
PHYSICS OF FLUIDS VOLUME 10, NUMBER 2 FEBRUARY 1998
Calculations of subsonic and supersonic turbulent reacting mixing layers
using probability density function methods

B. J. Delarue and S. B. Pope
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A particle method applying the probability density function~PDF! approach to turbulent
compressible reacting flows is presented. The method is applied to low and high Mach number
reacting plane mixing layers. Good agreement is obtained between the model calculations and the
available experimental data. The PDF equation is solved using a Lagrangian Monte Carlo method.
To represent the effects of compressibility on the flow, the velocity PDF formulation is extended to
include thermodynamic variables such as the pressure and the internal energy. Full closure of the
joint PDF transport equation is made possible in this way without coupling to a
finite-difference-type solver. The stochastic differential equations~SDE! that model the evolution of
Lagrangian particle properties are based on existing models for the effects of compressibility on
turbulence. The chemistry studied is the fast hydrogen–fluorine reaction. For the low Mach number
runs, low heat release calculations are performed with equivalence ratios different from one. Heat
release is then increased to study the effect of chemical reaction on the mixing layer growth rate.
The subsonic results are compared with experimental data, and good overall agreement is obtained.
The calculations are then performed at a higher Mach number, and the results are compared with the
subsonic results. Our purpose in this paper is not to assess the performances of existing models for
compressible or reacting flows. It is rather to present a new approach extending the domain of
applicability of PDF methods to high-speed combustion. ©1998 American Institute of Physics.
@S1070-6631~98!00302-X#
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I. INTRODUCTION

The interest in high-speed combustion, as, for exam
in SCRAMJET engines, has been revived over the last
cade. Flows arising in such devices lie at the intersection
compressible flows and chemically reacting flows. In ad
tion, these flows are almost always turbulent. In order to fi
understand and then model the complicated physical me
nisms involved in high-speed reacting flows, one must the
fore achieve a thorough understanding of the effects of c
pressibility and chemical reaction on turbulence.

In the field of compressible turbulence, research
been progressing at a remarkable pace in the past few y
Recent theoretical results are reviewed by Lele.1 Extensive
experimental work has been conducted, with a particular
phasis on supersonic plane mixing layers.2–9 Explicit com-
pressibility effects on the turbulence, such as the pres
dilatation correlation and the compressible~or dilatation! dis-
sipation have been successfully modeled.10–15 The limita-
tions of existing incompressible models for terms such as
pressure–rate of strain correlation have been established16,17

and so has the need for future research, in both underst
ing and modeling the effects of compressibility on turb
lence.

The body of literature concerning turbulent reacti
flows is much more substantial. Reviews of the current sta
of both theoretical research and experimental work can
found in Refs. 18 and 19. The turbulent mixing layer h
been the object of numerous experimental investigations,
4871070-6631/98/10(2)/487/12/$15.00
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cause this simple flow can be viewed as an elementary c
ponent of more complicated flows arising in combustion d
vices. Dimotakis20 provides a thorough review o
experimental and theoretical issues pertaining to this part
lar flow.

For flows involving combustion, probability densit
function ~PDF! methods have demonstrated their ability
treat the important processes of reaction and convec
exactly,21 making transport and reaction models used in
dinary turbulence models unnecessary. This is believed to
an advantage over conventional Reynolds stress closu
which often resort to gradient-diffusion modeling for th
triple correlation term in the Reynolds stresses evolut
equation. For high Mach number flows, the dependence
the transport coefficients involved in these models on den
is not known.22 Furthermore, modeling the source term f
reacting flows, which is necessary in a Reynolds stress
sure approach, can be extremely difficult, at all Mach nu
bers.

Solving the modeled joint PDF transport equation us
a Monte Carlo method involves using sets of stochastic p
ticles with time-evolving properties to model fluid particle
The modeled transport equation for the joint PDF of veloc
and composition has been successfully solved in
way.23,24 Recent works include the development of mod
for the joint PDF of velocity and turbulent frequency,25,26

and an extension of the range of applicability of PDF me
ods to flows with arbitrary pressure gradients.27

The application of PDF methods to compressible flo
© 1998 American Institute of Physics
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is very recent.28–31 The problem of determining the mea
pressure directly from the stochastic particle properties
closely related to the difficulties encountered in trying
extend the PDF formulation to complex compressible flow
In the present work we follow up on previous research by
authors,31 who proposed a new approach to extend P
methods to high Mach number flows. One of the outstand
features of this approach is that it is entirely particle bas
no coupling with a finite-volume algorithm to solve for var
ables such as the velocity or the pressure is necessary.

In this paper, the approach is extended further to acco
for chemical reaction with heat release. We take as our b
flow the turbulent mixing layer, and the chemistry studied
the fast hydrogen–fluorine reaction. The pressure variati
which are neglected in low Mach number reaction modeli
are here fully taken into account. Source terms coming fr
viscous dissipation and pressure variations in the enth
equation are also represented. Even though finite reac
rates can be exactly accounted for using PDF methods
nature of the reaction studied, for which the reaction ti
scale is much smaller than any of the relevant flow ti
scales, restricts the present approach to infinitely fast ch
istry. The extension to finite rate chemistry is believed to
straightforward, but will not be addressed here.

In Sec. II, the simplifying assumptions for the chemis
are presented. In Sec. III we detail the PDF formulatio
which is the object of this work, summarizing briefly th
general idea behind PDF methods, then defining our stoc
tic variables and the corresponding stochastic differen
equations~SDE!. The fluid dynamics and turbulence aspe
of the approach have been extensively addressed in De
and Pope,31 hence the emphasis is here on the treatmen
the reaction. In Sec. IV we present results for low Ma
number mixing layers, which are compared with experim
tal data, and for high Mach number mixing layers. The
sults for the latter are compared to low Mach number resu

II. CHEMISTRY

The reaction we consider in this paper is the highly e
thermic hydrogen–fluorine reaction:

H21F2→2HF. ~1!

This reaction can be considered instantaneous, given the
high values of the reaction rate32 and the time scales of in
terest in the turbulent mixing layer.33 The reactants are no
pure, but diluted in nitrogen N2. Numerical values relevan
to the description of the reactants, the dilutant and the re
tion can be found in Table 1. The data in this table a
reproduced from the JANAF tables.34

To describe the chemical composition at every poinx
and timet, we use the mixture fractionj(x,t). In using the
conserved scalar approach, we implicitly neglect the effe
of differential diffusion in the flow. It has been shown35 that
these effects affect the shape of the PDF of mixture fract
without, in general, affecting the mean values. In the follo
ing, we will concentrate on the mean temperature profi
which are not affected by the difference in the species di
sivities. With the assumption that the reaction is infinite
Downloaded 22 Sep 2004 to 140.121.120.39. Redistribution subject to AI
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fast and the knowledge of the instantaneous mixture frac
at every point in the domain, we can obtain in a simple w
the mass fractions for all the species at the same location
time.36 The relations between mass fractions and mixt
fraction are shown in Fig. 1. The instantaneous species c
servation equations can hence be replaced by the single
stantaneous mixture fraction evolution equation.

The calculations described in the following are based
the experimental investigations by Mungal and Dimotaki33

and Hermanson and Dimotakis.37 For these calculations, th
reactants are modeled as ideal gases. The temperature r
the experiments is never such as to necessitate taking
account the variations of the specific heats with temperat
Furthermore, in the temperature range of interest, it is saf
assume that the ratio of specific heatsg is identical for each
species. The reader is referred to Table 1 for verification
the validity of these simplifying assumptions. We summar
them below:

cp,S~T!5cp,S , for each species S, ~2!

gS5g, for each species S. ~3!

The error involved in making assumption~3! is smaller than
the error involved in making assumption~2!. The value we
use forg is g51.38. These assumptions allow for simpl
equations in the PDF model presented in the next sect

TABLE I. Thermochemical properties of the relevant species.

N2 H2 F2 HF

W
~g/mol!

28 2 38 20

DH f
0(300 K) 0 0 0 2272.548

DH f
0(700 K) 0 0 0 2273.522

~kJ/mol!
cp(300 K) 29.125 28.849 31.336 29.138
cp(700 K) 30.754 29.441 35.832 29.351
~J/K mol!
g~300 K! 1.4 1.4 1.36 1.4
g~700 K! 1.37 1.393 1.31 1.395

FIG. 1. Species mass fractions as a function of mixture fractionj. The
stoichiometric mixture fraction isjs50.19. The mass fractions of reactan
in the free streams areYF2

50.18 andYH2
50.04. The dilutant N2 mass

fraction is not shown.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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The complete equations corresponding to the most gen
case, in which neither of these assumptions hold, are give
the Appendix.

For low-Mach number flows, two additional assum
tions are generally made: the pressure is taken to be cons
and the specific enthalpy to behave as a conserved sca38

The latter allows the instantaneous temperature to be sim
related to the instantaneous mixture fraction, and the form
via the ideal gas equation of state, gives the instantane
density as a function of the instantaneous mixture fraction
low-Mach number flows, chemistry and fluid dynamics a
coupled only through the dependence of the density
chemical composition.

In the case of low-Mach number turbulent flows, o
cannot simply relate the mean temperature and density to
mean mixture fraction. To obtain the mean temperature
density at every point in the flow field, one needs to kn
the PDFp(j) of the mixture fraction at that point. Som
information on that PDF can be obtained if the mean and
variance of the mixture fraction are known. In a turbule
flow with high Reynolds number, the evolution equation f
the mean~Favre-averaged! mixture fraction reads as

^r&
]j̃

]t
1^r&Ũ i

]j̃

]xi
52

]^r&ui9j 9̃

]xi
. ~4!

In this equation the overtildes stand for Favre averages,
brackets for Reynolds averages, and the double primes
fluctuations about the Favre averages. The evolution eq
tion for the variance of mixture fraction reads36 as

^r&
]j̃92

]t
1^r&Ũ i

]j̃92

]xi
522^r&ui9j i9̃

]j̃

]xi
2

]^r&ui9j92̃

]xi

22^r&D
]j9

]xi
]j9]xi . ~5!

In the above equation,D is the molecular diffusion coeffi-
cient, assumed to be uniform and identical for all spec
The terms on the right-hand side of Eq.~5! represent, respec
tively, the production by the mean gradient, turbulent tra
port, and dissipation by molecular diffusion.

In high-Mach number flows, both pressure variatio
and enthalpy variations~other than those arising by simp
mixing! have to be taken into account to determine the d
sity or the temperature in the flow field. The species m
fractions, however, remain functions of the mixture fracti
alone, since the basic assumption underlying the mixt
fraction approach—namely, that the reaction rates are
nitely fast when compared to the flow time scales—s
holds for the range of Mach numbers~roughly between 0 and
6.5! considered here. However, the knowledge of the PDF
the mixture fraction becomes insufficient to determine
mean temperature and mean density at any point in the
field. One needs to know also the PDF of two independ
thermodynamic variables, pressure, and enthalpy, for
ample. In the model we present in the next section, we
dress these issues, and allow the additional coupling betw
fluid dynamics and chemistry arising from pressure and
thalpy variations to be accurately represented.
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III. DESCRIPTION OF THE PDF MODEL

Part of what follows has been treated in more detail
Delarue and Pope.31 We will therefore cover only the aspec
of the presentation that are new or essential to a good un
standing of the paper.

A. The Eulerian mass density function

In a turbulent compressible reacting flow, it is comm
to consider the flow propertiesU, v ~turbulent frequency!, j,
e ~specific internal energy!, and p ~pressure! at any fixed
locationx and timet as random variables. If we denote th
sample space variables associated with these random
variables with an overcaret~ˆ!, we define the one-point Eu
lerian mass-density functionF as

F ~Û,v̂,ĵ,ê,p̂;x,t !5rs~ ê,p̂,ĵ !^d~U~x,t !2Û !

3d@v~x,t !2v̂#d@j~x,t !2j#

3d@e~x,t !2ê#d@p~x,t !2 p̂#&.

~6!

In this definitiond is the Dirac delta function, andps is the
equation of state giving the fluid density as a function
specific internal energy, pressure, and mixture fraction.
can obtain the fluid density at any point and time by

r~x,t !5rs@e~x,t !,p~x,t !,j~x,t !#.

The knowledge ofF enables one to compute statistics
the flow, simply by computing its moments. One can der
an evolution equation forF from the Navier–Stokes equa
tions, but it contains unclosed terms, which need to be m
eled. In the following section we briefly address this issu

B. Particle representation

In a Monte Carlo simulation of a flow with total mas
M , F is represented by an ensemble ofN stochastic par-
ticles, each of massDm5M /N, which model fluid particles.
In our representation, each stochastic particlei has a position
x( i ), a velocity U ( i ), a turbulent frequencyv ( i ), a mixture
fraction j ( i ), a pressurep( i ), and a specific internal energ
e( i ). All these properties depend only on timet, and evolve
according to modeled evolution equations. The discrete
grangian mass–density function is defined as

F N~Û,v̂,ĵ,ê,p̂,x;t !5Dm(
i 51

N

d~U ~ i !2Û !

3d~v~ i !2v̂ !d~j~ i !2 ĵ !d~e~ i !2ê!

3d~p~ i !2 p̂!d~x~ i !2x!. ~7!

The modeled evolution equations for the stochastic p
ticle properties yield an evolution equation forF N , which
constitutes our model for the evolution equation forF . The
moments ofF N give the statistics of particle propertie
which we require to model the corresponding statistics of
flow.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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C. Modeled particle evolution equations

The modeled evolution equations for the particle prop
ties are written as stochastic differential equations~SDE! in
which da* 5da* (t) denotes the infinitesimal incremen
a* (t1dt)2a* (t) for any stochastic particle propertya* .

The formulation has been designed for the most gen
case, with finite rate chemistry and variable specific heats
the following, we only detail the equations relevant to rea
ing flows in which simplifications~2! and ~3! hold. The
reader is referred to the appendix for the general equatio

The particle position, velocity, and turbulent frequen
evolve according to the same evolution equations as h
been detailed in Delarue and Pope.31 We restate them briefly
below:

dx* 5U* dt, ~8!

dUi* 52
1

^r&

]^p&
]xi

dt1
1

2k F Pd

^r&
2eS 11

3

2
C0D G

3~Ui* 2Ũ i !dt1~C0e!1/2 dWi , ~9!

dv* 52~v* 2ṽ !C3V2ṽv* Sv dt

1~2s2ṽv* C3V!1/2 dW. ~10!

In the above system, the terms indW anddWi are one- and
three-dimensional independent Wiener processes, or Bro
ian motion increments. Equation~8! merely states that eac
stochastic particle moves with its own velocity. Equation~9!
is the simplified Langevin model39 for the velocity modified
to account for the effects of compressibility on turbulen
and Eq.~10! is the Jayesh and Pope40 model for the turbulent
frequency. In the above equations,Pd is the pressure–
dilatation correlation̂ p8ui ,i8 &, ande is the dissipation rate o
turbulent kinetic energy, which incorporates the compre
ible dissipation 4/3n^ui ,i82&. The models for the effects o
compressibility on turbulence incorporated in these eq
tions are Zeman’s pressure–dilatation model14 and the
Sarkaret al. model for the compressible dissipation.10 No
attempt has been made to account for the effects of c
pressibility on the pressure–rate of strain correlation. Al
the dependence of the fluctuating dilatation rateui ,i8 on
chemical composition fluctuations has not been conside
the models for the pressure–dilatation correlation and for
compressible dissipation take into account the density va
tions arising from pressure variations alone.

The particle mixture fractionj * changes because of mo
lecular mixing alone—the mixture fraction is a conserv
scalar. The mixing model used in this paper is the IE
model proposed by Dopazo.41 Hence the evolution equatio
for j * :

dj* 52CfV~j* 2 j̃ !dt. ~11!

In the above equation,Cf is a model constant equal to 1, an
V is related to the mean turbulent frequency.

The particle specific internal energy is decomposed i
chemical energy and sensible energy:

e* 5ec* 1es* ,
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with, if the mixture consists ofn species,

ec* 5(
i 51

n

Yi* DH f ,i
0 ,

es* 5(
i 51

n

Yi* cv,iT.

In the above system,Yi* is the particle mass fraction of spe
cies i , known if the particle mixture fractionj * is known,
andDH f ,i

0 is the specific enthalpy of formation for speciesi .
We take the reference temperature to be 0 K. We have u
our assumption of constant specific heats.

The evolution equation for the particle specific intern
energy is derived from the first law of thermodynamics:

de* 5e dt2CfV~h* 2h̃!dt2p* dv* . ~12!

In the above equation,v* refers to the specific volume of th
stochastic particle, related toe* , p* , andj * by the equation
of state, which, for a mixture ofn ideal gases with constan
specific heats and identical ratio of specific heats@cf. as-
sumptions~2! and ~3!# reads as

p* v* 5~g21!es* ,

5~g21!S e* 2(
i 51

n

Yi* DH f ,i
0 D .

~13!

In our case, the enthalpies of formation for all but one of t
species, HF, are zero, and the equation of state simplifie

p* v* 5~g21!~e* 2YHF* DH f ,HF
0 !. ~14!

The above equation enables us to computedv* if de* ,dp* ,
anddYi* ~or dj* ! are known.

The term corresponding to heat addition in Eq.~12! con-
tains two contributions: the first one, the first term on t
right-handside, corresponds to viscous dissipation, and
second one, the second term on the right-hand side, to
lecular heat fluxes. The latter involves the particle spec
enthalpy,h* 5e* 1p* v* , and the mean enthalpyh̃. We ne-
glected all heat losses due to radiation, which is legitim
provided the temperature rise is not too large. We will s
that such is the case here.

If the energy variable is taken to be the specific enthal
the stochastic differential equation equivalent to~12! is

dh* 5e dt2CfV~h* 2h̃!dt1v* dp* . ~15!

In the low-Mach number limit, the viscous dissipation a
the pressure variations can be neglected~see the scaling
analysis further on!, and Eq.~15! reduces to the evolution
equation for the mixture fraction, Eq.~11!, which is consis-
tent with the approximation that the enthalpy behaves a
conserved scalar in this limit. For reasons given in Dela
and Pope,31 we choose the specific internal energy as o
energy variable.

The pressure equation is fully modeled. We write it in
general form:

dp* 5p* ~A dt1B dW!. ~16!

The two model coefficientsA andB are given by
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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A5
e

es*
2

Cf

es*
V~h* 2h̃!1

B2

2 S 11
1

g D
2gS ]^Ui&

]xi
2VA~p* 2^p&! D2(

i 51

n dYi*

dt

DH f ,i
0

es*
, ~17!

B25
pe

2

ta

1

u

1

~^r&ã!2

1

ẽ2( i 51
n Ỹi DH f ,i

0
. ~18!

In the above equations,pe and ta are given by Zeman,14 u
512g21, and ã5g^p&/^r& is the mean local speed o
sound. HereVA is given in the appendix. The rate of forma
tion dYi* /dt appears in Eq.~17!: it can be easily calculated
given the rate of change of mixture fraction, Eq.~11!, and
the correspondence betweenYi* andj shown in Fig. 1.

More details on the conditions that lead to the ex
determination of the model coefficientsA and B can be
found in Delarue and Pope.31 Briefly, it can be stated that th
first term on the left-hand side of Eq.~17! corresponds to
heat added by viscous dissipation, the second term co
sponds to heat added by turbulent mixing of enthalpy@and as
such has the same form as the corresponding term in
particle enthalpy equation, Eq.~15!#, the following two terms
correspond to the total pressure–dilatation correlation~the
mean part being in closed form, and the turbulent part be
modeled according to Zeman’s model!, and the last term
corresponds to heat added by the chemical reaction. It is
that Lagrangian pressure varies mainly because of hea
lease and dilatation work. The expression forB, Eq. ~18!,
allows a constant level of pressure variance of approxima
pe

2 to be maintained in flows for which the acoustic tim
scaleta is much smaller than the turbulent time scalek/e.
This model level of turbulent pressure fluctuations has b
introduced by Zeman,14 based on findings by Sarka
et al.10,42

It should be noted that the model equation for pressu
Eq. ~16!, is not restricted to small departures from a const
state. Flows in which the pressure field exhibits large spa
variations can be dealt with. However, shocks and disco
nuities, though theoretically tractable, are, in practice, v
difficult to address. The reasons for this will be given in t
last section.

In the present case, where HF is the only species
which the enthalpy of formation is not zero, we rewrite Eq
~17! and ~18! as

A5
e

es*
2

Cf

es*
V~h* 2h̃!1

B2

2 S 11
1

g D
2gS ]^Ui&

]xi
2VA~p* 2^p&! D2

dYHF*

dt

DH f ,HF
0

es*
, ~19!

B25
pe

2

ta

1

u

1

~^r&ã!2

1

ẽ2ỸHF DH f ,HF
0 . ~20!

The determination of the mean pressure field direc
from the particle properties is a simple matter with the p
sented formulation: one just needs to average the par
pressurep* over the ensemble of particles. An alternate a
Downloaded 22 Sep 2004 to 140.121.120.39. Redistribution subject to AI
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proach, in which the resulting pressure field can be smoot
and filtered, is presented in Delarue and Pope.31

Once the particle energy, pressure, and mixture frac
are known, it is a simple matter to obtain the particle te
perature, using the ideal gas equation of state:

T* 5
p* v*

R (
i 51

n Yi*

Wi

. ~21!

In this equationR is the universal gas constant andWi is the
molar weight of speciesi . We have shown31 that for any
particle property, both the Favre average and the Reyn
average could be obtained from the model joint PDFF N .
Equation ~21! therefore allows us to output the Reynold
averaged temperature at any point in the flow domain,
comparison with experimental data.

The modeled particle evolution equations, Eqs.~8!, ~9!,
~10!, ~11!, ~12!, and~16! yield an evolution equation for the
model joint PDF,F N , with no unclosed terms. The evolu
tion equations for the moments ofF N constitute model equa
tions for the corresponding moments ofF . For instance, the
mean and the variance of mixture fraction evolve accord
to

^r&
]j̃

]t
1^r&Ũ i

]j̃

]xi
52

]^r&ui9j 9̃

]xi
, ~22!

^r&
]j̃92

]t
1^r&Ũ i

]j̃92

]xi
522^r&ui9j i9̃

]j̃

]xi
2

]^r&ui9j92̃

]xi

22^r&CfVj̃92. ~23!

Comparing Eqs.~4! and ~22! on the one hand, and Eqs.~5!
and ~23! on the other hand, one sees that the only mode
term in the particle moments evolution equations is the d
sipation by molecular diffusion. The remaining terms are
in closed form. This is a consequence of convection be
treated exactly in the Lagrangian PDF formulation.

The modeled evolution equation for the mean entha
reads as

^r&
]h̃

]t
1^r&Ũ i

]h̃

]xi
5^r&^e&1 K Dp

Dt L 2
]^r&ui9h9̃

]xi
.

~24!

In the above equation,Dp/Dt is the subtantial derivative o
the pressure, which appears in closed form with our mod

We will now try to obtain the low-Mach number limi
for this equation. In a mixing layer for which the velocit
difference between the fast stream and the slow stream
DU, and the width of the turbulent region at downstrea
location x is d(x), the turbulent dissipatione scales like
DU3/d(x).43 Furthermore, we can estimate the mean pr

sure decrease in the center of the layer to be^r&v92̃, which
we can approximately scale like^r&DU2.43 The time scale at
which the Lagrangian mean pressure varies inside the tu
lent region can be estimated to be roughlyd(x)/DU—this
means that the mean pressure following a fluid particle w
vary only if the fluid particle cross-stream position chang
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Hence, in Eq.~24!, the viscous dissipation term and the su
stantial derivative of the pressure both scale l
^r&DU3/d(x) ~provided the turbulent pressure fluctuatio
are small compared to the mean pressure, which is usu
the case!. The turbulent enthalpy flux can be taken to sc
like ^r&cp DU DT/d(x), whereDT is the temperature dif-
ference between the two streams andcp is the specific heat a
constant pressure for the mixture inside the turbulent reg
~we assume, for the sake of scaling, that turbulent entha
and turbulent velocity fluctuations are perfectly correlate!.
Compared to the other two terms, the turbulent enthalpy
therefore scales likecp DT/DU2. If T0 is some reference
temperature, andc0 the corresponding speed of sound for
ideal gas~we can choose these values from one of the f
streams!, then the scaling can be rewritten as 1/Mc

2 DT/T0 ,
whereMc is the Mach number based on the velocity diffe
ence and the reference speed of sound. In this scaling
neglected the influence of the coefficient of correlation
tween turbulent enthalpy and turbulent velocity fluctuatio
as well as a factor containing the ratio of specific heats. B
factors are of order unity, and we neglected them to obta
simpler expression. The scaling thus shows that for lo
Mach number, the turbulent enthalpy flux dominates
other terms. This fact is consistent with the model behav
of the enthalpy as a conserved scalar in this limit@see Eq.
~15!#: the only important effect is passive mixing arisin
from temperature differences between the two streams.
low-Mach number form of Eq.~24!, obtained therefore sim
ply by neglecting the pressure variations and the visc
dissipation, is the same as Eq.~4!. For the other modeled
moments evolution equations, the reader is referred
Delarue and Pope.31

IV. IMPLEMENTATION IN SUBSONIC AND
SUPERSONIC SHEAR LAYERS

A. Dimensional analysis

Consider a reacting mixing layer, for which both strea
are mixtures of ideal gases, with assumptions~2! and ~3!
holding. The dimensional parameters needed to fully
scribe the flow, in the high Reynolds and Pe´clet numbers
limit, are the pressurespi , the densitiesr i , the velocities
Ui , and for each speciesj , the mass fractionYi , j of that
species in thei th free stream, the molar weightWj , the
specific enthalpy of formationDH f , j

0 and the ratio of specific
heatsg j .

The corresponding nondimensional parameters are

p2

p1
,
r2

r1
,
U2

U1
,M1 ,Yi , j ,

Wj

W1
~ j 52,...,n!,g j ,

DH f , j
0 r1

p1
.

~25!

In the above set,M1 is the free-stream Mach number in th
first stream~which is taken to be the high-speed stream!. The
experiments on which the following calculations are bas
have a pressure ratiop2 /p1 of 1, a density ratior2 /r1 of 1,
and a velocity ratioU2 /U1 of 0.4. The molar weights for
each species are given in Table 1, and theg j ’s have all been
taken to be 1.38. The mass fractions in the free streams
different for each run. These are low-Mach number exp
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ments, for whichM1 is found to be approximately 0.17
Finally, the parameterDH f ,HF

0 r1 /p1 , which in the follow-
ing we will denote byK, is approximately 153.

The fact that the pressures, the densities, and the ra
of specific heats are identical in each free stream allows31

to replaceM1 by a more meaningful parameter, the conve
tive Mach number:3,44

Mc5
U12U2

2c
5

DU

2c
~26!

to describe the level of compressibility of the flow. In E
~26!, c is the common value of the speed of sound in ea
free stream.

For our particular chemistry, we can rewrite Eq.~1! in
terms of mass and not of number of moles, as

H21rF2→~11r !HF.

This merely states that one unit of mass of H2 reacts withr
units of mass ofF2 to form (11r ) units of mass of HF. The
value of r is 19. If, in our reacting mixing layer, the mas
fractions of H2 and F2 in the free streams areYH2

andYF2
,

respectively~there is only one reactant per free stream!, the
maximum mass fraction of HF that can be formed inside
layer is36

YHF,max5
~11r !YH2

YF2

rYH2
1YF2

. ~27!

Hence the quantityYHF,maxDHf,HF
0 represents the maximum

change in sensible energy~which is roughly proportional to
the maximum change in temperature! brought about, within
the mixing region, by the chemical reaction.

From the above analysis, we can predict what the hi
Mach number behavior of the flow will be, compared to t
low-Mach number behavior. Consider a flow in which all th
parameters listed in~25! are held constant, except the co
vective Mach numberMc , which continually increases
Consider the parameterKT , defined as

KT5YHF,maxK,

with YHF,max given by ~27!. Here,KT is also held constant
and we can rewrite it as

KT5YHF,max

DH f ,HF
0 r1

p1
5YHF,max

DH f ,HF
0 g

c2 ,

whereg51.38 is the common value of the ratio of specifi
heats for all species. Making use of the definition ofMc as
DU/2c, we can further modify our expression to obtain

YHF,max DH f ,HF
0

DU2 5
KT

4gMc
2 . ~28!

With the assumption that all parameters, includingKT , are
held constant but forMc that increases, Eq.~28! tells us that
the parameterYHF,maxDHf,HF

0 /DU2, which represents the ra
tio of the temperature rise coming from chemical heat rele
to that coming from fluid dynamical effects, goes to zero
the Mach number goes to infinity. For high Mach numb
flows, therefore, we expect the temperature rise coming fr
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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heat release to become insignificant, compared to that c
ing from effects such as the viscous dissipation. The beh
ior of high-Mach number reacting flows, in other word
should be a little different from that of high-Mach numb
inert flows.

B. Low-Mach number calculations

All the calculations presented in this section have be
made with a value of 0.17 forM1 , which corresponds to a
value of 0.07 forM2 , and of 0.052 forMc . The particle
properties are advanced in time using the model equat
described above. A typical simulation used approximat
500 000 particles on a 18358 grid, a number large enough t
obtain smooth second and third moments of the flow fie
but too small to guarantee a sufficiently stable pressure fi
Therefore, the mean pressure was determined using the
rithm described in Delarue and Pope,31 which amounts to
solving an elliptic equation in the low-Mach-number lim
The calculations were initialized with given profiles for th
first-order moments and the Reynolds stresses. The spl
plate tip is not represented in the computational doma
therefore, all subsequent plots involving the virtual originx0

assume that this point lies at the intersection of the t
straight lines enclosing the turbulent region in the se
similar regime.

The first series of calculations corresponds to low val
of the heat release, after the ‘‘flip’’ experiments of Mung
and Dimotakis.33 In our calculations, the molar fraction of F2

in the high-speed stream is kept constant, at 1%, while
molar fraction of H2 takes on the values 1%, 4%, and 8%
The corresponding mass fractionsYH2

andYF2
, and values of

the stoichiometric mixture fractionjs , given by36

js5
YF2

YF2
1rYH2

are given in Table II, as well as the adiabatic flame tempe
turesDTf for each case. Therefore, the mixture starts fr
stoichiometric proportions, and the reactant on the low-sp
side becomes increasingly richer. The reactants are
‘‘flipped:’’ the molar concentrations in each free stream
main unchanged, but the fluorine is moved to the low-sp
stream, and the hydrogen to the high-speed stream. A us
quantity to characterize each flow is the equivalence r
f:33

f5
c02/c01

~c02/c01!s
5

c02

c01
, ~29!

TABLE II. Molar and mass fractions for different runs.

f cF2
YF2

cH2
YH2

js DTf (K)

1 0.01 0.014 0.01 0.0007 0.5 93
1 0.03 0.04 0.03 0.002 0.5 278.1
1 0.05 0.067 0.05 0.0037 0.5 456.8

4,1/4 0.01 0.014 0.04 0.003 0.19 149
8,1/8 0.01 0.014 0.08 0.006 0.1 165
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wherec02 andc01 are the low-speed and high-speed react
molar concentrations, and (c02/c01)s is the ratio of these
concentrations when the reactants are in stoichiometric
portions. The simplification in Eq.~29! comes from the fact
@cf. Eq. ~1!# that (c02/c01)s51. Thus, for flows with a lean
low-speed stream reactant,f<1, andf>1 for flows with a
rich low-speed stream reactant.

The results for these runs are presented in Fig. 2. All
temperature profiles in this section are plotted versusy/dT ,
wheredT is the 10% thickness of the temperature profile.

The agreement is overall quite good for equivalence
tios f greater than 1. The model predicts the skewing of
profiles toward the lean reactant, F2, and the locations and
values of the peak temperature rise are well reproduced.

FIG. 2. Mean temperature rise, low heat release: top,f51°; middle:f54,
1/4°; bottom:f58, 1/8. Lines: calculations. Symbols: experiments~Ref.
33!.
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temperature profile is not as full in the center region as
experimental profiles, resulting in an overall smaller to
amount of product formed~which, in the low-Mach number
case, is proportional to the temperature rise!. In this fast
chemistry limit, the amount of product formed is mixing lim
ited. The underprediction of the amount of product formed
therefore traceable to the mixing model: in our calculatio
the fluid is not mixed well enough.

For the runs with an equivalence ratio smaller than 1
which case the high-speed stream reactant is rich, the sk
ing of the profiles toward the lean reactant is also well
produced, as well as the location of the peak tempera
rise. However, the experimental data exhibit an overall
crease of the peak temperature rise, which has been a
uted to an asymmetry in the entrainment,33 resulting in val-
ues greater than one for the entrainment ratio, which is
ratio of the volume of high-speed fluid entrained to that
low-speed fluid entrained. Our calculations do not reprod
that effect: the peak temperature rise is the same as in
case where the low-speed stream reactant is rich, and
entrainment ratio is close to one for all our runs. The sou
of the problem has been traced to the turbulent freque
model, which predicts a symmetric entrainment on both si
of the layer. The pressure and energy equations, which
the centerpiece of this work, are not at fault. Improvemen
however, needed in modeling the evolution of the parti
turbulent frequency.

For the second series of calculations, the heat releas
increased, and its effect on the layer growth rate is stud
The reactants are in stoichiometric proportions, but their m
lar concentrations are increased until they teach 5% in e
stream. The corresponding mass fractions are given in T
II, as well as the adiabatic flame temperatures.

Figure 3 shows the mean temperature rise for th
cases. Again, the calculations compare well with the exp
mental results, but the amount of product is underpredic
Hermanson and Dimotakis37 find that the layer growth rate
decreases with increasing heat release. Figure 4 show
decrease in the layer growth rate resulting from increas
heat release in our calculations. To remove the depend
upon the particular thickness used in measuring the gro

FIG. 3. Mean temperature rise, high heat release. Solid lines: calculat
Symbols: experimental data~Ref. 37!.
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rate, the data have been normalized by the extrapolated v
of the straight lines at zero heat release. The param
against which the growth rate is plotted is

Dr

r0
512E

h1

h2 T0

T01^DT&)
dh,

whereh1 andh2 are the 1% points of the mean temperatu
profile, and h is the corresponding similarity coordinate
HereT0 andr0 are the free-stream values of the temperat
and density, identical for each free stream. The slope of
best fit to the calculations is reasonably close to that of
best fit to the experimental data, albeit a little steeper
should be noted that, because of the underprediction of p
uct formation mentioned above, the highest value ofDr/r0

reached in the calculations is 0.21, versus 0.28 for the s
case~5% of reactant in each stream! in the experiments.

The calculated values of the spreading rate fordT were
on average larger than the experimental values: for the ru
which the free-stream molar concentrations are set to 1%
layer grows about 45% faster in our calculations than in
experiments. This can be attributed to three causes: the
one is the inaccuracy in the exact determination of the 1
thickness from both the experimental plots~the experimental
results reporting numerically only the 1% thickness, ve
difficult to use in our case! and our calculations. If there is
10% error in the width of the turbulent region as given
dT , there will be a 10% error in the layer growth rate
well. The second cause lies in the extreme simplicity of
temperature mixing model used, namely the IEM model. I
known to occasionally allow very hot particles to leave t
center of the turbulent region without reducing their te
peratures quickly enough. This might account for the te
perature mixing layer being somewhat too wide in the se
similar regime. Finally, the third cause lies in a
overprediction of the Reynolds shear stress^ru8v8& in the
center of the layer, as is evident in Fig. 5. This overpred
tion is an effect of the simplified Langevin model used in t
velocity equation, and yields and excessive production
turbulent kinetic energy.

s.
FIG. 4. Decrease of the layer growth rate with increasing heat release. S
line: best fit to the experimental data~Ref. 37!. Dashed line: best fit to the
calculations. Some sample calculations are shown~symbols!.
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However large the calculated growth rate may be, it s
lies in the acceptable range of growth rates.45 As the heat
release increases, the gap between calculated growth
and experimental ones is slightly reduced, as can be s
from Fig. 4: the calculated spreading rates decrease so
what faster than the experimental ones.

The decrease of the growth rate has been traced37 to a
decrease in the Reynolds shear stress. Figure. 5 shows
this is also the case in the calculations. The similarity co
dinate is herey/dU , wheredU is the 10% thickness of the
mean velocity profile. As in the experiments, the decreas
the shear stress comes exclusively from the density decr
due to heat release. The broadening of the profiles, note
the experiments, is evident on the plot. The experime
data plotted in Fig. 5 clearly show that for the same amo
of product formed, as measured byDr/r0 , the calculation
overpredicts the Reynolds shear stress peak.

Finally, it should be emphasized that there is no theo
ical restriction on the amount of heat release in the formu
tion of the model equations. The only issues to consi
when dealing with flows involving very high local temper
ture rises are numerical ones: if there is a very import
temperature gradient locally, it becomes necessary to re
the grid and increase the number of stochastic partic
However, if discontinuities appear as in highly compressi
flows, the amount of particles and of grid refinement nec
sary to resolve them become prohibitive. This point is d
cussed further in the next section.

C. High-Mach number calculations

The purpose of these low-Mach number calculations w
to gain an appreciation for the overall performance of
models in the cases reported above. These calculations
rendered necessary by the lack of experimental data on
personic reacting shear layers. Having established the c
match between our PDF calculations and the experime

FIG. 5. Effect of increasing heat release on Reynolds shear stress. L
PDF results. Symbols: experimental data~Ref. 37!.
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data at low Mach number, at least for flows withf>1, we
therefore proceed to study the same cases at a higher val
the free-stream Mach numberM1 .

In the following calculations, the cases corresponding
low heat release and a value of the equivalence ratio gre
than one~1% F2 in the high-speed stream, 1%, 4%, and 8
H2 in the low-speed stream! are studied at a value of th
Mach numberM1 of 2.69. The low-speed Mach number fo
these cases isM251.08, and the convective Mach number
Mc50.81.

The models we are using for the effects of compressi
ity on turbulence will have the following effects: Zeman
model for the pressure–dilatation will ensure that the leve
turbulent pressure fluctuations relaxes to the equilibri
valuepe , roughly equal toMt

2^p&, on the acoustic time scal
ta , which is small compared to the turbulent time scale—
ratio between these two time scales being the turbulent M
number, which never exceeds 0.4 in our calculations. T
means that the magnitude of the pressure–dilatation, pro
tional to the gap betweenpe

2 and ^p82&, will be small. Its
effect on the mean pressure, mean internal energy, and
bulent kinetic energy will thus be small. The dominant effe
of compressibility on turbulence will therefore be the com
pressible dissipation. Recent evidence shows that this is
the case,46 but the lack of better models makes the domina
physical effects of compressibility on turbulence—whi
consist of a decrease in the redistribution of energy betw
the components of the Reynolds stress tensor—extrem
hard to reproduce. For the time being, we therefore stick
Sarkar’s model, which will predict an increased dissipati
of turbulent kinetic energy, and subsequently an isotro
decrease in the magnitude of the diagonal Reynolds stres
We also expect this increased dissipation to increase the
perature peak in the center of the turbulent region, since
have seen that dissipation becomes an increasingly impo
contributor to overall heat release as the Mach number
creases.

The following results focus on mean temperature p
files. Instead of plotting these versus a particular similar
coordinate, we plot them at a given downstream locationx,
versus the nondimensional coordinatey/(x2x0), wherex0

is the location of the virtual origin. We intend to show in th
way that the profiles become narrower when the compre
ibility increases. The downstream distancex is chosen so as
to match the downstream distance at which the self-sim
profiles were computed in the previous section, which
shortly after the onset of self-similarity for the Reynold
stress profiles.

Figure 6 shows the results for the high Mach numb
case, compared to the low Mach number results of the p
vious section. We confined ourselves to flows withf>1, for
which we have shown the close correspondence between
perimental data and our PDF calculations. Two trends
apparent:~i! the layer is narrower, at the same downstre
location, in the high-Mach number case than in the lo
Mach number case; and~ii ! the peak value of the temperatu
profile is higher at higher Mach number. These results
not surprising. The decreased width of the layer comes fr
the well-known fact that the spreading rate of a mixing lay

es:
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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decreases with increased compressibility. The increa
value of the peak temperature can be attributed chiefly
viscous dissipation, which should become more and m
important as the Mach number increases, as mentioned in
dimensional analysis. In the case with 8% H2 in the low-
speed stream, the peak temperature is even shifted towar
center of the layer, compared to the low-Mach number ca
because of the increased importance of dissipation in
center of the layer.

To prove this point further, an additional calculation h
been made, with 1% of reactant in each free stream, an
value ofM1 of 5.38, corresponding to a value ofM2 of 2.16,
and of 1.62 forMc . The result is shown in Fig. 7, along wit
the low-Mach number results, and theM152.69 results. The

FIG. 6. Effect of increasing Mach number on the mean temperature pro
at the same downstream location. Top:f51; middle:f54; bottom:f58.
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two trends mentioned above are more pronounced in
plot, the temperature profile becoming both narrower a
higher. The temperature rise due to chemical reaction
comes clearly much less important than that coming fr
fluid dynamical effects, as could be expected.

No treatment of supersonic combustion would be co
plete without calculations of flows involving discontinuitie
in the mean fields. Such discontinuities can be artificia
introduced47 to enhance mixing, and it is necessary to be a
to predict their effect on the reaction and on the flow. If w
consider a shock wave as a region with extremely high m
dissipation rates and/or high mean dilatation rates~in abso-
lute value!, we can see that both effects can in theory
accounted for in Eq.~17! ~through the terms involving the
viscous dissipation and the mean dilatation! for the pressure,
and in Eq. ~12! ~through the terms involving the viscou
dissipation and the change in specific volume! for the inter-
nal energy. In practice, however, treating discontinuities
curately requires a prohibitive number of particles if o
does not knowa priori the position of the shock. In addition
to this problem, the heavy spatial smoothing applied to
mean pressure and described briefly in Delarue and Po31

tends to smear out discontinuities in the pressure field. In
respect, the work presented here can only be considered
first step in extending the applicability of PDF methods
supersonic combustion. Although the issues are mainly
merical, the treatment of discontinuities has to be the sub
of subsequent research.

V. CONCLUSIONS

We have presented a new PDF model to calculate
statistics of high-speed turbulent reacting flows. The
proach is based on the solution of a modeled evolution eq
tion for the joint PDF of velocity, turbulent frequency, pre
sure, specific internal energy~or enthalpy!, and mixture
fraction. The agreement with experimental data at low-Ma
number is quite satisfactory, for flows with an equivalen
ratio greater than one. The model, however, does not give
correct behavior for flows with an equivalence ratio smal
than one: the flip experiments are not reproduced accura
The trends exhibited by the behaviour of the r

es

FIG. 7. Effect of increasing Mach number on the mean temperature pro
at the same downstream location.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp



te
e
ou
to
a
ce
th

g
, b
t

es
p
th
s-
re

an
c

ca
ha

m
h

la-
t
k

i
-

a

h

t

s
t

-
ifi

ra-

the
lve

on

re

al
ed

497Phys. Fluids, Vol. 10, No. 2, February 1998 B. J. Delarue and S. B. Pope
sults at higher Mach numbers meet the expectations: the
perature profiles become narrower, with an increased p
value. The turbulence and mixing models incorporated in
formulation are very simple, but it will be straightforward
incorporate more accurate models when they are m
available—for example, local mixing models or turbulen
models reproducing the effects of compressibility on
pressure–rate of strain correlation.

The approach allows us to deal with flows exhibitin
strong continuous spatial variations of the mean pressure
an accurate treatment of shock waves is, at present, ou
reach. Dealing with flows involving discontinuities requir
too many particles and a very fine grid to overcome the s
tial smearing of pressure discontinuities caused by
smoothing algorithm~which is necessary to eliminate stati
tical noise!. Further improvement of the method is therefo
needed in that respect.

The reaction studied in this paper did not call for
accurate treatment of finite-rate chemistry. The approa
however, is general enough to remain unchanged in the
of finite reaction rates or more complicated chemical mec
nisms.
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APPENDIX: GENERAL EQUATIONS

In the following we present the general PDF formu
tion, in the case of a mixture ofn ideal gases, but withou
any additional assumptions. In particular, we do not ma
the simplifications of Eqs.~2! and~3!, and we allow for finite
reaction rates.

At the stochastic particle level, the thermochemistry
described by the particle pressurep* , the particle tempera
ture T* ~replacing the particle specific internal energye* ,
which becomes inconvenient when the specific heats v
with temperature!, and the particle mass fractionsYi* , where
i refers to thei th species. It is no longer useful to work wit
the mixture fractionj * in the case of finite reaction rates.

The evolution equations for the mass fractionsYi* can be
written as

dYi* 5Mi dt1Si dt ~A1!

In the above equation,Mi is the molecular mixing term and
Si is the reaction source term. In this paper, we have used
IEM model forMi .41 The source termSi does not need to be
modeled in a PDF formulation. We can, for example, u
Arrhenius’ law to compute this term. Hence the extension
finite reaction rates is straightforward.

To obtain the evolution equation for the particle tem
perature, it is useful to consider first the particle spec
internal energye* . If we write it as

e* 5(
i 51

n

Yi* S DH f ,i
0 1E

0

T*
cv,i~T!dTD 5(

i 51

n

Yi* ei* ,
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whereei* is the specific internal energy for speciesi , then
we can write the evolution equation for the particle tempe
ture as

dT* 5
de* 2( i 51

n ei* dYi*

( i 51
n Yi* cv,i~T* !

. ~A2!

In this equation,dYi* is given by Eq.~A1!, andde* is given
by Eq. ~12!:

de* 5e dt2CfV~h* 2h̃!dt2p* dv* , ~A3!

wherev* is the particle specific volume, related top* , T* ,
andYi* by the ideal gas equation of state:

v* 5
RT*

p* (
i 51

n Yi*

Wi
. ~A4!

It is legitimate to deduce Eq.~A2! from the evolution
equations for the particle specific internal energy and for
particle mass fractions, provided the latter do not invo
Brownian motion increments, which is the case in Eq.~A1!.
If Brownian motion increments were present, the evoluti
equation forT* would contain an additional term.

Finally, the evolution equation for the particle pressu
p* can be written as

dp* 5p* ~A dt1B dW!, ~A5!

with A andB given by

A5
B2

2 S 11
1

G* D1
e

cv* T*
2

Cf

cv* T*
V~h* 2h̃!

2
( i 51

n ei* ~Mi1Si !

cv* T*
1

(
i 51

n
Mi1Si

Wi

(
i 51

n Yi*

Wi

2G* S ]^Ui&
]xi

2VA~p* 2^p&! D , ~A6!

B5
^r&

K p

G* L
pe

2

ta

1

^r&2ã 2 . ~A7!

The quantitiescv* , G* , andVA are given by

cv* 5(
i 51

n

Yi* cv,i~T* !,

G* 511
p* v*

T* cv*
,

VA52
1

2ta^r&ã 2 .

The quantitiesta andpe are defined in Zeman.14

In the case where simplifications~2! and ~3! can be
made, it is more convenient to work with the specific intern
energy than with the temperature. It can be readily verifi
that, in this case, the expressions forA @Eq. ~A6!# andB @Eq.
~A7!# simplify to yield Eqs.~17! and ~18!. Even though the
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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formulation has been designed for variable specific heats
finite-rate chemistry, the chemistry studied in this paper
lowed for those simplifications.
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