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Probability density function~pdf! methods are extended to include modeling of wall-bounded
turbulent flows. A pdf near-wall model is developed in which the generalized Langevin model is
combined with an exact model for viscous transport. Then the method of elliptic relaxation is used
to incorporate the wall effects without the use of wall functions or damping functions. Information
about the proximity of the wall is provided only in the boundary conditions so that the model can
be implemented withoutad hocassumptions about the geometry of the flow. A Reynolds-stress
closure is derived from this pdf model, and its predictions are compared with DNS and experimental
results for fully developed turbulent channel flow. ©1997 American Institute of Physics.
@S1070-6631~97!02201-0#
e
o
o

in

ith
u
a
th

r
pi
o
ss
ar

ha
o
a

h
s

uc
n

ls
ti
g
ce
ll
h
e

df
all-
ch
e
he
n.
rre-
the
lly
ard
of
III
te
his
the
lo-
wall
n V
be-
-

olu-
uc-
he
I. INTRODUCTION

Turbulent flows are especially difficult to model in th
near-wall region, because the flow there is strongly inhom
geneous and anisotropic. Most Reynolds-stress models w
well only for quasi-homogeneous flows.1–4 Many efforts to
incorporate the effects of the wall in turbulence models
volve the use of wall functions.5–7 With this approach,
boundary conditions which are consistent with the logar
mic law of the wall are imposed just beyond the visco
sublayer, so that the difficult modeling very close to the w
is avoided. Wall functions have also been used with
probability density function~pdf! method in the calculation
of recirculating flows.8

The use of damping functions9 allows models to incor-
porate the no-slip condition and to capture the behavio
the viscous sublayer. In Reynolds-stress closures, dam
functions are used to connect a quasi-homogeneous m
far from the wall with asymptotically correct Reynolds-stre
behavior close to the wall. Several models of this sort
reviewed in Ref. 10.

A common requirement with these approaches is t
information about the proximity of the wall needs to be pr
vided in the flow domain itself, either in the governing equ
tions, or~in the case of wall functions! in the boundary con-
ditions, or both. This necessity is considered to be
weakness, because the methods require somea priori infor-
mation about the flow in order to be implemented. Suc
requirement undermines the capability of these method
extend to flows with complex geometries.

Recent developments in near-wall modeling have s
cessfully eliminated the explicit dependence on the dista
from the wall of the governing equations, both with11 and
without12–15 the use of damping functions. Those mode
which have no damping functions use the method of ellip
relaxation.12 Here the terms for the effects of fluctuatin
pressure are modeled using an elliptic equation. This ne
sitates boundary conditions on the pressure terms as we
the velocities; these additional boundary conditions are c
sen to bring about accurate near-wall behavior of the R
nolds stresses.
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In this work we take the first step in extending the p
method so that it includes the accurate modeling of w
bounded turbulent flows. We formulate a pdf model whi
uses elliptic relaxation to allow the no-slip condition to b
imposed at the wall without requiring information about t
proximity of the wall anywhere else in the flow domai
Feasibility of the model is assessed by deriving the co
sponding Reynolds-stress closure, and comparing
Reynolds-stress statistics with available DNS data for fu
developed channel flow. In Section II, we use a stand
Taylor series analysis to bring out the important features
near-wall flows to be represented by the model. Section
introduces the pdf formulation by showing the appropria
pdf evolution equation for the Navier–Stokes equations; t
equation is to be closed with the model. Section IV gives
full development of the model. There we derive the pdf c
sure, the corresponding Reynolds-stress closure, and
boundary conditions on the Reynolds stresses. In Sectio
we discuss the capability of the model to reproduce the
havior of fully developed channel flow. Realizability is dis
cussed in Section VI.

II. NEAR-WALL REYNOLDS STRESSES

Here we use a standard Taylor series analysis16 to exam-
ine the near-wall Reynolds-stress equations and their s
tions. Results of this analysis are important in the constr
tion of the model. We split the velocity and pressure into t
familiar Reynolds decomposition:

Ui5^Ui&1ui , ~1!

P5^P &1p. ~2!

For

D̃~• !

Dt
5

]~• !

]t
1^Uk&

]~• !

]xk
, ~3!

the exact Reynolds-stress equation is

D̃^uiuj&
Dt

5T~v !i j1T~ t !i j1Pi j1f i j2e i j , ~4!
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where the terms on the right-hand side represent visc
transport, turbulent transport, production, velocity-press
gradient correlations, and dissipation, respectively. It is
portant to note thatf i j includes both pressure transport a
redistribution. Though the analysis is valid for any wa
bounded flow, coordinates are arranged here to accom
date statistically one-dimensional flow, such as fully dev
oped channel flow:u,x1 are aligned with the mean flow
v,y5x2 are wall-normal, andw,x3 are in the spanwise di
rection. To describe the near-wall behavior, the fluctuat
velocities and pressure are expanded in a Taylor series a
the wall16 whereai ,bi ,ci , . . . ,i51,2,3 andap ,bp ,cp , . . .
are random functions ofx1 ,x3, and time,

u5a11b1y1c1y
21 . . . , ~5!

v5a21b2y1c2y
21 . . . , ~6!

w5a31b3y1c3y
21 . . . , ~7!

p5ap1bpy1cpy
21 . . . . ~8!

By imposing the boundary conditions of no slip and imp
meability, and the governing equations for conservation
mass and momentum, we find the following results for
Reynolds stresses: First, to leading order, the scaling of e
Reynolds stress with distance from the wall is

^u2&;y2, ~9!

^v2&;y4, ~10!

^w2&;y2, ~11!

^uv&;y3. ~12!

Second, the dominant balance of Reynolds-stress terms
the wall is

T~v !i j1f i j2e i j50. ~13!

The scaling withy of these dominant terms is given for ea
Reynolds-stress equation in Table I. And third, Taylor ser
expansions fork5 1

2^uiui& and e5 1
2e i i can be used to show

that to leading order, the unknown termsf i j ande i j can be
modeled exactly in terms of known quantities,^uiuj&,k, and
e:

e11;
e

k
^u2&, ~14!

f22;22
e

k
^v2&, ~15!

e22;4
e

k
^v2&, ~16!

TABLE I. Near-wall Reynolds-stress terms as functions ofy to first order.

i , j T (v) i j f i j e i j

1,1 2n^b1
2& O(y) 2n^b1

2&
2,2 12n^c2

2&y2 22^c2bp&y
2 8n^c2

2&y2

3,3 2n^b3
2& O(y) 2n^b3

2&
1,2 6n^b1c2&y 2^b1bp&y 4n^b1c2&y
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e33;
e

k
^w2&, ~17!

f12;2
e

k
^uv&, ~18!

e12;2
e

k
^uv&. ~19!

Using these, we express the near-wall Reynolds-stress e
tions to first order in closed form:

n
]2^u2&

]y2
2

e

k
^u2&50, ~20!

n
]2^v2&

]y2
26

e

k
^v2&50, ~21!

n
]2^w2&

]y2
2

e

k
^w2&50, ~22!

n
]2^uv&

]y2
23

e

k
^uv&50. ~23!

These equations embody the important balance of phys
processes close to the wall: They are to be used for guida
in the construction of the pdf near-wall model.

The above results bring out the strong anisotropy a
inhomogeneity which need to be addressed in the mode
of near-wall flows. The anisotropy is clear from the terms
Table I. The dominant processes are of order~1! at the wall
in the (1,1) and (3,3) directions, but they vanish in the
rections which have a normal component; the turbulence
comes two-component as the wall is approached. Summ
the diagonal terms of the Reynolds-stress equations in T
I shows that the contributions to the dissipation of kine
energy near the wall are only important in the (1,1) a
(3,3) directions. The inhomogeneity in the wall normal d
rection appears in Eqs.~20!–~23! where the viscous transpo
dominates the balance of every Reynolds-stress compon
Elliptic relaxation13 has been shown to model these near-w
effects well in Reynolds-stress closures; we hope to cap
these effects by incorporating elliptic relaxation in the p
approach.

III. PDF EVOLUTION EQUATION WITH MOLECULAR
VISCOSITY

Let f (V;x,t) be the Eulerian pdf of velocity at a give
location. The evolution equation for the Eulerian pdf can
expressed in two ways:17

] f

]t
1Vi

] f

]xi
5
1

r

]^P &
]xi

] f

]Vi

1
]

]Vi
F f K 1r ]p

]xi
2n

]2Ui

]xj]xj
UU~x,t !5VL G

~24!

or
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] f

]t
1Vi

] f

]xi
5n

]2f

]xj]xj
1
1

r

]^P &
]xi

] f

]Vi

2
]2

]Vi]Vj
F f K n

]Ui

]xk

]Uj

]xk
UU~x,t !5VL G

1
]

]Vi
F f K 1r ]p

]xi
UU~x,t !5VL G . ~25!

For modeling in which viscosity is important, we use E
~25!, because the first term on its right-hand side repres
viscous diffusion exactly. That term leads to the importa
viscous terms in the near-wall balances of Eqs.~20!–~23!.
Only the terms on the first line of Eq.~25! are in closed form,
so an appropriate pdf model must provide a closure appr
mation for the remaining terms.

IV. PDF NEAR-WALL MODEL

The model to be developed here provides both a pdf
a Reynolds-stress closure. Here, we construct both vers
in five stages. First, particle equations which represent
Navier–Stokes equations exactly are derived in a way wh
leads to exact representation of viscous transport. Sec
the generalized Langevin model is used to close the
known terms of the particle equations. The important para
eters in this model are specified using Durbin’s elliptic
laxation. Third, we derive the resulting pdf model by closi
Eq. ~25! with a modeled pdf evolution equation, and by pr
viding an equation for dissipation. Fourth, we formulate t
Reynolds-stress version of the model by deriving veloc
moment equations, and by adding a model for turbul
transport. Fifth, Reynolds-stress boundary conditions are
posed and the near-wall behavior is compared with the
rect near-wall behavior described previously. This model
velopment is guided by two main priorities:

~1! Far from the wall, the model approaches the famil
isotropization of production~IP! model.1,2

~2! Close to the wall, the dominant balance of terms as r
resented in Eq.~13! is modeled as accurately as possib

A. Exact particle equations

Consider an ensemble of particles moving through
Eulerian velocity fieldU(x,t) with particle positionX (t)
and velocityU(t). For U(x,t) governed by the Navier–
Stokes equations, we define the particle velocity as the
lerian fluid velocity evaluated at the particle position:

U~ t !5U@X ~ t !,t#. ~26!

We seek equations to govern the position and velocity
these particles in which the viscous stress is modeled
actly.

Previous pdf formulations have used fluid particles. W
this approach, the change in particle positiondX over an
infinitesimal time intervaldt is determined by the local fluid
velocity:17,18

dX i5Uidt. ~27!

By this definition, fluid particles are convected through t
velocity field; consequently these models represent con
156 Phys. Fluids, Vol. 9, No. 1, January 1997
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tive transport exactly. But fluid particles are inadequate
capturing viscous transport, because any pdf evolution eq
tion which follows from Eq.~27! @such as Eq.~24!# must
exclude the important viscous termn (]2f /]xi]xi), which
appears in Eq.~25! ~see for example Ref. 18!. In an effort to
capture the effects of both convective and viscous transp
we consider stochastic particles which undergo both conv
tive and molecular motion. So we combine Eq.~27! with the
classical model for Brownian motion19 in which the change
in position of a molecule is governed by a symmetric pro
ability distribution. To characterize this random motion, w
use the isotropic Wiener processW in which increments
have a normal distribution with zero mean, and

dWidWj5dtd i j . ~28!

Then increments of particle position are given by

dX i5Uidt1A2ndWi , ~29!

whereA2n is chosen to ensure that the momentum carr
by these particles diffuses in physical space with coeffici
n. So the particles carry momentum with them in the sa
way that molecules do, and with identical statistics. T
particle motion leads to the viscous transport term in E
~25!, and hence to the viscous terms in the near-wall b
ances of Eqs.~20!–~23!.

We now find the corresponding increment of partic
velocity dU. For an arbitrary change in positiondX over
the small time intervaldt, we have

dUi5
]Ui

]t
dt1

]Ui

]xj
dX j1

1

2

]2Ui

]xj]xk
dX jdX k1 . . . .

~30!

We substitute Eq.~29! into Eq. ~30! and retain the terms up
to orderdt:

dUi5
]Ui

]t
dt1

]Ui

]xj
~U jdt1A2ndWj !1n

]2Ui

]xj]xj
dt.

~31!

Note that the Wiener process in Eq.~31! is identical to the
one which appears in the equation for position, Eq.~29!.
Next we rewrite the first two terms on the right hand side
Eq. ~31!, using Eq.~26! and the Navier–Stokes equations

dUi52
1

r

]P

]xi
dt12n

]2Ui

]xj]xj
dt1A2n

]Ui

]xj
dWj . ~32!

Equation~32! describes the change in velocity of a partic
whose position evolves by Eq.~29! through a velocity field
which is governed by the Navier–Stokes equations.

B. Generalized Langevin model with elliptic relaxation

We now construct model particle equations to appro
mate Eqs.~29! and ~32!. Throughout this section we denot
modeled quantities and pdfs with an asterisk superscrip
distinguish them from their exact counterparts. L
f * (V;x,t) be the modeled Eulerian pdf; this is the pdf
velocity at a given locationx and timet. Then mean veloci-
ties are defined as
T. D. Dreeben and S. B. Pope
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^Ui* ~x,t !&5E Vi f * dV, ~33!

with the integral taken over all of velocity space. For mo
eling in a context in which Eulerian velocities are unknow
Eq. ~32! is divided into closed and unclosed terms with t
Reynolds decomposition:

dUi52
1

r

]^P &
]xi

dt12n
]2^Ui&
]xj]xj

dt1A2n
]^Ui&
]xj

dWj

2
1

r

]p

]xi
dt12n

]2ui
]xj]xj

dt1A2n
]ui
]xj

dWj . ~34!

Then we define the motion of modeled particles with po
tion X * (t) and velocityU* (t). Increments of position are
given by Eq.~29!, and increments in velocity are defined b
using the generalized Langevin model to replace the
closed terms of Eq.~34!:

dX i*5Ui* dt1A2ndWi , ~35!

dUi*52
1

r

]^P * &
]xi

dt12n
]2^Ui* &
]xj]xj

dt1A2n
]^Ui* &

]xj
dWj

1Gi j ~U j*2^Uj* &!dt1AC0e* dWi8 . ~36!

Here,W8 is another isotropic Wiener process, independ
of W, and e* is the modeled mean dissipation rate. T
generalized Langevin model has parametersGi j and C0,
which jointly provide a model for the fluctuating pressu
gradients and the fluctuating velocities.

To complete the generalized Langevin model,
specify the parametersGi j andC0, using Durbin’s method of
elliptic relaxation.12,13 In this approach the terms which in
volve fluctuating pressure gradients are modeled with an
liptic equation, by analogy with the fact that the pressure
governed by the Poisson equation. This represents the
local effect of the wall on the Reynolds stresses through
fluctuating pressure terms. We introduce a tensor` i j to char-
acterize the non-local effect of fluctuating pressure, and

Gi j5

` i j2
e*

2
d i j

k*
, ~37!

C05
22` i j ^ui* uj* &

3k* e*
, ~38!

where k* is the modeled turbulent kinetic energy. Whi
C0 is often constant in pdf models, it is chosen here to ins
that` i j be purely redistributive~Durbin28!.

To define` i j we first specify time and length scale
Following Durbin, we take the maximum of the turbule
scales and the Kolmogorov scales:

T5 maxFk*e*
,CTA n

e* G , ~39!

L5CL maxFk* 3/2

e*
,ChS n3

e* D
1/4G , ~40!
Phys. Fluids, Vol. 9, No. 1, January 1997
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whereCT ,CL , andCh are model constants. Then we spec
the non-local term̀ i j with the following elliptic-relaxation
equation:

` i j2L¹2~L` i j !5
~12C1!k*

2T
d i j1k*Hi jkl

]^Uk* &
]xl

,

~41!

where

Hi jkl5SC2Av1
1

3
g5D d ikd j l2

1

3
g5d i ld jk1g5bikd j l

2g5bild jk , ~42!

Av5 minF 1.0,Cv

det̂ uiuj&

S 23 kD
3 G , ~43!

and

bi j5
^uiuj&

^ukuk&
2
1

3
d i j ~44!

is the Reynolds-stress anisotropy tensor. The right-hand
of Eq. ~41! is the family of stochastic Lagrangian versions
a modified IP model20 with parameterg5, and with IP model
constantsC1 andC2. Far from the wall,̀ i j dominates the
Laplacian term on the left hand side of Eq.~41!, so the cur-
rent model approaches the IP model. Close to the wall,
Laplacian term becomes important and brings out the n
local response of the pressure fluctuations to the bound
conditions.

The Laplacian term of Eq.~41! and the modification of
the IP model which is embodied in Eq.~43! warrant further
explanation. They are both efforts to improve the behavio
the model in the inertial sublayer where the mean veloc
varies logarithmically withy, a common difficulty with el-
liptic relaxation models.13,21The present model decreases t
sensitivity of the Reynolds stresses to non-local effects in
log layer based an idea which appears in Ref. 22. The elli
expression

L“2~L` i j ! ~45!

appears in Eq.~41!, rather than the more commonly use
expression

L2“2` i j . ~46!

Under the constant-stress assumptions of the logarith
layer, we have

` i j;
1

y
, ~47!

L;y, ~48!

so the elliptic term~45! vanishes whereas the elliptic term
~46! does not. As a result of the term~45!, Reynolds stresse
in the log layer are determined primarily by local turbule
quantities.

The modification of the IP model involves incorporatin
the termAv in Eq. ~42!. The behavior of the logarithmic
profile is sensitive tof i j , which in turn is most sensitive to
157T. D. Dreeben and S. B. Pope
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the IP model source term in question. Durbin has argue12

that in ak2e type closure, the turbulent viscosity scales w
the wall normal turbulent intensitŷv2&* rather than with
k* , and hence is suppressed close to the wall. By analo
this pdf model captures the logarithmic layer more ac
rately when the IP source term is similarly suppressed n
the wall. The termAv is an invariant which behaves lik
^v2&* /k* close to the wall~for an appropriately chosen con
stant Cv). Far from the wall, we haveAv51.0, and the
source term is identical to that of the standard IP model. T
modification improves the behavior of the mean veloc
profile in the log layer, with the IP model consta
C250.63. The fact theC2 is close to its original value o
C250.6 preserves the ability of the current model to char
terize a sudden distortion of initially isotropic turbulence,
the original IP model does.1

The complete model particle formulation is given b
Eqs.~35!–~44!. The values of the constants are given bel
in Eq. ~63!.

C. Closure at the pdf level

Here we close Eq.~25!, based on the model of the pre
vious section. The asterisk superscript notation is dropp
with the understanding that all physical variables and p
are modeled quantities. We define two model pdfs:
f L(V,x;t) be the Lagrangian pdf; this is the joint pdf of
particle’s position and velocity. The pdf of particle positio
is

f x~x;t !5E f L~V,x;t !dV. ~49!

Then the Eulerian pdf is the Lagrangian pdf of the parti
velocity, conditioned on the particle’s position:

f ~V;x,t !5
f L~V,x;t !

f x~x;t !
. ~50!

Starting from the particle equations~35! and~36!, we derive
an evolution equation for each of these pdfs sequentially
arrive at the Eulerian pdf equation.

The Lagrangian pdf evolution equation follows fro
taking Eqs.~35! and ~36! to be a six dimensional diffusion
process. Then by the methods in Ref. 23, the Lagrangian
evolves by

] f L
]t

1Vi

] f L
]xi

5n
]2f L

]xi]xi
1

] f L
]Vi

1

r

]^P &
]xi

2
]

]Vi
@Gi j ~Vj

2^Uj&! f L#12n
]^Uj&

]xi

]2f L
]xi]Vj

1n
]^Ui&
]xk

]^Uj&
]xk

]2f L
]Vi]Vj

1
1

2
C0e

]2f L
]Vi]Vi

.

~51!

The evolution for the pdf of position is obtained by integra
ing Eq. ~51! over velocity space:

] f x
]t

1
]@^Ui& f x#

]xi
5n

]2f x
]xi]xi

. ~52!
158 Phys. Fluids, Vol. 9, No. 1, January 1997

Downloaded¬16¬Jan¬2005¬to¬128.84.158.89.¬Redistribution¬subject¬
y,
-
ar

is

-
s

d,
s
t

to

df

For modeling an incompressible turbulent flow, we impos

]^Ui&
]xi

50, ~53!

plus initial and boundary conditions onX * (t) so that
f x(x;t) is constant att50 and on the boundaries of the flo
domain. These conditions ensure that

f x~x;t !5 constant ~54!

is the only solution to Eq.~52!. Then we find the Eulerian
pdf equation by dividing Eq.~51! by f x :

] f

]t
1Vi

] f

]xi
5n

]2f

]xi]xi
1

] f

]Vi

1

r

]^P &
]xi

2
]

]Vi
@Gi j ~Vj

2^Uj&! f #12n
]^Uj&

]xi

]2f

]xi]Vj

1n
]^Ui&
]xk

]^Uj&
]xk

]2f

]Vi]Vj
1
1

2
C0e

]2f

]Vi]Vi
.

~55!

The random term in Eq.~35! has led to the important viscou
termn ]2f /]xi]xi in the modeled Eulerian pdf equation@first
term on the right hand side of Eq.~55!#. The model provides
a closure to Eq.~25! by setting

]

]Vi
F f K 1r ]p

]xi
UU5VL G2

]2

]Vl]Vk
F f K n

]Uk

]xi

]Ul

]xi
UU5VL G

52
]

]Vi
@Gi j ~Vj2^Uj&! f #12n

]^Uj&
]xi

]2f

]xi]Vj

1n
]^Ui&
]xk

]^Uj&
]xk

]2f

]Vi]Vj
1
1

2
C0e

]2f

]Vi]Vi
. ~56!

To complete the closure at the pdf level, we u
Durbin’s modeled equation for the dissipation:

D̃e

Dt
5

]

]xi
F S n1

Cm

se
^uiuj&TD ]e

]xj
G1Ce1S 11a1

P

e D PT
2Ce2

e

T
, ~57!

where

P52^uiuj&
]^Ui&
]xj

~58!

is the production of turbulent kinetic energy. The model co
stants in this equation, given in Eq.~63!, have nearly identi-
cal values~only a1 differs slightly! to those which appear in
Ref. 13.

D. Closure at the Reynolds-stress level

Every pdf model has a corresponding Reynolds-str
closure.20 We derive the Reynolds-stress version of the c
rent model by taking first and second moments of the
equation. The mean velocity equation is derived by multip
ing Eq. ~55! by Vl and integrating over velocity space. Th
gives the familiar Reynolds equations exactly:
T. D. Dreeben and S. B. Pope
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r
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]xj

1n
]2^Uj&
]xi]xi

. ~59!

FIG. 1. Mean velocity for fully developed channel flow: comparison o
model ~line! with DNS data~symbols!.

FIG. 2. Reynolds shear stress for fully developed channel flow: comparis
of model ~line! with DNS data~symbols!.
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To derive the Reynolds-stress equation, we multiply Eq.~55!
by the quantity (Vi2^Ui&)(Vj2^Uj&) and integrate over ve
locity space to give

D̃^uiuj&
Dt

5n
]2^uiuj&
]xk]xk

2
]^uiujuk&

]xk

2S ^uiuk&
]^Uj&
]xk

1^ujuk&
]^Ui&
]xk

D
1Gik^ukuj&1Gjk^ukui&1C0ed i j . ~60!

By comparing Eq.~60! with ~4!, we see that the generalize
Langevin terms model combined effects of fluctuati
velocity-pressure-gradient correlations and dissipation:

f i j2e i j5Gik^ukuj&1Gjk^ukui&1C0ed i j . ~61!

At the Reynolds-stress level, we also need a model
the turbulent transport termT(t) i j5 ]^uiujuk&/]xk . We fol-
low Durbin13 and use the Daly and Harlow24 gradient-
diffusion model:

n

FIG. 3. Normal Reynolds stresses for fully developed channel flow: co
parison of model~line! with DNS data~symbols!.

FIG. 4. Near-wall scaling of kinetic energy and Reynolds shear stress
fully developed channel flow: comparison of model~line! with DNS data
~symbols!.
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T~ t !i j5
]

]xk
SCm

sk
^ukul&T

]^uiuj&
]xl

D . ~62!

The model constant values in this term, given in Eq.~63!, are
identical to those in Ref. 13. The complete Reynolds-str
closure is specified by Eqs.~37!–~44!, ~53!, ~57!–~60!, and
~62!. Model constants are

C151.8; C250.63; Cv51.4; Cm50.23; sk51.2;

g550.1; se51.65; Ce151.44; Ce251.9; ~63!

a150.09; CT56.0; CL50.134; Ch572.0.

E. Boundary conditions and near-wall behavior

At the wall, we impose the no-slip condition on th
mean and fluctuating velocities, and we set` i j as follows:

^Ui&50, ~64!

^uiuj&50, ~65!

ni
]k

]xi
50, ~66!

` i j5217.2
e2

n
]^Um&

]xk

]^Um&
]xl

nknl

ninj , ~67!

wheren is the wall normal. Because the only non-zero co
ponent of̀ i j at the wall is in the normal direction, the mod
can be implemented in more complicated geometries with
additional assumptions about the direction of the mean fl
The condition oǹ i j controls the near-wall suppression
Reynolds shear stress through its appearance in Eq.~71!;
hence it also controls the position of the velocity profile.
embodies a weak Reynolds number dependence, expre
in terms of quantities at the wall. This enables the mode
reproduce the observed velocity profiles over different R
nolds numbers.

The near-wall behavior follows from the form of th
model and from the boundary conditions. For the ex
physical case, we found the near-wall behavior in Sectio

FIG. 5. Dissipation of turbulent kinetic energy for fully developed chan
flow: comparison of model~line! with DNS data~symbols!.
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by expanding the fluctuating velocities in a Taylor ser
about the wall. That method does not work with a turbulen
model, because the model says nothing about fluctuating
locities; only moments of the velocity. Instead, we deri
modeled near-wall counterparts of Eqs.~20!–~23! by ex-
panding each Reynolds stress in a Taylor series about
wall, imposing the boundary conditions of Eqs.~64!–~67!,
and the Reynolds-stress equations of Eq.~60!. Close to the
wall, the model equations become

n
]2^u2&

]y2
2

e

k
^u2&50, ~68!

n
]2^v2&

]y2
1

4

3
`222e

k
^v2&5O~y!, ~69!

n
]2^w2&

]y2
2

e

k
^w2&50, ~70!

l
FIG. 6. Budget of^u2& for fully developed channel flow: comparison o
model ~line! with DNS data~symbols!.

FIG. 7. Budget of̂ uv& for fully developed channel flow: comparison o
model ~line! with DNS data~symbols!.
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n
]2^uv&

]y2
1

`222e

k
^uv&5O~y!, ~71!

with solutions

^u2&;y2, ~72!

^v2&;y3, ~73!

^w2&;y2, ~74!

^uv&;y3. ~75!

It is clear from comparing Eqs.~68!–~71! with Eqs. ~20!–
~23! that the model reproduces the dominant balance
transport with dissipation in the near-wall Reynolds stres
exactly in the tangential directions. To leading order, t
aspect of the model captures the near-wall anisotropy. N
wall inhomogeneity is also captured with the appearance
the exact viscous transport terms on the left-hand side
Eqs. ~68!–~71!. Comparison of Eqs.~72!–~75! with Eqs.
~9!–~12! shows that all Reynolds stresses scale corre

FIG. 8. Mean velocity for fully developed channel flow: comparison
model ~line! with data of Wei and Willmarth~symbols! at different Rey-
nolds numbers.

FIG. 9. Friction coefficient as a function of Reynolds number for fu
developed channel flow: comparison of model~line! with data compiled by
Dean.
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with y near the wall, except for̂v2&, which approaches zero
asy3 rather than at the correct rate ofy4. But the important
processes~those of order 1! are the portions of viscous trans
port and dissipation which occur only in the~1,1!, and~3,3!
directions near the wall; this analysis shows that the mo
represents those balances correctly. So before conside
any calculations, we know that the model can characte
important aspects of near-wall flows.

V. FULLY DEVELOPED CHANNEL FLOW

The model is tested for fully developed channel flo
with Ret5395, based on the friction velocity and the cha
nel half-width. The Reynolds-stress equations are discret
on a 150 cell grid, and solved with Newton’s method using
fully implicit scheme. Model predictions of velocity, Rey
nolds stresses, and dissipation are shown in Figs. 1 thro
5, together with DNS data of Mansour.28

Model predictions of Reynolds-stress budgets of^u2&
and ^uv& up to y15200 are shown in Figs. 6 and 7. A
velocities shown are normalized with the friction veloci
and plotted against the distance from the wall in wall units
should be understood that the current model provides an
pression for the difference of pressure correlation and di
pation terms in Eq.~61!, but not for each term separatel
Consequently, the quantityf i j2e i j is shown in the budgets

Generally adequate agreement is achieved with the m
velocity profile and with the Reynolds stresses. This includ
the logarithmic behavior of the mean velocity abo
y1540. The analysis of the near-wall behavior in Secti
IV E gives good agreement with the near-wall scaling ok
and ^uv& in Fig. 4.

The most significant discrepancies in the budgets co
cide with inaccuracies in the model for turbulent transpo
The overprediction of transport aty1510 in Fig. 6 corre-
sponds to the underprediction off112e11 there, and to the
underprediction of the dissipation close to the wall in Fig.
In the budget of Reynolds shear stress, there is also an
derprediction of turbulent transport, together with an ov
prediction off122e12 at y

1515. It is hoped that these de

FIG. 10. A test of realizability:C0 should always be positive.
161T. D. Dreeben and S. B. Pope
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partures can be improved by the full pdf version of the mo
in which the turbulent transport is represented in the gove
ing equations exactly.

Model velocity profiles and friction coefficient ove
varying Reynolds numbers are shown in Figs. 8 and 9.
each case, the chosen number of grid cells is proportiona
the Reynolds number. The velocity profiles are compared
the experimental channel flow data of Wei and Willmarth25

at Reynolds numbers Reh514914, 22776, and 39582, wit
Reh based on the mean velocity at the channel halfplane
on the channel halfwidth. Using the model, these corresp
to Ret5695, 1012, and 1658 respectively.~Wei and Will-
marth report Ret51655 in the highest Reynolds numb
case, by expressing the location of the halfplane in w
units.! Model results for the friction coefficient are compar
with the experimental data compiled by Dean.26 For half-
plane mean velocitŷU&h , the friction coefficientCf5tw /
1
2r^U&h

2 , is plotted against the Reynolds number Reb , based
on the bulk mean velocity and the full channel width. Pla
sible agreement is achieved with the model in both case

VI. MODEL REALIZABILITY

By its construction, a well-posed pdf model is guara
teed to satisfy realizability.17 Well-posedness at the pdf leve
and realizability at the Reynolds-stress level go hand
hand, and they depend on whether the coefficientC0 of Eqs.
~36! and ~38! is non-negative.27 It can be shown from Eq
~38! that

C0→
2

3 SC11C2

P

e
21D ~76!

far from the wall @where the elliptic term of Eq.~41! be-
comes small# and that

C0→0 ~77!

as y approaches the wall. Figure 10 shows that the mo
gives realizable results in the case of channel flow. But th
is no analytical guarantee thatC0 remains non-negative ev
erywhere. Should the need arise to impose realizability w
more complex flows, a simple modification to the model c
be used: Let

b511maxS 22` i j ^uiuj&
3ke

,0D . ~78!

Then we replace Eqs.~37! and ~38! with

Gi j5

` i j2
be

2
d i j

k
, ~79!

C05
2

3 S b212
` i j ^uiuj&

ke D . ~80!

These specifications guarantee realizable solutions to
Reynolds-stress closure, and that1

2^uiui& continues to satisfy
the equation for turbulent kinetic energy

D̃k

Dt
5n

]2k

]xi]xi
1

]

]xi
SCm

sk
^uiuj&T

]k

]xj
D1P2e. ~81!
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Figure 10 shows values ofC0 which are significantly lower
than the values previously used in pdf models, such as
18 in whichC052.1. This is a consequence of choosing t
source terms of Eq.~41! to match the IP model; for this cas
Eq. ~76! predicts thatC050.95 far from the wall where pro-
duction and dissipation are comparable.

VII. CONCLUSION

The objective of the current model is to extend pdf me
ods so that they accurately resolve the statistics of turbu
flows in the near-wall region. This is achieved with two i
novations: First, a random term is introduced in the equat
for particle position, Eq.~29!. This necessitates a new ap
proach to the development of the physical particle evolut
equations, and provides an exact model for viscous trans
which is a dominant process near the wall. Second, Durb
elliptic relaxation is used in the generalized Langevin mo
to incorporate the non-local effect of the wall on the Re
nolds stresses. With these techniques, the near-
Reynolds-stress equations are well approximated, and
strong anisotropy and inhomogeneity of the flow close to
wall is modeled to reasonable accuracy. The predictions
fully developed channel flow show that the model is a via
extension of pdf methods to handle wall bounded flows. F
future work, the model will be solved as a pdf model using
Monte Carlo method, and it will be tested with more com
plex wall bounded turbulent flows.
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