively the asymptotic form of
the pdf’s, the skewness and flatness factors of ¢ and In(e,)
are shown in Fig. 24 for the simulation F2c. (Here S,,[¢]
denotes the mth standardized central moment of the random
variable g.) The skewness of In(¢€,, ) appears to reach a value
of about — 0.3, while the flatness reaches about 3.2. Thus €,
is not precisely log normal, though it is approximately so.

The skewness of ¢ is initially zero, but a small positive
value develops. This can only be a result of statistical vari-
ability because in all respects ¢ is statistically symmetric
about zero. The flatness starts slightly above 1 (the value for
a double-delta distribution), passes through 3 (the Gaussian
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FIG. 23. The normalized scalar dissipation-spectrum function in the later
period of its evolution. Data from simulations F2a (—; tu/l = 4.13; ¢'/¢;,
=0.19), F2b (---; 4.35; 0.11), F2c (- + -; 4.35; 0.03), F2d (-o-; 4.35;
0.02), and F2e (-x-; 4.35; 0.01).
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FIG. 24. The evolution of the skewnesses and the flatness factors of the
scalar (— and - - -, respectively), and those of the logarithm of the scalar-
dissipation rate (-o- and -x-, respectively), from a typical simulation (F2c).

value), and shows little sign of leveling off (let alone return-
ing to 3).

The lack of Gaussianity of P, (@;t) goes hand in hand
with the dependence of €, on ¢ (see Fig. 20). If ¢ is inde-
pendent of ¢ [ie., y(4,2) = (€,)], then the pdf equation
[Eg. (7)] becomes analogous to the unsteady heat conduc-
tion equation (with negative conductivity). This equation
admits the (unstable) solution of the self-similar decay of a
Gaussian distribution. Conversely, it can be shown that self-
similar Gaussian decay requires €, to be independent of ¢.
Thus Figs. 20 and 24 consistently indicate the lack of Gaus-
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FIG. 25. The evolution of the skewnesses and the flatness factors of the
scalar (— and - - -, respectively), and the logarithm of the scalar-dissipa-
tion rate (-0- and -x-, respectively), from a longer (32*) simulation (F4)
(Re, =28, k./k, = 4).
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FIG. 26. The evolution of the superskewnesses of the scalar (—) and those
of the logarithm of the scalar-dissipation rate (- - -) for the same case as in
Fig. 25.

sianity in P, (J;t) at the end of the simulations—about four
eddy-turnover times.

This observation begs the question: is this the true as-
ymptote, or is there further evolution at still later times? The
question can be answered by continuing the simulations
further in time. This is computationally expensive; and in
order to limit this expense, a long 32> simulation was per-
formed (F4). The forcing time scale T¥ is maintained at
0.15, while the forcing Reynolds number has to be reduced
to maintain good spatial resolution (k,,,7 = 1.09). The re-
sulting Reynolds number is Re; = 27.6.

Figure 25 shows the skewness and flatness factors of ¢
and In(¢,) from these 323 simulations. The conclusions
about In(e, ) are as before (cf. Fig. 24). But for 4, it may be
observed that for ¢ > 8/ /u, both the skewness and flatness are
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FIG. 27. The evolution of the scalar variance-dissipation correlation func-
tion, p for the same case as in Fig. 25.
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(except for statistical variability) close to the Gaussian val-
ues of 0 and 3, respectively. The superskewness ({(#%)/
(¢*)?), shown in Fig. 26, again is close to the Gaussian value
of 15 for ¢ > 8/ /u, having previously reached a maximum of
25.

Figure 27 shows the correlation function p [see Eq.
(22)] and is consistent with the above picture of Gaussian-
ity: for t> 8/ /u, p is close to zero, which is a necessary
(though not sufficient) condition for €, to be independent
of 4.

Vi. SUMMARY AND CONCLUSION

New insights into passive scalar mixing have been pro-
vided by these direct numerical simulations of statistically
stationary, homogeneous, isotropic turbulence. Using 64>
grids, Taylor-scale Reynolds numbers of up to 50 have been
achieved; the Prandtl number is 0.7.

A method has been developed for generating initial sca-
lar fields of a specified length scale, and with an approxi-
mately “double-delta function” pdf. In the simulations, sca-
lar-to-velocity integral length scale ratios /,// in the range
0.17-1.52 have been studied.

The length scale ratio /,// is found to have a significant
effect on the initial decay rate of the scalar, i.e., the smaller
scale fields decaying faster. This effect persists for a long
time (until z=~4/ /u, say) but eventually the decay rate be-
comes independent of the initial conditions. Another mani-
festation of the same phenomenon is the behavior of the
time-scale ratio 7. Initially this varies by a factor of 64 (de-
pending on the initial conditions), but after a long time it
adopts the universal value r=2.5.

Experimentally, the same effect on the initial decay rate
is observed,®?? but, contrary to our observations, the effect
persists. That is, » is observed not to relax to a universal
value. A possible explanation of this difference between ex-
periment and simulation is that the duration of the experi-
ments is insufficiently long for the relaxation to be observed.
But this explanation is not, by itself, sufficient. Warhaft**
found no relaxation of r between 50 and 500 mesh lengths in
his wind-tunnel experiment, whereas in the simulations the
relaxation is nearing completion by 4.5/ /u(see Fig. 12).
(Warhaft’s results correspond, in our nomenclature, to a
time duration of 7.2/ /u, when account is taken of the ip-
crease of the time scale with downstream distance.) '

There are two differences between the simulations and
experiments that must account for the different observed
behavior of 7. First, the initial scalar fields are different. In
the experiments the scalar is introduced in thin sheets, sepa-
rated by a distance of order /;; whereas in the simulations
both the size and spacing of the blobs are of order /,. Second,
grid turbulence decays and all mechanical length and time
scales are continually evolving; whereas in our simulations
the turbulence is statistically stationary and these scales are
fixed.

Durbin®® used a stochastic pair-dispersion model to
study the decay of scalar fluctuations in both stationary and
decaying isotropic turbulence. According to the model, the
time-scale ratio is approximately constant for quite a long
time (about three Lagrangian integral time scales) but then
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apparently relaxes; whether to a universal value is unclear.
Thus Durbin’s model is consistent, at least qualitatively,
with our simulations.

In shear flows it has been supposed?® that the time-scale
ratio adopts a universal value. Indeed, experiments®’ suggest
a universal value, r=2.0, not too different from that ob-
served here, r=~2.5. In addition, Durbin’s model and his
analysis of the experimental data suggest that for small val-
ues of /,/1, the time-scale ratio adopts the value 2.3.

A useful contribution of this work is to determine the
shapes adopted by the scalar pdf as it evolves from a double-
delta function distribution to a Gaussian. It is both remark-
able and extremely fortunate (from a modeling viewpoint)
that the shapes adopted do not depend on the initial length-
scale ratio. _

The conditional scalar  dissipation  y(¢,?)
= (e, (x,0)|d(x,t) = &) is an interesting quantity to study,
since it determines the evolution of the scalar pdf [Eq. (7)].
Initially, y(#,t) is small in the unmixed blobs of fluid
(¢= + 1) and maximum in the intervening diffusive layers
(¢=0). Later, and for a considerable time (3 <tu/l <6,
say), X(fz,t) adopts a parabolic shape, now being minimum
at$ = 0. At long times y(g,?) becomes independent of $, as
it must if ¢ is to become Gaussian.

Bilger®® introduced the modeling assumption that
x(&,) be independent of $. This assumption cannot be used
as a closure for the scalar pdf equation [Eq. (7)], for then
the pdf equation has the form of the unsteady heat-conduc-
tion equation with negative conductivity—a classic example
of an unstable partial differential equation. Further, our re-
sults show that )((:},t) can differ from the unconditional dis-
sipation (€, ) by factors in the range 0.2-1.8. Thus, although

(for the case considered) the model is valid at large times, it
has a limited range of validity.
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