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A wall-function boundary condition is developed for the pdf/Monte Carlo method. Like traditional
wall functions, this reproduces the logarithmic velocity profile and shear stress in equilibrium flow
conditions. A constant-stress analysis for the pdf, and a linear-stress analysis for the first two
moments of the pdf are developed as the basis for this wall-function approach. Stable and accurate
boundary conditions are derived and demonstrated with fully-developed channel flow. © 1997
American Institute of Physics. @S1070-6631~97!01409-8#
I. INTRODUCTION

The effect of a solid wall on a turbulent flow is inher-
ently difficult to model, because the flow includes strong
inhomogeneity and anisotropy in the viscous sublayer adja-
cent to the wall. One computational approach to handling
this is to impose a boundary condition at a point which cor-
responds to the inertial sublayer. The term ‘‘wal l functions’’
has been applied to various forms of wall boundary condi-
tions of this sort. Their purpose is to impose a boundary
condition whose effect upon the overall flow is consistent
with that of a wall, without characterizing the complex de-
tails of the flow in the near-wall region. They avoid the com-
putational expense which is required to resolve the steep gra-
dients of statistics which appear in the viscous sublayer. In
spite of the widespread use of wall functions in turbulence
closures, there has been no systematic development of such
an approach with the pdf method. They have been developed
and used for eddy-viscosity models,1–4 for Reynolds-stress
closures,5,6 and incorporated once with the pdf method.7

They are based on experimental results which have been
found to be reasonably robust for flow in channels, pipes,
and boundary layers:8–10 In the inertial sublayer, the profile
of mean velocity is alogarithmic function of the wall-normal
distance y, the dissipation varies inversely with y, and the
production and dissipation of turbulent kinetic energy are
approximately equal to one another.

Wall functions are a method of imposing a boundary
condition on a turbulent flow calculation which is consistent
with the above observations. In that spirit, we develop the
wall function with a model for the joint pdf of velocity and
turbulent frequency. For velocity, we use the simplified
Langevin model, which ~apart from transport terms! is
equivalent to Rotta’s model. Accordingly, we aim to impose
a condition which adequately reproduces the wall shear
stress, as well as the profiles of velocity, turbulent kinetic
energy, and dissipation, for moderate to large Reynolds num-
bers.

Wall-function boundary conditions are developed here
with the currently standard and simplest possible pdf model
formulation. In Section II we describe the relevant details of
this Simplified Langevin model, its associated model for tur-
bulent frequency, and their relationship to Reynolds-stress
closures. In Section II I we describe two different character-
izations of the logarithmic layer, one standard analysis in
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which all the stresses are presumed to be independent of y,
and another in which some of the less plausible assumptions
are relaxed. The wall functions developed here draw heavily
from ideas embodied in these analyses. In Section IV, we
develop the boundary condition on each particle property.
And in Section V, we show how these particle conditions
work for fully-developed channel flow with a comparison to
DNS data and to experimental results. Adequate agreement
is achieved close to the wall, but modifications of the time-
scale modeling are necessary to improve the velocity profile
close to the channel halfplane. Results are shown both with
and without the modifications.

II. BASIC MODEL

We develop the particle wall-function approach with the
simplified Langevin model11 in sufficient detail to allow for
consistent extension to more complicated pdf models.

A. Pdf formulation

Let U(x,t) and P (x,t) be the Eulerian velocity and pres-
sure, respectively, with Reynolds decompositions,

Ui5^Ui&1ui , ~1!

P 5^P &1p. ~2!

Let f̂ (V;x,t) be the Eulerian pdf of velocity at a given loca-
tion. The model formulation is an effort to close the exact
pdf evolution equation for turbulent flows:11
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To close Eq. ~3!, we consider an ensemble of fluid particles
moving through the velocity field with position X (t) and
velocity U(t). The exact evolution equations for these par-
ticles are12
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To form a closure model with these particle equations, we
distinguish between known terms and unknown terms. For a
pdf particle formulation, the dependent variables are the par-
ticle properties, the pdf, and everything that can be derived
from the pdf. So for example the mean velocity,

^Ui&5E Vi f dV,  ~6!

is known, and the mean pressure is known through its solu-
tion to the Poisson equation.11 On this basis, we see that only
the last two terms on the right hand side of Eq. ~5! are un-
known and need to be modeled. We neglect the second term
on the right hand side on the grounds that it is sufficiently
small in high Reynolds number flows, and we model the
unknown terms using the Simplified Langevin model13 to
give

dX i5Uidt, ~7!
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Here, C0 is a positive model constant,

k5
1

2
^uiui& ~9!

is the turbulent kinetic energy, and dWi is an increment of
the isotropic Wiener process W, in which each increment is
normal (0,dt) and

dWi dWj5dtd i j .  ~10!

The term ^v& is the mean characteristic turbulent frequen
In most Reynolds-stress closures, ^v& is determined by solv-
ing an equation for the mean dissipatione, and then setting

^v&5
e

k
, ~11!

for high Reynolds number turbulence. Here, we adopt an
approach more akin to Wilcox’s k2v model14 by solving a
stochastic particle equation for a propertyv. The best physi-
cal interpretation for this v is as an instantaneous turbule
frequency. Equation ~11! suggests that for high Reynolds
number flows, we have
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Based upon previous formulations,15,16 the evolution equa-
tion for v is

dv52C3^v&~v2^v&!dt2Sv^v&v dt

1A2C3C4^v&2v dW8, ~13!
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where C3 and C4 are model constants and dW8 is another
Wiener process, independent from the one which appears in
Eq. ~8!. The term involving Sv accounts for generation and
loss of mean turbulent frequency. For model constants Cv1

and Cv2 ,

Sv5Cv22Cv1

P

e
, ~14!

where P is the production of k:

P52^uiuj&
]^Ui&
]xj

. ~15!

The constant C4 controls the variance of the distribution of
v, and C3 controls the extent to which v correlates with
other particle properties such as velocity. We wil l see in
Section II I that those correlations are important for the trans-
port of ^v& in inhomogeneous flows.

Let f (V,V;x,t) be the modeled Eulerian joint pdf of
velocity and turbulent frequency. From the particle evolu-
tions given in Eqs. ~7!, ~8!, and ~13!, this pdf evolves by
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The major points of how this is derived are described in
Refs. 17, 11, 19, and 18. The integral of Eq. ~16! over V
space provides apdf closure for Eq. ~3!.

B. Relationshi p to Reynolds-stres s closures

The relationship of the above pdf model with Reynolds-
stress closures becomes apparent from the moments of Eq.
~16!. In general, the evolution equation for any mean quan-
tity ^f& is derived by multiplying Eq.~16! by F ~the sample
space variable from which f is chosen! and then integrating
over velocity and frequency space. Performing this calcula-
tion with velocity Ui , with the product of fluctuating veloci-
ties uiuj , and with v, we arrive at the moment evolutio
equations associated with Eq. ~16!. This procedure is de-
scribed in detail in Ref. 19. We also include an evolution
equation for the correlation ^uiv& which appears as atrans-
port term in the ^v& equation, because it proves useful
Section IV where the boundary conditions are specified. For
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these moment equations are
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This development reproduces the Reynolds equations exactly
in Eq. ~18!, except for the viscous term which is neglected.
Moreover, it provides the Reynolds-stress equations with tur-
bulent transport and production represented exactly, and with
a model @on the second line of Eq. ~19!# for the correlations
of fluctuating velocity–pressure gradients and the dissipa-
tion. Substitution of

C05
2

3
~C121!, ~22!

shows13 that these terms are identical to Rotta’s model with
constant C1 .

Equation ~20! describes the evolution of mean turbulent
frequency. It is the analog of the more commonly usede
equation, with the production and dissipation of ^v& given
by the expression for Sv in Eq. ~14!. Equations ~7!–~9!, ~11!,
and ~13!–~20! form the basic model with which the pdf wall
function is developed.

III. MODELS FOR THE LOG LAYER

Wall-function boundary conditions are based on the idea
that equilibrium flow conditions exist in a region of the flow
close to the wall. Here, we develop two models to character-
ize these conditions in a pdf formulation: The first is a pdf
version of the constant-stress layer,20 which is used to de-
scribe the joint pdf of U andv and to bring out how the von
Kármán constantk is related to the model constants in Eq
~8! and ~13!. The second model is a linear-stress layer, which
provides a more accurate representation of the Reynolds
stresses in the logarithmic region. This linear-stress model is
useful for the specification of the shear stress. Both models
are used to provide guidance in the different aspects of pdf
wall functions.

A. Constant-stres s layer

The constant-stress analysis is used here to explore the
properties of f (V,V;x,t), the joint pdf of velocity and fre-
quency, and to calibrate the model constants for the logarith-
mic velocity profile. We assume that the turbulent statistics
depend only on y, the mean velocity profile is logarithmic in
y, the Reynolds stresses do not depend on y, the Reynolds
shear stress is equal to the shear stress at the wall, production
2694 Phys. Fluids, Vol. 9, No. 9, September 1997 
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equals dissipation, and both vary inversely with the distance
y. For a wide range of k2e and Reynolds-stress model
these conditions can be combined to form an analytical so-
lution to the governing equations, called the constant-stress
layer solution.

For the model of Eqs. ~7!, ~8!, and ~13!, and for coordi-
nates shown in Figure 1, we seek a self-similar solution to
the pdf transport equation ~16! which is consistent with the
assumptions described above. If such a solution exists, then
Eqs. ~18! and ~19! guarantee that the profiles of the relevant
statistics are
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where

u* 5Atw

r
~30!

is the friction velocity andtw is the shear stress at the wall.
The constantk which appears in the expression for the v
locity gradient and the mean frequency is the von Kármán
constant for the logarithmic layer of the mean velocity pro-
file. In this constant-stress layer solution, the value of k is
controlled by the balance of terms in Eq. ~20!.

The self-similar solution to Eq. ~16! is determined using
a Monte Carlo method, similar to the approach which ap-

FIG. 1. Coordinate system relative to the wall and the mean flow.
T. D. Dreeben and S. B. Pope
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pears in Ref. 21. We find a similarity solution by transform-
ing the model of Eqs. ~7!, ~8!, and ~13! to one which admits
such a solution. This occurs in four steps: First we define the
relevant similarity variables and write down their particle
evolution equations. Second, we show the associated pdf
evolution equation. Third, we assume self-similarity, plus the
constant-stress layer conditions to find a simplified pdf equa-
tion. And fourth, we write particle equations associated with
this simplified pdf equation; these particle equations form the
basis for a zero-dimensional Monte Carlo simulation.

Let

ũ i~ t !5
Ui~ t !2^Ui&@X ~ t !,t#

u*
, ~31!

ṽ~ t !5
v~ t !X 2~ t !

u*
, ~32!

be the particle fluctuating velocities and turbulent frequency,
respectively, normalized by the friction velocity. The associ-
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ated sample-space variables are v ĩ and Ṽ. We seek a solu-
tion for g( ṽ,Ṽ;x,t), the joint pdf of ũ and ṽ; which is
independent of x and t. Substituting Eqs. ~31!–~32! into the
model of Eqs. ~7!, ~8!, and ~13!, we find new particle equa-
tions, simplified for statistically one-dimensional flow:

dX 25 ũ2u* dt, ~33!
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ũ2u* dt2C3^v&S ṽ2
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The associated pdf evolution equation for g is
]g

]t
1u* ṽ 2
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The self-similar pdf equation is obtained by noting that
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and by assuming that all dependence of g on time and on
space vanishes:
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This is solved by a Monte Carlo method, using just the sta-
tionary solution to these particle equations for ũ and ṽ:
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dṽ5ṽ ũ2dt2C3^ṽ&~ṽ2^ṽ&!dt2Sv^ṽ&ṽ dt

1A2C3C4^ṽ&2ṽ dW. ~40!
Eq. ~39! is identical for ũ2 and ũ3 . It should be noted that
particle equations ~39! and ~40! are not consistent with Eqs.
~33! through ~35!, and that one set cannot be derived from
the other. The relevant feature here is that Eqs. ~39! and ~40!
can be used to solve the pdf equation ~36! for this case in
which g has no dependence on space and time. Al l of the
model constants of Eqs. ~39! and ~40! except for C3 are
assigned standard values:16,21,15

C053.5, ~41!

C450.25, ~42!

Sv5Cv22Cv150.46. ~43!

For a given set of model constants, there is only one value of
(x2 /u* )(]^U1&/]x2) which permits a self-similar solution.
To be consistent with the logarithmic mean velocity profile,
we impose the condition that

x2

u*

]^U1&
]x2

5
1

k
5

1

0.41
, ~44!

and use the Monte Carlo simulation22 to determine which
value of C3 makes that value of k possible. This procedure
gives a value of C355.0.

Probability density functions are estimated from the
simulation results by dividing the particle properties in ques-
tion into 40 bins and taking a normalized sum of particles
which fall into each bin. The marginal pdfs of ũ1 and ũ2 are
shown in Figure 2, and the marginal pdf of ṽ is shown in
2695T. D. Dreeben and S. B. Pope
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Figure 3. ~The pdf of ũ3 is identical to that of ũ2 , and not
shown.! The pdfs of velocity are clearly Gaussian, both with
skewness of magnitude less than 0.02, and flatness within
1% of the Gaussian flatness of 3. The variances of ũ1 and
ũ2 are within 1% of the values of 2.94 and 1.87, respec-
tively, which Eqs. ~25! and ~26! stipulate. These velocity
results are not surprising since the Langevin equation ~39!

admits joint normal solutions. The distribution of ṽ is
strongly skewed with a skewness of 2.1; this is also a rea-
sonable result because Eq. ~40! is similar to the v model of
Ref. 15 which admits a G distribution as a solution. The
mean of ṽ is also within 1% of its theoretical value of 0.73,
taken from Eqs. ~29! and ~37!.

Experimental and DNS results of the velocity distribu-
tion in the log layer for various near-wall flows are described
in Refs. 23, 24. Gaussian behavior is observed in the span-
wise velocity, but there are departures in the streamwise and
wall–normal components: In the log layer, skewness of
^u2& varies from approximately 20.6 to 0, and skewness of
^v2& varies between 0 and 0.3. In isotropic turbulence,25 log-
normal behavior of dissipation ~and hence of turbulent fre-

FIG. 2. Marginal pdfs of ũ1 and ũ2 for the self-similar constant-stress layer.

FIG. 3. Marginal pdf of ṽ for the self-similar constant-stress layer.
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quency! is observed. The marginal pdf of log(ṽ) is shown in
Figure 4. While this still has a skewness of 20.23, the be-
havior of log(ṽ) is considerably closer to Gaussian than that
of ṽ.

For the purposes of pdf wall functions, the important
priorities are to have aplausible, robust joint pdf of velocity
and frequency, accurate reproduction of the ratio of turbulent
kinetic energy to shear stress, and of the logarithmic velocity
profile. Accordingly, a joint-normal pdf of U and log(v) is
used to specify boundary conditions on particles. The model
constant C053.5 sets the ratio k/2^u1u2&53.3 through Eqs.
~24! and ~27!.

In a constant-stress wall layer, the shape of the logarith-
mic mean velocity profile is characterized by the von
Kármán constant, k. In the more traditionalk2e and
Reynolds-stress models, the value of k is set to the experi-
mentally found value of k50.41 through the balance o
terms in the e equation. The model constantse controls the
value of k by adjusting the role of the transport term relati
to the other terms.20 With pdf models, we calibratek by
adjusting the transport term in Eq. ~20!, relative to the source
and sink terms which appear there. Unlike in a Reynolds-
stress closure, the transport of ^v& is not closed in the mo-
ment equation, only in the pdf evolution equation, Eq. ~16!.
And its role in the balance of terms in Eq. ~20! must be
controlled elsewhere, namely in the adjustment of C3 in Eq.
~13!. Previous values of C3 ranging between C351.0 and 2.0
have been used16,21,15 in the model for v, based on DNS
results for isotropic turbulence. In the current context, we
choose C3 for its role in an inherently inhomogeneous ~and
hence anisotropic! process, the transport of ^v&. The con-
stant C3 adjusts the extent to which v correlates with par-
ticle position, and hence with particle velocity. Figure 5
shows this correlation betweenv and particle velocity in the
constant-stress layer. As C3 increases, ^vv& decreases, and
the resulting balance of terms in Eq. ~20! makesk increase.
Different combinations of C3 andk which admit self-similar
solutions of Eq. ~38! are shown in Figure 6. For the constant-
stress layer, the logarithmic profile with k50.41 occurs in
this model by setting C355.0.

FIG. 4. Marginal pdf of log(ṽ) for the self-similar constant-stress layer.
T. D. Dreeben and S. B. Pope
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B. Linear-stres s layer

The purpose of the linear-stress layer is to provide guid-
ance for the statistical aspects of the boundary conditions for
flows at moderate Reynolds numbers. While most wall func-
tions are formulated with the constant-stress argument in
mind, that argument is only valid in the limi t as Re→`.
Consider the fully-developed channel flow of Mansour, with
halfwidth L and a moderate Ret5 u* L/n5395. Figure 7
shows the Reynolds shear stress of the DNS results26 and of
the constant-stress profile given by Eq. ~27!, plus the linear-
stress profile described below. Accurate representation of the
shear stress is acentral priority of the wall functions devel-
oped here; it is clear from Figure 7 that the constant-stress
layer is an inadequate model from which to determine the
shear stress. A description of the flow is needed which more
accurately represents the turbulent stresses, but which also
preserves the results of the constant-stress analysis concern-
ing the ratio k/^uv& and the calibration of k in the log layer.

The linear-stress layer is an approximation of a solution
to the governing moment equations ~18! through ~21!, with
less cavalier assumptions about the nature of the flow than
those of the constant-stress argument. Based on well-
established observations of equilibrium wall-bounded

FIG. 5. Scatter of u2̃ and ṽ for the self-similar constant-stress layer.

FIG. 6. Model k vs constantC3 for the self-similar constant-stress layer.
Phys. Fluids, Vol. 9, No. 9, September 1997 
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flows,8–10 we assume that the flow is homogeneous in all but
the wall–normal direction, and that the streamwise pressure
gradient is independent of y, plus the following:

]^U&
]y

5
uc

ky
, ~45!

P5e, ~46!

k

2^uv&
5const, ~47!

where uc is acharacteristic turbulent velocity scale. The is-
sues involved in choosing uc are discussed in Ref. 27. It can
either be set to the friction velocity u* , or it can be based on
the local shear stress and set to A2^uv&. We use the Huang
and Bradshaw choice of

uc5u* , ~48!

on grounds similar to theirs: Use of the local shear stress
implies an approximately logarithmic velocity profile in
which k depends on the pressure gradient. The choice
uc5u* preserves the relative insensitivity of k to ]^P &/]x
which is generally observed. The profiles of k and ^uv& dif-
fer here from those of the constant-stress layer, but their ratio
is specified to be the same. Using Eqs. ~24! and ~27! we have

k

2^uv&
5

3C012

2AC0

. ~49!

To simplify the analysis, k2e notation is used: ForC053.5
and

Cm5
4C0

~3C012!2
50.09, ~50!

we have

k

2^u1u2&
5

1

ACm

53.33. ~51!

Under the above assumptions, profiles of ^uv&, k, e, and
^v& are determined with an argument similar to the devel
ment for turbulent viscosity and mixing length of Ref. 27.

FIG. 7. Reynolds shear stress for fully-developed channel flow: comparison
of constant-stress layer, linear-stress layer, and DNS.
2697T. D. Dreeben and S. B. Pope
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Let LP be a length scale to characterize the effect of the
pressure gradient relative to the wall shear stress. For the
coordinate system of Figure 1,

LP5
2ru

*
2

]^P &
]x

. ~52!

For fully-developed channel flow, LP is equal to the channel
halfwidth. The profile for the Reynolds shear stress is ob-
tained by integrating Eq. ~18! from the wall to y:

^u1u2&

u
*
2

5
y

LP
21. ~53!

The profile of k follows from Eqs. ~51! and ~53!:

k

u
*
2

5

12
y

LP

ACm

. ~54!

The profile of dissipation comes from Eqs. ~45!, ~46!, and
~53!:

e5

u
*
3 S 12

y

LP
D

ky
. ~55!

And from Eqs. ~11!, ~50!, and ~55!, it is clear that the profile
of ^v& is identical to its profile in the constant-stress lay
given by Eq. ~29!. The linear-stress layer profiles which dif-
fer from their constant-stress layer counterparts are all
Reynolds-stress components and e; they have an additiona
term which reflects a linear dependence on y and on the
pressure gradient. The constant-stress layer can be construed
as a limiting case of the linear-stress layer, in which
]^P &/]x→0, LP→`, and all y dependence of the Reynolds
stresses vanishes. The linear-stress profiles of k, 2^uv&, and
e are shown together with DNS data for fully-developed
channel flow in Figures 7, 8, and 9. For this flow, the veloc-
ity profile is logarithmic over the interval 0.1,yp,0.4. The
linear-stress layer is clearly the better model on which to
base aspecification of shear stress in the log layer for mod-

FIG. 8. Turbulent kinetic energy for fully-developed channel flow: compari-
son of constant-stress layer, linear-stress layer, and DNS.
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erate Reynolds numbers. This improvement over the
constant-stress layer does not reflect a Reynolds number de-
pendence of the flow per se. It only reflects the fact that as
Re decreases, the near-wall peak in 2^uv& also decreases.
For these cases, the constant-stress approximation,

2^uv&

u
*
2

51, ~56!

becomes steadily worse, whereas the linear-stress profile re-
mains a good approximation.

But do these profiles satisfy the governing moment equa-
tions? It is straightforward to show that the linear-stress pro-
files are solutions to Eqs. ~18! and ~19! if the turbulent trans-
port terms are neglected. The ^v& equation is a little more
involved. Under the assumptions of the linear-stress layer,
Eq. ~20! becomes

2
]^vv&

]y
2Sv^v&250. ~57!

The linear-stress profiles suggest using the variables

ũ i85
ui8

u*A12
y

LP

, ~58!

k̃5
k

u
*
2 S 12

y

LP
D , ~59!

ṽ5
vy

u*
, ~60!

to seek an equation in which the dependence on y vanishes.
Transforming Eq. ~57! with the above variables, we have

FIG. 9. Dissipation for fully-developed channel flow: comparison of
constant-stress layer, linear-stress layer, and DNS.
T. D. Dreeben and S. B. Pope
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^ ũ28ṽ&F 12
1

2

y

LP

A12
y

LP

G2Sv^ṽ&250. ~61!

The term in square brackets embodies the y dependence of
the transformed ^v& equation. As y→0, that term ap-
proaches 1, and the linear-stress profiles become an approxi-
mate self-similar solution to the Reynolds-stress and ^v&
equations. In that limit , the ^ṽ& equation is identical to the
one which appears in the constant-stress analysis. This can
be verified by multiplying Eq. ~38! by Ṽ and integrating
over all ṽ and Ṽ. So the basis on which k is determined with
the constant-stress analysis is also valid in the linear-stress
analysis. As y increases from 0, the term in square brackets
departs from unity and its dependence on y increases. For
values of y above a threshold, the system of equations ~18!
through ~20! departs significantly from self-similarity, and
the velocity profile is no longer logarithmic. This threshold
depends on the outer flow characteristics embodied in the
length scale LP .

The constant-stress and linear-stress analyses form the
basis of the pdf wall-function boundary conditions. The
constant-stress layer is a self-similar solution to the pdf
transport equation ~3!. In Section IV, this layer is used to
guide the specification of k for the logarithmic velocity pro-
file, and to provide particle boundary conditions which en-
sure that the joint pdf of U and log v is approximately nor-
mal. The linear-stress layer is an approximate solution to the
first- and second-moment equations associated with Eq. ~16!,
and it is used in Section IV to ensure accurate specification
of the shear stress at the boundary.

IV. BOUNDARY CONDITIONS

The pdf wall function described in this section provides
a wall boundary treatment in which the joint pdf of velocity
and frequency has the characteristics of the constant-stress
layer, but has the first- and second-order velocity statistics of
the linear-stress layer. It must also meet more stringent sta-
bility requirements than those of the moment-closure mod-
els. This is because the coefficients which appear in the
boundary conditions are subject to statistical fluctuations,
and the formulation needs to be stable with respect to these
fluctuations.

Traditional wall functions involve conditions on statis-
tics: mean velocity, Reynolds stresses, mean dissipation. The
problem of wall functions for the pdf method is, how do we
specify a condition on particles to impose a desired condi-
tion on a statistic? Following the analysis of Ref. 28, con-
sider a plane parallel to the wall at the location yp where the
boundary condition is to be imposed. This location should
correspond to a value greater than y1530, but sufficiently
close to the wall to be in the inertial sublayer for an equilib-
rium flow. Figure 10 shows how the boundary condition on
particles preserves mass conservation and impermeability in
the mean: For every particle with propertiesf I that leaves
the flow domain by crossing the plane at yp , another particle
Phys. Fluids, Vol. 9, No. 9, September 1997 
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with propertiesfR enters the domain at the same location.
The subscripts here are I for incident and R for reflected.
Then the mean value of any function h(f), at the plane is

^h~f!&p5
1

2
@^h~f I !&1^h~fR!&#. ~62!

To impose a desired value of the statistic ^h(f)&p , we
specify the reflected particle propertiesfR so that Eq. ~62! is
satisfied for each pairwise exchange of particles through the
plane at the location yp . This ensures that Eq. ~62! is also
satisfied in the mean.

A. Condition s on velocity

Let U and V be the streamwise and wall–normal par-
ticle velocities, respectively. The statistics to be specified are
the wall–normal mean velocity ^V&p , and the shear stress
^uv&p . We use particle boundary conditions which preserve
Gaussianity of the velocities found in the constant-stress pdf
solution. The condition on ^V&p is straightforward: To im-
pose the statistical condition that

^V&p50, ~63!

we impose Eq. ~62! on each pair of particles leaving and
entering the domain. This requires that

V R52V I . ~64!

It is clear that this condition leaves that Gaussian shape of
the pdf of velocity unchanged. A useful result which follows
from this specification together with Eq. ~62! is that

^v2&p5^V I
2&. ~65!

Next, we specify a condition on the reflected streamwise
particle velocity UR to impose the desired shear stress. We
set

UR5UI1aV I , ~66!

wherea is to be determined by the specification of^uv&p .
For the joint-normal velocity components found in the
constant-stress layer, this condition preserves the shape of
the pdf. To see the relationship betweena and ^uv&p , we
substitute Eqs. ~65! and ~66! into Eq. ~62! with h5UV to
find that

a5
22^uv&p

^v2&p

. ~67!

FIG. 10. Particles reflecting through the plane at yp .
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The argument from Eq. ~62! to Eq. ~67! is reported for the
first time here, although it has been previously derived28 and
incorporated into the pdf method.7 Given Eq. ~67!, the ques-
tion then becomes, how do we specify ^uv&p?

The shear stress is acentral issue for conventional wall
functions as well as pdf wall functions. The condition pre-
sented here differs from conventional wall functions in two
respects: First we base the condition on the linear-stress pro-
files rather than the constant stress ones ~where the profiles
differ from one another! in an effort to better accommodate
flows at moderate Reynolds numbers. And second, we en-
sure that the condition is stable with respect to its param-
eters, so that convergence of the pdf solutions is forgiving to
statistical fluctuations of the relevant terms at the boundaries.

Let û be a velocity scale to characterize the turbulence
intensity in the vicinity of yp . We define û to be based on
the turbulent kinetic energy, so that it equals the local shear
velocity ~i.e., Au^uv&u) under equilibrium conditions. Equa-
tion ~51! shows that this is arranged by setting

û5Cm
1/4k1/2. ~68!

For equilibrium conditions, the linear-stress layer distin-
guishes between û and u* : u* is constant throughout the
layer, whereas û changes with y through the dependence of k
on the pressure gradient term which appears in Eq. ~54!. Let
Ue be the magnitude of the equilibrium value of the mean
velocity at yp . Based on the logarithmic profile of Eq. ~45!,
we have

Ue5
u*
k

logFE
ypu*

n G , ~69!

with the surface roughness parameter E58.5 for a smooth
wall. To calculate the friction velocity from the local statis-
tics, we set

u* 5Aûp
21gtUyp

r

]^P &
]x U5AACmkp1gtUyp

r

]^P &
]x U,

~70!

where

gt5maxF0,signS ^uv&
]^P &
]x D G , ~71!

and ^uv& is the shear stress taken from the previous time
step. The idea is that for equilibrium flows, ^uv& and
]^P &/]x have the same sign, which makesgt51. In this
case, Eq. ~70! is equivalent to the mean velocity equation
~18! applied to the layer between the wall and yp . In some
non-equilibrium conditions such as separation and reattach-
ment, ^uv& and ]^P &/]x can have opposite signs. In suc
cases the physical argument behind the wall function no
longer applies, and it is more important to ensure a robust
boundary condition than it is to impose the physically based
equation ~18!. So Eq. ~71! makesgt50, and Eq. ~70! is
reduced to setting u* 5û. The specification for the boundary
condition on shear stress is
2700 Phys. Fluids, Vol. 9, No. 9, September 1997 
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tp52^u1u2&p5ûp
2 ^U&pu^U&pu

Ue
2

. ~72!

This amounts to setting

a5
2ûp

2^U&pu^U&pu

^v2&pUe
2

. ~73!

Under equilibrium conditions, ^U&p5Ue so this condition
reduces to imposing the equilibrium shear stress, with the
mean velocity taking on its value in the logarithmic profile.
Because of the statistical fluctuations inherent in pdf Monte
Carlo methods, it is important to check the stability of Eq.
~72!. For a small departure of ^U&p or of ûp from equilib-
rium, we find from Eqs. ~69! through ~72! that

dtp

tp
52

d^U&p

^U&p
12FU yp

ru
*
2

]^P &
]x U2

ûp
2

ku* Ue
Gdûp

ûp

. ~74!

For an adequate neighborhood of flow conditions close to
equilibrium @i.e., those in which the term in the square brack-
ets of Eq. ~74! is negative# this boundary condition produces
a stable response of t to perturbations in botĥU&p and
ûp . The complete boundary condition on particle velocities
is given by Eqs. ~64! and ~66! through ~72!.

B. Conditio n on turbulen t frequency

For the boundary condition on turbulent frequency, we
seek a consistency condition which imposes the linear-stress
layer profile for equilibrium conditions, and which preserves
the approximate Gaussianity of the distribution of log(v).
We know from Eq. ~20! that the correlation ^vv& is impor-
tant because it provides transport of ^v& into the domain
from the near-wall region. It is plausible to construct a par-
ticle condition on v which controls this correlation, just a
Eq. ~66! controls the correlation of u and v. Assuming from
theconstant-stress analysis that the log of v is approximately
Gaussian, we preserve the shape of the pdf by writing

log vR5 log v I1b
V I

yp^v&
, ~75!

vR5eb @V I /yp^v&#v I . ~76!

The next task is to decide what sort of statistical condition
should be imposed to specify b. For the case of velocities
the calculation leading to Eq. ~67! makes it clear that the
shear stress ^uv&p is a natural quantity for the boundary con-
dition. For the case with Eq. ~76!, the following calculation
shows that the natural statistic on which to impose the
boundary condition is

^v&p^vv&p

^vv2&p

. ~77!

Expanding the exponential term of Eq. ~76! in a Taylor se-
ries, we have
T. D. Dreeben and S. B. Pope
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vR5F11
bV I

yp^v&p
1

1

2S bV I

yp^v&p
D 2

1
1

6S bV I

yp^v&p
D 3

1 . . . Gv I .  ~78!

Knowing that we can derive an expression involving ^vv&
and ^vv2& from Eq. ~21!, we compute these moments at yp

using Eq. ~78! in Eq. ~62! with h5vV and withh5vV 2:

^vv&p52
1

2

b

yp^v&p
^v IV I

2&2
1

4 S b

yp^v&p
D 2

^v IV I
3&

2
1

12S b

yp^v&p
D 3

^v IV I
4&1 . . . ,  ~79!

^vv2&p5^v IV I
2&1

1

2

b

yp^v&p
^v IV I

3&

1
1

4 S b

yp^v&p
D 2

^v IV I
4&1 . . . .  ~80!

Combining these, we find that

b5
22yp^v&p^vv&p

^vv2&p

1O~b3!. ~81!

FIG. 11. Mean velocity for fully-developed channel flow: comparison of
models with wall functions ~lines! with DNS data ~symbols!.
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This result is analogous to Eq. ~67!; it allows us to connect
the particle condition of Eq. ~76! to a statistical condition
involving the moments of v andv.

The task now is to make the appropriate specification of
b. The expression in Eq. ~81! is determined with the equa-
tion for ^vv&, Eq. ~21!. If we invoke the linear-stress laye
assumptions then for yp,,LP , Eq. ~21! becomes

^vv2&p2S 3

4
C01

1

2
1C31Cv22Cv1D ^v&p^vv&pyp

50. ~82!

Using this result in Eq. ~81!,

b5
22

S 3

4
C01

1

2
1C31Cv22Cv1D . ~83!

This specification ~in conjunction with the fact that the ratio
V /yp is negative! gives Eq. ~76! a stable response to pertur-
bations in ^v&. The condition onv is now complete; its
reflected particle value is determined by Eqs. ~76! and ~83!.
It is a drawback of this condition that it depends on the
model used for velocity and v. But the method works for
any model; it is a matter of deriving the equation for the
correlation ^vv& under what amounts to constant-stress la
conditions to find the correct specification of b.

To summarize, the particle wall-function boundary con-
ditions for the basic model given by Eqs. ~7!, ~8!, and ~13!
follow:

V R52V I , ~84!

UR5UI1aV I , ~85!

vR5eb @V I /yp^v&#v I , ~86!

with a given by Eqs.~67! through~72!, andb given by Eq.
~83!. For a general model, the specification is the same, ex-
cept that Eq. ~21! must be rederived to determineb.

FIG. 12. Turbulent kinetic energy for fully-developed channel flow: com-
parison of models with wall functions ~lines! with DNS data ~symbols!.
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V. FULLY-DEVELOPE D CHANNEL FLOW

The model is implemented in the code PDF2DV22 with
the boundary conditions described above, and is tested for
fully-developed channel flow. The model constants are

C053.5; Cv150.44; Cv250.9;
~87!

C355.0; C450.25; E58.5.

The domain is discretized on a 40 cell grid, with 480 par-
ticles per cell. Results are compared with the DNS data set of
Mansour for Ret5395. For a channel halfwidth of 1.0, the
conditions are imposed at yp50.1, which corresponds to
y1540. Model profiles of mean velocity, turbulent kinetic
energy, Reynolds shear stress, and dissipation are shown as
the dashed lines in Figures 11 through 14, together with DNS
data of Mansour ~private communication!. Generally good
agreement is achieved for ^uv&,k, ande, and for^U& in the
logarithmic layer.

But the mean velocity is clearly underpredicted at the
channel halfplane. This is associated with a deficiency in the
v model at the channel halfplane, previously pointed out by

FIG. 13. Reynolds shear stress for fully-developed channel flow: compari-
son of models with wall functions ~lines! with DNS data ~symbols!.

FIG. 14. Dissipation for fully-developed channel flow: comparison of mod-
els with wall functions ~lines! with DNS data ~symbols!.
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Minier.29 The v model is currently still under developmen
as ageneral model to be used jointly with the pdf method.15

The following modifications improve its performance in
channel flow: The term

C5

^uiv&
k

]k

]xi
dt ~88!

is added to Eq. ~13! with C551.4. This term corresponds to
part of the transport term which arises in the moment equa-
tions from the particle model for dissipation.16 Also, Eq. ~14!
is changed to

Sv5Cv22Cv1

P

e
1C6 maxF0,12

P

e G3

, ~89!

with

Cv150.29; Cv250.75; C650.3. ~90!

It is not difficult to verify that the arguments of Section III
for the constant and linear-stress layer are not undermined by
the addition of these terms. However, these are ad-hoc modi-
fications which restrict the applicability of this model to
channel flows. They are included to allow us to demonstrate
the viability of wall functions, and hopefully to provide some
clues on what is required to give the v model more genera
applicability. The profiles from the modified model are
shown in the solid lines in Figures 11 through 14.

Velocity profiles and the friction coefficient for the
modified model over varying Reynolds numbers are shown
in Figs. 15 and 16. For each case, the chosen number of grid
cells is proportional to the Reynolds number. The velocity
profiles are compared to the experimental channel flow data
of Wei and Willmarth30 at Reynolds numbers Reh514914,
22776, and 39582, with Reh based on the mean velocity at
the channel halfplane and on the channel halfwidth. Based
on previous work18,30 these correspond to Ret5695, 1012,
and 1655, respectively. At these Reynolds numbers, the base
model ~not shown! performs adequately in the log layer and
in much of the core region, but consistently underpredicts the

FIG. 15. Mean velocity for fully-developed channel flow: comparison of
modified model with wall functions ~line! with data of Wei and Willmarth
~symbols! at different Reynolds numbers.
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halfplane mean velocity. Model results for the friction coef-
ficient are compared with the experimental data compiled by
Dean.31 For halfplane mean velocity ^U&h , the friction coef-

ficient Cf5 tw / 1
2r^U&h

2 is plotted against the Reynolds num-
ber Reb , based on the bulk mean velocity and the full chan-
nel width. The modified model achieves plausible agreement
at higher Reynolds numbers, and further demonstrates the
viability of the wall-function boundary condition.

VI. CONCLUSION

A stable wall boundary condition is developed which
reproduces the logarithmic velocity profile and shear stress
in equilibrium flow conditions with the pdf method. Exten-
sion of traditional wall functions to include the additional
information contained in the pdf is achieved by use of the
self-similar Monte Carlo solution to the pdf evolution equa-
tion for the constant-stress layer. Accurate representation of
the shear stress for flows at moderate as well as high Rey-
nolds numbers is achieved through appeal to the linear-stress
analysis for Reynolds stresses. Implementation with fully-
developed channel flow shows successful use of the particle
boundary conditions, but also points out aspects of the sto-
chastic model for frequency which need further develop-
ment. This work forms the basis for representing the effect of
a solid wall in a turbulent reacting flow with the pdf method.
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FIG. 16. Friction coefficient as a function of Reynolds number for fully-
developed channel flow: comparison of modified model with wall functions
~line! with data compiled by Dean.
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