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A wall-function bounday condition is developé for the pdf/Monte Carlo method Lik e traditional

wall functions this reproducs the logarithmic velocity profile and shea stres in equilibrium flow

conditions A constant-stresanalyss for the pdf, and a linear-stres analyss for the first two

momens of the pdf are developé as the bass for this wall-function approachStabk and accurate
bounday conditiors are derivad and demonstrate with fully-developel channé flow. © 1997
American Institute of Physics [S1070-663(97)01409-§

I. INTRODUCTION

The effed of a solid wall on a turbulert flow is inher-
ently difficult to mode| becaus the flow includes strong
inhomogeneit and anisotropy in the viscows sublaye adja-
cert to the wall. One computationb approab to handling
this is to impose a bounday condition at a point which cor-
respong to the inertid sublayer The term “wal | functions”
has been appliad to various forms of wall bounday condi-
tions of this sort Their purpo® is to impos a boundary
condition whos effed upa the overal flow is consistent
with tha of a wall, without characterizig the complex de-
tails of the flow in the near-wall region They avoid the com-
putationd expensg which is required to resolwe the stee gra-
dients of statistic which appea in the viscows sublayer In
spite of the widespred use of wall functiors in turbulence
closures there has been no systematt developmenof such
an approab with the pdf method They hawe been developed
and usal for eddy-viscosig modelsi~ for Reynolds-stress
closures’® and incorporaté once with the pdf method’
They are basel on experimenth resuls which hawe been
found to be reasonalyl robug for flow in channels pipes,
ard bounday layers®~° In the inertid sublayer the profile
of mean velocity is alogarithmic function of the wall-normal
distane y, the dissipation varies inversey with y, and the
production ard dissipation of turbulert kinetic enery are
approximate} equa to one another.

Wall functiors are a methal of imposirg a boundary
condition on aturbulert flow calculation which is consistent
with the abowe observationsin tha spirit, we develg the
wall function with a modée for the joint pdf of velocity and
turbulert frequency For velocity, we use the simplified
Langevh model which (apat from transpot termsg is
equivalem to Rotta’s model Accordingly, we aim to impose
a condition which adequatel reproducs the wall shear
stress as well as the profiles of velocity, turbulert kinetic
energy and dissipation for moderag to large Reynolds num-
bers.

Wall-function bounday conditiors are developé here
with the currently standad ard simple$ possibé pdf model
formulation In Sectim 11 we descrile the relevan detaik of
this Simplified Langevih mode] its associatéd modd for tur-
bulernt frequency ard their relationshp to Reynolds-stress
closures|In Sectio Il we descrile two differert character-
izatiors of the logarithmi layer, one standad analyss in
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which all the stresse are presumd to be independenof v,
ard anothe in which sorre of the less plausibke assumptions
are relaxed The wall functiors developé here draw heavily
from ideas embodiel in thee analyseslIn Sectim IV, we
develm the bounday condition on ead particle property.
And in Sectim V, we shov how the® particle conditions
work for fully-developea channé flow with acomparisa to
DNS dat and to experimenthresults Adequaé agreement
is achievel close to the wall, but modificatiors of the time-
scak modelirg are necessar to improve the velocity profile
close to the channé halfplane Resuls are shown both with
ard without the modifications.

Il. BASIC MODEL

We devel@ the particle wall-function approab with the
simplified Langevh model! in sufficiert detal to allow for
consisteh extensim to more complicatel pdf models.

A. Pdf formulation
Let U(x,t) and Z(x,t) be the Eulerian velocity and pres-
sure respectively with Reynolds decompositions,

Ui:<Ui>+uiv (1)

P={(P)+p. 2
Let f(V;x,t) be the Eulerian pdf of velocity at a given loca-

tion. The modé formulation is an effort to close the exact
pdf evolution equatia for turbulert flows:*!

of of 1oy ot

Vi T ok oV
L2 |5t 7, U(x,H)=V
&Vi p &Xi VﬂXjan (X’ )_ '
(3)

To clos Eg. (3), we conside an ensembg of fluid particles
moving throuch the velocity field with position .27(t) and
velocity 72(t). The exad evolution equatiors for thes par-
ticles are'?

d.2;=7dt ()
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To form a closue modd with the® particle equationswe
distinguig betwea known ternms and unknown terms For a
pdf particle formulation the dependetvariables are the par-
ticle properties the pdf, and everythirg tha can be derived
from the pdf. So for exampé the mean velocity,

<Ui>:fVide, (6)
is known and the mean pressue is known throudh its solu-
tion to the Poissm equation'! On this basis we see that only
the lag two terns on the right hard side of Eq. (5) are un-
known and neal to be modeled We neglet the secoml term
on the right hard side on the ground that it is sufficiently
smal in high Reynold numbe flows, ard we modé the
unknown terns using the Simplified Langevih modef® to
give

d.25=7;dt, (7)
d7 1 Al 3 C 7 uhHd
’|_ p z?X, 0 <w>( / < |>) t
+VCok{w) dW,. (8)
Here C, is a positive modé constant,
1
k=5 (uil;) C)

is the turbulert kinetic energy and dW, is an incremen of
the isotropc Wiene proces W, in which ead incremett is
normd (0,dt) and

where C; ard C, are modéd constarg ard dW' is another
Wienea processindependenfrom the one which appeas in

Eq. (8). The tem involving S, accouns for generatio and
loss of mean turbulert frequency For modd constars C;

ard C,,,

P
SwZCwZ_Cwlzi (14)
wher P is the productian of k:
U))
— () =5 (15

The constah C, controk the variane of the distribution of
o, and Cy controbk the extert to which w correlates with
othe particle properties suc as velocity. We will see in
Sectia 111 tha those correlatiors are importart for the trans-
port of (@) in inhomogeneous flows.

Let f(V,Q;x,t) be the modela Eulerian joint pdf of
velocity and turbulent frequency From the particle evolu-
tions given in Egs (7), (8), ard (13), this pdf evolves by

of af ot 1) ( )
Vi T ax 27 2C (w)
1 2
+Cafw) g [(Q—(w))f]
. , ()
+Sw<w>E(Qf)+C3C4<w> m
(16)

The maja points of how this is derived are describe in
Refs 17, 11, 19, ard 18. The integrd of Eq. (16) over )
spae provides apdf closue for Eq. (3).

B. Relationshi p to Reynolds-stres s closures

The tem (w) is the mean characteristic turbulent frequency.

In mog Reynolds-stresclosures(w) is determined by solv-
ing an equatia for the mean dissipatione, and then setting

€
<(1)> = R, (ll)
for high Reynolds numbe turbulence Here we adof an
approab more akin to Wilcox’s k— » modet* by solving a
stochast particle equatian for a propertyw. The best physi-
cd interpretatio for this w is as an instantaneous turbulent
frequency Equatin (11) suggest tha for high Reynolds
numbe flows, we have

. 14 (9Ui (9Ui 12
@= k ﬁX] (9XJ ’ ( )
Basel upon previows formulationst®>!® the evolution equa-
tion for w is

do=—Cyw)(0—(w))dt—S (w)w dt
+2C5Ch{w)’w dW',
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The relationshp of the abowe pdf modd with Reynolds-
stres closures becoms appareh from the momens of Eq.
(16). In general the evolution equatim for any mean quan-
tity (¢) is derived by multiplying Eq(16) by ® (the sample
spae variabk from which ¢ is chosehand then integrating
ove velocity and frequeng space Performirg this calcula-
tion with velocity U;, with the produda of fluctuatirg veloci-
ties uju;, and with », we arrive at the moment evolution
equatiors associaté with Eqg. (16). This procedue is de-
scribel in detal in Ref 19. We als include an evolution
equatio for the correlatio (u;w) which appeas as atrans-
port temm in the (w) equation, because it proves useful in
Section IV where the bounday conditiors are specified For

D(-) a(-) a-)
bt~ ot (UK Xy’ (17
thee momen equatiors are
D(U;) ] 1 KA
T__(?_Xi<uiuj>_[_) 07X] , (18)
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D(uju; u,
(;tUD 0<U&U jUk) (< s ( > g2 X )
—| 1+ gco)w)(u uj) + Cok(w) &;j , (19
5(&)) &(u w)
Dt Sul @ >2 20
5(uiw) &(uu) a(U;)
St = = o) () o w0

1 3
- E 4 )(w)(u a)) C3<w><u w> Sw<w>

(21)

This developmetreproducs the Reynold equatiors exactly
in Eq. (18), excep for the viscows tetm which is neglected.
Moreover it provides the Reynolds-stresequatiors with tur-
bulert transpot and productian represente exactly, and with
amoda [on the secom line of Eq. (19)] for the correlations
of fluctuatirg velocity—pressue gradiens and the dissipa-
tion. Substitution of

X{Ujw).

Co= 3(C1 1), (22)
shows? tha thes terms are identicd to Rotta’s modé with
constah C; .

Equatian (20) describs the evolution of mean turbulent
frequency It is the anal@ of the more commony usede
equation with the production ard dissipatimn of (w) given
by the expressia for S, in Eq. (14). Equatiors (7)—(9), (11),
ard (13)—(20) form the bast modd with which the pdf wall
function is developed.

Ill. MODELS FOR THE LOG LAYER

Wall-function bounday conditiors are basel on the idea
tha equilibrium flow conditiors exig in aregion of the flow
close to the wall. Herg we devel@ two modek to character-
ize thes conditiors in a pdf formulation The first is a pdf
versia of the constant-streslayer?® which is usel to de-
scribe the joint pdf of U andw and to bring out how the von

Karman constant is related to the model constants in Egs.

(8) and (13). The seconl modé is alinear-stres layer, which
provides a more accura¢ representatio of the Reynolds
stressein the logarithmi region This linear-stres modd is
usefd for the specificatimm of the shea stress Both models
are usal to provide guidane in the differernt aspect of pdf
wall functions.

A. Constant-stres s layer

The constant-stresanalyss is usel here to explore the
properties of f(V,Q;x,t), the joint pdf of velocity ard fre-
guency ard to calibrae the modd constard for the logarith-
mic velocity profile. We assune tha the turbulen statistics
depen only ony, the mean velocity profile is logarithmic in
y, the Reynold stresse do nat depem on y, the Reynolds
shea stres is equd to the shea stres at the wall, production
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FIG. 1. Coordinaé systen relative to the wall and the mean flow.

equas dissipation and both vary inversey with the distance
y. For a wide range of k—e and Reynolds-stress models,
thes conditiors can be combinal to form an analyticd so-
lution to the governirg equations called the constant-stress
layer solution.

For the modé of Eqs (7), (8), and (13), and for coordi-
nates shown in Figure 1, we se a self-simila solution to
the pdf transpot equatim (16) which is consistetwith the
assumptioa describe above If sut a solution exists then
Eqgs (18) ard (19) guarante that the profiles of the relevant
statistis are

HU) Uy
ay Ky’ (23
Kk 3Cot+2 o
RN
(U?) Cot2
G 29
2 2
(uv)
e -1, 27)
ug
€= K—y, (28)
2\Cy u,
" 3Co+2 Ky’ 29
where
u, = \/E (30)
p

is the friction velocity and 7, is the shea stres at the wall.
The constantk which appears in the expression for the ve-
locity gradien and the mean frequeng is the von Karman
constan for the logarithmic layer of the mean velocity pro-
file. In this constant-streslayer solution the value of « is
controlled by the balane of terms in Eq. (20).

The self-simila solution to Eq. (16) is determiné using
a Monte Carlo method similar to the approab which ap-
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peasin Ref 21. We find a similarity solution by transform-
ing the modé of Egs (7), (8), and (13) to one which admits
sud asolution This occusin four steps First we defire the
relevan similarity variables and write down their particle
evolution equations Secong we show the associaté pdf
evolution equation Third, we assune self-similarity, plus the
constant-streslayer conditiors to find a simplified pdf equa-
tion. And fourth, we write particle equatiors associate with
this simplified pdf equation thes particle equatiors form the
bass for a zero-dimensionaMonte Carlo simulation.

Let

5= AW <E.>[Jf(t>,t], @

*

=)= w(t).25(1) |

u*

(32

be the particle fluctuatirg velocities ard turbulert frequency,
respectively normalizel by the friction velocity. The associ-

aHU;) d(gvy)
X2 &‘l‘;i

9, ~
gt "Wl =

d(ujuy) 99
e Xy g7 4

The self-simila pdf equatia is obtainal by noting that

~_ %)

()= ;

U,

(37

ard by assumig that all dependene of g on time ard on
spae vanishes:

a(vlg)

%Xz KUj~ g (3
=— UVy—=
v

u, ox, 12 ><“’>

92 - 9
29 (s.(@)-T) ( %9

Vidv;

+ = Cok<w)

2( g)

+Cs<w> [(Q (@))g]+CsCalw)®

(39

This is solved by a Monte Carlo method using just the sta-
tionary solution to the® particle equatiors for U and o:

s xza(Ul).,éd 3 1 —
ui=— U, %, u,o;,dt— 4 §<w>uit

+VCok(w) dW;, (39

do=0U,dt—Cs(w)(0—(w))dt—S (o) dt
+V2C3C4(w)%w dW.
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(40)

w<w>_

ated sample-spazvariables are v; and (). We se a solu-
tion for g(v,Q;x,t), the joint pdf of U and w; which is
independenof x and t. Substitutig Egs (31)—(32) into the
modé of Egs (7), (8), and (13), we find new particle equa-
tions, simplified for statisticaly one-dimensioriaflow:

d.2,="U,u,dt, (33
~ o(uiuy) (U~ 3 1
duj=u, %, dt— %, u,dt— 4C0 (w)u;dt
+VCok(w) dW, (34)
de%uzu*dt—C\xw) w— u, dt
~ ~ 2y
—S,(w)o dt+ ZC3C4<w)2wu— dw'. (35
*
The associatd pdf evolution equatia for g is
(v i) 1 &g
w —C K(w) ==
)( ) ok( >O7U P
v,U, )a(ﬁg;) , %2 #(Qg)
—+C,4C — — 36
50 3 4<(1)> u (902 ( )

Eq. (39 is identica for U, and Us. It shoul be noted that
particle equatiors (39) and (40) are nat consistehwith Egs.
(33) through (35), ard tha one sd canna be derived from
the other. The relevart featue here is tha Eqgs (39) and (40)
can be usal to solve the pdf equati (36) for this ca® in
which g has no dependene on spae ard time. All of the
modé constarg of Eqs (39) and (40) excep for C; are

assignd standad values!®-21:1°
Co=3.5, 1)
C,=0.25, 42
S,=Cu2—C,1=0.46. 43

For agiven se of modé constantsthere is only one value of
(X2/ug ) ({U1)/dx,) which permit a self-simila solution.
To be consistehwith the logarithmic mean velocity profile,
we impo< the condition that

2‘9<U1>:£:i’ (44)

U, %, « 041
and use the Monte Carlo simulatiorf? to determire which
value of C; makes that value of x possible. This procedure
gives a value of C3=5.0.

Probabiliy densiy functiors are estimate from the
simulatian resuls by dividing the particle properties in ques-
tion into 40 bins ard taking a normalizel sum of particles
which fall into ead bin. The margina pdfs of u, and U, are

shown in Figure 2, and the margina pdf of ® is shown in
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FIG. 2. Margind pdfs of U, and U, for the self-simila constant-streslayer.

Figure 3. (The pdf of Us is identicd to tha of u,, and not
shown) The pdfs of velocity are clearly Gaussianboth with

skewnes of magnituek less than 0.02 ard flathes within

1% of the Gaussia flatnes of 3. The variance of U, and
U, are within 1% of the values of 2.94 and 1.87, respec-
tively, which Egs (25 and (26) stipulate Thes velocity
resuls are nat surprisirg sinee the Langevih equatian (39)

admis joint normd solutions The distribution of  is

strongly skewel with a skewnes of 2.1; this is al® area-
sonabé resut becaus Eq. (40) is similar to the w model of
Ref. 15 which admits a I" distribution as a solution The
mean of w is also within 1% of its theoreticavalue of 0.73,
taken from Eqgs (29) and (37).

Experimenta and DNS resuls of the velocity distribu-
tion in the log layer for various near-wall flows are described
in Refs 23, 24. Gaussia behavio is observe in the span-
wise velocity, but there are departurs in the streamwig and
wall-normd components In the log layer, skewnes of
(u?) varies from approximatef —0.6 to 0, and skewnes of
(v?) varies betwea 0and 0.3. In isotropi turbulence’ log-
normd behavio of dissipatimm (ard hen@ of turbulert fre-

o8l |
o6}

0.4}

Marginal probability density

02}

0.0 . .

3
@
FIG. 3. Margind pdf of w for the self-simila constant-streslayer.
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FIG. 4. Margind pdf of log(w) for the self-simila constant-streslayer.

quency is observedThe margina pdf of log(w) is shown in
Figure 4. While this still has askewnes of —0.23 the be-
haviar of log(w) is consideraby close to Gaussia than that
of .

For the purpose of pdf wall functions the important
priorities are to hawe aplausible robug joint pdf of velocity
and frequency accurag reproductian of the ratio of turbulent
kinetic energ to shea stressard of the logarithmic velocity
profile. Accordingly, a joint-normad pdf of U and log(w) is
usal to specify bounday conditiors on particles The model
constanCy= 3.5 ses theratio k/ —(u,u,)= 3.3 throuch Egs.
(24) ard (27).

In a constant-streswall layer, the sha of the logarith-
mic mea velocity profile is characterizé by the von
Karman constant, x. In the more traditionalk—e and
Reynolds-stresmodels the value of « is set to the experi-
mentaly found value of xk=0.41 through the balance of
terms in the e equation. The model constaat controk the
value of x by adjusting the role of the transport term relative
to the othe terms?® With pdf models we calibrate x by
adjustirg the transpot term in Eq. (20), relative to the source
ard sink terms which appea there Unlike in a Reynolds-
stres closure the transpot of (w) is not closed in the mo-
mert equation only in the pdf evolution equation Eq. (16).
And its role in the balane of terns in Eqg. (20) mud be
controlled elsewhergnamey in the adjustmenof Cz in Eq.
(13). Previots values of C5 rangirg betwee C;=1.0and 2.0
hawe bee used®?:3in the mode for », based on DNS
resuls for isotropic turbulence In the currernt context we
choo® C; for its role in an inherenty inhomogeneosi(and
hene anisotropi¢ process the transpot of (w). The con-
start C; adjuss the extert to which o correlates with par-
ticle position ard hene with particle velocity. Figure 5
shows this correlation betweenw and particle velocity in the
constant-streslayer. As C; increases(vw) decreases, and
the resultirg balane of termsin Eqg. (20) makesk increase.
Different combinatiors of C3; and « which admit self-similar
solutiors of Eq, (38) are shown in Figure 6. For the constant-
stres layer, the logarithmt profile with «=0.41 occurs in
this modeé by settirg C;=5.0.

T. D. Dreeben and S. B. Pope
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FIG. 5. Scatte of U, andw for the self-simila constant-streslayer.

B. Linear-stres s layer

The purpo® of the linear-stres layer is to provide guid-
ance for the statisticd aspecs of the bounday conditiors for
flows at modera¢ Reynold numbers While mog wall func-
tions are formulated with the constant-stresargumen in
mind, tha argumen is only valid in the limit as Re—oo.
Conside the fully-developal channé flow of Mansour with
halfwidth L and a modera¢ Re,= u, L/v=2395. Figure 7
shows the Reynolds shea stres of the DNS result$® and of
the constant-stresprofile given by Eq. (27), plus the linear-
stres profile describe below. Accurat representatio of the
shea stres is acentrd priority of the wall functiors devel-
opeal here it is clea from Figure 7 tha the constant-stress
layer is an inadequag modd from which to determire the
shea stress A descriptia of the flow is needé which more
accuratef represert the turbulent stressesbut which also
preserve the resuls of the constant-stresanalyss concern-
ing the ratio k/(uv) and the calibratian of « in the log layer.

The linear-stres layer is an approximatio of a solution
to the governirg momern equatiors (18) throuch (21), with
less cavalie assumptioa abou the natue of the flow than
thoe of the constant-stres argument Basal on well-
established observations of equilibrium wall-bounded

046 1
044}
042}
040}

038 |

FIG. 6. Model « vs constanC; for the self-simila constant-streslayer.
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FIG. 7. Reynold shea stres for fully-developel channéflow: comparison
of constant-streslayer, linear-stres layer, and DNS.

flows 8% we assune tha the flow is homogeneasiin all but
the wall-normd direction and tha the streamwig pressure
gradien is independenof y, plus the following:

aU) U

ER) “
P=e¢, (46)
chonst, (47)
—(uv)

where u, is acharacterist turbulert velocity scale The is-
sues involved in choosimg u. are discussd in Ref. 27. It can
eithe be sd to the friction velocity u,, , or it can be basel on
the locd shea stres and se to — (uv). We use the Huang
ard Bradshav choice of

(48)

on ground similar to theirs Use of the locd shea stress
implies an approximate} logarithmic velocity profile in

Ucs=Uu,,

which k depends on the pressure gradient. The choice of

u.=u, preserve the relative insensitiviy of x to 9(7)/dx
which is generaly observedThe profiles of k and (uv) dif-
fer here from those of the constant-stredayer, but their ratio
is specifiel to be the same Using Eqgs (24) ard (27) we have

k  3Co+2 )
—(w)  2yc,

To simplify the analysis k— e notation is used: Fo€,= 3.5
and

4C,
Cﬂ=—2=0.09, (50
(3Cy+2)
we have
k = ! =3.33 (51
—(ujuy) VC, e

Unde the abowe assumptionsprofiles of (uv), k, €, and

(w) are determined with an argument similar to the develop-

mert for turbulen viscosiyy and mixing lengh of Ref. 27.
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FIG. 8. Turbulert kinetic energ for fully-developel channéflow: compari-
s of constant-streslayer, linear-stres layer, and DNS.

Let L, be a lengh scak to characterig the effed of the
pressue gradiert relative to the wall shea stress For the
coordinaé systen of Figure 1,

T pUy
B NP~
ox

Lp (52)

For fully-developel channéflow, Lp is equa to the channel
halfwidth. The profile for the Reynold shea stres is ob-
tained by integratirg Eq. (18) from the wall to y:

usu
<z»=1—1 (53)
us Le
The profile of k follows from Eqgs (51) ard (53):
y
“ - Le (549
W oJc,

The profile of dissipation comes from Eqs (45), (46), and
Yy

(53):
“2(1_ Lp)

€= —--—7-—.
Ky

And from Eqgs (11), (50), ard (55), it is clea tha the profile
of (w) is identical to its profile in the constant-stress layer,
given by Eqg. (29). The linear-stres layer profiles which dif-
fer from their constant-stres layer counterpag are all
Reynolds-strescomponerg and €; they have an additional
tem which reflecs alinear dependene on y ard on the
pressue gradient The constant-streslayer can be construed
as a limiting cae of the linear-stres layer, in which
HKAlox —0,Lp—, ard all y dependeneof the Reynolds
stressevanishesThe linear-stres profiles of k, —(uv), and
e are shown togethe with DNS dat for fully-developed
channéflow in Figures 7, 8, and 9. For this flow, the veloc-
ity profile is logarithmic over the intervd 0.1<y,<0.4. The
linear-stres layer is clearly the bette modd on which to
bas aspecificatimm of shea stres in the log layer for mod-

(59
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FIG. 9. Dissipation for fully-developel channé flow: comparisa of
constant-streslayer, linear-stres layer, and DNS.

erae Reynolds numbers This improvemen ove the
constant-streslayer does nat refled a Reynolds numbe de-
pendene of the flow per se It only reflecs the fact tha as
Re decreaseshe near-wal pe&k in —(uv) also decreases.
For the® casesthe constant-stresapproximation,

~(u) _

2
u,

1, (56)

becoms steadiy worse wherea the linear-stres profile re-
mairs a goad approximation.

But do the profiles satisf/ the governirg momen equa-
tions? It is straightforwad to shaw tha the linear-stres pro-
files are solutiors to Eqs (18) and (19) if the turbulert trans-
port terms are neglected The (w) equation is a little more
involved Unde the assumption of the linear-stres layer,
Eqg. (20) becomes

Hvw) 5
The linear-stres profiles sugges using the variables

~, u/
U, 1- L_p

k= X (59

w2l1- L |

* LP

~ oYy

to se& an equatiom in which the dependeneon y vanishes.
Transformirg Eq. (57) with the abow variables we have
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(61)

The tem in squae brackes embodis the y dependene of
the transformeé () equation. Asy—0, that term ap-
proachs 1, ard the linear-stres profiles becone an approxi-
matke self-simila solution to the Reynolds-stres and (w)
equationsIn tha limit, the (») equatia is identicd to the
one which appeas in the constant-stresanalysis This can
be verified by multiplying Eq. (38) by O and integrating
over all v ard Q). So the bask on which « is determined with
the constant-stresanalyss is als valid in the linear-stress
analysis As 'y increass from 0, the term in squae brackets
depars from unity ard its dependene on y increasesFor
values of y abow a threshold the systen of equatiors (18)
throuch (20) depars significantly from self-similarity, and
the velocity profile is no longe logarithmic This threshold
depend on the outea flow characteristis embodie in the
lengh scak Lp.

The constant-stresand linear-stres analyss form the
bass of the pdf wall-function bounday conditions The
constant-stres layer is a self-simila solution to the pdf
transport equation (3). In Sectio 1V, this layer is usdal to
guide the specificatio of « for the logarithmic velocity pro-
file, and to provide particle bounday conditiors which en-
sure tha the joint pdf of U and log w is approximately nor-
mal. The linear-stres layer is an approximag solution to the
first- and second-momerequatiors associate with Eq. (16),
and it is useal in Section 1V to ensue accurag specification
of the shea stres at the boundary.

IV. BOUNDARY CONDITIONS

The pdf wall function describé in this section provides
awall bounday treatmen in which the joint pdf of velocity
and frequeng has the characteristis of the constant-stress
layer, but has the first- and second-ordevelocity statistic of
the linear-stres layer. It mug also med more stringen sta-
bility requiremerg than thos of the moment-closug mod-
els This is becaus the coefficiens which appea in the
bounday conditiors are subje¢ to statistica fluctuations,
ard the formulation need to be stabk with respet to these
fluctuations.

Traditiond wall functiors involve conditiors on statis-
tics: mean velocity, Reynold stressesmean dissipation The
problen of wall functiors for the pdf methal is, how do we
specify a condition on particles to impos adesira condi-
tion on a statisti® Following the analyss of Ref. 28, con-
side aplare parallé to the wall at the location y, where the
bounday condition is to be imposed This location should
correspod to a value greate than y* =30, but sufficiently
close to the wall to be in the inertid sublaye for an equilib-
rium flow. Figure 10 shows how the bounday condition on
particles preserve mas conservatio and impermeabiliy in
the mean For evely particle with properties, tha leaves
the flow doman by crossirg the plare at y, , anothe particle
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FIG. 10. Particles reflectirg through the plare at y,, .

with properties¢pg entes the doman at the samre location.
The subscrips her are | for incidert and R for reflected.
Then the mean value of ary function h(¢), at the plare is

1
(h())p=35[(N($1))+(N(pr)]. (62)
To impos a desir@l value of the statistt (h(¢)),, we
specify the reflectal particle properties¢g so that Eq. (62) is
satisfiel for ea pairwise exchang of particles throuch the
plare at the location y,,. This ensure tha Eq. (62) is also
satisfiel in the mean.

A. Condition s on velocity

Let 77 and 7 be the streamwig and wall-normd par-
ticle velocities respectively The statistics to be specifiel are
the wall-normd mean velocity (V),, ard the shea stress
(uv),. We use particle bounday conditiors which preserve
Gaussianit of the velocities found in the constant-strespdf
solution The condition on (V), is straightforward To im-
po< the statistica condition that

(V)p=0, (63)

we impos Eq. (62) on ead pair of particles leaving and
enterirg the domain This requires that

To==7,. (64)

It is clea that this conditin leaves tha Gaussia shap of
the pdf of velocity unchangedA usefu resut which follows
from this specificatio togethe with Eq. (62) is that

(W2p=(77). (65)

Next, we specify a condition on the reflectel streamwise
particle velocity 7/g to impo< the desiral shea stress We
set

where« is to be determined by the specification{(ofv),, .
For the joint-normd velocity componerg found in the
constant-streslayer, this condition preserve the shag of
the pdf. To see the relationshp betweena and(uv),, we
substitue Eqgs (65) and (66) into Eq. (62) with h=%/7"10
find that

_ —2(uv),

WY

(67)
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The argumen from Eq. (62) to Eq. (67) is reportal for the
first time here althoudh it has been previousy derived® and
incorporatel into the pdf method’ Given Eq. (67), the ques-
tion then becomeshow do we specify (uv),?

The shea stres is acentrd isste for conventionhwall
functiors as well as pdf wall functions The condition pre-
sente her differs from conventionawall functions in two
respectsFirst we bas the condition on the linear-stres pro-
files rathe than the constan stres ones (where the profiles
differ from one anothey in an effort to bette accommodate
flows at modera¢ Reynolds numbers And second we en-
sure that the condition is stabk with respet to its param-
eters so that convergene of the pdf solutiors is forgiving to
statistica fluctuatiors of the relevan terms at the boundaries.

Let u be a velocity scak to characterie the turbulence

intensiy in the vicinity of y,. We defire U to be basel on
the turbulert kinetic energy so tha it equas the locd shear
velocity (i.e,, V|{uv)|) unde equilibrium conditions Equa-
tion (51) shows tha this is arrange by setting

u=C*k"2. (69)

For equilibrium conditions the linear-stres layer distin-
guishes betwea u and u, : u, is constam throughot the
layer, wherea U changs with y throuch the dependeneof k
on the pressue gradier term which appeas in Eq. (54). Let
U, be the magnitue of the equilibrium value of the mean
velocity at y,. Basal on the logarithmi profile of Eq. (45),
we have

U YpUx
p 09[ E= | (69)

with the surfa@ roughnes paramete E=8.5 for a smooth
wall. To calculag the friction velocity from the locd statis-
tics, we set

A~ ﬁ%%_J ¥p 9(7)
U, = \/up+7’r o ox = \/C_,ukp—’_‘}/q' o ox |’
70)
where
NS
¥,= ma{o,sigr((m)) ;XA , (72)

ard (uv) is the shea stres taken from the previows time
step The idea is tha for equilibrium flows, (uv) and
NI ax have the same sign, which makes=1. In this
case Eq. (70) is equivalen to the mea velocity equation
(18) applied to the layer betwea the wall ard y,,. In some
non-equilibrium conditiors sudh as separatio and reattach-

~ o (U)pl(U)l
Tp=—(UUp)p= U3 —2—. (72)
Ue
This amouns to setting
20%(U) (U
_28U)U), -

<U2>pug

Unde equilibrium conditions (U),=U, so this condition
reduce to imposirg the equilibrium shea stress with the
mean velocity taking on its value in the logarithmi profile.
Becaus of the statistica fluctuatiors inherent in pdf Monte
Carlo methodsit is importart to ched the stability of Eq.
(72). For a smal departue of (U), or of ﬂp from equilib-
rium, we find from Eqs (69) throudh (72) that

P +2[

o P
7 <U>p - (74

For an adequat neighborhod of flow conditiors close to

equilibrium [i.e., thos in which the tem in the squae brack-
ets of Eq. (74) is negativd this bounday condition produces
a stabk respons of 7 to perturbations in bot{U), and

ﬁp. The complee bounday condition on particle velocities
is given by Eqs (64) ard (66) through (72).

B. Conditio n on turbulen t frequency

For the bounday condition on turbulert frequency we
se a consisteng condition which imposes the linear-stress
layer profile for equilibrium conditions and which preserves
the approximag¢ Gaussianit of the distribution of log(w).
We know from Eg. (20) tha the correlation (v w) is impor-
tart becaus it provides transpot of () into the domain
from the near-wal region It is plausibk to construt a par-
ticle condition on w which controls this correlation, just as
Eq. (66) controk the correlation of u ard v. Assumirg from
the constant-stresanalyss tha the log of w is approximately
Gaussianwe presere the shape of the pdf by writing

7
log wg=log w,+B———

|
Vo)’ (75

wr=ePl7 ity | (76)
The nex task is to decice what sott of statistich condition
shoul be imposel to specify 8. For the case of velocities,
the calculation leadirg to Eq. (67) makes it clea tha the
shea stres (uv), is a natura quantiy for the bounday con-
dition. For the ca® with Eq. (76), the following calculation
shows tha the naturd statistt on which to impos the

ment (uv) and ¢ Z)/dx can have opposite signs. In such bounday condition is

cases the physica argumen behird the wall function no
longe applies ard it is more importan to ensue a robust
bounday condition than it is to impo< the physicaly based
equatim (18). So Eq. (71) makesy,=0, ard Eq. (70) is
reducel to settirg u, =Uu. The specificatio for the boundary
condition on shea stres is
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<‘”>p<“’v>p
<wU2>p .

Expandimg the exponentiaterm of Eq. (76) in a Taylor se-
ries we have

(77
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FIG. 11 Mean velocity for fully-developa channé flow: comparisa of
modek with wall functiors (lines) with DNS dat (symbols.
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Knowing tha we can derive an expressia involving (wv)
and (wv?) from Eq. (21), we compue thee momens at y,,
usirg Eq. (78) in Eq. (62) with h=w?" and withh= w72

__ = B w/2—£L>2w'3
(wv>p 2—yp(w>p< |7/|> 4 yp<(‘)>p < I7/I>
1 3
_Tz(—ypf@p) (0 7D+ ..., (79)
o, L B .
<wv2>p:<w|’7/|2>+§m(w|f7/?>
1 2
2l @ 0
Combinirg these we find that
g= M +0(8°). (8D)
(wv?),
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This resut is analogos to Eq. (67); it allows us to connect
the particle condition of Eq. (76) to a statistich condition
involving the momens of w andwv.

The tak now is to make the appropria¢ specificatio of
B. The expressia in Eqg. (81) is determind with the equa-
tion for {(wv), Eq. (21). If we invoke the linear-stress layer
assumptios then for y,<<Lp, Eq (21) becomes

3 1
<w02>p_ (ZCO+ §+C3+Cw2_cwl)<w>p<wv>pyp

=0. (82
Using this resut in Eq. (81),

-2
(83)

P=13 1
7Cot 5 +CstCypmCus

This specificatim (in conjunctio with the fact that the ratio
71y, is negative gives Eq. (76) a stabk respons to pertur-
batiors in {w). The condition onw is now complete; its
reflectal particle value is determiné by Eqs (76) ard (83).
It is adrawba& of this condition tha it depend on the
modd usel for velocity and w. But the method works for
ary model it is a matte of deriving the equatim for the
correlation (wv) under what amounts to constant-stress layer
conditiors to find the corred specificatim of g.

To summarizethe particle wall-function bounday con-
ditions for the bast modé given by Eqgs (7), (8), and (13
follow:

V=74, (84)
wr=eBf711Yp(@) g (86)

with a given by Eqs(67) through(72), and 3 given by Eq.
(83). For a generdmodel the specificatim is the same ex-
ceft tha Eq. (21) mud be rederivel to determineg.

.
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FIG. 12. Turbulert kinetic energy for fully-developa channé flow: com-
parisa of modek with wall functiors (lines) with DNS dat (symbols.
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V. FULLY-DEVELOPE D CHANNEL FLOW

The modé is implemente in the code PDF2DV?? with
the bounday conditiors describe above ard is testel for
fully-developa channé flow. The modd constans are

C0:35, Cw1:O44, Cw2=O9,
C;=50; C,=0.25 E=85.

The domah is discretizel on a 40 cel grid, with 480 par-
ticles per cell. Resuls are comparé with the DNS data se of
Mansou for Re,=395 For a channé halfwidth of 1.0, the
conditiors are impose at y,=0.1, which correspond to
y*=40. Modd profiles of mean velocity, turbulert kinetic
energy Reynolds shea stress and dissipation are shown as
the dashéd linesin Figures 11 throudh 14, togethe with DNS
dat of Mansou (private communication Generaly good
agreemenis achievel for (uv),k, ande, and for(U) in the
logarithmic layer.

But the mean velocity is clearly underpredicte at the
channé halfplane This is associatd with a deficieng in the
» modé at the channé halfplane previousy pointed out by

87
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FIG. 14. Dissipatio for fully-developel channé flow: comparisa of mod-
els with wall functiors (lines) with DNS dafa (symbols.
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FIG. 15. Mean velocity for fully-developel channé flow: comparisa of
modified modé with wall functiors (line) with data of Wei and Willmarth
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Minier.2° The w model is currently still under development
as agenerhmode to be usal jointly with the pdf method®®
The following modificatiors improve its performane in
channé flow: The term

<in> ok

5 Kk (?_XI

is addel to Eq. (13) with C5=1.4. This tem correspondto
patt of the transpot tem which arises in the momen equa-

tions from the particle modé for dissipation® Also, Eq. (14)
is change to

dt (88)

P P|®
Sw:CwZ_Cwl;+CG ma 0,1_? y (89)

with
C,1=0.29; C,,=0.75; Cg=0.3. (90

It is nat difficult to verify tha the argumend of Sectia Il
for the constahand linear-stres layer are nat undermine by
the addition of these terms However thes are ad-ha modi-
ficatiors which restrid the applicability of this modé to
channéflows. They are included to allow us to demonstrate
the viability of wall functions and hopefully to provide some
clues on whda is requirel to give the @ model more general
applicability. The profiles from the modified modd are
shown in the solid lines in Figures 11 through 14.

Velocity profiles and the friction coefficiert for the
modified modd over varying Reynold numbes are shown
in Figs 15 and 16. For ead case the chose numbe of grid
cells is proportiond to the Reynolds number The velocity
profiles are comparé to the experimenthchanné flow data
of Wei and Willmarth® at Reynolds numbes Re,= 14914,
22776 ard 39582 with Re, basel on the mean velocity at
the channé halfplare and on the channé halfwidth. Based
on previows work'®2° thes correspod to Re,=695 1012,
ard 1655 respectively At thee Reynold numbersthe base
modeé (not shown perforns adequatsf in the log layer and
in much of the core region but consistentf underpredict the
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FIG. 16. Friction coefficiert as a function of Reynold numbe for fully-
developé channé flow: comparisa of modified modé with wall functions
(line) with dat compiled by Dean.

halfplare mean velocity. Modd resuls for the friction coef-
ficient are compare with the experimenthdata compiled by
Dean! For halfplare mean velocity (U),,, the friction coef-
ficient C;= r,,/3p(U)? is plotted agains the Reynolds num-
ber Re,, basel on the bulk mean velocity and the full chan-
nd width. The modified modé achieve plausibe agreement
at higha Reynold numbers and further demonstrate the
viability of the wall-function bounday condition.

VI. CONCLUSION

A stabk wall bounday condition is developé which
reproducs the logarithmi velocity profile and shea stress
in equilibrium flow conditiors with the pdf method Exten-
sion of traditiond wall functiors to include the additional
information containel in the pdf is achieve by use of the
self-simila Monte Carlo solution to the pdf evolution equa-
tion for the constant-streslayer. Accurae representatio of
the shea stres for flows at modera¢ as well as high Rey-
nolds numbes is achievel through appeéto the linear-stress
analyss for Reynolds stressesimplementatio with fully-
developéd channé flow shows successfuuse of the particle
bounday conditions but also points out aspecst of the sto-
chastc modé for frequeng which neal further develop-
ment This work forms the bask for representig the effed of
asolid wall in aturbulert reactirg flow with the pdf method.
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