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1 Background and Objectives

In the application of pdf methods to turbulent flows, a particle method is
used to solve a modeled equation for the evolution of a pdf. To determine the
coefficients of the equation at each time step, it is necessary to use particle
data to estimate mean quantities such as the mean velocity or the Reynolds
stress as a function of position in physical space [1]. In this paper we consider
three different methods to estimate mean quantities. Two of them have esti-
mates calculated at evenly spaced points; the third one is performed on a grid
with randomly generated spaces so that the results can be extended for use
with unstructured grids in higher dimensions. We describe how the methods
work and use a test function to determine how their accuracy depends upon
relevant parameters.

2 Estimating Means for a Structured Grid

Suppose we are given data y! with i = 1,2,... , N at evenly spaced z! over
the interval [a, b]. As in the literature [2, 3, 4, 5, 6], the data is modeled as
vi = f(z}) + o6 (1)

In our case, the random variables ¢; are taken to be independent, identically
distributed (iid), and standardized Gaussian. The data y; are then modeled
as iid Gaussian random variables with mean f(z!) and variance 0. The task
of the algorithm is to construct an estimate #(z) for the function f(z) from
the data.

The domain [a, b] is partitioned by m + 1 equally spaced points, called
knots. Let Ar = ""T“ denote the distance between any two adjacent knots.
Then for j =0,1,..., m, we define X to be the location of the j-th knot:

Xj=a+jAz, (2)

With this definition, the first and last knots (X0,Xm) coincide with endpoints
a and b. To construct the estimate, we make ¢(z) a linear spline (3, 7]. This
is a continuous piecewise-linear function where the slope is discontinuous at
the knots. The spline is fully specified by its values at the knots. Hence,

using a spline reduces the task of the algorithm to estimating the function f
at the knots, Xj.



2.1 Two Estimation Algorithms
2.1.1 Cloud-in-Cell Method

The cloud-in-cell method is used to estimate f(z) at the knots. This method

is a variation of the approach proposed by Priestly and Chao [2]. We define
a kernel K by

ooy l=u| if [y <1
K(v) = { 0 otherwise (3)
Support for the kernel centered at the j-th knot consists of those z’ for which
i — X;
Kl=/——]>o. 4
(S5 > (@)

On the boundaries we extend the data periodically by defining

z; = zi_yfori>N (5)
i = zjyfori<o. (6)

Then for j =1,...,m, the estimate ¢(X;) for f at the knot X; is

_ 2 yfl"(ﬂ%)

= o R(E)

¢(X;) =¢;

The coefficients ¢; can be expressed as the solution to a matrix equation. Let
c be the vector (¢1,¢ca,...,cm)7, A be the m x m diagonal matrix with

fz— X
Ajj=;1\( = ’>, (8)
and b be the vector (b1, bs,...,b,)T with

iz =X
b= i (52), ©)

et}
T

then ¢ is the solution to the matrix equation

Ac=b. (10)



To construct the linear spline ¢(z) from the vector ¢, we define basis functions

bi(z). For j = 1,2,...,m — 1, the basis function which is centered at the
knot X is the linear spline

bi(z) E[\’(x—Xj> (11)

Az

where K is given by Eq. (3). The boundaries are treated with a special basis
function

K(z=X)  for Xo <z < X,
bn(z) =4 K ’;A’i-"—‘) for Xp1 <z < X, (12)
0 otherwise

Then ¢(z) is a linear combination of the basis functions with the estimates
at the knots, (¢;, j = 1,...,m) used as the basis coefficients:

3a) = 2 bi(a) (13)

2.1.2 Least Squares Method

The second estimation algorithm is least squares linear splines (3, 8]. In this
application, least squares is identical to cloud-in-cell in everything except for
the matrix A in Eq.(10). Here, A is determined by the normal equations

which are described on pages 92-3 of [8]. The solution to these equations
minimizes the expression

Y lo(ah) — vl (14)

i

The matrix is an m x m periodic tridiagonal matrix with elements

e :—1Y » .’E:—‘X
Ajp = ZA(‘” — ’)A( — "). (15)

Eq. (10) is solved for c;; then the estimate #(zx) is the linear spline given in
Eq. (13).




2.2 Testing the Methods

These two algorithms were implemented using data generated by the test

function f(x) =sinz over the interval [0,27]. The error was characterized
by the integrated mean squared error, which is

e= 5 [ (18(z) - f@)) dz. (16)

This error is split into a deterministic part and a statistical part where

€ = €+ €, (17)
6 = 5 [ (8(@) - f() de, (18)
1 2 2
ande, = = ["((6(2) - (¢(e))]?) de. (19)

The deterministic error (also known as the square of the bias) is a trunca-
tion error which occurs because the function f is being estimated at only a
finite number of points X;. The statistical error is caused by the random
fluctuations. '

The condition of dense data exists when each kernel is supported by a suf-
ficiently large number of particles that the deterministic error is independent
of N. Under dense data, the test is characterized by two parameters, v and
Az. The quantity v is defined to be 02/N. With the cloud-in-cell method it
can be shown [5] that to leading order, the deterministic error varies as Az*

and that the statistical error varies as v/Az. So for sufficiently small Az,
there are constants o and 3 such that

e~ aAzt + ﬂ-Al; (20)

For the test function f(z) = sinz, Figure 1 shows how € varies with Az
for different fixed values of v with the cloud-in-cell method. For small Az we
see that the statistical error dominates the expression for € because ¢ varies
inversely with Az and it depends upon +. For large Az the deterministic
error dominates. Here all the curves collapse into one curve with positive
slope to show the independence of € upon 4 and how e scales with Az*.

This dependence upon Az reflects a trade-off between deterministic and
statistical error [5]. The deterministic error characterizes the inability of
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the estimate to detect variations in the underlying function f with position
z. For a given kernel bandwidth Az, the estimate ¢(X;) is determined by
the particles which support the kernel centered at X ;. So @(z) is sensitive
to variations in f between kernels in different locations, but it is relatively
insensitive to variations in f within the same kernel; those variations are
mostly averaged out. As Az increases, each estimate ¢(X ;) depends upon a
larger number of particles, so the estimate is less able to detect local vari-
ations in the underlying function f. This means that as Az increases, so
does the deterministic error. Statistical error works in the opposite way. As
Az increases, the larger number of sample particles reduces the sensitivity of
¢(X;) to random fluctuations in the data, thus reducing the statistical error.
So overall, as Az increases the deterministic error increases and the statisti-
cal error decreases. As Figure 1 shows, for each fixed + there is an optimal
Az which minimizes e by providing the best balance between deterministic
and statistical error.

Figure 2 shows similar results for least squares. Here we see the same
tradeoff between the deterministic and statistical error.

To compare the accuracy of the two methods, a single curve was sought
to characterize the error for each method. The curve was derived by plotting
a group of (¢,7) against a group of (Az,v). The groups were chosen so
that as the independent variable approaches its extreme values, the family of

curves approaches a single curve. If we assume that Eq. (20) applies to both
methods, then it follows that

,YU.!

€ Az

v za<70'2>4+ (i) (21)
Figure 3 shows —5% plotted against 5% for both algorithms. This Figure
shows that the optimum collapsed error is slightly smaller with cloud-in-cell,
and it occurs at a Az which is half as large as that with least squares. The
optimum Az’s appear more clearly in Figure 4, which shows the same data
on a linear plot. These results require that the estimation be performed on
a structured regular grid, which is specified by the choice of Az.



3 Estimating Means for an Unstructured Grid

For applicability to pdf methods, we use the above ideas to construct an al-
gorithm which can be extended to accommodate an irregular or unstructured
grid. The problem is posed as follows: We are given data in one dimension
which is modeled by Eq. (1). So that the model can be extended to unstruc-
tured grids in higher dimensions, the knots X;,j = 1,...,m, are given at
irregular intervals over which the data is dense. As with previous methods,
the estimate @(z) is represented as a linear spline which is specified by its
values at the given knots. However estimation for the values of ¢ at the knots
X; requires a different algorithm to allow for the balance of statistical and
deterministic error. With previous methods the minimum error is achieved
by a proper adjustment of the grid spacing. Here, the grid has been speci-
fied in the problem, so a new algorithm must allow for minimizing the error
independently of the grid.

3.1 The Two Stage Estimation Algorithm

The method of local least squares [4] is used to estimate the function at the
knots. To reduce computational cost, local least squares is preceded by a
first stage of kernel estimates, similar to those with the cloud-in-cell method.
Here the kernels are chosen to match the irregular grid, and the estimates
are taken at the center of mass of the particles, weighted by the local kernels
which they support. These first stage estimates are then used as weighted
data for the second stage in which we use the local least squares algorithm.

3.1.1 Stage 1l

The domain is partitioned into unequal subintervals, bounded by knots X ;-
A kernel H; is chosen to accommodate the irregularly spaced knots. We use
the linear splines described as hat functions in [7]:

.‘L‘—X -l rd d
W for X;_1 <z < Xj;

Hj(e)={ g% for X; <z < Xy, (22)
0 otherwise



The first stage generates the following three quantities: The weight of parti-
cles which support the kernel at the j-th knot,

wj; = ZHJ'(CE,'); (23)
the center of mass of particles which support the kernel at the j-th knot.

A—rj _ i xiHj(xi)

; (24)
wj
and the estimate for f at the center of mass,
— _ XiyiH;(z)
5= Tl (25)

J

The output w;, X;, and ¢; completes the first stage.

3.1.2 Stage 2

In stage 2, we use the local least squares algorithm [4] to estimate f at
the knots, X;. The points from stage 1, (X:,%:),i = 1,...,m are used as
input data with weights w;. The local least squares algorithm provides an
estimate for f at X; by locally fitting a polynomial to data which lies within
a neighborhood of X;. The size of the neighborhood is characterized by
the bandwidth W, which is used as a parameter in the algorithm. For each
estimate, the data is weighted with a kernel Q, where

‘)
0 otherwise (26)

Q) = { (1—u?)? if [u|<1

Then ¢;(z) is a polynomial estimate for f(z) in a neighborhood of the j-th
knot which minimizes the expression

S X5 wiéi ) -7 1)

A general method for choosing the order of the polynomial is described
in [4]. In this application, first and second order polynomials are considered.



The linear two stage algorithm is implemented by fitting a first order polyno-
mial to the points (X, ;) in a neighborhood within a distance W centered
at the knot X;. We take a function of the form

$i(z) = a+ b(z — X;), (28)
where & and b are constants to be determined. If we introduce the notation
X; = X (29)

0y = ( ) (30)

then the constants & and b which minimize Eq. (27) are determined by solving
the matrix equation

ZiAQijA i C?ij):(ij ] [ a ] _ [ Ziéia_i ] .

YiQuXy TiQuXE L0 i Qi 9i X
The quadratic two stage algorithm is implemented by fitting a second order
polynomial; here we take a function of the form

(31)

6i(z) = a+b(z — X;) + &z — X;)? (32)

in place of Eq. (28). Then the constants &, b, and & which minimize Eq. (27)
are determined by solving the quadratic version of Eq. (31),

Z Qt] Zz Ql]XtJ Zz Qu){;] é ZaAQt_J_(?Ti
Et QtJ‘YQJ Z Q:]‘Y Z Q11X3 b = Zi QAijﬁ)fij . (33)
Zs Qu)(? Z Qz])\’s Z Qt]‘x’? ¢ Zi Q,]QS,XEJ

For either order polynomial fit (1, 2, or higher if desired), the estimate for f
at Xj; is
¢(X;) = ¢;(X;) = a. (34)
The above procedure is repeated for each X; to generate the estimates
#(X;) = ¢;. Then the estimate at any z is represented as a linear spline.
Here, the basis functlons b;(z) are defined using the hat functions of Eq. (22)
for j =0,. )
bi(z) = H;(z). (35)

Then the estimate ¢(z) is the linear spline given by Eq. (13) as with previous
methods.



3.2 Testing the Two Stage Method

The two stage algorithm was implemented using data generated by the same
test function as before, y = sinz over the interval [0,27], with a specified
irregular grid. The grid specification is based on a reference length Az,.g.
A uniform [0.1, 1.1] random number is multiplied by Az, ¢ to generate each
grid space. Then all grid spaces are scaled down slightly, so that the grid fits
exactly into the domain [0,2x]. The length Az,.; is chosen so that the data
(z:,9:),% = 1,..., N is dense for the first stage, and the output of the first
stage (X, ¢;),j = 1,...,m is dense data for the second stage. For purposes
of evaluating the error, the final estimates for the function f were taken not
on the irregular grid (as they would be in a real application), but at M = 65
evenly spaced intervals, bounded by f(j, J =0,...,M. The error is then
characterized as a summed mean squared error:

1 & .
e= 323 ([6(X)) - F(X)P). (36)
M =
Again € is decomposed into a deterministic and statistical part where
€ = €4+ €, (37)
1 M ) ;
e = = [é(X;)) — F(X) (38)
M =
1 M 3 X
and e, = —) ([8(X)) — (&(X)))]%). (39)
M =

With dense data, the test here is characterized by the parameters ~ and W.
Recall that v is 02/N and W is the bandwidth of the kernel used in the
second stage (local least squares) of the algorithm.

For the local least squares algorithm, the behavior of the error is described
in Ruppert [6]. Ruppert’s results apply to the cases considered here because
the output from the first stage algorithm is dense data for the local least
squares stage. These results imply that the behavior of the two stage error
is similar to that with cloud-in-cell described in Eq. (20). With the linear fit,
there are constants o; and 5, such that

X

(40)



and with the quadratic fit, there are constants o, and , such that
exa,Wé+4 =X, (41)
q q W

Figures 5 and 6 show how € varies with W for different fixed values of v
for the two stage method. Figure 5 gives results for the linear fit; Figure
6 is for the quadratic fit. By comparing Figures 5 and 6 with Figures 1
and 2, we see that the dependence of € upon v and the bandwidth with
the two stage algorithm is qualitatively similar to this dependence with the
cloud-in-cell and least squares methods. At small bandwidths the statistical
error is the dominant term and at large bandwidths the deterministic error
is the dominant term. For each value of vy there is an optimal choice of
the bandwidth W which provides the best balance between statistical and
deterministic error.

Because the error associated with the linear two stage algorithm varies
with W and v in the same way that the cloud-in-cell error varies with Az
and 7, it is useful to derive a family of curves for the two stage algorithm
which are collapsed onto one curve, like those in Figure 3. We use Eq. (40)
to find an expression which is analogous to Eq.(21), for a group of (¢,7v) as
a function of a group of (W,v):

35z

€ ~ w 4 ﬂl
W’\‘al(’ro'z) + (W) (42)
Figure 7 shows —5 plotted against % for the two stage algorithm using
linear local least squares. Referring to Figure 7 and Figure 3 we see that
the minimum error with the linear two stage algorithm is comparable to the
minimum error with cloud-in-cell, and it occurs at an optimum bandwidth
which is between those with cloud-in-cell and with least squares.
Collapsed error curves can also be derived for the quadratic two stage
case. Based on Eq.(41), we have

€ W \s B,
70.86 ~ g (70.14) + ( ug ) (43)

70.14

Figure 8 shows —oee plotted against % for the quadratic two stage algo-
rithm.
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4 Summarizing the Results

The errors for all of the methods can be expressed in a compact form so that
the optimum bandwidth and corresponding error can be estimated. Consider
the data modeled by Eq. (1) with the sinusoidal test function

2rzx

f(z) = asin—L— (44)

taken over the domain [0, L]. Let A be a non-dimensional bandwidth; for the
cases considered here,

2rW

\ = 2”LA’” for cloud-in-cell and least squares
- 7— for the two stage algorithms.

(45)

and let p be an integer power. For the algorithms considered here, each of
the error curves are well approximated by the expression

e &= a[al? +;3}], (46)

where a and §# depend upon which algorithm is used. Here, p = 6 for the
quadratic two stage method, and p = 4 for the other methods. In each case,

the optimum bandwidth and the corresponding error can be estimated by
setting
dé
—_— = 47
) (47)

and solving for A and ¢ in terms of @, 3, v, and p. If we let A, and ¢, denote

the estimates for the optimum bandwidth and minimum error respectively,
then Eqgs. (46) and (47) give

3, = (.@l) oy (48)
P
and

& = a’a(p + 1)AP. (49)

Now Eqs. (46), (48), and (49) can be used to find &), ,, and ¢,, if o and
B are known. The error results shown in F igures 1, 2, 5, and 6 were used to

construct estimates & and J, for a and 3, using a parametric least squares
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algorithm & B
cloud-in-cell 1.30 x 102 3.17
least squares 8.32 x 10~* 6.60

linear two stage | 2.07 x 1073 4.92
quadratic two stage | 4.24 x 10~¢ 9.73

Table 1: Estimates for a and 3

algorithm. The deterministic portions were fit to a polynomial of order p
in A where p = 6 for the quadratic two stage algorithm and p = 4 for each
of the others. The statistical portions were fitted to vary inversely with
A. These estimates for @ and 3 are shown in Table 1. With these values,
Eq.(46) becomes a good approximation for the results in Figures 1, 2, 5,
and 6. Figures 9 and 10 show estimates )\, and ¢, as a function of v, based
on Egs.(48) and (49). Empirical results are shown as points on the plot.
Discrepancies between the data and the estimates are most pronounced with
the plots of optimum bandwidth in Figure 9. These occur because the tests
were run at discrete values of A whereas the model values are determined by
minimizing the value of a smooth function é of A. In some cases, most notably
the linear two stage method, the optimum bandwidth of those bandwidths
which were tested is far enough from the true optimum bandwidth to cause
appreciable error in the experimental results shown in Figure 9. It should be
emphasized that the estimates for o and 3 are determined using the fact that
f() is sinusoidal for the cases considered here. In general f(z) is unknown,
so other means must be employed to estimate o and 3 in order to make use

of Eqgs. (46), (48), and (49).

5 Conclusions

5.1 Estimation Over Adjustable Grids

The cloud-in-cell and least squares methods are well suited to applications
in which the grid spacing can be chosen to give the near minimum error.
It is clear from Figures 3, 4 and 10 that the minimum error is comparable
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for both of these methods. Because least squares involves solving a periodic
tridiagonal matrix equation, it is computationally more costly than cloud-in-
cell. This cost increase is significant in 2 and 3 dimensions.

5.2 Estimation Over Specified Grids

The two stage method is better suited to applications in which a grid has
been specified; there the error is optimized by adjusting the bandwidth in-
dependently of the grid. Referring to Figure 10, the quadratic two stage
algorithm has a significantly smaller minimum error than does the linear
two stage algorithm for the values of v considered. However the slope %
Is steeper with the quadratic two stage algorithm than with any of the oth-
ers. This occurs because of the dependence of ¢, upon p in Eq. (48) through
Eq.(49), and the fact that p = 6 for the quadratic two stage method and
p = 4 for the other methods. When v = 6.5 x 10~* the quadratic two stage
minimum error line in Figure 10 crosses the lines for the other methods. So
for sufficiently large ~, the quadratic two stage algorithm offers no advantage
over the other algorithms because it incurs an excessively large statistical
error. The quadratic two stage algorithm is also more costly than the linear

two stage algorithm because it involves solving a 3 x 3 matrix equation rather
than a 2 x 2 equation.

5.3 Optimum Bandwidth

Figure 9 shows how the estimated optimum bandwidths vary with « for each
of the different methods. This is important for computational cost with
the two stage methods. As the bandwidth increases, the amount of data
which supports each kernel also increases while the number of kernels remains
fixed. So a larger bandwidth requires more calculations on the data in the
second stage. If the error is minimized there is added computational expense

involved with the quadratic two stage algorithm because its minimum error
occurs at the largest bandwidth for the values of v used here.
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5.4 Sensitivity to Changes in Bandwidth

We can approximate sensitivity of the error to deviations of A from ), using
Eq.(46). Sensitivity here is taken to mean a fractional change in a quantity.

For A close to ), the error can be expressed as a Taylor Series expansion
about \,:

Je 1( 9% .
Using Eqgs. (46), (48), and (49), and dropping terms above second order, this
becomes .
PO 4 (‘f—’\)2 (51)
€& 2\,

With the sensitivity expressed in this way, it is clear that when the bandwidth
1s changed by a given factor 6, then the corresponding change in error depends
primarily on p, and is directly proportional to #2. So the cloud-in-cell, least
squares, and linear two stage methods are all equally sensitive to changes in
bandwidth, and the quadratic two stage method is more sensitive because
it has a larger value of p. Figures 11 through 14 show estimates of f—: and
% based on Eq.(51). Each such estimate is shown as a dashed curve; the
empirical results are shown as points on the plot. The data is based the
empirical values of optimum bandwidth and minimum error shown in Figures
9, and 10; hence they are subject to the same error caused by the sampling
of bandwidths at discrete points in the testing. This is the primary reason
for the scatter in the data found in Figures 11 through 14.
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summed mean squared error
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SMSE vs bandwidth, quadratic 2 stage
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Figure 11: Error sensitivity, cloud in cell
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Figure 12: Error sensitivity, least squares
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IMigure 13: Error sensitivity, linear two stage
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Figure 14: Error sensitivity, quadratic two stage



