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Probability density function(pdf) methods are extended to include modeling of wall-bounded
turbulent flows. A pdf near-wall model is developed in which the generalized Langevin model is
combined with an exact model for viscous transport. Then the method of elliptic relaxation is used
to incorporate the wall effects without the use of wall functions or damping functions. Information
about the proximity of the wall is provided only in the boundary conditions so that the model can
be implemented withouad hocassumptions about the geometry of the flow. A Reynolds-stress
closure is derived from this pdf model, and its predictions are compared with DNS and experimental
results for fully developed turbulent channel flow. 97 American Institute of Physics.
[S1070-663(97)02201-F

I. INTRODUCTION In this work we take the first step in extending the pdf
method so that it includes the accurate modeling of wall-

Turbulent flows are especially difficult to model in the bounded turbulent flows. We formulate a pdf model which
near-wall region, because the flow there is strongly inhomouses elliptic relaxation to allow the no-slip condition to be
geneous and anisotropic. Most Reynolds-stress models woikiposed at the wall without requiring information about the
well only for quasi-homogeneous flows! Many efforts to  proximity of the wall anywhere else in the flow domain.
incorporate the effects of the wall in turbulence models in-Feasibility of the model is assessed by deriving the corre-
volve the use of wall function.” With this approach, sponding Reynolds-stress closure, and comparing the
boundary conditions which are consistent with the logarith-Reynolds-stress statistics with available DNS data for fully
mic law of the wall are imposed just beyond the viscousdeveloped channel flow. In Section Il, we use a standard
sublayer, so that the difficult modeling very close to the wallTaylor series analysis to bring out the important features of
is avoided. Wall functions have also been used with thenear-wall flows to be represented by the model. Section Il
probability density functior(pdf) method in the calculation introduces the pdf formulation by showing the appropriate
of recirculating flows pdf evolution equation for the Navier—Stokes equations; this

The use of damping functionsllows models to incor- equation is to be closed with the model. Section IV gives the
porate the no-slip condition and to capture the behavior irfull development of the model. There we derive the pdf clo-
the viscous sublayer. In Reynolds-stress closures, dampirgure, the corresponding Reynolds-stress closure, and wall
functions are used to connect a quasi-homogeneous modebundary conditions on the Reynolds stresses. In Section V
far from the wall with asymptotically correct Reynolds-stresswe discuss the capability of the model to reproduce the be-
behavior close to the wall. Several models of this sort ardavior of fully developed channel flow. Realizability is dis-
reviewed in Ref. 10. cussed in Section VI.

A common requirement with these approaches is that
information about the proximity of the wall needs to be pro-
vided in the flow domain itself, either in the governing equa-!l. NEAR-WALL REYNOLDS STRESSES
tions, or(in the case of wall functionsn the boundary con-

d|t|ork1$, or beth' TThS nec,;ﬁszlty 'S pon&de_red .t? be 4ne the near-wall Reynolds-stress equations and their solu-
weakness, because the methods require Sbmon INfor- ¢ Results of this analysis are important in the construc-

mangn about the f'O.W in order to b.e. implemented. Such 3ion of the model. We split the velocity and pressure into the
requirement undermines the capability of these methods . miliar Reynolds decomposition:

extend to flows with complex geometries.

Recent developments in near-wall modeling have suc- U;=(Uj)+u;, (1)
cessfully eliminated the explicit dependence on the distance P=( P+ @)
from the wall of the governing equations, both witrand 7= TP
without'?~1® the use of damping functions. Those modelsFor
which have no damping functions use the method of elliptic  ~
relaxation'? Here the terms for the effects of fluctuating DC) _4C) 9()

- ot~ T 3

pressure are modeled using an elliptic equation. This neces- Dt at X
sitates boundary conditions on the pressure terms as well @e exact Reynolds-stress equation is
the velocities; these additional boundary conditions are cho-

sen to bring about accurate near-wall behavior of the Rey- D(u;u;) _
nolds stresses. Tt it Toi TPyt e, @

Here we use a standard Taylor series anal§sisexam-
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TABLE |. Near-wall Reynolds-stress terms as functiong/ db first order.
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1.2 6r(b,c,)y _<blbp>y 4v(b;co)y 6
612""2E<UU>. (19)

Using these, we express the near-wall Reynolds-stress equa-
where the terms on the right-hand side represent viscougons to first order in closed form:
transport, turbulent transport, production, velocity-pressure

gradient correlations, ._and dissipation, respectively. It is im- Va2<u2> _ E(u2>=0, (20)
portant to note that;; includes both pressure transport and Iy k
redistribution. Though the analysis is valid for any wall 2, 2
bounded flow, coordinates are arranged here to accommo- s >_65<vz>20 (21)
date statistically one-dimensional flow, such as fully devel- ay* k ’
oped channel flowu,x; are aligned with the mean flow, 9, 9
v,y=X, are wall-normal, andv,x; are in the spanwise di- Vﬁ <V‘; ) — f<W2>:0, (22)
rection. To describe the near-wall behavior, the fluctuating ay k
velocities and pressure are expanded in a Taylor series about Plu) e
the walf® wherea; ,b;,c;, ... i=1,2,3 anda, b, c,, ... v ——’ — 3 (up)=0. (23)
are random functions of; x5, and time, J k
u=a;+by+cy’+ ..., (5) These equations embody the important balance of physical
processes close to the wall: They are to be used for guidance
v=apthyy+cy’+ ..., (6)  in the construction of the pdf near-wall model.
w=ag+bay+cay?+ ..., 7) The above results bring out the strong anisotropy and
inhomogeneity which need to be addressed in the modeling
p=ap+byy+cy’+ ... . (8)  of near-wall flows. The anisotropy is clear from the terms in

By imposing the boundary conditions of no slip and imper-Table I. The dominant processes are of ordgrat the wall

meability, and the governing equations for conservation of"? the (1,1) and (3,3) directions, but they vanish in the di-
mass and momentum, we find the following results for theections which have a normal component; the turbulence be-

Reynolds stresses: First, to leading order, the scaling of ead}PMes two-component as the wall is approached. Summing
Reynolds stress with distance from the wall is the diagonal terms of the Reynolds-stress equations in Table

I shows that the contributions to the dissipation of kinetic

(u?)~y?, C) energy near the wall are only important in the (1,1) and
(b2)~y* (10) (3,3) directions. The inhomogeneity in the wall normal di-
' rection appears in Eq&§20)—(23) where the viscous transport
(w?)y~y2, (11) dominates the balance of every Reynolds-stress component.
3 Elliptic relaxatiort® has been shown to model these near-wall
(Uv)~y*. (12) effects well in Reynolds-stress closures; we hope to capture
Second, the dominant balance of Reynolds-stress terms netfniese effects by incorporating elliptic relaxation in the pdf
the wall is approach.
T(v)ij + ¢ij— €;=0. (13

The scaling withy of these dominant terms is given for each
Reynolds-stress equation in Table I. And third, Taylor serie
expansions fok=3(u;u;) and e=3¢; can be used to show

IIl. PDF EVOLUTION EQUATION WITH MOLECULAR
RiscosITy

that to leading order, the unknown ternpg ande;; can be Let f(V;x,t) be the Eulerian pdf of velocity at a given
modeled exactly in terms of known quantiti¢s;u;),k, and  location. The evolution equation for the Eulerian pdf can be
€ expressed in two ways:
€ of of 1 9P of
611~E<u2>! 14 —4v,—== W ot
ot (9Xi P &Xi 5V|
bz =2 (0%, 5 A Y X R Y
&Vi p &Xi (9Xj (?Xj '
. (24)
€22~ 4 (%), 18 o
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of of Pt 1 HA of tive transport exactly. But fluid particles are inadequate for
E"’Vi . Vaxox + ; ax. V. capturing viscous transport, because any pdf evolution equa-
' = b tion which follows from Eq.(27) [such as Eq(24)] must
32 dU; U, exclude the important viscous term(a%f/dx;dx;), which
N IV aV f Vﬁ_Xk Xy Ux,H=Vv appears in Eq(25) (see for example Ref. 18In an effort to
capture the effects of both convective and viscous transport,
n i[f<£ Pp (25 We consider stochastic particles which undergo both convec-
V| \p X ' tive and molecular motion. So we combine E27) with the
For modeling in which viscosity is important, we use E ._classiqa_ll model for Brown_ian motiéhin which the ch_ange
(25), because the first term on its right-hand side represenﬂgI _p_05|t|_on _Of a molecule is gov_erned_ by a symmetr!c prob-
viscous diffusion exactly. That term leads to the importantablllty d|§tr|buthn. T(_) characterize t.h's ra_ndor_n motion, we
viscous terms in the near-wall balances of E@))—(23). use the |sotrop|9 Wleqer pr-ocew in which increments
Only the terms on the first line of E(R5) are in closed form, have a normal distribution with zero mean, and

so an appropriate pdf model must provide a closure approxi- dWdW,=dts; . (28)
mation for the remaining terms.

U(x,t)=V>

Then increments of particle position are given by
IV. PDF NEAR-WALL MODEL d.2 = 7,dt+\2vdW, (29

The model to be developed here provides both a pdf angihere 2 is chosen to ensure that the momentum carried
a Reynolds-stress closure. Here, we construct both versionsy these particles diffuses in physical space with coefficient
in five stages. First, particle equations which represent the, So the particles carry momentum with them in the same
Navier—Stokes equations exactly are derived in a way whickvay that molecules do, and with identical statistics. This
leads to exact representation of viscous transport. Secongarticle motion leads to the viscous transport term in Eq.
the generalized Langevin model is used to close the un@5), and hence to the viscous terms in the near-wall bal-
known terms of the particle equations. The important paramances of Eqs(20)—(23).
eters in this model are specified using Durbin’s elliptic re-  We now find the corresponding increment of particle
laxation. Third, we derive the resulting pdf model by closingvelocity d77. For an arbitrary change in positiah?" over
Eq. (25 with a modeled pdf evolution equation, and by pro-the small time intervatit, we have
viding an equation for dissipation. Fourth, we formulate the 5
Reynolds-stress version of the model by deriving velocity d%:a_UidH ’9_Uldz+ E 97U
moment equations, and by adding a model for turbulent at axp b2 axjaxy
transport. Fifth, Reynolds-stress boundary conditions are im- (30
posed and the near-wall behavior is compared with the cofye substitute Eq(29) into Eq. (30) and retain the terms up
rect near-wall behavior described previously. This model deig orderdt:
velopment is guided by two main priorities:

d2jd 2+ ... .

9V, aJ; 2U;
(1) Far from the wall, the model approaches the familiar d%i=—tdt+ %(%dtﬂt V2vdW,) +v
I

dt.
isotropization of productiorilP) model?*? J X 9X; 31

(2) Close to the wall, the dominant balance of terms as rep-

resented in Eq13) is modeled as accurately as possible.Note that the Wiener process in E@1) is identical to the
one which appears in the equation for position, Ezp).

A. Exact particle equations Next we rewrite the first two terms on the right hand side of
Consider an ensemble of particles moving through theé=d- (31, using Eq.(26) and the Navier—Stokes equations:

Eulerian yelocny fieldU(x,t) with particle posnmn.%(_t) 197 92U, aU;

and velocity 74(t). For U(x,t) governed by the Navier— d7%=—-— KdHZV&x-&x- dt+ @WdV\/j . (32

Stokes equations, we define the particle velocity as the Eu- p o 177 y

lerian fluid velocity evaluated at the particle position: Equation(32) describes the change in velocity of a particle

p o whose position evolves by Eq9) through a velocity field
A =UL2 (1), t]. (26 which is governed by the Navier—Stokes equations.

We seek equations to govern the position and velocity of

these particles in which the viscous stress is modeled ex-

actly. . . . - :
. . . . . B.G lized L del with elliptic relaxat
Previous pdf formulations have used fluid particles. With eneraiized Langevin modet with efliptic relaxation
this approach, the change in particle positih®” over an We now construct model particle equations to approxi-
infinitesimal time intervablt is determined by the local fluid mate Eqs(29) and(32). Throughout this section we denote
velocity:}"18 modeled quantities and pdfs with an asterisk superscript to
. distinguish them from their exact counterparts. Let
d.2;=7dt. 27) 9 P

f*(V;x,t) be the modeled Eulerian pdf; this is the pdf of
By this definition, fluid particles are convected through thevelocity at a given locatiox and timet. Then mean veloci-
velocity field; consequently these models represent convedies are defined as
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whereC+,C, andC, are model constants. Then we specify
<Ui*(X:t)>:f vif*dv, (33 the non-local termp;; with the following elliptic-relaxation
equation:
with the integral taken over all of velocity space. For mod-

eling in a context in which Eulerian velocities are unknown, | goq )~ (1-Cyk* 5 KFH. Ui)
Eq. (32) is divided into closed and unclosed terms with the ' 1 2T 1 UK ax,
Reynolds decomposition: (41)
17 J(U, HU; where
d74=—— ;X‘>dt+2vﬂx<ﬂ;?dt+\/z%de 1 1
l = : HijkI:(CzAv+ §75)5ik5j|_§755i|5jk+ ¥sDik i1
LR, T Elaw. (@34
p X v an an (9Xj I - 75bi| 5Jk ’ (42)
"rhen” yl/e define the moflon of modeled particles .vy|th posi A= min| 1.0.C (u; 3J> 1 43)
tion .2™*(t) and velocityZz* (t). Increments of position are v v[2
given by Eq.(29), and increments in velocity are defined by §k
using the generalized Langevin model to replace the un-
closed terms of Eq(34): and
d.2% = 27 dt+ 2ud W, (35 o i) Lo 44
Doy 37
% 2(U* *
dwst = — 147 dt+2,,a (Ui >dt+ @de is the Reynolds-stress anisotropy tensor. The right-hand side
' p X IX;j X IX; ' of Eq.(41) is the family of stochastic Lagrangian versions of
) ) a modified IP modéf with parameterys, and with IP model
JFGiJ'(%c _<UJ*>)dt+ VCoe* dWi . (36) constantsC; and C,. Far from the wall,p;; dominates the

Here, W' is another isotropic Wiener process, independent-@Placian term on the left hand side of H¢J), so the cur-

of W, and e* is the modeled mean dissipation rate. Theent model approaches the IP model. Close to the wall, the

generalized Langevin model has paramet€s and C, Laplacian term becomes important and brings out the non-
| L B

which jointly provide a model for the fluctuating pressure local response of the pressure fluctuations to the boundary

gradients and the fluctuating velocities. conditions. L
To complete the generalized Langevin model, we The Laplacian term of Eq41) and the modification of

specify the parametef;; andC,, using Durbin’s method of the IP mpdel which is embodied in Eq!l?;) warrant furthgr
elliptic relaxation'213 In this approach the terms which in- explanation. They are both efforts to improve the behavior of
volve fluctuating pressure gradients are modeled with an eff"® model in the inertial sublayer where the mean velocity
liptic equation, by analogy with the fact that the pressure i&/ares logarithmically "g'g}y a common difficulty with el-

governed by the Poisson equation. This represents the nohptic relaxation modeld321 The present model decreases the

local effect of the wall on the Reynolds stresses through th&€nSitivity of the Reynolds stresses to non-local effects in the
fluctuating pressure terms. We introduce a tepgpto char- log layer based an idea which appears in Ref. 22. The elliptic

acterize the non-local effect of fluctuating pressure, and sefXPression

o LV%(Lgj)) (45)
Soii_75ii appears in Eq(41), rather than the more commonly used
Gij=— & (37)  expression
2y72
2, u) LVZpj;. (46)
Cozgk*—e*a (38) Under the constant-stress assumptions of the logarithmic
layer, we have
where k* is the modeled turbulent kinetic energy. While 1
C, is often constant in pdf models, it is chosen here to insure P~ = (47)
thatp;; be purely redistributivéDurbir?). y
To definegp;; we first specify time and length scales. ~y (48)
Following Durbin, we take the maximum of the turbulent ’
scales and the Kolmogorov scales: so the elliptic term(45) vanishes whereas the elliptic term

(46) does not. As a result of the ter@5), Reynolds stresses

T— ma{g,CT\/z* ' (39) in the_ I_og layer are determined primarily by local turbulent
€ € quantities.
\ 32 5\ 1 The mod.ification of the IP mode[ involves incorp'orat@ng
L=C mao{k— C (V_) (40) the termA, in Eq. (42). The behavior of the logarithmic
- e T e* ' profile is sensitive tap;; , which in turn is most sensitive to
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the IP model source term in question. Durbin has arfued For modeling an incompressible turbulent flow, we impose
that in ak— e type closure, the turbulent viscosity scales with o}

the wall normal turbulent intensitgp?)* rather than with ——_, (53
k*, and hence is suppressed close to the wall. By analogy, oXi

this pdf model captures the logarithmic layer more accuplus initial and boundary conditions o™ (t) so that

rately when the IP source term is similarly suppressed neaf,(x;t) is constant at=0 and on the boundaries of the flow
the wall. The termA, is an invariant which behaves like domain. These conditions ensure that

(v?)*Ik* close to the wallfor an appropriately chosen con- f i t) =

stantC,). Far from the wall, we haveh,=1.0, and the x(X;t)= constant (54)
source term is identical to that of the standard IP model. Thigs the only solution to Eq(52). Then we find the Eulerian
modification improves the behavior of the mean velocitypdf equation by dividing Eq(51) by f,:

profile in the log layer, with the IP model constant of of per o 1 oA P

C,=0.63. The fact theC, is close to its original value of —_ —=v — - [Gi(V
C,=0.6 preserves the ability of the current model to charac“t axi  axdxp  Vip ax Vv
terize a sudden distortion of initially isotropic turbulence, as HUY) 3P
the original IP model doek. —<Uj))f]+2v(9—x'J N

The complete model particle formulation is given by ! =
Egs.(35—(44). The values of the constants are given below a(U;) a(U;) 9°f 1 9°f
in Eq. (63). Ve ax iV, T 20 vy,

k k i j i i
(55)

C. Closure at the pdf level The random term in Eq35) has led to the important viscous

Here we close EcKZE)), based on the model of the pre- term V(?zf/ﬁXiﬁXi in the modeled Eulerian pdf equati{lfri’rst
vious section. The asterisk superscript notation is droppederm on the right hand side of E(55)]. The model provides
with the understanding that all physical variables and pdfdé closure to Eq(25) by setting
are modeled quantities. _We defing tyvo mc_)d_el pdfs: Let , 1 dp 52 U, 9,
fL(V,x;t) be the Lagrangian pdf; this is the joint pdf of a ——- f<—& U=V>}— VY, [f<VWW U=V>}
particle’s position and velocity. The pdf of particle position = ' p o= 7%k o

is 9 & (Ve (U142 HU;)y 9
- aVl[ ”( i < ]>) ] v (9Xi (9X|(9VJ
f (x;t)=ff (V,x;t)dVv. (49
) : Uy Uy Pf 1 9t
Then the Eulerian pdf is the Lagrangian pdf of the particle v Xk IXx VAV, + ECOG aV;aV; " (56)
velocity, conditioned on the particle’s position: To complete the closure at the pdf level, we use
fL(V.x;t) Durbin’s modeled equation for the dissipation:
f(V;x,t)= ﬁ (50 _
(60 De 4 C, de P
Starting from the particle equatiori85) and(36), we derive Dt o\ VT U_E<“iUJ>T ax; tCalltai_ |
an evolution equation for each of these pdfs sequentially to
arrive at the Eulerian pdf equation. _c € (57)
The Lagrangian pdf evolution equation follows from T

taking Egs.(35) and(36) to be a six dimensional diffusion here
process. Then by the methods in Ref. 23, the Lagrangian pcw

evolves b a(U;
y P:_<Uin> < I> (58)
of, ot @t a1 9 IXi
ot Vi X Laxiax; N p ax a_\/i[GiJ'(VJ is the production of turbulent kinetic energy. The model con-

stants in this equation, given in E@3), have nearly identi-

2
_n HUj) a7, cal values(only a, differs slightly) to those which appear in
(Unfl+2v
(9Xi &X,&VJ Ref. 13.
HUp) (U *fL 1 9°f,
- € -
e I AViaV; 270 aViaV; D. Closure at the Reynolds-stress level
(51) Every pdf model has a corresponding Reynolds-stress
The evolution for the pdf of position is obtained by integrat- closure?’ We derive the Reynolds-stress version of the cur-
ing Eq. (51) over velocity space: rent model by taking first and second moments of the pdf

‘ ; 2 equation. The mean velocity equation is derived by multiply-
&4_ LU Tx] =y I ] (52) ing Eq. (55) by V, and integrating over velocity space. This
ot IX; IX;IX; gives the familiar Reynolds equations exactly:

158 Phys. Fluids, Vol. 9, No. 1, January 1997 T. D. Dreeben and S. B. Pope

Downloaded-16-Jan-2005-t0-128.84.158.89.-Redistribution-subject-to-AlP-license-or-copyright,~see=http://pof.aip.org/pof/copyright.jsp



8r.
n
TEe N n
"o k DNS
g b & A <u’> DNS
a | ) 2
] A * <v*> DNS
g S osh Ay ® % DNS
2 = '
> g 4k
1)
g &
= E
3
Z

(@)

FIG. 3. Normal Reynolds stresses for fully developed channel flow: com-

20
parison of modelline) with DNS data(symbols.

To derive the Reynolds-stress equation, we multiply &§)
by the quantity ¥;—(U;))(V;—(U;)) and integrate over ve-
locity space to give

D{uu) _ o*(uiuj)  uiujuy)

Mean Velocity
S

Dt v anan L?Xk
5
a(U;) a(U;)
= {uiu) X +(Ujuy) %,
0 L L
]00 101 ]02 +Gik<ukuj>+ij<ukui>+C065ij . (60)
(b) ¥

By comparing Eq(60) with (4), we see that the generalized
FIG. 1. Mean velocity for fully developed channel flow: comparison of Langgvm terms mOd_e| Comblneq effects .Of' ﬂu.ctuatmg
model (line) with DNS data(symbols. velocity-pressure-gradient correlations and dissipation:

&ij — €j = Gi{Uuj) + Gji(uu;) + Coedj - (61)

At the Reynolds-stress level, we also need a model for
the turbulent transport teri;; = d(u;juju)/dx,. We fol-
(590 low Durbin*® and use the Daly and HarlG{v gradient-
diffusion model:

M+i .u.>:—£§<:¢>+vm
Dt aXi ™ p (9X] (9Xi(9Xi )

(]
10 k- deAoscanan.

-A

i\
2 v
e - L] k DNS
' A -<uv> DNS
k Model
"""" -<uv> Model
10" 10

+

y

FIG. 4. Near-wall scaling of kinetic energy and Reynolds shear stress for
FIG. 2. Reynolds shear stress for fully developed channel flow: comparisorfully developed channel flow: comparison of modkhe) with DNS data
of model(line) with DNS data(symbols. (symbols.
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FIG. 5. Dissipation of turbulent kinetic energy for fully developed channel

2 . :
flow: comparison of modefline) with DNS data(symbol3. FIG. 6. Budget of(u®) for fully developed channel flow: comparison of

model (line) with DNS data(symbols.

T = | Sy 7 ) (62)
(i X\ ok K= IX, )

by expanding the fluctuating velocities in a Taylor series
oo . . about the wall. That method does not work with a turbulence
The model constant values in this term, given in &), are model, because the model says nothing about fluctuating ve-
identical to those in Ref. 13. The complete Reynolds-stresg) iqq. only moments of the velocity. Instead, we derive
closure is specified by Eq€37)—(44), (53), (57)-(60), and modeléd near-wall counterparts of EC[§_0)—(23), by ex-
(62). Model constants are panding each Reynolds stress in a Taylor series about the
C,=1.8; C,=0.63; C,=1.4; C,=0.23; 0\=1.2; wall, imposing the boundary conditions of Eq$4)—(67),
and the Reynolds-stress equations of E&f). Close to the
¥5=0.1; 0,=1.65 Cn=144; C,=1.9 (63 wall, the model equations become

a;=0.09; C;=6.0; C_=0.134; C,=72.0. AU € ,
E. Boundary conditions and near-wall behavior
At the wall, we impose the no-slip condition on the fp e
mean and fluctuating velocities, and we ggt as follows: 9*(v?) 37722 (w3 =0(y) 69
vV 2 v = y H
(Up)=0, (64) ay k
u:U; :0, (65) (92<W2> €
(u; J> V—ﬁyz — R<W2>:O’ (70
ak
n; X 0, (66)
62
L=—17.2 nn;, 6 010
71 AUy XUy " (©7
oxax 0.05 : ‘&"'0.’
wheren is the wall normal. Because the only non-zero com- : ”0».,.,.,’ .
ponent ofp;; at the wall is in the normal direction, the model 4 MR
can be implemented in more complicated geometries without ﬁ_‘ e
additional assumptions about the direction of the mean flow. 3 i
The condition ong;; controls the near-wall suppression of §°-0.05 L = .,-5"' 4 Tp DNS
Reynolds shear stress through its appearance in(Ex); a - .ﬁ,."’ . :E Ezz
hence it also controls the position of the velocity profile. It ol ‘wga T, Model
embodies a weak Reynolds number dependence, expressed 'y  =====- Ty Model
in terms of quantities at the wall. This enables the model to T P Model
¢ . diemogettio— 4 Model
reproduce the observed velocity profiles over different Rey- L . )
0 50 100 150 200

nolds numbers. +

The near-wall behavior follows from the form of the
mOd(f,'| and from the boundary conditions. For the eXaCk|G, 7. Budget of(uv) for fully developed channel flow: comparison of
physical case, we found the near-wall behavior in Section lnodel(line) with DNS data(symbols.
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FIG. 8. Mean velocity for fully developed channel flow: comparison of FIG. 10. A test of realizabilityC, should always be positive.

model (line) with data of Wei and Willmarth(symbolg at different Rey-
nolds numbers.

with y near the wall, except fajw?), which approaches zero

Iuv)  pa—e asy? rather than at the correct rate pf. But the important
v K (uv)=0(y), (71 processegthose of order lLare the portions of viscous trans-
. _ port and dissipation which occur only in ti#&,1), and(3,3
with solutions directions near the wall; this analysis shows that the model
(u2)~y2, (72) represents those balances correctly. So before considering
) . any calculations, we know that the model can characterize
(v9)~Yy7, (73 important aspects of near-wall flows.
(w?)~y?, (74)
(uv)~ys. (75 V. FULLY DEVELOPED CHANNEL FLOW
It is clear from comparing Eqg68)—(71) with Egs. (20)— The model is tested for fully developed channel flow

(23) that the model reproduces the dominant balance ofvith Re,=395, based on the friction velocity and the chan-
transport with dissipation in the near-wall Reynolds stressegel half-width. The Reynolds-stress equations are discretized
exactly in the tangential directions. To leading order, thison a 150 cell grid, and solved with Newton’s method using a
aspect of the model captures the near-wall anisotropy. Neafully implicit scheme. Model predictions of velocity, Rey-
wall inhomogeneity is also captured with the appearance ofiolds stresses, and dissipation are shown in Figs. 1 through
the exact viscous transport terms on the left-hand side of, together with DNS data of Mansotit.
Egs. (68—(71). Comparison of Eqgs(72)—(75) with Egs. Model predictions of Reynolds-stress budgets(of)
(9)—(12) shows that all Reynolds stresses scale correctiand (uv) up to y*=200 are shown in Figs. 6 and 7. All
velocities shown are normalized with the friction velocity
and plotted against the distance from the wall in wall units. It
0.008 should be understood that the current model provides an ex-
pression for the difference of pressure correlation and dissi-
pation terms in Eq(61), but not for each term separately.
Consequently, the quanti;; — €;; is shown in the budgets.
Generally adequate agreement is achieved with the mean
velocity profile and with the Reynolds stresses. This includes
the logarithmic behavior of the mean velocity above
y*=40. The analysis of the near-wall behavior in Section
IV E gives good agreement with the near-wall scalingkof
and(uv) in Fig. 4.
The most significant discrepancies in the budgets coin-
cide with inaccuracies in the model for turbulent transport.
0002 - . .. The overprediction of transport 3t =10 in Fig. 6 corre-
10 10 10 sponds to the underprediction éf;— €;; there, and to the
Rep underprediction of the dissipation close to the wall in Fig. 5.
FIG. 9. Friction coefficient as a function of Reynolds number for fully In the b_Ud_get of Reynolds shear stress, there I.S also an un-
developed channel flow: comparison of modiisle) with data compiled by ~ derprediction of turbulent transport, together with an over-
Dean. prediction of ,,— €1, aty* =15. It is hoped that these de-
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partures can be improved by the full pdf version of the modeFigure 10 shows values @, which are significantly lower

in which the turbulent transport is represented in the governthan the values previously used in pdf models, such as Ref.

ing equations exactly. 18 in whichCy=2.1. This is a consequence of choosing the
Model velocity profiles and friction coefficient over source terms of Eq41) to match the IP model; for this case

varying Reynolds numbers are shown in Figs. 8 and 9. FOEq. (76) predicts thatC;=0.95 far from the wall where pro-

each case, the chosen number of grid cells is proportional tduction and dissipation are comparable.

the Reynolds number. The velocity profiles are compared to

the experimental channel flow data of Wei and Willmé?_th VIl. CONCLUSION

at Reynolds numbers Re 14914, 22776, and 39582, with

Re, based on the mean velocity at the channel halfplane and  The objective of the current model is to extend pdf meth-

on the channel halfwidth. Using the model, these Correspongds so that they aCCUrately resolve the statistics of turbulent

to Re=695, 1012, and 1658 respectiveljVei and Will- flows in the near-wall region. This is achieved with two in-

marth report Re=1655 in the highest Reynolds number novations: First, a random term is introduced in the equation

case, by expressing the location of the halfplane in walfor particle position, Eq(29). This necessitates a new ap-

units) Model results for the friction coefficient are compared Proach to the development of the physical particle evolution

with the experimental data compiled by D&nFor half-  €quations, and provides an exact model for viscous transport

p|ane mean Ve|ocitju>h, the friction Coefﬁcientcf: TW/ which is a dominant process near the wall. SeCOHd, Durbin’s

%p(U)ﬁ, is plotted against the Reynolds number, Rbased elliptic relaxation is used in the generalized Langevin model

on the bulk mean velocity and the full channel width. Plau-to incorporate the non-local effect of the wall on the Rey-

sible agreement is achieved with the model in both cases. Nolds  stresses. With these techniques, the near-wall
Reynolds-stress equations are well approximated, and the

strong anisotropy and inhomogeneity of the flow close to the

VI. MODEL REALIZABILITY wall is modeled to reasonable accuracy. The predictions for

By its construction, a well-posed pdf model is guaran-fU"y deyeloped channel flow show that the model is a viable
teed to satisfy realizability’ Well-posedness at the pdf level €xtension of pdf methods to handle wall bounded flows. For
and realizability at the Reynolds-stress level go hand irfuture work, the model will be solved as a pdf model using a
hand, and they depend on whether the coeffic@of Egs. Monte Carlo method, and it will be tested with more com-
(36) and (39) is non-negativé’ It can be shown from Eq. Plex wall bounded turbulent flows.
(38) that
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